1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 assert( pParse->aLabel==0 ); 37 assert( pParse->nLabel==0 ); 38 assert( pParse->nOpAlloc==0 ); 39 assert( pParse->szOpAlloc==0 ); 40 return p; 41 } 42 43 /* 44 ** Change the error string stored in Vdbe.zErrMsg 45 */ 46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 47 va_list ap; 48 sqlite3DbFree(p->db, p->zErrMsg); 49 va_start(ap, zFormat); 50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 51 va_end(ap); 52 } 53 54 /* 55 ** Remember the SQL string for a prepared statement. 56 */ 57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 58 assert( isPrepareV2==1 || isPrepareV2==0 ); 59 if( p==0 ) return; 60 if( !isPrepareV2 ) p->expmask = 0; 61 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 62 if( !isPrepareV2 ) return; 63 #endif 64 assert( p->zSql==0 ); 65 p->zSql = sqlite3DbStrNDup(p->db, z, n); 66 p->isPrepareV2 = (u8)isPrepareV2; 67 } 68 69 /* 70 ** Swap all content between two VDBE structures. 71 */ 72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 73 Vdbe tmp, *pTmp; 74 char *zTmp; 75 assert( pA->db==pB->db ); 76 tmp = *pA; 77 *pA = *pB; 78 *pB = tmp; 79 pTmp = pA->pNext; 80 pA->pNext = pB->pNext; 81 pB->pNext = pTmp; 82 pTmp = pA->pPrev; 83 pA->pPrev = pB->pPrev; 84 pB->pPrev = pTmp; 85 zTmp = pA->zSql; 86 pA->zSql = pB->zSql; 87 pB->zSql = zTmp; 88 pB->isPrepareV2 = pA->isPrepareV2; 89 pB->expmask = pA->expmask; 90 } 91 92 /* 93 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 94 ** than its current size. nOp is guaranteed to be less than or equal 95 ** to 1024/sizeof(Op). 96 ** 97 ** If an out-of-memory error occurs while resizing the array, return 98 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 99 ** unchanged (this is so that any opcodes already allocated can be 100 ** correctly deallocated along with the rest of the Vdbe). 101 */ 102 static int growOpArray(Vdbe *v, int nOp){ 103 VdbeOp *pNew; 104 Parse *p = v->pParse; 105 106 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 107 ** more frequent reallocs and hence provide more opportunities for 108 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 109 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 110 ** by the minimum* amount required until the size reaches 512. Normal 111 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 112 ** size of the op array or add 1KB of space, whichever is smaller. */ 113 #ifdef SQLITE_TEST_REALLOC_STRESS 114 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 115 #else 116 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 117 UNUSED_PARAMETER(nOp); 118 #endif 119 120 /* Ensure that the size of a VDBE does not grow too large */ 121 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 122 sqlite3OomFault(p->db); 123 return SQLITE_NOMEM; 124 } 125 126 assert( nOp<=(1024/sizeof(Op)) ); 127 assert( nNew>=(p->nOpAlloc+nOp) ); 128 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 129 if( pNew ){ 130 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 131 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 132 v->aOp = pNew; 133 } 134 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 135 } 136 137 #ifdef SQLITE_DEBUG 138 /* This routine is just a convenient place to set a breakpoint that will 139 ** fire after each opcode is inserted and displayed using 140 ** "PRAGMA vdbe_addoptrace=on". 141 */ 142 static void test_addop_breakpoint(void){ 143 static int n = 0; 144 n++; 145 } 146 #endif 147 148 /* 149 ** Add a new instruction to the list of instructions current in the 150 ** VDBE. Return the address of the new instruction. 151 ** 152 ** Parameters: 153 ** 154 ** p Pointer to the VDBE 155 ** 156 ** op The opcode for this instruction 157 ** 158 ** p1, p2, p3 Operands 159 ** 160 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 161 ** the sqlite3VdbeChangeP4() function to change the value of the P4 162 ** operand. 163 */ 164 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 165 assert( p->pParse->nOpAlloc<=p->nOp ); 166 if( growOpArray(p, 1) ) return 1; 167 assert( p->pParse->nOpAlloc>p->nOp ); 168 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 169 } 170 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 171 int i; 172 VdbeOp *pOp; 173 174 i = p->nOp; 175 assert( p->magic==VDBE_MAGIC_INIT ); 176 assert( op>=0 && op<0xff ); 177 if( p->pParse->nOpAlloc<=i ){ 178 return growOp3(p, op, p1, p2, p3); 179 } 180 p->nOp++; 181 pOp = &p->aOp[i]; 182 pOp->opcode = (u8)op; 183 pOp->p5 = 0; 184 pOp->p1 = p1; 185 pOp->p2 = p2; 186 pOp->p3 = p3; 187 pOp->p4.p = 0; 188 pOp->p4type = P4_NOTUSED; 189 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 190 pOp->zComment = 0; 191 #endif 192 #ifdef SQLITE_DEBUG 193 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 194 int jj, kk; 195 Parse *pParse = p->pParse; 196 for(jj=kk=0; jj<pParse->nColCache; jj++){ 197 struct yColCache *x = pParse->aColCache + jj; 198 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 199 kk++; 200 } 201 if( kk ) printf("\n"); 202 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 203 test_addop_breakpoint(); 204 } 205 #endif 206 #ifdef VDBE_PROFILE 207 pOp->cycles = 0; 208 pOp->cnt = 0; 209 #endif 210 #ifdef SQLITE_VDBE_COVERAGE 211 pOp->iSrcLine = 0; 212 #endif 213 return i; 214 } 215 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 216 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 217 } 218 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 219 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 220 } 221 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 222 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 223 } 224 225 /* Generate code for an unconditional jump to instruction iDest 226 */ 227 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 228 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 229 } 230 231 /* Generate code to cause the string zStr to be loaded into 232 ** register iDest 233 */ 234 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 235 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 236 } 237 238 /* 239 ** Generate code that initializes multiple registers to string or integer 240 ** constants. The registers begin with iDest and increase consecutively. 241 ** One register is initialized for each characgter in zTypes[]. For each 242 ** "s" character in zTypes[], the register is a string if the argument is 243 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 244 ** in zTypes[], the register is initialized to an integer. 245 */ 246 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 247 va_list ap; 248 int i; 249 char c; 250 va_start(ap, zTypes); 251 for(i=0; (c = zTypes[i])!=0; i++){ 252 if( c=='s' ){ 253 const char *z = va_arg(ap, const char*); 254 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 255 }else{ 256 assert( c=='i' ); 257 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 258 } 259 } 260 va_end(ap); 261 } 262 263 /* 264 ** Add an opcode that includes the p4 value as a pointer. 265 */ 266 int sqlite3VdbeAddOp4( 267 Vdbe *p, /* Add the opcode to this VM */ 268 int op, /* The new opcode */ 269 int p1, /* The P1 operand */ 270 int p2, /* The P2 operand */ 271 int p3, /* The P3 operand */ 272 const char *zP4, /* The P4 operand */ 273 int p4type /* P4 operand type */ 274 ){ 275 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 276 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 277 return addr; 278 } 279 280 /* 281 ** Add an opcode that includes the p4 value with a P4_INT64 or 282 ** P4_REAL type. 283 */ 284 int sqlite3VdbeAddOp4Dup8( 285 Vdbe *p, /* Add the opcode to this VM */ 286 int op, /* The new opcode */ 287 int p1, /* The P1 operand */ 288 int p2, /* The P2 operand */ 289 int p3, /* The P3 operand */ 290 const u8 *zP4, /* The P4 operand */ 291 int p4type /* P4 operand type */ 292 ){ 293 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 294 if( p4copy ) memcpy(p4copy, zP4, 8); 295 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 296 } 297 298 /* 299 ** Add an OP_ParseSchema opcode. This routine is broken out from 300 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 301 ** as having been used. 302 ** 303 ** The zWhere string must have been obtained from sqlite3_malloc(). 304 ** This routine will take ownership of the allocated memory. 305 */ 306 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 307 int j; 308 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 309 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 310 } 311 312 /* 313 ** Add an opcode that includes the p4 value as an integer. 314 */ 315 int sqlite3VdbeAddOp4Int( 316 Vdbe *p, /* Add the opcode to this VM */ 317 int op, /* The new opcode */ 318 int p1, /* The P1 operand */ 319 int p2, /* The P2 operand */ 320 int p3, /* The P3 operand */ 321 int p4 /* The P4 operand as an integer */ 322 ){ 323 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 324 if( p->db->mallocFailed==0 ){ 325 VdbeOp *pOp = &p->aOp[addr]; 326 pOp->p4type = P4_INT32; 327 pOp->p4.i = p4; 328 } 329 return addr; 330 } 331 332 /* Insert the end of a co-routine 333 */ 334 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 335 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 336 337 /* Clear the temporary register cache, thereby ensuring that each 338 ** co-routine has its own independent set of registers, because co-routines 339 ** might expect their registers to be preserved across an OP_Yield, and 340 ** that could cause problems if two or more co-routines are using the same 341 ** temporary register. 342 */ 343 v->pParse->nTempReg = 0; 344 v->pParse->nRangeReg = 0; 345 } 346 347 /* 348 ** Create a new symbolic label for an instruction that has yet to be 349 ** coded. The symbolic label is really just a negative number. The 350 ** label can be used as the P2 value of an operation. Later, when 351 ** the label is resolved to a specific address, the VDBE will scan 352 ** through its operation list and change all values of P2 which match 353 ** the label into the resolved address. 354 ** 355 ** The VDBE knows that a P2 value is a label because labels are 356 ** always negative and P2 values are suppose to be non-negative. 357 ** Hence, a negative P2 value is a label that has yet to be resolved. 358 ** 359 ** Zero is returned if a malloc() fails. 360 */ 361 int sqlite3VdbeMakeLabel(Vdbe *v){ 362 Parse *p = v->pParse; 363 int i = p->nLabel++; 364 assert( v->magic==VDBE_MAGIC_INIT ); 365 if( (i & (i-1))==0 ){ 366 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 367 (i*2+1)*sizeof(p->aLabel[0])); 368 } 369 if( p->aLabel ){ 370 p->aLabel[i] = -1; 371 } 372 return ADDR(i); 373 } 374 375 /* 376 ** Resolve label "x" to be the address of the next instruction to 377 ** be inserted. The parameter "x" must have been obtained from 378 ** a prior call to sqlite3VdbeMakeLabel(). 379 */ 380 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 381 Parse *p = v->pParse; 382 int j = ADDR(x); 383 assert( v->magic==VDBE_MAGIC_INIT ); 384 assert( j<p->nLabel ); 385 assert( j>=0 ); 386 if( p->aLabel ){ 387 p->aLabel[j] = v->nOp; 388 } 389 } 390 391 /* 392 ** Mark the VDBE as one that can only be run one time. 393 */ 394 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 395 p->runOnlyOnce = 1; 396 } 397 398 /* 399 ** Mark the VDBE as one that can only be run multiple times. 400 */ 401 void sqlite3VdbeReusable(Vdbe *p){ 402 p->runOnlyOnce = 0; 403 } 404 405 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 406 407 /* 408 ** The following type and function are used to iterate through all opcodes 409 ** in a Vdbe main program and each of the sub-programs (triggers) it may 410 ** invoke directly or indirectly. It should be used as follows: 411 ** 412 ** Op *pOp; 413 ** VdbeOpIter sIter; 414 ** 415 ** memset(&sIter, 0, sizeof(sIter)); 416 ** sIter.v = v; // v is of type Vdbe* 417 ** while( (pOp = opIterNext(&sIter)) ){ 418 ** // Do something with pOp 419 ** } 420 ** sqlite3DbFree(v->db, sIter.apSub); 421 ** 422 */ 423 typedef struct VdbeOpIter VdbeOpIter; 424 struct VdbeOpIter { 425 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 426 SubProgram **apSub; /* Array of subprograms */ 427 int nSub; /* Number of entries in apSub */ 428 int iAddr; /* Address of next instruction to return */ 429 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 430 }; 431 static Op *opIterNext(VdbeOpIter *p){ 432 Vdbe *v = p->v; 433 Op *pRet = 0; 434 Op *aOp; 435 int nOp; 436 437 if( p->iSub<=p->nSub ){ 438 439 if( p->iSub==0 ){ 440 aOp = v->aOp; 441 nOp = v->nOp; 442 }else{ 443 aOp = p->apSub[p->iSub-1]->aOp; 444 nOp = p->apSub[p->iSub-1]->nOp; 445 } 446 assert( p->iAddr<nOp ); 447 448 pRet = &aOp[p->iAddr]; 449 p->iAddr++; 450 if( p->iAddr==nOp ){ 451 p->iSub++; 452 p->iAddr = 0; 453 } 454 455 if( pRet->p4type==P4_SUBPROGRAM ){ 456 int nByte = (p->nSub+1)*sizeof(SubProgram*); 457 int j; 458 for(j=0; j<p->nSub; j++){ 459 if( p->apSub[j]==pRet->p4.pProgram ) break; 460 } 461 if( j==p->nSub ){ 462 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 463 if( !p->apSub ){ 464 pRet = 0; 465 }else{ 466 p->apSub[p->nSub++] = pRet->p4.pProgram; 467 } 468 } 469 } 470 } 471 472 return pRet; 473 } 474 475 /* 476 ** Check if the program stored in the VM associated with pParse may 477 ** throw an ABORT exception (causing the statement, but not entire transaction 478 ** to be rolled back). This condition is true if the main program or any 479 ** sub-programs contains any of the following: 480 ** 481 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 482 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 483 ** * OP_Destroy 484 ** * OP_VUpdate 485 ** * OP_VRename 486 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 487 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 488 ** 489 ** Then check that the value of Parse.mayAbort is true if an 490 ** ABORT may be thrown, or false otherwise. Return true if it does 491 ** match, or false otherwise. This function is intended to be used as 492 ** part of an assert statement in the compiler. Similar to: 493 ** 494 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 495 */ 496 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 497 int hasAbort = 0; 498 int hasFkCounter = 0; 499 int hasCreateTable = 0; 500 int hasInitCoroutine = 0; 501 Op *pOp; 502 VdbeOpIter sIter; 503 memset(&sIter, 0, sizeof(sIter)); 504 sIter.v = v; 505 506 while( (pOp = opIterNext(&sIter))!=0 ){ 507 int opcode = pOp->opcode; 508 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 509 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 510 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 511 ){ 512 hasAbort = 1; 513 break; 514 } 515 if( opcode==OP_CreateTable ) hasCreateTable = 1; 516 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 517 #ifndef SQLITE_OMIT_FOREIGN_KEY 518 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 519 hasFkCounter = 1; 520 } 521 #endif 522 } 523 sqlite3DbFree(v->db, sIter.apSub); 524 525 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 526 ** If malloc failed, then the while() loop above may not have iterated 527 ** through all opcodes and hasAbort may be set incorrectly. Return 528 ** true for this case to prevent the assert() in the callers frame 529 ** from failing. */ 530 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 531 || (hasCreateTable && hasInitCoroutine) ); 532 } 533 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 534 535 /* 536 ** This routine is called after all opcodes have been inserted. It loops 537 ** through all the opcodes and fixes up some details. 538 ** 539 ** (1) For each jump instruction with a negative P2 value (a label) 540 ** resolve the P2 value to an actual address. 541 ** 542 ** (2) Compute the maximum number of arguments used by any SQL function 543 ** and store that value in *pMaxFuncArgs. 544 ** 545 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 546 ** indicate what the prepared statement actually does. 547 ** 548 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 549 ** 550 ** (5) Reclaim the memory allocated for storing labels. 551 ** 552 ** This routine will only function correctly if the mkopcodeh.tcl generator 553 ** script numbers the opcodes correctly. Changes to this routine must be 554 ** coordinated with changes to mkopcodeh.tcl. 555 */ 556 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 557 int nMaxArgs = *pMaxFuncArgs; 558 Op *pOp; 559 Parse *pParse = p->pParse; 560 int *aLabel = pParse->aLabel; 561 p->readOnly = 1; 562 p->bIsReader = 0; 563 pOp = &p->aOp[p->nOp-1]; 564 while(1){ 565 566 /* Only JUMP opcodes and the short list of special opcodes in the switch 567 ** below need to be considered. The mkopcodeh.tcl generator script groups 568 ** all these opcodes together near the front of the opcode list. Skip 569 ** any opcode that does not need processing by virtual of the fact that 570 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 571 */ 572 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 573 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 574 ** cases from this switch! */ 575 switch( pOp->opcode ){ 576 case OP_Transaction: { 577 if( pOp->p2!=0 ) p->readOnly = 0; 578 /* fall thru */ 579 } 580 case OP_AutoCommit: 581 case OP_Savepoint: { 582 p->bIsReader = 1; 583 break; 584 } 585 #ifndef SQLITE_OMIT_WAL 586 case OP_Checkpoint: 587 #endif 588 case OP_Vacuum: 589 case OP_JournalMode: { 590 p->readOnly = 0; 591 p->bIsReader = 1; 592 break; 593 } 594 #ifndef SQLITE_OMIT_VIRTUALTABLE 595 case OP_VUpdate: { 596 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 597 break; 598 } 599 case OP_VFilter: { 600 int n; 601 assert( (pOp - p->aOp) >= 3 ); 602 assert( pOp[-1].opcode==OP_Integer ); 603 n = pOp[-1].p1; 604 if( n>nMaxArgs ) nMaxArgs = n; 605 break; 606 } 607 #endif 608 case OP_Next: 609 case OP_NextIfOpen: 610 case OP_SorterNext: { 611 pOp->p4.xAdvance = sqlite3BtreeNext; 612 pOp->p4type = P4_ADVANCE; 613 break; 614 } 615 case OP_Prev: 616 case OP_PrevIfOpen: { 617 pOp->p4.xAdvance = sqlite3BtreePrevious; 618 pOp->p4type = P4_ADVANCE; 619 break; 620 } 621 } 622 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 623 assert( ADDR(pOp->p2)<pParse->nLabel ); 624 pOp->p2 = aLabel[ADDR(pOp->p2)]; 625 } 626 } 627 if( pOp==p->aOp ) break; 628 pOp--; 629 } 630 sqlite3DbFree(p->db, pParse->aLabel); 631 pParse->aLabel = 0; 632 pParse->nLabel = 0; 633 *pMaxFuncArgs = nMaxArgs; 634 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 635 } 636 637 /* 638 ** Return the address of the next instruction to be inserted. 639 */ 640 int sqlite3VdbeCurrentAddr(Vdbe *p){ 641 assert( p->magic==VDBE_MAGIC_INIT ); 642 return p->nOp; 643 } 644 645 /* 646 ** Verify that at least N opcode slots are available in p without 647 ** having to malloc for more space (except when compiled using 648 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 649 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 650 ** fail due to a OOM fault and hence that the return value from 651 ** sqlite3VdbeAddOpList() will always be non-NULL. 652 */ 653 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 654 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 655 assert( p->nOp + N <= p->pParse->nOpAlloc ); 656 } 657 #endif 658 659 /* 660 ** Verify that the VM passed as the only argument does not contain 661 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 662 ** by code in pragma.c to ensure that the implementation of certain 663 ** pragmas comports with the flags specified in the mkpragmatab.tcl 664 ** script. 665 */ 666 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 667 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 668 int i; 669 for(i=0; i<p->nOp; i++){ 670 assert( p->aOp[i].opcode!=OP_ResultRow ); 671 } 672 } 673 #endif 674 675 /* 676 ** This function returns a pointer to the array of opcodes associated with 677 ** the Vdbe passed as the first argument. It is the callers responsibility 678 ** to arrange for the returned array to be eventually freed using the 679 ** vdbeFreeOpArray() function. 680 ** 681 ** Before returning, *pnOp is set to the number of entries in the returned 682 ** array. Also, *pnMaxArg is set to the larger of its current value and 683 ** the number of entries in the Vdbe.apArg[] array required to execute the 684 ** returned program. 685 */ 686 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 687 VdbeOp *aOp = p->aOp; 688 assert( aOp && !p->db->mallocFailed ); 689 690 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 691 assert( DbMaskAllZero(p->btreeMask) ); 692 693 resolveP2Values(p, pnMaxArg); 694 *pnOp = p->nOp; 695 p->aOp = 0; 696 return aOp; 697 } 698 699 /* 700 ** Add a whole list of operations to the operation stack. Return a 701 ** pointer to the first operation inserted. 702 ** 703 ** Non-zero P2 arguments to jump instructions are automatically adjusted 704 ** so that the jump target is relative to the first operation inserted. 705 */ 706 VdbeOp *sqlite3VdbeAddOpList( 707 Vdbe *p, /* Add opcodes to the prepared statement */ 708 int nOp, /* Number of opcodes to add */ 709 VdbeOpList const *aOp, /* The opcodes to be added */ 710 int iLineno /* Source-file line number of first opcode */ 711 ){ 712 int i; 713 VdbeOp *pOut, *pFirst; 714 assert( nOp>0 ); 715 assert( p->magic==VDBE_MAGIC_INIT ); 716 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 717 return 0; 718 } 719 pFirst = pOut = &p->aOp[p->nOp]; 720 for(i=0; i<nOp; i++, aOp++, pOut++){ 721 pOut->opcode = aOp->opcode; 722 pOut->p1 = aOp->p1; 723 pOut->p2 = aOp->p2; 724 assert( aOp->p2>=0 ); 725 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 726 pOut->p2 += p->nOp; 727 } 728 pOut->p3 = aOp->p3; 729 pOut->p4type = P4_NOTUSED; 730 pOut->p4.p = 0; 731 pOut->p5 = 0; 732 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 733 pOut->zComment = 0; 734 #endif 735 #ifdef SQLITE_VDBE_COVERAGE 736 pOut->iSrcLine = iLineno+i; 737 #else 738 (void)iLineno; 739 #endif 740 #ifdef SQLITE_DEBUG 741 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 742 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 743 } 744 #endif 745 } 746 p->nOp += nOp; 747 return pFirst; 748 } 749 750 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 751 /* 752 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 753 */ 754 void sqlite3VdbeScanStatus( 755 Vdbe *p, /* VM to add scanstatus() to */ 756 int addrExplain, /* Address of OP_Explain (or 0) */ 757 int addrLoop, /* Address of loop counter */ 758 int addrVisit, /* Address of rows visited counter */ 759 LogEst nEst, /* Estimated number of output rows */ 760 const char *zName /* Name of table or index being scanned */ 761 ){ 762 int nByte = (p->nScan+1) * sizeof(ScanStatus); 763 ScanStatus *aNew; 764 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 765 if( aNew ){ 766 ScanStatus *pNew = &aNew[p->nScan++]; 767 pNew->addrExplain = addrExplain; 768 pNew->addrLoop = addrLoop; 769 pNew->addrVisit = addrVisit; 770 pNew->nEst = nEst; 771 pNew->zName = sqlite3DbStrDup(p->db, zName); 772 p->aScan = aNew; 773 } 774 } 775 #endif 776 777 778 /* 779 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 780 ** for a specific instruction. 781 */ 782 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 783 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 784 } 785 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 786 sqlite3VdbeGetOp(p,addr)->p1 = val; 787 } 788 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 789 sqlite3VdbeGetOp(p,addr)->p2 = val; 790 } 791 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 792 sqlite3VdbeGetOp(p,addr)->p3 = val; 793 } 794 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 795 assert( p->nOp>0 || p->db->mallocFailed ); 796 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 797 } 798 799 /* 800 ** Change the P2 operand of instruction addr so that it points to 801 ** the address of the next instruction to be coded. 802 */ 803 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 804 sqlite3VdbeChangeP2(p, addr, p->nOp); 805 } 806 807 808 /* 809 ** If the input FuncDef structure is ephemeral, then free it. If 810 ** the FuncDef is not ephermal, then do nothing. 811 */ 812 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 813 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 814 sqlite3DbFree(db, pDef); 815 } 816 } 817 818 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 819 820 /* 821 ** Delete a P4 value if necessary. 822 */ 823 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 824 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 825 sqlite3DbFree(db, p); 826 } 827 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 828 freeEphemeralFunction(db, p->pFunc); 829 sqlite3DbFree(db, p); 830 } 831 static void freeP4(sqlite3 *db, int p4type, void *p4){ 832 assert( db ); 833 switch( p4type ){ 834 case P4_FUNCCTX: { 835 freeP4FuncCtx(db, (sqlite3_context*)p4); 836 break; 837 } 838 case P4_REAL: 839 case P4_INT64: 840 case P4_DYNAMIC: 841 case P4_INTARRAY: { 842 sqlite3DbFree(db, p4); 843 break; 844 } 845 case P4_KEYINFO: { 846 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 847 break; 848 } 849 #ifdef SQLITE_ENABLE_CURSOR_HINTS 850 case P4_EXPR: { 851 sqlite3ExprDelete(db, (Expr*)p4); 852 break; 853 } 854 #endif 855 case P4_FUNCDEF: { 856 freeEphemeralFunction(db, (FuncDef*)p4); 857 break; 858 } 859 case P4_MEM: { 860 if( db->pnBytesFreed==0 ){ 861 sqlite3ValueFree((sqlite3_value*)p4); 862 }else{ 863 freeP4Mem(db, (Mem*)p4); 864 } 865 break; 866 } 867 case P4_VTAB : { 868 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 869 break; 870 } 871 } 872 } 873 874 /* 875 ** Free the space allocated for aOp and any p4 values allocated for the 876 ** opcodes contained within. If aOp is not NULL it is assumed to contain 877 ** nOp entries. 878 */ 879 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 880 if( aOp ){ 881 Op *pOp; 882 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 883 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 884 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 885 sqlite3DbFree(db, pOp->zComment); 886 #endif 887 } 888 } 889 sqlite3DbFree(db, aOp); 890 } 891 892 /* 893 ** Link the SubProgram object passed as the second argument into the linked 894 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 895 ** objects when the VM is no longer required. 896 */ 897 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 898 p->pNext = pVdbe->pProgram; 899 pVdbe->pProgram = p; 900 } 901 902 /* 903 ** Change the opcode at addr into OP_Noop 904 */ 905 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 906 VdbeOp *pOp; 907 if( p->db->mallocFailed ) return 0; 908 assert( addr>=0 && addr<p->nOp ); 909 pOp = &p->aOp[addr]; 910 freeP4(p->db, pOp->p4type, pOp->p4.p); 911 pOp->p4type = P4_NOTUSED; 912 pOp->p4.z = 0; 913 pOp->opcode = OP_Noop; 914 return 1; 915 } 916 917 /* 918 ** If the last opcode is "op" and it is not a jump destination, 919 ** then remove it. Return true if and only if an opcode was removed. 920 */ 921 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 922 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 923 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 924 }else{ 925 return 0; 926 } 927 } 928 929 /* 930 ** Change the value of the P4 operand for a specific instruction. 931 ** This routine is useful when a large program is loaded from a 932 ** static array using sqlite3VdbeAddOpList but we want to make a 933 ** few minor changes to the program. 934 ** 935 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 936 ** the string is made into memory obtained from sqlite3_malloc(). 937 ** A value of n==0 means copy bytes of zP4 up to and including the 938 ** first null byte. If n>0 then copy n+1 bytes of zP4. 939 ** 940 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 941 ** to a string or structure that is guaranteed to exist for the lifetime of 942 ** the Vdbe. In these cases we can just copy the pointer. 943 ** 944 ** If addr<0 then change P4 on the most recently inserted instruction. 945 */ 946 static void SQLITE_NOINLINE vdbeChangeP4Full( 947 Vdbe *p, 948 Op *pOp, 949 const char *zP4, 950 int n 951 ){ 952 if( pOp->p4type ){ 953 freeP4(p->db, pOp->p4type, pOp->p4.p); 954 pOp->p4type = 0; 955 pOp->p4.p = 0; 956 } 957 if( n<0 ){ 958 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 959 }else{ 960 if( n==0 ) n = sqlite3Strlen30(zP4); 961 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 962 pOp->p4type = P4_DYNAMIC; 963 } 964 } 965 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 966 Op *pOp; 967 sqlite3 *db; 968 assert( p!=0 ); 969 db = p->db; 970 assert( p->magic==VDBE_MAGIC_INIT ); 971 assert( p->aOp!=0 || db->mallocFailed ); 972 if( db->mallocFailed ){ 973 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 974 return; 975 } 976 assert( p->nOp>0 ); 977 assert( addr<p->nOp ); 978 if( addr<0 ){ 979 addr = p->nOp - 1; 980 } 981 pOp = &p->aOp[addr]; 982 if( n>=0 || pOp->p4type ){ 983 vdbeChangeP4Full(p, pOp, zP4, n); 984 return; 985 } 986 if( n==P4_INT32 ){ 987 /* Note: this cast is safe, because the origin data point was an int 988 ** that was cast to a (const char *). */ 989 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 990 pOp->p4type = P4_INT32; 991 }else if( zP4!=0 ){ 992 assert( n<0 ); 993 pOp->p4.p = (void*)zP4; 994 pOp->p4type = (signed char)n; 995 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 996 } 997 } 998 999 /* 1000 ** Change the P4 operand of the most recently coded instruction 1001 ** to the value defined by the arguments. This is a high-speed 1002 ** version of sqlite3VdbeChangeP4(). 1003 ** 1004 ** The P4 operand must not have been previously defined. And the new 1005 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1006 ** those cases. 1007 */ 1008 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1009 VdbeOp *pOp; 1010 assert( n!=P4_INT32 && n!=P4_VTAB ); 1011 assert( n<=0 ); 1012 if( p->db->mallocFailed ){ 1013 freeP4(p->db, n, pP4); 1014 }else{ 1015 assert( pP4!=0 ); 1016 assert( p->nOp>0 ); 1017 pOp = &p->aOp[p->nOp-1]; 1018 assert( pOp->p4type==P4_NOTUSED ); 1019 pOp->p4type = n; 1020 pOp->p4.p = pP4; 1021 } 1022 } 1023 1024 /* 1025 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1026 ** index given. 1027 */ 1028 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1029 Vdbe *v = pParse->pVdbe; 1030 KeyInfo *pKeyInfo; 1031 assert( v!=0 ); 1032 assert( pIdx!=0 ); 1033 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1034 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1035 } 1036 1037 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1038 /* 1039 ** Change the comment on the most recently coded instruction. Or 1040 ** insert a No-op and add the comment to that new instruction. This 1041 ** makes the code easier to read during debugging. None of this happens 1042 ** in a production build. 1043 */ 1044 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1045 assert( p->nOp>0 || p->aOp==0 ); 1046 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1047 if( p->nOp ){ 1048 assert( p->aOp ); 1049 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1050 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1051 } 1052 } 1053 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1054 va_list ap; 1055 if( p ){ 1056 va_start(ap, zFormat); 1057 vdbeVComment(p, zFormat, ap); 1058 va_end(ap); 1059 } 1060 } 1061 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1062 va_list ap; 1063 if( p ){ 1064 sqlite3VdbeAddOp0(p, OP_Noop); 1065 va_start(ap, zFormat); 1066 vdbeVComment(p, zFormat, ap); 1067 va_end(ap); 1068 } 1069 } 1070 #endif /* NDEBUG */ 1071 1072 #ifdef SQLITE_VDBE_COVERAGE 1073 /* 1074 ** Set the value if the iSrcLine field for the previously coded instruction. 1075 */ 1076 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1077 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1078 } 1079 #endif /* SQLITE_VDBE_COVERAGE */ 1080 1081 /* 1082 ** Return the opcode for a given address. If the address is -1, then 1083 ** return the most recently inserted opcode. 1084 ** 1085 ** If a memory allocation error has occurred prior to the calling of this 1086 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1087 ** is readable but not writable, though it is cast to a writable value. 1088 ** The return of a dummy opcode allows the call to continue functioning 1089 ** after an OOM fault without having to check to see if the return from 1090 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1091 ** dummy will never be written to. This is verified by code inspection and 1092 ** by running with Valgrind. 1093 */ 1094 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1095 /* C89 specifies that the constant "dummy" will be initialized to all 1096 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1097 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1098 assert( p->magic==VDBE_MAGIC_INIT ); 1099 if( addr<0 ){ 1100 addr = p->nOp - 1; 1101 } 1102 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1103 if( p->db->mallocFailed ){ 1104 return (VdbeOp*)&dummy; 1105 }else{ 1106 return &p->aOp[addr]; 1107 } 1108 } 1109 1110 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1111 /* 1112 ** Return an integer value for one of the parameters to the opcode pOp 1113 ** determined by character c. 1114 */ 1115 static int translateP(char c, const Op *pOp){ 1116 if( c=='1' ) return pOp->p1; 1117 if( c=='2' ) return pOp->p2; 1118 if( c=='3' ) return pOp->p3; 1119 if( c=='4' ) return pOp->p4.i; 1120 return pOp->p5; 1121 } 1122 1123 /* 1124 ** Compute a string for the "comment" field of a VDBE opcode listing. 1125 ** 1126 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1127 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1128 ** absence of other comments, this synopsis becomes the comment on the opcode. 1129 ** Some translation occurs: 1130 ** 1131 ** "PX" -> "r[X]" 1132 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1133 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1134 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1135 */ 1136 static int displayComment( 1137 const Op *pOp, /* The opcode to be commented */ 1138 const char *zP4, /* Previously obtained value for P4 */ 1139 char *zTemp, /* Write result here */ 1140 int nTemp /* Space available in zTemp[] */ 1141 ){ 1142 const char *zOpName; 1143 const char *zSynopsis; 1144 int nOpName; 1145 int ii, jj; 1146 char zAlt[50]; 1147 zOpName = sqlite3OpcodeName(pOp->opcode); 1148 nOpName = sqlite3Strlen30(zOpName); 1149 if( zOpName[nOpName+1] ){ 1150 int seenCom = 0; 1151 char c; 1152 zSynopsis = zOpName += nOpName + 1; 1153 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1154 if( pOp->p5 & SQLITE_STOREP2 ){ 1155 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1156 }else{ 1157 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1158 } 1159 zSynopsis = zAlt; 1160 } 1161 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1162 if( c=='P' ){ 1163 c = zSynopsis[++ii]; 1164 if( c=='4' ){ 1165 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1166 }else if( c=='X' ){ 1167 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1168 seenCom = 1; 1169 }else{ 1170 int v1 = translateP(c, pOp); 1171 int v2; 1172 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1173 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1174 ii += 3; 1175 jj += sqlite3Strlen30(zTemp+jj); 1176 v2 = translateP(zSynopsis[ii], pOp); 1177 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1178 ii += 2; 1179 v2++; 1180 } 1181 if( v2>1 ){ 1182 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1183 } 1184 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1185 ii += 4; 1186 } 1187 } 1188 jj += sqlite3Strlen30(zTemp+jj); 1189 }else{ 1190 zTemp[jj++] = c; 1191 } 1192 } 1193 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1194 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1195 jj += sqlite3Strlen30(zTemp+jj); 1196 } 1197 if( jj<nTemp ) zTemp[jj] = 0; 1198 }else if( pOp->zComment ){ 1199 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1200 jj = sqlite3Strlen30(zTemp); 1201 }else{ 1202 zTemp[0] = 0; 1203 jj = 0; 1204 } 1205 return jj; 1206 } 1207 #endif /* SQLITE_DEBUG */ 1208 1209 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1210 /* 1211 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1212 ** that can be displayed in the P4 column of EXPLAIN output. 1213 */ 1214 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1215 const char *zOp = 0; 1216 switch( pExpr->op ){ 1217 case TK_STRING: 1218 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1219 break; 1220 case TK_INTEGER: 1221 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1222 break; 1223 case TK_NULL: 1224 sqlite3XPrintf(p, "NULL"); 1225 break; 1226 case TK_REGISTER: { 1227 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1228 break; 1229 } 1230 case TK_COLUMN: { 1231 if( pExpr->iColumn<0 ){ 1232 sqlite3XPrintf(p, "rowid"); 1233 }else{ 1234 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1235 } 1236 break; 1237 } 1238 case TK_LT: zOp = "LT"; break; 1239 case TK_LE: zOp = "LE"; break; 1240 case TK_GT: zOp = "GT"; break; 1241 case TK_GE: zOp = "GE"; break; 1242 case TK_NE: zOp = "NE"; break; 1243 case TK_EQ: zOp = "EQ"; break; 1244 case TK_IS: zOp = "IS"; break; 1245 case TK_ISNOT: zOp = "ISNOT"; break; 1246 case TK_AND: zOp = "AND"; break; 1247 case TK_OR: zOp = "OR"; break; 1248 case TK_PLUS: zOp = "ADD"; break; 1249 case TK_STAR: zOp = "MUL"; break; 1250 case TK_MINUS: zOp = "SUB"; break; 1251 case TK_REM: zOp = "REM"; break; 1252 case TK_BITAND: zOp = "BITAND"; break; 1253 case TK_BITOR: zOp = "BITOR"; break; 1254 case TK_SLASH: zOp = "DIV"; break; 1255 case TK_LSHIFT: zOp = "LSHIFT"; break; 1256 case TK_RSHIFT: zOp = "RSHIFT"; break; 1257 case TK_CONCAT: zOp = "CONCAT"; break; 1258 case TK_UMINUS: zOp = "MINUS"; break; 1259 case TK_UPLUS: zOp = "PLUS"; break; 1260 case TK_BITNOT: zOp = "BITNOT"; break; 1261 case TK_NOT: zOp = "NOT"; break; 1262 case TK_ISNULL: zOp = "ISNULL"; break; 1263 case TK_NOTNULL: zOp = "NOTNULL"; break; 1264 1265 default: 1266 sqlite3XPrintf(p, "%s", "expr"); 1267 break; 1268 } 1269 1270 if( zOp ){ 1271 sqlite3XPrintf(p, "%s(", zOp); 1272 displayP4Expr(p, pExpr->pLeft); 1273 if( pExpr->pRight ){ 1274 sqlite3StrAccumAppend(p, ",", 1); 1275 displayP4Expr(p, pExpr->pRight); 1276 } 1277 sqlite3StrAccumAppend(p, ")", 1); 1278 } 1279 } 1280 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1281 1282 1283 #if VDBE_DISPLAY_P4 1284 /* 1285 ** Compute a string that describes the P4 parameter for an opcode. 1286 ** Use zTemp for any required temporary buffer space. 1287 */ 1288 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1289 char *zP4 = zTemp; 1290 StrAccum x; 1291 assert( nTemp>=20 ); 1292 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1293 switch( pOp->p4type ){ 1294 case P4_KEYINFO: { 1295 int j; 1296 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1297 assert( pKeyInfo->aSortOrder!=0 ); 1298 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1299 for(j=0; j<pKeyInfo->nField; j++){ 1300 CollSeq *pColl = pKeyInfo->aColl[j]; 1301 const char *zColl = pColl ? pColl->zName : ""; 1302 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1303 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1304 } 1305 sqlite3StrAccumAppend(&x, ")", 1); 1306 break; 1307 } 1308 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1309 case P4_EXPR: { 1310 displayP4Expr(&x, pOp->p4.pExpr); 1311 break; 1312 } 1313 #endif 1314 case P4_COLLSEQ: { 1315 CollSeq *pColl = pOp->p4.pColl; 1316 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1317 break; 1318 } 1319 case P4_FUNCDEF: { 1320 FuncDef *pDef = pOp->p4.pFunc; 1321 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1322 break; 1323 } 1324 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1325 case P4_FUNCCTX: { 1326 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1327 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1328 break; 1329 } 1330 #endif 1331 case P4_INT64: { 1332 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1333 break; 1334 } 1335 case P4_INT32: { 1336 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1337 break; 1338 } 1339 case P4_REAL: { 1340 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1341 break; 1342 } 1343 case P4_MEM: { 1344 Mem *pMem = pOp->p4.pMem; 1345 if( pMem->flags & MEM_Str ){ 1346 zP4 = pMem->z; 1347 }else if( pMem->flags & MEM_Int ){ 1348 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1349 }else if( pMem->flags & MEM_Real ){ 1350 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1351 }else if( pMem->flags & MEM_Null ){ 1352 zP4 = "NULL"; 1353 }else{ 1354 assert( pMem->flags & MEM_Blob ); 1355 zP4 = "(blob)"; 1356 } 1357 break; 1358 } 1359 #ifndef SQLITE_OMIT_VIRTUALTABLE 1360 case P4_VTAB: { 1361 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1362 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1363 break; 1364 } 1365 #endif 1366 case P4_INTARRAY: { 1367 int i; 1368 int *ai = pOp->p4.ai; 1369 int n = ai[0]; /* The first element of an INTARRAY is always the 1370 ** count of the number of elements to follow */ 1371 for(i=1; i<n; i++){ 1372 sqlite3XPrintf(&x, ",%d", ai[i]); 1373 } 1374 zTemp[0] = '['; 1375 sqlite3StrAccumAppend(&x, "]", 1); 1376 break; 1377 } 1378 case P4_SUBPROGRAM: { 1379 sqlite3XPrintf(&x, "program"); 1380 break; 1381 } 1382 case P4_ADVANCE: { 1383 zTemp[0] = 0; 1384 break; 1385 } 1386 case P4_TABLE: { 1387 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1388 break; 1389 } 1390 default: { 1391 zP4 = pOp->p4.z; 1392 if( zP4==0 ){ 1393 zP4 = zTemp; 1394 zTemp[0] = 0; 1395 } 1396 } 1397 } 1398 sqlite3StrAccumFinish(&x); 1399 assert( zP4!=0 ); 1400 return zP4; 1401 } 1402 #endif /* VDBE_DISPLAY_P4 */ 1403 1404 /* 1405 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1406 ** 1407 ** The prepared statements need to know in advance the complete set of 1408 ** attached databases that will be use. A mask of these databases 1409 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1410 ** p->btreeMask of databases that will require a lock. 1411 */ 1412 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1413 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1414 assert( i<(int)sizeof(p->btreeMask)*8 ); 1415 DbMaskSet(p->btreeMask, i); 1416 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1417 DbMaskSet(p->lockMask, i); 1418 } 1419 } 1420 1421 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1422 /* 1423 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1424 ** this routine obtains the mutex associated with each BtShared structure 1425 ** that may be accessed by the VM passed as an argument. In doing so it also 1426 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1427 ** that the correct busy-handler callback is invoked if required. 1428 ** 1429 ** If SQLite is not threadsafe but does support shared-cache mode, then 1430 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1431 ** of all of BtShared structures accessible via the database handle 1432 ** associated with the VM. 1433 ** 1434 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1435 ** function is a no-op. 1436 ** 1437 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1438 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1439 ** corresponding to btrees that use shared cache. Then the runtime of 1440 ** this routine is N*N. But as N is rarely more than 1, this should not 1441 ** be a problem. 1442 */ 1443 void sqlite3VdbeEnter(Vdbe *p){ 1444 int i; 1445 sqlite3 *db; 1446 Db *aDb; 1447 int nDb; 1448 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1449 db = p->db; 1450 aDb = db->aDb; 1451 nDb = db->nDb; 1452 for(i=0; i<nDb; i++){ 1453 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1454 sqlite3BtreeEnter(aDb[i].pBt); 1455 } 1456 } 1457 } 1458 #endif 1459 1460 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1461 /* 1462 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1463 */ 1464 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1465 int i; 1466 sqlite3 *db; 1467 Db *aDb; 1468 int nDb; 1469 db = p->db; 1470 aDb = db->aDb; 1471 nDb = db->nDb; 1472 for(i=0; i<nDb; i++){ 1473 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1474 sqlite3BtreeLeave(aDb[i].pBt); 1475 } 1476 } 1477 } 1478 void sqlite3VdbeLeave(Vdbe *p){ 1479 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1480 vdbeLeave(p); 1481 } 1482 #endif 1483 1484 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1485 /* 1486 ** Print a single opcode. This routine is used for debugging only. 1487 */ 1488 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1489 char *zP4; 1490 char zPtr[50]; 1491 char zCom[100]; 1492 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1493 if( pOut==0 ) pOut = stdout; 1494 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1495 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1496 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1497 #else 1498 zCom[0] = 0; 1499 #endif 1500 /* NB: The sqlite3OpcodeName() function is implemented by code created 1501 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1502 ** information from the vdbe.c source text */ 1503 fprintf(pOut, zFormat1, pc, 1504 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1505 zCom 1506 ); 1507 fflush(pOut); 1508 } 1509 #endif 1510 1511 /* 1512 ** Initialize an array of N Mem element. 1513 */ 1514 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1515 while( (N--)>0 ){ 1516 p->db = db; 1517 p->flags = flags; 1518 p->szMalloc = 0; 1519 #ifdef SQLITE_DEBUG 1520 p->pScopyFrom = 0; 1521 #endif 1522 p++; 1523 } 1524 } 1525 1526 /* 1527 ** Release an array of N Mem elements 1528 */ 1529 static void releaseMemArray(Mem *p, int N){ 1530 if( p && N ){ 1531 Mem *pEnd = &p[N]; 1532 sqlite3 *db = p->db; 1533 if( db->pnBytesFreed ){ 1534 do{ 1535 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1536 }while( (++p)<pEnd ); 1537 return; 1538 } 1539 do{ 1540 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1541 assert( sqlite3VdbeCheckMemInvariants(p) ); 1542 1543 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1544 ** that takes advantage of the fact that the memory cell value is 1545 ** being set to NULL after releasing any dynamic resources. 1546 ** 1547 ** The justification for duplicating code is that according to 1548 ** callgrind, this causes a certain test case to hit the CPU 4.7 1549 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1550 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1551 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1552 ** with no indexes using a single prepared INSERT statement, bind() 1553 ** and reset(). Inserts are grouped into a transaction. 1554 */ 1555 testcase( p->flags & MEM_Agg ); 1556 testcase( p->flags & MEM_Dyn ); 1557 testcase( p->flags & MEM_Frame ); 1558 testcase( p->flags & MEM_RowSet ); 1559 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1560 sqlite3VdbeMemRelease(p); 1561 }else if( p->szMalloc ){ 1562 sqlite3DbFree(db, p->zMalloc); 1563 p->szMalloc = 0; 1564 } 1565 1566 p->flags = MEM_Undefined; 1567 }while( (++p)<pEnd ); 1568 } 1569 } 1570 1571 /* 1572 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1573 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1574 */ 1575 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1576 int i; 1577 Mem *aMem = VdbeFrameMem(p); 1578 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1579 for(i=0; i<p->nChildCsr; i++){ 1580 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1581 } 1582 releaseMemArray(aMem, p->nChildMem); 1583 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1584 sqlite3DbFree(p->v->db, p); 1585 } 1586 1587 #ifndef SQLITE_OMIT_EXPLAIN 1588 /* 1589 ** Give a listing of the program in the virtual machine. 1590 ** 1591 ** The interface is the same as sqlite3VdbeExec(). But instead of 1592 ** running the code, it invokes the callback once for each instruction. 1593 ** This feature is used to implement "EXPLAIN". 1594 ** 1595 ** When p->explain==1, each instruction is listed. When 1596 ** p->explain==2, only OP_Explain instructions are listed and these 1597 ** are shown in a different format. p->explain==2 is used to implement 1598 ** EXPLAIN QUERY PLAN. 1599 ** 1600 ** When p->explain==1, first the main program is listed, then each of 1601 ** the trigger subprograms are listed one by one. 1602 */ 1603 int sqlite3VdbeList( 1604 Vdbe *p /* The VDBE */ 1605 ){ 1606 int nRow; /* Stop when row count reaches this */ 1607 int nSub = 0; /* Number of sub-vdbes seen so far */ 1608 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1609 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1610 sqlite3 *db = p->db; /* The database connection */ 1611 int i; /* Loop counter */ 1612 int rc = SQLITE_OK; /* Return code */ 1613 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1614 1615 assert( p->explain ); 1616 assert( p->magic==VDBE_MAGIC_RUN ); 1617 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1618 1619 /* Even though this opcode does not use dynamic strings for 1620 ** the result, result columns may become dynamic if the user calls 1621 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1622 */ 1623 releaseMemArray(pMem, 8); 1624 p->pResultSet = 0; 1625 1626 if( p->rc==SQLITE_NOMEM_BKPT ){ 1627 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1628 ** sqlite3_column_text16() failed. */ 1629 sqlite3OomFault(db); 1630 return SQLITE_ERROR; 1631 } 1632 1633 /* When the number of output rows reaches nRow, that means the 1634 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1635 ** nRow is the sum of the number of rows in the main program, plus 1636 ** the sum of the number of rows in all trigger subprograms encountered 1637 ** so far. The nRow value will increase as new trigger subprograms are 1638 ** encountered, but p->pc will eventually catch up to nRow. 1639 */ 1640 nRow = p->nOp; 1641 if( p->explain==1 ){ 1642 /* The first 8 memory cells are used for the result set. So we will 1643 ** commandeer the 9th cell to use as storage for an array of pointers 1644 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1645 ** cells. */ 1646 assert( p->nMem>9 ); 1647 pSub = &p->aMem[9]; 1648 if( pSub->flags&MEM_Blob ){ 1649 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1650 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1651 nSub = pSub->n/sizeof(Vdbe*); 1652 apSub = (SubProgram **)pSub->z; 1653 } 1654 for(i=0; i<nSub; i++){ 1655 nRow += apSub[i]->nOp; 1656 } 1657 } 1658 1659 do{ 1660 i = p->pc++; 1661 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1662 if( i>=nRow ){ 1663 p->rc = SQLITE_OK; 1664 rc = SQLITE_DONE; 1665 }else if( db->u1.isInterrupted ){ 1666 p->rc = SQLITE_INTERRUPT; 1667 rc = SQLITE_ERROR; 1668 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1669 }else{ 1670 char *zP4; 1671 Op *pOp; 1672 if( i<p->nOp ){ 1673 /* The output line number is small enough that we are still in the 1674 ** main program. */ 1675 pOp = &p->aOp[i]; 1676 }else{ 1677 /* We are currently listing subprograms. Figure out which one and 1678 ** pick up the appropriate opcode. */ 1679 int j; 1680 i -= p->nOp; 1681 for(j=0; i>=apSub[j]->nOp; j++){ 1682 i -= apSub[j]->nOp; 1683 } 1684 pOp = &apSub[j]->aOp[i]; 1685 } 1686 if( p->explain==1 ){ 1687 pMem->flags = MEM_Int; 1688 pMem->u.i = i; /* Program counter */ 1689 pMem++; 1690 1691 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1692 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1693 assert( pMem->z!=0 ); 1694 pMem->n = sqlite3Strlen30(pMem->z); 1695 pMem->enc = SQLITE_UTF8; 1696 pMem++; 1697 1698 /* When an OP_Program opcode is encounter (the only opcode that has 1699 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1700 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1701 ** has not already been seen. 1702 */ 1703 if( pOp->p4type==P4_SUBPROGRAM ){ 1704 int nByte = (nSub+1)*sizeof(SubProgram*); 1705 int j; 1706 for(j=0; j<nSub; j++){ 1707 if( apSub[j]==pOp->p4.pProgram ) break; 1708 } 1709 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1710 apSub = (SubProgram **)pSub->z; 1711 apSub[nSub++] = pOp->p4.pProgram; 1712 pSub->flags |= MEM_Blob; 1713 pSub->n = nSub*sizeof(SubProgram*); 1714 } 1715 } 1716 } 1717 1718 pMem->flags = MEM_Int; 1719 pMem->u.i = pOp->p1; /* P1 */ 1720 pMem++; 1721 1722 pMem->flags = MEM_Int; 1723 pMem->u.i = pOp->p2; /* P2 */ 1724 pMem++; 1725 1726 pMem->flags = MEM_Int; 1727 pMem->u.i = pOp->p3; /* P3 */ 1728 pMem++; 1729 1730 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1731 assert( p->db->mallocFailed ); 1732 return SQLITE_ERROR; 1733 } 1734 pMem->flags = MEM_Str|MEM_Term; 1735 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1736 if( zP4!=pMem->z ){ 1737 pMem->n = 0; 1738 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1739 }else{ 1740 assert( pMem->z!=0 ); 1741 pMem->n = sqlite3Strlen30(pMem->z); 1742 pMem->enc = SQLITE_UTF8; 1743 } 1744 pMem++; 1745 1746 if( p->explain==1 ){ 1747 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1748 assert( p->db->mallocFailed ); 1749 return SQLITE_ERROR; 1750 } 1751 pMem->flags = MEM_Str|MEM_Term; 1752 pMem->n = 2; 1753 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1754 pMem->enc = SQLITE_UTF8; 1755 pMem++; 1756 1757 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1758 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1759 assert( p->db->mallocFailed ); 1760 return SQLITE_ERROR; 1761 } 1762 pMem->flags = MEM_Str|MEM_Term; 1763 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1764 pMem->enc = SQLITE_UTF8; 1765 #else 1766 pMem->flags = MEM_Null; /* Comment */ 1767 #endif 1768 } 1769 1770 p->nResColumn = 8 - 4*(p->explain-1); 1771 p->pResultSet = &p->aMem[1]; 1772 p->rc = SQLITE_OK; 1773 rc = SQLITE_ROW; 1774 } 1775 return rc; 1776 } 1777 #endif /* SQLITE_OMIT_EXPLAIN */ 1778 1779 #ifdef SQLITE_DEBUG 1780 /* 1781 ** Print the SQL that was used to generate a VDBE program. 1782 */ 1783 void sqlite3VdbePrintSql(Vdbe *p){ 1784 const char *z = 0; 1785 if( p->zSql ){ 1786 z = p->zSql; 1787 }else if( p->nOp>=1 ){ 1788 const VdbeOp *pOp = &p->aOp[0]; 1789 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1790 z = pOp->p4.z; 1791 while( sqlite3Isspace(*z) ) z++; 1792 } 1793 } 1794 if( z ) printf("SQL: [%s]\n", z); 1795 } 1796 #endif 1797 1798 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1799 /* 1800 ** Print an IOTRACE message showing SQL content. 1801 */ 1802 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1803 int nOp = p->nOp; 1804 VdbeOp *pOp; 1805 if( sqlite3IoTrace==0 ) return; 1806 if( nOp<1 ) return; 1807 pOp = &p->aOp[0]; 1808 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1809 int i, j; 1810 char z[1000]; 1811 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1812 for(i=0; sqlite3Isspace(z[i]); i++){} 1813 for(j=0; z[i]; i++){ 1814 if( sqlite3Isspace(z[i]) ){ 1815 if( z[i-1]!=' ' ){ 1816 z[j++] = ' '; 1817 } 1818 }else{ 1819 z[j++] = z[i]; 1820 } 1821 } 1822 z[j] = 0; 1823 sqlite3IoTrace("SQL %s\n", z); 1824 } 1825 } 1826 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1827 1828 /* An instance of this object describes bulk memory available for use 1829 ** by subcomponents of a prepared statement. Space is allocated out 1830 ** of a ReusableSpace object by the allocSpace() routine below. 1831 */ 1832 struct ReusableSpace { 1833 u8 *pSpace; /* Available memory */ 1834 int nFree; /* Bytes of available memory */ 1835 int nNeeded; /* Total bytes that could not be allocated */ 1836 }; 1837 1838 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1839 ** from the ReusableSpace object. Return a pointer to the allocated 1840 ** memory on success. If insufficient memory is available in the 1841 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1842 ** value by the amount needed and return NULL. 1843 ** 1844 ** If pBuf is not initially NULL, that means that the memory has already 1845 ** been allocated by a prior call to this routine, so just return a copy 1846 ** of pBuf and leave ReusableSpace unchanged. 1847 ** 1848 ** This allocator is employed to repurpose unused slots at the end of the 1849 ** opcode array of prepared state for other memory needs of the prepared 1850 ** statement. 1851 */ 1852 static void *allocSpace( 1853 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1854 void *pBuf, /* Pointer to a prior allocation */ 1855 int nByte /* Bytes of memory needed */ 1856 ){ 1857 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1858 if( pBuf==0 ){ 1859 nByte = ROUND8(nByte); 1860 if( nByte <= p->nFree ){ 1861 p->nFree -= nByte; 1862 pBuf = &p->pSpace[p->nFree]; 1863 }else{ 1864 p->nNeeded += nByte; 1865 } 1866 } 1867 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1868 return pBuf; 1869 } 1870 1871 /* 1872 ** Rewind the VDBE back to the beginning in preparation for 1873 ** running it. 1874 */ 1875 void sqlite3VdbeRewind(Vdbe *p){ 1876 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1877 int i; 1878 #endif 1879 assert( p!=0 ); 1880 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 1881 1882 /* There should be at least one opcode. 1883 */ 1884 assert( p->nOp>0 ); 1885 1886 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1887 p->magic = VDBE_MAGIC_RUN; 1888 1889 #ifdef SQLITE_DEBUG 1890 for(i=0; i<p->nMem; i++){ 1891 assert( p->aMem[i].db==p->db ); 1892 } 1893 #endif 1894 p->pc = -1; 1895 p->rc = SQLITE_OK; 1896 p->errorAction = OE_Abort; 1897 p->nChange = 0; 1898 p->cacheCtr = 1; 1899 p->minWriteFileFormat = 255; 1900 p->iStatement = 0; 1901 p->nFkConstraint = 0; 1902 #ifdef VDBE_PROFILE 1903 for(i=0; i<p->nOp; i++){ 1904 p->aOp[i].cnt = 0; 1905 p->aOp[i].cycles = 0; 1906 } 1907 #endif 1908 } 1909 1910 /* 1911 ** Prepare a virtual machine for execution for the first time after 1912 ** creating the virtual machine. This involves things such 1913 ** as allocating registers and initializing the program counter. 1914 ** After the VDBE has be prepped, it can be executed by one or more 1915 ** calls to sqlite3VdbeExec(). 1916 ** 1917 ** This function may be called exactly once on each virtual machine. 1918 ** After this routine is called the VM has been "packaged" and is ready 1919 ** to run. After this routine is called, further calls to 1920 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1921 ** the Vdbe from the Parse object that helped generate it so that the 1922 ** the Vdbe becomes an independent entity and the Parse object can be 1923 ** destroyed. 1924 ** 1925 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1926 ** to its initial state after it has been run. 1927 */ 1928 void sqlite3VdbeMakeReady( 1929 Vdbe *p, /* The VDBE */ 1930 Parse *pParse /* Parsing context */ 1931 ){ 1932 sqlite3 *db; /* The database connection */ 1933 int nVar; /* Number of parameters */ 1934 int nMem; /* Number of VM memory registers */ 1935 int nCursor; /* Number of cursors required */ 1936 int nArg; /* Number of arguments in subprograms */ 1937 int n; /* Loop counter */ 1938 struct ReusableSpace x; /* Reusable bulk memory */ 1939 1940 assert( p!=0 ); 1941 assert( p->nOp>0 ); 1942 assert( pParse!=0 ); 1943 assert( p->magic==VDBE_MAGIC_INIT ); 1944 assert( pParse==p->pParse ); 1945 db = p->db; 1946 assert( db->mallocFailed==0 ); 1947 nVar = pParse->nVar; 1948 nMem = pParse->nMem; 1949 nCursor = pParse->nTab; 1950 nArg = pParse->nMaxArg; 1951 1952 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1953 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1954 ** space at the end of aMem[] for cursors 1 and greater. 1955 ** See also: allocateCursor(). 1956 */ 1957 nMem += nCursor; 1958 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1959 1960 /* Figure out how much reusable memory is available at the end of the 1961 ** opcode array. This extra memory will be reallocated for other elements 1962 ** of the prepared statement. 1963 */ 1964 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1965 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1966 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1967 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1968 assert( x.nFree>=0 ); 1969 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1970 1971 resolveP2Values(p, &nArg); 1972 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1973 if( pParse->explain && nMem<10 ){ 1974 nMem = 10; 1975 } 1976 p->expired = 0; 1977 1978 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1979 ** passes. On the first pass, we try to reuse unused memory at the 1980 ** end of the opcode array. If we are unable to satisfy all memory 1981 ** requirements by reusing the opcode array tail, then the second 1982 ** pass will fill in the remainder using a fresh memory allocation. 1983 ** 1984 ** This two-pass approach that reuses as much memory as possible from 1985 ** the leftover memory at the end of the opcode array. This can significantly 1986 ** reduce the amount of memory held by a prepared statement. 1987 */ 1988 do { 1989 x.nNeeded = 0; 1990 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1991 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1992 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1993 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1994 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1995 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1996 #endif 1997 if( x.nNeeded==0 ) break; 1998 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 1999 x.nFree = x.nNeeded; 2000 }while( !db->mallocFailed ); 2001 2002 p->pVList = pParse->pVList; 2003 pParse->pVList = 0; 2004 p->explain = pParse->explain; 2005 if( db->mallocFailed ){ 2006 p->nVar = 0; 2007 p->nCursor = 0; 2008 p->nMem = 0; 2009 }else{ 2010 p->nCursor = nCursor; 2011 p->nVar = (ynVar)nVar; 2012 initMemArray(p->aVar, nVar, db, MEM_Null); 2013 p->nMem = nMem; 2014 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2015 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2016 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2017 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2018 #endif 2019 } 2020 sqlite3VdbeRewind(p); 2021 } 2022 2023 /* 2024 ** Close a VDBE cursor and release all the resources that cursor 2025 ** happens to hold. 2026 */ 2027 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2028 if( pCx==0 ){ 2029 return; 2030 } 2031 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2032 switch( pCx->eCurType ){ 2033 case CURTYPE_SORTER: { 2034 sqlite3VdbeSorterClose(p->db, pCx); 2035 break; 2036 } 2037 case CURTYPE_BTREE: { 2038 if( pCx->pBtx ){ 2039 sqlite3BtreeClose(pCx->pBtx); 2040 /* The pCx->pCursor will be close automatically, if it exists, by 2041 ** the call above. */ 2042 }else{ 2043 assert( pCx->uc.pCursor!=0 ); 2044 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2045 } 2046 break; 2047 } 2048 #ifndef SQLITE_OMIT_VIRTUALTABLE 2049 case CURTYPE_VTAB: { 2050 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2051 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2052 assert( pVCur->pVtab->nRef>0 ); 2053 pVCur->pVtab->nRef--; 2054 pModule->xClose(pVCur); 2055 break; 2056 } 2057 #endif 2058 } 2059 } 2060 2061 /* 2062 ** Close all cursors in the current frame. 2063 */ 2064 static void closeCursorsInFrame(Vdbe *p){ 2065 if( p->apCsr ){ 2066 int i; 2067 for(i=0; i<p->nCursor; i++){ 2068 VdbeCursor *pC = p->apCsr[i]; 2069 if( pC ){ 2070 sqlite3VdbeFreeCursor(p, pC); 2071 p->apCsr[i] = 0; 2072 } 2073 } 2074 } 2075 } 2076 2077 /* 2078 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2079 ** is used, for example, when a trigger sub-program is halted to restore 2080 ** control to the main program. 2081 */ 2082 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2083 Vdbe *v = pFrame->v; 2084 closeCursorsInFrame(v); 2085 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2086 v->anExec = pFrame->anExec; 2087 #endif 2088 v->aOp = pFrame->aOp; 2089 v->nOp = pFrame->nOp; 2090 v->aMem = pFrame->aMem; 2091 v->nMem = pFrame->nMem; 2092 v->apCsr = pFrame->apCsr; 2093 v->nCursor = pFrame->nCursor; 2094 v->db->lastRowid = pFrame->lastRowid; 2095 v->nChange = pFrame->nChange; 2096 v->db->nChange = pFrame->nDbChange; 2097 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2098 v->pAuxData = pFrame->pAuxData; 2099 pFrame->pAuxData = 0; 2100 return pFrame->pc; 2101 } 2102 2103 /* 2104 ** Close all cursors. 2105 ** 2106 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2107 ** cell array. This is necessary as the memory cell array may contain 2108 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2109 ** open cursors. 2110 */ 2111 static void closeAllCursors(Vdbe *p){ 2112 if( p->pFrame ){ 2113 VdbeFrame *pFrame; 2114 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2115 sqlite3VdbeFrameRestore(pFrame); 2116 p->pFrame = 0; 2117 p->nFrame = 0; 2118 } 2119 assert( p->nFrame==0 ); 2120 closeCursorsInFrame(p); 2121 if( p->aMem ){ 2122 releaseMemArray(p->aMem, p->nMem); 2123 } 2124 while( p->pDelFrame ){ 2125 VdbeFrame *pDel = p->pDelFrame; 2126 p->pDelFrame = pDel->pParent; 2127 sqlite3VdbeFrameDelete(pDel); 2128 } 2129 2130 /* Delete any auxdata allocations made by the VM */ 2131 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2132 assert( p->pAuxData==0 ); 2133 } 2134 2135 /* 2136 ** Clean up the VM after a single run. 2137 */ 2138 static void Cleanup(Vdbe *p){ 2139 sqlite3 *db = p->db; 2140 2141 #ifdef SQLITE_DEBUG 2142 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2143 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2144 int i; 2145 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2146 if( p->aMem ){ 2147 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2148 } 2149 #endif 2150 2151 sqlite3DbFree(db, p->zErrMsg); 2152 p->zErrMsg = 0; 2153 p->pResultSet = 0; 2154 } 2155 2156 /* 2157 ** Set the number of result columns that will be returned by this SQL 2158 ** statement. This is now set at compile time, rather than during 2159 ** execution of the vdbe program so that sqlite3_column_count() can 2160 ** be called on an SQL statement before sqlite3_step(). 2161 */ 2162 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2163 Mem *pColName; 2164 int n; 2165 sqlite3 *db = p->db; 2166 2167 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2168 sqlite3DbFree(db, p->aColName); 2169 n = nResColumn*COLNAME_N; 2170 p->nResColumn = (u16)nResColumn; 2171 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2172 if( p->aColName==0 ) return; 2173 initMemArray(p->aColName, n, p->db, MEM_Null); 2174 } 2175 2176 /* 2177 ** Set the name of the idx'th column to be returned by the SQL statement. 2178 ** zName must be a pointer to a nul terminated string. 2179 ** 2180 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2181 ** 2182 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2183 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2184 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2185 */ 2186 int sqlite3VdbeSetColName( 2187 Vdbe *p, /* Vdbe being configured */ 2188 int idx, /* Index of column zName applies to */ 2189 int var, /* One of the COLNAME_* constants */ 2190 const char *zName, /* Pointer to buffer containing name */ 2191 void (*xDel)(void*) /* Memory management strategy for zName */ 2192 ){ 2193 int rc; 2194 Mem *pColName; 2195 assert( idx<p->nResColumn ); 2196 assert( var<COLNAME_N ); 2197 if( p->db->mallocFailed ){ 2198 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2199 return SQLITE_NOMEM_BKPT; 2200 } 2201 assert( p->aColName!=0 ); 2202 pColName = &(p->aColName[idx+var*p->nResColumn]); 2203 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2204 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2205 return rc; 2206 } 2207 2208 /* 2209 ** A read or write transaction may or may not be active on database handle 2210 ** db. If a transaction is active, commit it. If there is a 2211 ** write-transaction spanning more than one database file, this routine 2212 ** takes care of the master journal trickery. 2213 */ 2214 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2215 int i; 2216 int nTrans = 0; /* Number of databases with an active write-transaction 2217 ** that are candidates for a two-phase commit using a 2218 ** master-journal */ 2219 int rc = SQLITE_OK; 2220 int needXcommit = 0; 2221 2222 #ifdef SQLITE_OMIT_VIRTUALTABLE 2223 /* With this option, sqlite3VtabSync() is defined to be simply 2224 ** SQLITE_OK so p is not used. 2225 */ 2226 UNUSED_PARAMETER(p); 2227 #endif 2228 2229 /* Before doing anything else, call the xSync() callback for any 2230 ** virtual module tables written in this transaction. This has to 2231 ** be done before determining whether a master journal file is 2232 ** required, as an xSync() callback may add an attached database 2233 ** to the transaction. 2234 */ 2235 rc = sqlite3VtabSync(db, p); 2236 2237 /* This loop determines (a) if the commit hook should be invoked and 2238 ** (b) how many database files have open write transactions, not 2239 ** including the temp database. (b) is important because if more than 2240 ** one database file has an open write transaction, a master journal 2241 ** file is required for an atomic commit. 2242 */ 2243 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2244 Btree *pBt = db->aDb[i].pBt; 2245 if( sqlite3BtreeIsInTrans(pBt) ){ 2246 /* Whether or not a database might need a master journal depends upon 2247 ** its journal mode (among other things). This matrix determines which 2248 ** journal modes use a master journal and which do not */ 2249 static const u8 aMJNeeded[] = { 2250 /* DELETE */ 1, 2251 /* PERSIST */ 1, 2252 /* OFF */ 0, 2253 /* TRUNCATE */ 1, 2254 /* MEMORY */ 0, 2255 /* WAL */ 0 2256 }; 2257 Pager *pPager; /* Pager associated with pBt */ 2258 needXcommit = 1; 2259 sqlite3BtreeEnter(pBt); 2260 pPager = sqlite3BtreePager(pBt); 2261 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2262 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2263 ){ 2264 assert( i!=1 ); 2265 nTrans++; 2266 } 2267 rc = sqlite3PagerExclusiveLock(pPager); 2268 sqlite3BtreeLeave(pBt); 2269 } 2270 } 2271 if( rc!=SQLITE_OK ){ 2272 return rc; 2273 } 2274 2275 /* If there are any write-transactions at all, invoke the commit hook */ 2276 if( needXcommit && db->xCommitCallback ){ 2277 rc = db->xCommitCallback(db->pCommitArg); 2278 if( rc ){ 2279 return SQLITE_CONSTRAINT_COMMITHOOK; 2280 } 2281 } 2282 2283 /* The simple case - no more than one database file (not counting the 2284 ** TEMP database) has a transaction active. There is no need for the 2285 ** master-journal. 2286 ** 2287 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2288 ** string, it means the main database is :memory: or a temp file. In 2289 ** that case we do not support atomic multi-file commits, so use the 2290 ** simple case then too. 2291 */ 2292 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2293 || nTrans<=1 2294 ){ 2295 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2296 Btree *pBt = db->aDb[i].pBt; 2297 if( pBt ){ 2298 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2299 } 2300 } 2301 2302 /* Do the commit only if all databases successfully complete phase 1. 2303 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2304 ** IO error while deleting or truncating a journal file. It is unlikely, 2305 ** but could happen. In this case abandon processing and return the error. 2306 */ 2307 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2308 Btree *pBt = db->aDb[i].pBt; 2309 if( pBt ){ 2310 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2311 } 2312 } 2313 if( rc==SQLITE_OK ){ 2314 sqlite3VtabCommit(db); 2315 } 2316 } 2317 2318 /* The complex case - There is a multi-file write-transaction active. 2319 ** This requires a master journal file to ensure the transaction is 2320 ** committed atomically. 2321 */ 2322 #ifndef SQLITE_OMIT_DISKIO 2323 else{ 2324 sqlite3_vfs *pVfs = db->pVfs; 2325 char *zMaster = 0; /* File-name for the master journal */ 2326 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2327 sqlite3_file *pMaster = 0; 2328 i64 offset = 0; 2329 int res; 2330 int retryCount = 0; 2331 int nMainFile; 2332 2333 /* Select a master journal file name */ 2334 nMainFile = sqlite3Strlen30(zMainFile); 2335 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2336 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2337 do { 2338 u32 iRandom; 2339 if( retryCount ){ 2340 if( retryCount>100 ){ 2341 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2342 sqlite3OsDelete(pVfs, zMaster, 0); 2343 break; 2344 }else if( retryCount==1 ){ 2345 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2346 } 2347 } 2348 retryCount++; 2349 sqlite3_randomness(sizeof(iRandom), &iRandom); 2350 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2351 (iRandom>>8)&0xffffff, iRandom&0xff); 2352 /* The antipenultimate character of the master journal name must 2353 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2354 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2355 sqlite3FileSuffix3(zMainFile, zMaster); 2356 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2357 }while( rc==SQLITE_OK && res ); 2358 if( rc==SQLITE_OK ){ 2359 /* Open the master journal. */ 2360 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2361 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2362 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2363 ); 2364 } 2365 if( rc!=SQLITE_OK ){ 2366 sqlite3DbFree(db, zMaster); 2367 return rc; 2368 } 2369 2370 /* Write the name of each database file in the transaction into the new 2371 ** master journal file. If an error occurs at this point close 2372 ** and delete the master journal file. All the individual journal files 2373 ** still have 'null' as the master journal pointer, so they will roll 2374 ** back independently if a failure occurs. 2375 */ 2376 for(i=0; i<db->nDb; i++){ 2377 Btree *pBt = db->aDb[i].pBt; 2378 if( sqlite3BtreeIsInTrans(pBt) ){ 2379 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2380 if( zFile==0 ){ 2381 continue; /* Ignore TEMP and :memory: databases */ 2382 } 2383 assert( zFile[0]!=0 ); 2384 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2385 offset += sqlite3Strlen30(zFile)+1; 2386 if( rc!=SQLITE_OK ){ 2387 sqlite3OsCloseFree(pMaster); 2388 sqlite3OsDelete(pVfs, zMaster, 0); 2389 sqlite3DbFree(db, zMaster); 2390 return rc; 2391 } 2392 } 2393 } 2394 2395 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2396 ** flag is set this is not required. 2397 */ 2398 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2399 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2400 ){ 2401 sqlite3OsCloseFree(pMaster); 2402 sqlite3OsDelete(pVfs, zMaster, 0); 2403 sqlite3DbFree(db, zMaster); 2404 return rc; 2405 } 2406 2407 /* Sync all the db files involved in the transaction. The same call 2408 ** sets the master journal pointer in each individual journal. If 2409 ** an error occurs here, do not delete the master journal file. 2410 ** 2411 ** If the error occurs during the first call to 2412 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2413 ** master journal file will be orphaned. But we cannot delete it, 2414 ** in case the master journal file name was written into the journal 2415 ** file before the failure occurred. 2416 */ 2417 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2418 Btree *pBt = db->aDb[i].pBt; 2419 if( pBt ){ 2420 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2421 } 2422 } 2423 sqlite3OsCloseFree(pMaster); 2424 assert( rc!=SQLITE_BUSY ); 2425 if( rc!=SQLITE_OK ){ 2426 sqlite3DbFree(db, zMaster); 2427 return rc; 2428 } 2429 2430 /* Delete the master journal file. This commits the transaction. After 2431 ** doing this the directory is synced again before any individual 2432 ** transaction files are deleted. 2433 */ 2434 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2435 sqlite3DbFree(db, zMaster); 2436 zMaster = 0; 2437 if( rc ){ 2438 return rc; 2439 } 2440 2441 /* All files and directories have already been synced, so the following 2442 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2443 ** deleting or truncating journals. If something goes wrong while 2444 ** this is happening we don't really care. The integrity of the 2445 ** transaction is already guaranteed, but some stray 'cold' journals 2446 ** may be lying around. Returning an error code won't help matters. 2447 */ 2448 disable_simulated_io_errors(); 2449 sqlite3BeginBenignMalloc(); 2450 for(i=0; i<db->nDb; i++){ 2451 Btree *pBt = db->aDb[i].pBt; 2452 if( pBt ){ 2453 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2454 } 2455 } 2456 sqlite3EndBenignMalloc(); 2457 enable_simulated_io_errors(); 2458 2459 sqlite3VtabCommit(db); 2460 } 2461 #endif 2462 2463 return rc; 2464 } 2465 2466 /* 2467 ** This routine checks that the sqlite3.nVdbeActive count variable 2468 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2469 ** currently active. An assertion fails if the two counts do not match. 2470 ** This is an internal self-check only - it is not an essential processing 2471 ** step. 2472 ** 2473 ** This is a no-op if NDEBUG is defined. 2474 */ 2475 #ifndef NDEBUG 2476 static void checkActiveVdbeCnt(sqlite3 *db){ 2477 Vdbe *p; 2478 int cnt = 0; 2479 int nWrite = 0; 2480 int nRead = 0; 2481 p = db->pVdbe; 2482 while( p ){ 2483 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2484 cnt++; 2485 if( p->readOnly==0 ) nWrite++; 2486 if( p->bIsReader ) nRead++; 2487 } 2488 p = p->pNext; 2489 } 2490 assert( cnt==db->nVdbeActive ); 2491 assert( nWrite==db->nVdbeWrite ); 2492 assert( nRead==db->nVdbeRead ); 2493 } 2494 #else 2495 #define checkActiveVdbeCnt(x) 2496 #endif 2497 2498 /* 2499 ** If the Vdbe passed as the first argument opened a statement-transaction, 2500 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2501 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2502 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2503 ** statement transaction is committed. 2504 ** 2505 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2506 ** Otherwise SQLITE_OK. 2507 */ 2508 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2509 sqlite3 *const db = p->db; 2510 int rc = SQLITE_OK; 2511 int i; 2512 const int iSavepoint = p->iStatement-1; 2513 2514 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2515 assert( db->nStatement>0 ); 2516 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2517 2518 for(i=0; i<db->nDb; i++){ 2519 int rc2 = SQLITE_OK; 2520 Btree *pBt = db->aDb[i].pBt; 2521 if( pBt ){ 2522 if( eOp==SAVEPOINT_ROLLBACK ){ 2523 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2524 } 2525 if( rc2==SQLITE_OK ){ 2526 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2527 } 2528 if( rc==SQLITE_OK ){ 2529 rc = rc2; 2530 } 2531 } 2532 } 2533 db->nStatement--; 2534 p->iStatement = 0; 2535 2536 if( rc==SQLITE_OK ){ 2537 if( eOp==SAVEPOINT_ROLLBACK ){ 2538 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2539 } 2540 if( rc==SQLITE_OK ){ 2541 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2542 } 2543 } 2544 2545 /* If the statement transaction is being rolled back, also restore the 2546 ** database handles deferred constraint counter to the value it had when 2547 ** the statement transaction was opened. */ 2548 if( eOp==SAVEPOINT_ROLLBACK ){ 2549 db->nDeferredCons = p->nStmtDefCons; 2550 db->nDeferredImmCons = p->nStmtDefImmCons; 2551 } 2552 return rc; 2553 } 2554 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2555 if( p->db->nStatement && p->iStatement ){ 2556 return vdbeCloseStatement(p, eOp); 2557 } 2558 return SQLITE_OK; 2559 } 2560 2561 2562 /* 2563 ** This function is called when a transaction opened by the database 2564 ** handle associated with the VM passed as an argument is about to be 2565 ** committed. If there are outstanding deferred foreign key constraint 2566 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2567 ** 2568 ** If there are outstanding FK violations and this function returns 2569 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2570 ** and write an error message to it. Then return SQLITE_ERROR. 2571 */ 2572 #ifndef SQLITE_OMIT_FOREIGN_KEY 2573 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2574 sqlite3 *db = p->db; 2575 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2576 || (!deferred && p->nFkConstraint>0) 2577 ){ 2578 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2579 p->errorAction = OE_Abort; 2580 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2581 return SQLITE_ERROR; 2582 } 2583 return SQLITE_OK; 2584 } 2585 #endif 2586 2587 /* 2588 ** This routine is called the when a VDBE tries to halt. If the VDBE 2589 ** has made changes and is in autocommit mode, then commit those 2590 ** changes. If a rollback is needed, then do the rollback. 2591 ** 2592 ** This routine is the only way to move the state of a VM from 2593 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2594 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2595 ** 2596 ** Return an error code. If the commit could not complete because of 2597 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2598 ** means the close did not happen and needs to be repeated. 2599 */ 2600 int sqlite3VdbeHalt(Vdbe *p){ 2601 int rc; /* Used to store transient return codes */ 2602 sqlite3 *db = p->db; 2603 2604 /* This function contains the logic that determines if a statement or 2605 ** transaction will be committed or rolled back as a result of the 2606 ** execution of this virtual machine. 2607 ** 2608 ** If any of the following errors occur: 2609 ** 2610 ** SQLITE_NOMEM 2611 ** SQLITE_IOERR 2612 ** SQLITE_FULL 2613 ** SQLITE_INTERRUPT 2614 ** 2615 ** Then the internal cache might have been left in an inconsistent 2616 ** state. We need to rollback the statement transaction, if there is 2617 ** one, or the complete transaction if there is no statement transaction. 2618 */ 2619 2620 if( p->magic!=VDBE_MAGIC_RUN ){ 2621 return SQLITE_OK; 2622 } 2623 if( db->mallocFailed ){ 2624 p->rc = SQLITE_NOMEM_BKPT; 2625 } 2626 closeAllCursors(p); 2627 checkActiveVdbeCnt(db); 2628 2629 /* No commit or rollback needed if the program never started or if the 2630 ** SQL statement does not read or write a database file. */ 2631 if( p->pc>=0 && p->bIsReader ){ 2632 int mrc; /* Primary error code from p->rc */ 2633 int eStatementOp = 0; 2634 int isSpecialError; /* Set to true if a 'special' error */ 2635 2636 /* Lock all btrees used by the statement */ 2637 sqlite3VdbeEnter(p); 2638 2639 /* Check for one of the special errors */ 2640 mrc = p->rc & 0xff; 2641 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2642 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2643 if( isSpecialError ){ 2644 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2645 ** no rollback is necessary. Otherwise, at least a savepoint 2646 ** transaction must be rolled back to restore the database to a 2647 ** consistent state. 2648 ** 2649 ** Even if the statement is read-only, it is important to perform 2650 ** a statement or transaction rollback operation. If the error 2651 ** occurred while writing to the journal, sub-journal or database 2652 ** file as part of an effort to free up cache space (see function 2653 ** pagerStress() in pager.c), the rollback is required to restore 2654 ** the pager to a consistent state. 2655 */ 2656 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2657 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2658 eStatementOp = SAVEPOINT_ROLLBACK; 2659 }else{ 2660 /* We are forced to roll back the active transaction. Before doing 2661 ** so, abort any other statements this handle currently has active. 2662 */ 2663 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2664 sqlite3CloseSavepoints(db); 2665 db->autoCommit = 1; 2666 p->nChange = 0; 2667 } 2668 } 2669 } 2670 2671 /* Check for immediate foreign key violations. */ 2672 if( p->rc==SQLITE_OK ){ 2673 sqlite3VdbeCheckFk(p, 0); 2674 } 2675 2676 /* If the auto-commit flag is set and this is the only active writer 2677 ** VM, then we do either a commit or rollback of the current transaction. 2678 ** 2679 ** Note: This block also runs if one of the special errors handled 2680 ** above has occurred. 2681 */ 2682 if( !sqlite3VtabInSync(db) 2683 && db->autoCommit 2684 && db->nVdbeWrite==(p->readOnly==0) 2685 ){ 2686 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2687 rc = sqlite3VdbeCheckFk(p, 1); 2688 if( rc!=SQLITE_OK ){ 2689 if( NEVER(p->readOnly) ){ 2690 sqlite3VdbeLeave(p); 2691 return SQLITE_ERROR; 2692 } 2693 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2694 }else{ 2695 /* The auto-commit flag is true, the vdbe program was successful 2696 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2697 ** key constraints to hold up the transaction. This means a commit 2698 ** is required. */ 2699 rc = vdbeCommit(db, p); 2700 } 2701 if( rc==SQLITE_BUSY && p->readOnly ){ 2702 sqlite3VdbeLeave(p); 2703 return SQLITE_BUSY; 2704 }else if( rc!=SQLITE_OK ){ 2705 p->rc = rc; 2706 sqlite3RollbackAll(db, SQLITE_OK); 2707 p->nChange = 0; 2708 }else{ 2709 db->nDeferredCons = 0; 2710 db->nDeferredImmCons = 0; 2711 db->flags &= ~SQLITE_DeferFKs; 2712 sqlite3CommitInternalChanges(db); 2713 } 2714 }else{ 2715 sqlite3RollbackAll(db, SQLITE_OK); 2716 p->nChange = 0; 2717 } 2718 db->nStatement = 0; 2719 }else if( eStatementOp==0 ){ 2720 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2721 eStatementOp = SAVEPOINT_RELEASE; 2722 }else if( p->errorAction==OE_Abort ){ 2723 eStatementOp = SAVEPOINT_ROLLBACK; 2724 }else{ 2725 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2726 sqlite3CloseSavepoints(db); 2727 db->autoCommit = 1; 2728 p->nChange = 0; 2729 } 2730 } 2731 2732 /* If eStatementOp is non-zero, then a statement transaction needs to 2733 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2734 ** do so. If this operation returns an error, and the current statement 2735 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2736 ** current statement error code. 2737 */ 2738 if( eStatementOp ){ 2739 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2740 if( rc ){ 2741 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2742 p->rc = rc; 2743 sqlite3DbFree(db, p->zErrMsg); 2744 p->zErrMsg = 0; 2745 } 2746 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2747 sqlite3CloseSavepoints(db); 2748 db->autoCommit = 1; 2749 p->nChange = 0; 2750 } 2751 } 2752 2753 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2754 ** has been rolled back, update the database connection change-counter. 2755 */ 2756 if( p->changeCntOn ){ 2757 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2758 sqlite3VdbeSetChanges(db, p->nChange); 2759 }else{ 2760 sqlite3VdbeSetChanges(db, 0); 2761 } 2762 p->nChange = 0; 2763 } 2764 2765 /* Release the locks */ 2766 sqlite3VdbeLeave(p); 2767 } 2768 2769 /* We have successfully halted and closed the VM. Record this fact. */ 2770 if( p->pc>=0 ){ 2771 db->nVdbeActive--; 2772 if( !p->readOnly ) db->nVdbeWrite--; 2773 if( p->bIsReader ) db->nVdbeRead--; 2774 assert( db->nVdbeActive>=db->nVdbeRead ); 2775 assert( db->nVdbeRead>=db->nVdbeWrite ); 2776 assert( db->nVdbeWrite>=0 ); 2777 } 2778 p->magic = VDBE_MAGIC_HALT; 2779 checkActiveVdbeCnt(db); 2780 if( db->mallocFailed ){ 2781 p->rc = SQLITE_NOMEM_BKPT; 2782 } 2783 2784 /* If the auto-commit flag is set to true, then any locks that were held 2785 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2786 ** to invoke any required unlock-notify callbacks. 2787 */ 2788 if( db->autoCommit ){ 2789 sqlite3ConnectionUnlocked(db); 2790 } 2791 2792 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2793 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2794 } 2795 2796 2797 /* 2798 ** Each VDBE holds the result of the most recent sqlite3_step() call 2799 ** in p->rc. This routine sets that result back to SQLITE_OK. 2800 */ 2801 void sqlite3VdbeResetStepResult(Vdbe *p){ 2802 p->rc = SQLITE_OK; 2803 } 2804 2805 /* 2806 ** Copy the error code and error message belonging to the VDBE passed 2807 ** as the first argument to its database handle (so that they will be 2808 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2809 ** 2810 ** This function does not clear the VDBE error code or message, just 2811 ** copies them to the database handle. 2812 */ 2813 int sqlite3VdbeTransferError(Vdbe *p){ 2814 sqlite3 *db = p->db; 2815 int rc = p->rc; 2816 if( p->zErrMsg ){ 2817 db->bBenignMalloc++; 2818 sqlite3BeginBenignMalloc(); 2819 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2820 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2821 sqlite3EndBenignMalloc(); 2822 db->bBenignMalloc--; 2823 db->errCode = rc; 2824 }else{ 2825 sqlite3Error(db, rc); 2826 } 2827 return rc; 2828 } 2829 2830 #ifdef SQLITE_ENABLE_SQLLOG 2831 /* 2832 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2833 ** invoke it. 2834 */ 2835 static void vdbeInvokeSqllog(Vdbe *v){ 2836 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2837 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2838 assert( v->db->init.busy==0 ); 2839 if( zExpanded ){ 2840 sqlite3GlobalConfig.xSqllog( 2841 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2842 ); 2843 sqlite3DbFree(v->db, zExpanded); 2844 } 2845 } 2846 } 2847 #else 2848 # define vdbeInvokeSqllog(x) 2849 #endif 2850 2851 /* 2852 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2853 ** Write any error messages into *pzErrMsg. Return the result code. 2854 ** 2855 ** After this routine is run, the VDBE should be ready to be executed 2856 ** again. 2857 ** 2858 ** To look at it another way, this routine resets the state of the 2859 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2860 ** VDBE_MAGIC_INIT. 2861 */ 2862 int sqlite3VdbeReset(Vdbe *p){ 2863 sqlite3 *db; 2864 db = p->db; 2865 2866 /* If the VM did not run to completion or if it encountered an 2867 ** error, then it might not have been halted properly. So halt 2868 ** it now. 2869 */ 2870 sqlite3VdbeHalt(p); 2871 2872 /* If the VDBE has be run even partially, then transfer the error code 2873 ** and error message from the VDBE into the main database structure. But 2874 ** if the VDBE has just been set to run but has not actually executed any 2875 ** instructions yet, leave the main database error information unchanged. 2876 */ 2877 if( p->pc>=0 ){ 2878 vdbeInvokeSqllog(p); 2879 sqlite3VdbeTransferError(p); 2880 sqlite3DbFree(db, p->zErrMsg); 2881 p->zErrMsg = 0; 2882 if( p->runOnlyOnce ) p->expired = 1; 2883 }else if( p->rc && p->expired ){ 2884 /* The expired flag was set on the VDBE before the first call 2885 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2886 ** called), set the database error in this case as well. 2887 */ 2888 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2889 sqlite3DbFree(db, p->zErrMsg); 2890 p->zErrMsg = 0; 2891 } 2892 2893 /* Reclaim all memory used by the VDBE 2894 */ 2895 Cleanup(p); 2896 2897 /* Save profiling information from this VDBE run. 2898 */ 2899 #ifdef VDBE_PROFILE 2900 { 2901 FILE *out = fopen("vdbe_profile.out", "a"); 2902 if( out ){ 2903 int i; 2904 fprintf(out, "---- "); 2905 for(i=0; i<p->nOp; i++){ 2906 fprintf(out, "%02x", p->aOp[i].opcode); 2907 } 2908 fprintf(out, "\n"); 2909 if( p->zSql ){ 2910 char c, pc = 0; 2911 fprintf(out, "-- "); 2912 for(i=0; (c = p->zSql[i])!=0; i++){ 2913 if( pc=='\n' ) fprintf(out, "-- "); 2914 putc(c, out); 2915 pc = c; 2916 } 2917 if( pc!='\n' ) fprintf(out, "\n"); 2918 } 2919 for(i=0; i<p->nOp; i++){ 2920 char zHdr[100]; 2921 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2922 p->aOp[i].cnt, 2923 p->aOp[i].cycles, 2924 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2925 ); 2926 fprintf(out, "%s", zHdr); 2927 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2928 } 2929 fclose(out); 2930 } 2931 } 2932 #endif 2933 p->iCurrentTime = 0; 2934 p->magic = VDBE_MAGIC_RESET; 2935 return p->rc & db->errMask; 2936 } 2937 2938 /* 2939 ** Clean up and delete a VDBE after execution. Return an integer which is 2940 ** the result code. Write any error message text into *pzErrMsg. 2941 */ 2942 int sqlite3VdbeFinalize(Vdbe *p){ 2943 int rc = SQLITE_OK; 2944 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2945 rc = sqlite3VdbeReset(p); 2946 assert( (rc & p->db->errMask)==rc ); 2947 } 2948 sqlite3VdbeDelete(p); 2949 return rc; 2950 } 2951 2952 /* 2953 ** If parameter iOp is less than zero, then invoke the destructor for 2954 ** all auxiliary data pointers currently cached by the VM passed as 2955 ** the first argument. 2956 ** 2957 ** Or, if iOp is greater than or equal to zero, then the destructor is 2958 ** only invoked for those auxiliary data pointers created by the user 2959 ** function invoked by the OP_Function opcode at instruction iOp of 2960 ** VM pVdbe, and only then if: 2961 ** 2962 ** * the associated function parameter is the 32nd or later (counting 2963 ** from left to right), or 2964 ** 2965 ** * the corresponding bit in argument mask is clear (where the first 2966 ** function parameter corresponds to bit 0 etc.). 2967 */ 2968 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2969 while( *pp ){ 2970 AuxData *pAux = *pp; 2971 if( (iOp<0) 2972 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2973 ){ 2974 testcase( pAux->iArg==31 ); 2975 if( pAux->xDelete ){ 2976 pAux->xDelete(pAux->pAux); 2977 } 2978 *pp = pAux->pNext; 2979 sqlite3DbFree(db, pAux); 2980 }else{ 2981 pp= &pAux->pNext; 2982 } 2983 } 2984 } 2985 2986 /* 2987 ** Free all memory associated with the Vdbe passed as the second argument, 2988 ** except for object itself, which is preserved. 2989 ** 2990 ** The difference between this function and sqlite3VdbeDelete() is that 2991 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2992 ** the database connection and frees the object itself. 2993 */ 2994 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2995 SubProgram *pSub, *pNext; 2996 assert( p->db==0 || p->db==db ); 2997 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2998 for(pSub=p->pProgram; pSub; pSub=pNext){ 2999 pNext = pSub->pNext; 3000 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3001 sqlite3DbFree(db, pSub); 3002 } 3003 if( p->magic!=VDBE_MAGIC_INIT ){ 3004 releaseMemArray(p->aVar, p->nVar); 3005 sqlite3DbFree(db, p->pVList); 3006 sqlite3DbFree(db, p->pFree); 3007 } 3008 vdbeFreeOpArray(db, p->aOp, p->nOp); 3009 sqlite3DbFree(db, p->aColName); 3010 sqlite3DbFree(db, p->zSql); 3011 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3012 { 3013 int i; 3014 for(i=0; i<p->nScan; i++){ 3015 sqlite3DbFree(db, p->aScan[i].zName); 3016 } 3017 sqlite3DbFree(db, p->aScan); 3018 } 3019 #endif 3020 } 3021 3022 /* 3023 ** Delete an entire VDBE. 3024 */ 3025 void sqlite3VdbeDelete(Vdbe *p){ 3026 sqlite3 *db; 3027 3028 if( NEVER(p==0) ) return; 3029 db = p->db; 3030 assert( sqlite3_mutex_held(db->mutex) ); 3031 sqlite3VdbeClearObject(db, p); 3032 if( p->pPrev ){ 3033 p->pPrev->pNext = p->pNext; 3034 }else{ 3035 assert( db->pVdbe==p ); 3036 db->pVdbe = p->pNext; 3037 } 3038 if( p->pNext ){ 3039 p->pNext->pPrev = p->pPrev; 3040 } 3041 p->magic = VDBE_MAGIC_DEAD; 3042 p->db = 0; 3043 sqlite3DbFree(db, p); 3044 } 3045 3046 /* 3047 ** The cursor "p" has a pending seek operation that has not yet been 3048 ** carried out. Seek the cursor now. If an error occurs, return 3049 ** the appropriate error code. 3050 */ 3051 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3052 int res, rc; 3053 #ifdef SQLITE_TEST 3054 extern int sqlite3_search_count; 3055 #endif 3056 assert( p->deferredMoveto ); 3057 assert( p->isTable ); 3058 assert( p->eCurType==CURTYPE_BTREE ); 3059 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3060 if( rc ) return rc; 3061 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3062 #ifdef SQLITE_TEST 3063 sqlite3_search_count++; 3064 #endif 3065 p->deferredMoveto = 0; 3066 p->cacheStatus = CACHE_STALE; 3067 return SQLITE_OK; 3068 } 3069 3070 /* 3071 ** Something has moved cursor "p" out of place. Maybe the row it was 3072 ** pointed to was deleted out from under it. Or maybe the btree was 3073 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3074 ** is supposed to be pointing. If the row was deleted out from under the 3075 ** cursor, set the cursor to point to a NULL row. 3076 */ 3077 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3078 int isDifferentRow, rc; 3079 assert( p->eCurType==CURTYPE_BTREE ); 3080 assert( p->uc.pCursor!=0 ); 3081 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3082 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3083 p->cacheStatus = CACHE_STALE; 3084 if( isDifferentRow ) p->nullRow = 1; 3085 return rc; 3086 } 3087 3088 /* 3089 ** Check to ensure that the cursor is valid. Restore the cursor 3090 ** if need be. Return any I/O error from the restore operation. 3091 */ 3092 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3093 assert( p->eCurType==CURTYPE_BTREE ); 3094 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3095 return handleMovedCursor(p); 3096 } 3097 return SQLITE_OK; 3098 } 3099 3100 /* 3101 ** Make sure the cursor p is ready to read or write the row to which it 3102 ** was last positioned. Return an error code if an OOM fault or I/O error 3103 ** prevents us from positioning the cursor to its correct position. 3104 ** 3105 ** If a MoveTo operation is pending on the given cursor, then do that 3106 ** MoveTo now. If no move is pending, check to see if the row has been 3107 ** deleted out from under the cursor and if it has, mark the row as 3108 ** a NULL row. 3109 ** 3110 ** If the cursor is already pointing to the correct row and that row has 3111 ** not been deleted out from under the cursor, then this routine is a no-op. 3112 */ 3113 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3114 VdbeCursor *p = *pp; 3115 if( p->eCurType==CURTYPE_BTREE ){ 3116 if( p->deferredMoveto ){ 3117 int iMap; 3118 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3119 *pp = p->pAltCursor; 3120 *piCol = iMap - 1; 3121 return SQLITE_OK; 3122 } 3123 return handleDeferredMoveto(p); 3124 } 3125 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3126 return handleMovedCursor(p); 3127 } 3128 } 3129 return SQLITE_OK; 3130 } 3131 3132 /* 3133 ** The following functions: 3134 ** 3135 ** sqlite3VdbeSerialType() 3136 ** sqlite3VdbeSerialTypeLen() 3137 ** sqlite3VdbeSerialLen() 3138 ** sqlite3VdbeSerialPut() 3139 ** sqlite3VdbeSerialGet() 3140 ** 3141 ** encapsulate the code that serializes values for storage in SQLite 3142 ** data and index records. Each serialized value consists of a 3143 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3144 ** integer, stored as a varint. 3145 ** 3146 ** In an SQLite index record, the serial type is stored directly before 3147 ** the blob of data that it corresponds to. In a table record, all serial 3148 ** types are stored at the start of the record, and the blobs of data at 3149 ** the end. Hence these functions allow the caller to handle the 3150 ** serial-type and data blob separately. 3151 ** 3152 ** The following table describes the various storage classes for data: 3153 ** 3154 ** serial type bytes of data type 3155 ** -------------- --------------- --------------- 3156 ** 0 0 NULL 3157 ** 1 1 signed integer 3158 ** 2 2 signed integer 3159 ** 3 3 signed integer 3160 ** 4 4 signed integer 3161 ** 5 6 signed integer 3162 ** 6 8 signed integer 3163 ** 7 8 IEEE float 3164 ** 8 0 Integer constant 0 3165 ** 9 0 Integer constant 1 3166 ** 10,11 reserved for expansion 3167 ** N>=12 and even (N-12)/2 BLOB 3168 ** N>=13 and odd (N-13)/2 text 3169 ** 3170 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3171 ** of SQLite will not understand those serial types. 3172 */ 3173 3174 /* 3175 ** Return the serial-type for the value stored in pMem. 3176 */ 3177 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3178 int flags = pMem->flags; 3179 u32 n; 3180 3181 assert( pLen!=0 ); 3182 if( flags&MEM_Null ){ 3183 *pLen = 0; 3184 return 0; 3185 } 3186 if( flags&MEM_Int ){ 3187 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3188 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3189 i64 i = pMem->u.i; 3190 u64 u; 3191 if( i<0 ){ 3192 u = ~i; 3193 }else{ 3194 u = i; 3195 } 3196 if( u<=127 ){ 3197 if( (i&1)==i && file_format>=4 ){ 3198 *pLen = 0; 3199 return 8+(u32)u; 3200 }else{ 3201 *pLen = 1; 3202 return 1; 3203 } 3204 } 3205 if( u<=32767 ){ *pLen = 2; return 2; } 3206 if( u<=8388607 ){ *pLen = 3; return 3; } 3207 if( u<=2147483647 ){ *pLen = 4; return 4; } 3208 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3209 *pLen = 8; 3210 return 6; 3211 } 3212 if( flags&MEM_Real ){ 3213 *pLen = 8; 3214 return 7; 3215 } 3216 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3217 assert( pMem->n>=0 ); 3218 n = (u32)pMem->n; 3219 if( flags & MEM_Zero ){ 3220 n += pMem->u.nZero; 3221 } 3222 *pLen = n; 3223 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3224 } 3225 3226 /* 3227 ** The sizes for serial types less than 128 3228 */ 3229 static const u8 sqlite3SmallTypeSizes[] = { 3230 /* 0 1 2 3 4 5 6 7 8 9 */ 3231 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3232 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3233 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3234 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3235 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3236 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3237 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3238 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3239 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3240 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3241 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3242 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3243 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3244 }; 3245 3246 /* 3247 ** Return the length of the data corresponding to the supplied serial-type. 3248 */ 3249 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3250 if( serial_type>=128 ){ 3251 return (serial_type-12)/2; 3252 }else{ 3253 assert( serial_type<12 3254 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3255 return sqlite3SmallTypeSizes[serial_type]; 3256 } 3257 } 3258 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3259 assert( serial_type<128 ); 3260 return sqlite3SmallTypeSizes[serial_type]; 3261 } 3262 3263 /* 3264 ** If we are on an architecture with mixed-endian floating 3265 ** points (ex: ARM7) then swap the lower 4 bytes with the 3266 ** upper 4 bytes. Return the result. 3267 ** 3268 ** For most architectures, this is a no-op. 3269 ** 3270 ** (later): It is reported to me that the mixed-endian problem 3271 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3272 ** that early versions of GCC stored the two words of a 64-bit 3273 ** float in the wrong order. And that error has been propagated 3274 ** ever since. The blame is not necessarily with GCC, though. 3275 ** GCC might have just copying the problem from a prior compiler. 3276 ** I am also told that newer versions of GCC that follow a different 3277 ** ABI get the byte order right. 3278 ** 3279 ** Developers using SQLite on an ARM7 should compile and run their 3280 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3281 ** enabled, some asserts below will ensure that the byte order of 3282 ** floating point values is correct. 3283 ** 3284 ** (2007-08-30) Frank van Vugt has studied this problem closely 3285 ** and has send his findings to the SQLite developers. Frank 3286 ** writes that some Linux kernels offer floating point hardware 3287 ** emulation that uses only 32-bit mantissas instead of a full 3288 ** 48-bits as required by the IEEE standard. (This is the 3289 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3290 ** byte swapping becomes very complicated. To avoid problems, 3291 ** the necessary byte swapping is carried out using a 64-bit integer 3292 ** rather than a 64-bit float. Frank assures us that the code here 3293 ** works for him. We, the developers, have no way to independently 3294 ** verify this, but Frank seems to know what he is talking about 3295 ** so we trust him. 3296 */ 3297 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3298 static u64 floatSwap(u64 in){ 3299 union { 3300 u64 r; 3301 u32 i[2]; 3302 } u; 3303 u32 t; 3304 3305 u.r = in; 3306 t = u.i[0]; 3307 u.i[0] = u.i[1]; 3308 u.i[1] = t; 3309 return u.r; 3310 } 3311 # define swapMixedEndianFloat(X) X = floatSwap(X) 3312 #else 3313 # define swapMixedEndianFloat(X) 3314 #endif 3315 3316 /* 3317 ** Write the serialized data blob for the value stored in pMem into 3318 ** buf. It is assumed that the caller has allocated sufficient space. 3319 ** Return the number of bytes written. 3320 ** 3321 ** nBuf is the amount of space left in buf[]. The caller is responsible 3322 ** for allocating enough space to buf[] to hold the entire field, exclusive 3323 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3324 ** 3325 ** Return the number of bytes actually written into buf[]. The number 3326 ** of bytes in the zero-filled tail is included in the return value only 3327 ** if those bytes were zeroed in buf[]. 3328 */ 3329 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3330 u32 len; 3331 3332 /* Integer and Real */ 3333 if( serial_type<=7 && serial_type>0 ){ 3334 u64 v; 3335 u32 i; 3336 if( serial_type==7 ){ 3337 assert( sizeof(v)==sizeof(pMem->u.r) ); 3338 memcpy(&v, &pMem->u.r, sizeof(v)); 3339 swapMixedEndianFloat(v); 3340 }else{ 3341 v = pMem->u.i; 3342 } 3343 len = i = sqlite3SmallTypeSizes[serial_type]; 3344 assert( i>0 ); 3345 do{ 3346 buf[--i] = (u8)(v&0xFF); 3347 v >>= 8; 3348 }while( i ); 3349 return len; 3350 } 3351 3352 /* String or blob */ 3353 if( serial_type>=12 ){ 3354 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3355 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3356 len = pMem->n; 3357 if( len>0 ) memcpy(buf, pMem->z, len); 3358 return len; 3359 } 3360 3361 /* NULL or constants 0 or 1 */ 3362 return 0; 3363 } 3364 3365 /* Input "x" is a sequence of unsigned characters that represent a 3366 ** big-endian integer. Return the equivalent native integer 3367 */ 3368 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3369 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3370 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3371 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3372 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3373 3374 /* 3375 ** Deserialize the data blob pointed to by buf as serial type serial_type 3376 ** and store the result in pMem. Return the number of bytes read. 3377 ** 3378 ** This function is implemented as two separate routines for performance. 3379 ** The few cases that require local variables are broken out into a separate 3380 ** routine so that in most cases the overhead of moving the stack pointer 3381 ** is avoided. 3382 */ 3383 static u32 SQLITE_NOINLINE serialGet( 3384 const unsigned char *buf, /* Buffer to deserialize from */ 3385 u32 serial_type, /* Serial type to deserialize */ 3386 Mem *pMem /* Memory cell to write value into */ 3387 ){ 3388 u64 x = FOUR_BYTE_UINT(buf); 3389 u32 y = FOUR_BYTE_UINT(buf+4); 3390 x = (x<<32) + y; 3391 if( serial_type==6 ){ 3392 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3393 ** twos-complement integer. */ 3394 pMem->u.i = *(i64*)&x; 3395 pMem->flags = MEM_Int; 3396 testcase( pMem->u.i<0 ); 3397 }else{ 3398 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3399 ** floating point number. */ 3400 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3401 /* Verify that integers and floating point values use the same 3402 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3403 ** defined that 64-bit floating point values really are mixed 3404 ** endian. 3405 */ 3406 static const u64 t1 = ((u64)0x3ff00000)<<32; 3407 static const double r1 = 1.0; 3408 u64 t2 = t1; 3409 swapMixedEndianFloat(t2); 3410 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3411 #endif 3412 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3413 swapMixedEndianFloat(x); 3414 memcpy(&pMem->u.r, &x, sizeof(x)); 3415 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3416 } 3417 return 8; 3418 } 3419 u32 sqlite3VdbeSerialGet( 3420 const unsigned char *buf, /* Buffer to deserialize from */ 3421 u32 serial_type, /* Serial type to deserialize */ 3422 Mem *pMem /* Memory cell to write value into */ 3423 ){ 3424 switch( serial_type ){ 3425 case 10: /* Reserved for future use */ 3426 case 11: /* Reserved for future use */ 3427 case 0: { /* Null */ 3428 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3429 pMem->flags = MEM_Null; 3430 break; 3431 } 3432 case 1: { 3433 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3434 ** integer. */ 3435 pMem->u.i = ONE_BYTE_INT(buf); 3436 pMem->flags = MEM_Int; 3437 testcase( pMem->u.i<0 ); 3438 return 1; 3439 } 3440 case 2: { /* 2-byte signed integer */ 3441 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3442 ** twos-complement integer. */ 3443 pMem->u.i = TWO_BYTE_INT(buf); 3444 pMem->flags = MEM_Int; 3445 testcase( pMem->u.i<0 ); 3446 return 2; 3447 } 3448 case 3: { /* 3-byte signed integer */ 3449 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3450 ** twos-complement integer. */ 3451 pMem->u.i = THREE_BYTE_INT(buf); 3452 pMem->flags = MEM_Int; 3453 testcase( pMem->u.i<0 ); 3454 return 3; 3455 } 3456 case 4: { /* 4-byte signed integer */ 3457 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3458 ** twos-complement integer. */ 3459 pMem->u.i = FOUR_BYTE_INT(buf); 3460 #ifdef __HP_cc 3461 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3462 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3463 #endif 3464 pMem->flags = MEM_Int; 3465 testcase( pMem->u.i<0 ); 3466 return 4; 3467 } 3468 case 5: { /* 6-byte signed integer */ 3469 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3470 ** twos-complement integer. */ 3471 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3472 pMem->flags = MEM_Int; 3473 testcase( pMem->u.i<0 ); 3474 return 6; 3475 } 3476 case 6: /* 8-byte signed integer */ 3477 case 7: { /* IEEE floating point */ 3478 /* These use local variables, so do them in a separate routine 3479 ** to avoid having to move the frame pointer in the common case */ 3480 return serialGet(buf,serial_type,pMem); 3481 } 3482 case 8: /* Integer 0 */ 3483 case 9: { /* Integer 1 */ 3484 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3485 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3486 pMem->u.i = serial_type-8; 3487 pMem->flags = MEM_Int; 3488 return 0; 3489 } 3490 default: { 3491 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3492 ** length. 3493 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3494 ** (N-13)/2 bytes in length. */ 3495 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3496 pMem->z = (char *)buf; 3497 pMem->n = (serial_type-12)/2; 3498 pMem->flags = aFlag[serial_type&1]; 3499 return pMem->n; 3500 } 3501 } 3502 return 0; 3503 } 3504 /* 3505 ** This routine is used to allocate sufficient space for an UnpackedRecord 3506 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3507 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3508 ** 3509 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3510 ** the unaligned buffer passed via the second and third arguments (presumably 3511 ** stack space). If the former, then *ppFree is set to a pointer that should 3512 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3513 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3514 ** before returning. 3515 ** 3516 ** If an OOM error occurs, NULL is returned. 3517 */ 3518 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3519 KeyInfo *pKeyInfo /* Description of the record */ 3520 ){ 3521 UnpackedRecord *p; /* Unpacked record to return */ 3522 int nByte; /* Number of bytes required for *p */ 3523 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3524 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3525 if( !p ) return 0; 3526 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3527 assert( pKeyInfo->aSortOrder!=0 ); 3528 p->pKeyInfo = pKeyInfo; 3529 p->nField = pKeyInfo->nField + 1; 3530 return p; 3531 } 3532 3533 /* 3534 ** Given the nKey-byte encoding of a record in pKey[], populate the 3535 ** UnpackedRecord structure indicated by the fourth argument with the 3536 ** contents of the decoded record. 3537 */ 3538 void sqlite3VdbeRecordUnpack( 3539 KeyInfo *pKeyInfo, /* Information about the record format */ 3540 int nKey, /* Size of the binary record */ 3541 const void *pKey, /* The binary record */ 3542 UnpackedRecord *p /* Populate this structure before returning. */ 3543 ){ 3544 const unsigned char *aKey = (const unsigned char *)pKey; 3545 int d; 3546 u32 idx; /* Offset in aKey[] to read from */ 3547 u16 u; /* Unsigned loop counter */ 3548 u32 szHdr; 3549 Mem *pMem = p->aMem; 3550 3551 p->default_rc = 0; 3552 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3553 idx = getVarint32(aKey, szHdr); 3554 d = szHdr; 3555 u = 0; 3556 while( idx<szHdr && d<=nKey ){ 3557 u32 serial_type; 3558 3559 idx += getVarint32(&aKey[idx], serial_type); 3560 pMem->enc = pKeyInfo->enc; 3561 pMem->db = pKeyInfo->db; 3562 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3563 pMem->szMalloc = 0; 3564 pMem->z = 0; 3565 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3566 pMem++; 3567 if( (++u)>=p->nField ) break; 3568 } 3569 assert( u<=pKeyInfo->nField + 1 ); 3570 p->nField = u; 3571 } 3572 3573 #ifdef SQLITE_DEBUG 3574 /* 3575 ** This function compares two index or table record keys in the same way 3576 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3577 ** this function deserializes and compares values using the 3578 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3579 ** in assert() statements to ensure that the optimized code in 3580 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3581 ** 3582 ** Return true if the result of comparison is equivalent to desiredResult. 3583 ** Return false if there is a disagreement. 3584 */ 3585 static int vdbeRecordCompareDebug( 3586 int nKey1, const void *pKey1, /* Left key */ 3587 const UnpackedRecord *pPKey2, /* Right key */ 3588 int desiredResult /* Correct answer */ 3589 ){ 3590 u32 d1; /* Offset into aKey[] of next data element */ 3591 u32 idx1; /* Offset into aKey[] of next header element */ 3592 u32 szHdr1; /* Number of bytes in header */ 3593 int i = 0; 3594 int rc = 0; 3595 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3596 KeyInfo *pKeyInfo; 3597 Mem mem1; 3598 3599 pKeyInfo = pPKey2->pKeyInfo; 3600 if( pKeyInfo->db==0 ) return 1; 3601 mem1.enc = pKeyInfo->enc; 3602 mem1.db = pKeyInfo->db; 3603 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3604 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3605 3606 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3607 ** We could initialize it, as shown here, to silence those complaints. 3608 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3609 ** the unnecessary initialization has a measurable negative performance 3610 ** impact, since this routine is a very high runner. And so, we choose 3611 ** to ignore the compiler warnings and leave this variable uninitialized. 3612 */ 3613 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3614 3615 idx1 = getVarint32(aKey1, szHdr1); 3616 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3617 d1 = szHdr1; 3618 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3619 assert( pKeyInfo->aSortOrder!=0 ); 3620 assert( pKeyInfo->nField>0 ); 3621 assert( idx1<=szHdr1 || CORRUPT_DB ); 3622 do{ 3623 u32 serial_type1; 3624 3625 /* Read the serial types for the next element in each key. */ 3626 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3627 3628 /* Verify that there is enough key space remaining to avoid 3629 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3630 ** always be greater than or equal to the amount of required key space. 3631 ** Use that approximation to avoid the more expensive call to 3632 ** sqlite3VdbeSerialTypeLen() in the common case. 3633 */ 3634 if( d1+serial_type1+2>(u32)nKey1 3635 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3636 ){ 3637 break; 3638 } 3639 3640 /* Extract the values to be compared. 3641 */ 3642 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3643 3644 /* Do the comparison 3645 */ 3646 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3647 if( rc!=0 ){ 3648 assert( mem1.szMalloc==0 ); /* See comment below */ 3649 if( pKeyInfo->aSortOrder[i] ){ 3650 rc = -rc; /* Invert the result for DESC sort order. */ 3651 } 3652 goto debugCompareEnd; 3653 } 3654 i++; 3655 }while( idx1<szHdr1 && i<pPKey2->nField ); 3656 3657 /* No memory allocation is ever used on mem1. Prove this using 3658 ** the following assert(). If the assert() fails, it indicates a 3659 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3660 */ 3661 assert( mem1.szMalloc==0 ); 3662 3663 /* rc==0 here means that one of the keys ran out of fields and 3664 ** all the fields up to that point were equal. Return the default_rc 3665 ** value. */ 3666 rc = pPKey2->default_rc; 3667 3668 debugCompareEnd: 3669 if( desiredResult==0 && rc==0 ) return 1; 3670 if( desiredResult<0 && rc<0 ) return 1; 3671 if( desiredResult>0 && rc>0 ) return 1; 3672 if( CORRUPT_DB ) return 1; 3673 if( pKeyInfo->db->mallocFailed ) return 1; 3674 return 0; 3675 } 3676 #endif 3677 3678 #ifdef SQLITE_DEBUG 3679 /* 3680 ** Count the number of fields (a.k.a. columns) in the record given by 3681 ** pKey,nKey. The verify that this count is less than or equal to the 3682 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3683 ** 3684 ** If this constraint is not satisfied, it means that the high-speed 3685 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3686 ** not work correctly. If this assert() ever fires, it probably means 3687 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3688 ** incorrectly. 3689 */ 3690 static void vdbeAssertFieldCountWithinLimits( 3691 int nKey, const void *pKey, /* The record to verify */ 3692 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3693 ){ 3694 int nField = 0; 3695 u32 szHdr; 3696 u32 idx; 3697 u32 notUsed; 3698 const unsigned char *aKey = (const unsigned char*)pKey; 3699 3700 if( CORRUPT_DB ) return; 3701 idx = getVarint32(aKey, szHdr); 3702 assert( nKey>=0 ); 3703 assert( szHdr<=(u32)nKey ); 3704 while( idx<szHdr ){ 3705 idx += getVarint32(aKey+idx, notUsed); 3706 nField++; 3707 } 3708 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3709 } 3710 #else 3711 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3712 #endif 3713 3714 /* 3715 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3716 ** using the collation sequence pColl. As usual, return a negative , zero 3717 ** or positive value if *pMem1 is less than, equal to or greater than 3718 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3719 */ 3720 static int vdbeCompareMemString( 3721 const Mem *pMem1, 3722 const Mem *pMem2, 3723 const CollSeq *pColl, 3724 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3725 ){ 3726 if( pMem1->enc==pColl->enc ){ 3727 /* The strings are already in the correct encoding. Call the 3728 ** comparison function directly */ 3729 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3730 }else{ 3731 int rc; 3732 const void *v1, *v2; 3733 int n1, n2; 3734 Mem c1; 3735 Mem c2; 3736 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3737 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3738 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3739 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3740 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3741 n1 = v1==0 ? 0 : c1.n; 3742 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3743 n2 = v2==0 ? 0 : c2.n; 3744 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3745 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3746 sqlite3VdbeMemRelease(&c1); 3747 sqlite3VdbeMemRelease(&c2); 3748 return rc; 3749 } 3750 } 3751 3752 /* 3753 ** The input pBlob is guaranteed to be a Blob that is not marked 3754 ** with MEM_Zero. Return true if it could be a zero-blob. 3755 */ 3756 static int isAllZero(const char *z, int n){ 3757 int i; 3758 for(i=0; i<n; i++){ 3759 if( z[i] ) return 0; 3760 } 3761 return 1; 3762 } 3763 3764 /* 3765 ** Compare two blobs. Return negative, zero, or positive if the first 3766 ** is less than, equal to, or greater than the second, respectively. 3767 ** If one blob is a prefix of the other, then the shorter is the lessor. 3768 */ 3769 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3770 int c; 3771 int n1 = pB1->n; 3772 int n2 = pB2->n; 3773 3774 /* It is possible to have a Blob value that has some non-zero content 3775 ** followed by zero content. But that only comes up for Blobs formed 3776 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3777 ** sqlite3MemCompare(). */ 3778 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3779 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3780 3781 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3782 if( pB1->flags & pB2->flags & MEM_Zero ){ 3783 return pB1->u.nZero - pB2->u.nZero; 3784 }else if( pB1->flags & MEM_Zero ){ 3785 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3786 return pB1->u.nZero - n2; 3787 }else{ 3788 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3789 return n1 - pB2->u.nZero; 3790 } 3791 } 3792 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3793 if( c ) return c; 3794 return n1 - n2; 3795 } 3796 3797 /* 3798 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3799 ** number. Return negative, zero, or positive if the first (i64) is less than, 3800 ** equal to, or greater than the second (double). 3801 */ 3802 static int sqlite3IntFloatCompare(i64 i, double r){ 3803 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3804 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3805 if( x<r ) return -1; 3806 if( x>r ) return +1; 3807 return 0; 3808 }else{ 3809 i64 y; 3810 double s; 3811 if( r<-9223372036854775808.0 ) return +1; 3812 if( r>9223372036854775807.0 ) return -1; 3813 y = (i64)r; 3814 if( i<y ) return -1; 3815 if( i>y ){ 3816 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3817 return +1; 3818 } 3819 s = (double)i; 3820 if( s<r ) return -1; 3821 if( s>r ) return +1; 3822 return 0; 3823 } 3824 } 3825 3826 /* 3827 ** Compare the values contained by the two memory cells, returning 3828 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3829 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3830 ** and reals) sorted numerically, followed by text ordered by the collating 3831 ** sequence pColl and finally blob's ordered by memcmp(). 3832 ** 3833 ** Two NULL values are considered equal by this function. 3834 */ 3835 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3836 int f1, f2; 3837 int combined_flags; 3838 3839 f1 = pMem1->flags; 3840 f2 = pMem2->flags; 3841 combined_flags = f1|f2; 3842 assert( (combined_flags & MEM_RowSet)==0 ); 3843 3844 /* If one value is NULL, it is less than the other. If both values 3845 ** are NULL, return 0. 3846 */ 3847 if( combined_flags&MEM_Null ){ 3848 return (f2&MEM_Null) - (f1&MEM_Null); 3849 } 3850 3851 /* At least one of the two values is a number 3852 */ 3853 if( combined_flags&(MEM_Int|MEM_Real) ){ 3854 if( (f1 & f2 & MEM_Int)!=0 ){ 3855 if( pMem1->u.i < pMem2->u.i ) return -1; 3856 if( pMem1->u.i > pMem2->u.i ) return +1; 3857 return 0; 3858 } 3859 if( (f1 & f2 & MEM_Real)!=0 ){ 3860 if( pMem1->u.r < pMem2->u.r ) return -1; 3861 if( pMem1->u.r > pMem2->u.r ) return +1; 3862 return 0; 3863 } 3864 if( (f1&MEM_Int)!=0 ){ 3865 if( (f2&MEM_Real)!=0 ){ 3866 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3867 }else{ 3868 return -1; 3869 } 3870 } 3871 if( (f1&MEM_Real)!=0 ){ 3872 if( (f2&MEM_Int)!=0 ){ 3873 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3874 }else{ 3875 return -1; 3876 } 3877 } 3878 return +1; 3879 } 3880 3881 /* If one value is a string and the other is a blob, the string is less. 3882 ** If both are strings, compare using the collating functions. 3883 */ 3884 if( combined_flags&MEM_Str ){ 3885 if( (f1 & MEM_Str)==0 ){ 3886 return 1; 3887 } 3888 if( (f2 & MEM_Str)==0 ){ 3889 return -1; 3890 } 3891 3892 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3893 assert( pMem1->enc==SQLITE_UTF8 || 3894 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3895 3896 /* The collation sequence must be defined at this point, even if 3897 ** the user deletes the collation sequence after the vdbe program is 3898 ** compiled (this was not always the case). 3899 */ 3900 assert( !pColl || pColl->xCmp ); 3901 3902 if( pColl ){ 3903 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3904 } 3905 /* If a NULL pointer was passed as the collate function, fall through 3906 ** to the blob case and use memcmp(). */ 3907 } 3908 3909 /* Both values must be blobs. Compare using memcmp(). */ 3910 return sqlite3BlobCompare(pMem1, pMem2); 3911 } 3912 3913 3914 /* 3915 ** The first argument passed to this function is a serial-type that 3916 ** corresponds to an integer - all values between 1 and 9 inclusive 3917 ** except 7. The second points to a buffer containing an integer value 3918 ** serialized according to serial_type. This function deserializes 3919 ** and returns the value. 3920 */ 3921 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3922 u32 y; 3923 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3924 switch( serial_type ){ 3925 case 0: 3926 case 1: 3927 testcase( aKey[0]&0x80 ); 3928 return ONE_BYTE_INT(aKey); 3929 case 2: 3930 testcase( aKey[0]&0x80 ); 3931 return TWO_BYTE_INT(aKey); 3932 case 3: 3933 testcase( aKey[0]&0x80 ); 3934 return THREE_BYTE_INT(aKey); 3935 case 4: { 3936 testcase( aKey[0]&0x80 ); 3937 y = FOUR_BYTE_UINT(aKey); 3938 return (i64)*(int*)&y; 3939 } 3940 case 5: { 3941 testcase( aKey[0]&0x80 ); 3942 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3943 } 3944 case 6: { 3945 u64 x = FOUR_BYTE_UINT(aKey); 3946 testcase( aKey[0]&0x80 ); 3947 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3948 return (i64)*(i64*)&x; 3949 } 3950 } 3951 3952 return (serial_type - 8); 3953 } 3954 3955 /* 3956 ** This function compares the two table rows or index records 3957 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3958 ** or positive integer if key1 is less than, equal to or 3959 ** greater than key2. The {nKey1, pKey1} key must be a blob 3960 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3961 ** key must be a parsed key such as obtained from 3962 ** sqlite3VdbeParseRecord. 3963 ** 3964 ** If argument bSkip is non-zero, it is assumed that the caller has already 3965 ** determined that the first fields of the keys are equal. 3966 ** 3967 ** Key1 and Key2 do not have to contain the same number of fields. If all 3968 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3969 ** returned. 3970 ** 3971 ** If database corruption is discovered, set pPKey2->errCode to 3972 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3973 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3974 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3975 */ 3976 int sqlite3VdbeRecordCompareWithSkip( 3977 int nKey1, const void *pKey1, /* Left key */ 3978 UnpackedRecord *pPKey2, /* Right key */ 3979 int bSkip /* If true, skip the first field */ 3980 ){ 3981 u32 d1; /* Offset into aKey[] of next data element */ 3982 int i; /* Index of next field to compare */ 3983 u32 szHdr1; /* Size of record header in bytes */ 3984 u32 idx1; /* Offset of first type in header */ 3985 int rc = 0; /* Return value */ 3986 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3987 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3988 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3989 Mem mem1; 3990 3991 /* If bSkip is true, then the caller has already determined that the first 3992 ** two elements in the keys are equal. Fix the various stack variables so 3993 ** that this routine begins comparing at the second field. */ 3994 if( bSkip ){ 3995 u32 s1; 3996 idx1 = 1 + getVarint32(&aKey1[1], s1); 3997 szHdr1 = aKey1[0]; 3998 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3999 i = 1; 4000 pRhs++; 4001 }else{ 4002 idx1 = getVarint32(aKey1, szHdr1); 4003 d1 = szHdr1; 4004 if( d1>(unsigned)nKey1 ){ 4005 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4006 return 0; /* Corruption */ 4007 } 4008 i = 0; 4009 } 4010 4011 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4012 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 4013 || CORRUPT_DB ); 4014 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4015 assert( pPKey2->pKeyInfo->nField>0 ); 4016 assert( idx1<=szHdr1 || CORRUPT_DB ); 4017 do{ 4018 u32 serial_type; 4019 4020 /* RHS is an integer */ 4021 if( pRhs->flags & MEM_Int ){ 4022 serial_type = aKey1[idx1]; 4023 testcase( serial_type==12 ); 4024 if( serial_type>=10 ){ 4025 rc = +1; 4026 }else if( serial_type==0 ){ 4027 rc = -1; 4028 }else if( serial_type==7 ){ 4029 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4030 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4031 }else{ 4032 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4033 i64 rhs = pRhs->u.i; 4034 if( lhs<rhs ){ 4035 rc = -1; 4036 }else if( lhs>rhs ){ 4037 rc = +1; 4038 } 4039 } 4040 } 4041 4042 /* RHS is real */ 4043 else if( pRhs->flags & MEM_Real ){ 4044 serial_type = aKey1[idx1]; 4045 if( serial_type>=10 ){ 4046 /* Serial types 12 or greater are strings and blobs (greater than 4047 ** numbers). Types 10 and 11 are currently "reserved for future 4048 ** use", so it doesn't really matter what the results of comparing 4049 ** them to numberic values are. */ 4050 rc = +1; 4051 }else if( serial_type==0 ){ 4052 rc = -1; 4053 }else{ 4054 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4055 if( serial_type==7 ){ 4056 if( mem1.u.r<pRhs->u.r ){ 4057 rc = -1; 4058 }else if( mem1.u.r>pRhs->u.r ){ 4059 rc = +1; 4060 } 4061 }else{ 4062 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4063 } 4064 } 4065 } 4066 4067 /* RHS is a string */ 4068 else if( pRhs->flags & MEM_Str ){ 4069 getVarint32(&aKey1[idx1], serial_type); 4070 testcase( serial_type==12 ); 4071 if( serial_type<12 ){ 4072 rc = -1; 4073 }else if( !(serial_type & 0x01) ){ 4074 rc = +1; 4075 }else{ 4076 mem1.n = (serial_type - 12) / 2; 4077 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4078 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4079 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4080 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4081 return 0; /* Corruption */ 4082 }else if( pKeyInfo->aColl[i] ){ 4083 mem1.enc = pKeyInfo->enc; 4084 mem1.db = pKeyInfo->db; 4085 mem1.flags = MEM_Str; 4086 mem1.z = (char*)&aKey1[d1]; 4087 rc = vdbeCompareMemString( 4088 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4089 ); 4090 }else{ 4091 int nCmp = MIN(mem1.n, pRhs->n); 4092 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4093 if( rc==0 ) rc = mem1.n - pRhs->n; 4094 } 4095 } 4096 } 4097 4098 /* RHS is a blob */ 4099 else if( pRhs->flags & MEM_Blob ){ 4100 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4101 getVarint32(&aKey1[idx1], serial_type); 4102 testcase( serial_type==12 ); 4103 if( serial_type<12 || (serial_type & 0x01) ){ 4104 rc = -1; 4105 }else{ 4106 int nStr = (serial_type - 12) / 2; 4107 testcase( (d1+nStr)==(unsigned)nKey1 ); 4108 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4109 if( (d1+nStr) > (unsigned)nKey1 ){ 4110 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4111 return 0; /* Corruption */ 4112 }else if( pRhs->flags & MEM_Zero ){ 4113 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4114 rc = 1; 4115 }else{ 4116 rc = nStr - pRhs->u.nZero; 4117 } 4118 }else{ 4119 int nCmp = MIN(nStr, pRhs->n); 4120 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4121 if( rc==0 ) rc = nStr - pRhs->n; 4122 } 4123 } 4124 } 4125 4126 /* RHS is null */ 4127 else{ 4128 serial_type = aKey1[idx1]; 4129 rc = (serial_type!=0); 4130 } 4131 4132 if( rc!=0 ){ 4133 if( pKeyInfo->aSortOrder[i] ){ 4134 rc = -rc; 4135 } 4136 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4137 assert( mem1.szMalloc==0 ); /* See comment below */ 4138 return rc; 4139 } 4140 4141 i++; 4142 pRhs++; 4143 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4144 idx1 += sqlite3VarintLen(serial_type); 4145 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4146 4147 /* No memory allocation is ever used on mem1. Prove this using 4148 ** the following assert(). If the assert() fails, it indicates a 4149 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4150 assert( mem1.szMalloc==0 ); 4151 4152 /* rc==0 here means that one or both of the keys ran out of fields and 4153 ** all the fields up to that point were equal. Return the default_rc 4154 ** value. */ 4155 assert( CORRUPT_DB 4156 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4157 || pKeyInfo->db->mallocFailed 4158 ); 4159 pPKey2->eqSeen = 1; 4160 return pPKey2->default_rc; 4161 } 4162 int sqlite3VdbeRecordCompare( 4163 int nKey1, const void *pKey1, /* Left key */ 4164 UnpackedRecord *pPKey2 /* Right key */ 4165 ){ 4166 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4167 } 4168 4169 4170 /* 4171 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4172 ** that (a) the first field of pPKey2 is an integer, and (b) the 4173 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4174 ** byte (i.e. is less than 128). 4175 ** 4176 ** To avoid concerns about buffer overreads, this routine is only used 4177 ** on schemas where the maximum valid header size is 63 bytes or less. 4178 */ 4179 static int vdbeRecordCompareInt( 4180 int nKey1, const void *pKey1, /* Left key */ 4181 UnpackedRecord *pPKey2 /* Right key */ 4182 ){ 4183 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4184 int serial_type = ((const u8*)pKey1)[1]; 4185 int res; 4186 u32 y; 4187 u64 x; 4188 i64 v; 4189 i64 lhs; 4190 4191 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4192 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4193 switch( serial_type ){ 4194 case 1: { /* 1-byte signed integer */ 4195 lhs = ONE_BYTE_INT(aKey); 4196 testcase( lhs<0 ); 4197 break; 4198 } 4199 case 2: { /* 2-byte signed integer */ 4200 lhs = TWO_BYTE_INT(aKey); 4201 testcase( lhs<0 ); 4202 break; 4203 } 4204 case 3: { /* 3-byte signed integer */ 4205 lhs = THREE_BYTE_INT(aKey); 4206 testcase( lhs<0 ); 4207 break; 4208 } 4209 case 4: { /* 4-byte signed integer */ 4210 y = FOUR_BYTE_UINT(aKey); 4211 lhs = (i64)*(int*)&y; 4212 testcase( lhs<0 ); 4213 break; 4214 } 4215 case 5: { /* 6-byte signed integer */ 4216 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4217 testcase( lhs<0 ); 4218 break; 4219 } 4220 case 6: { /* 8-byte signed integer */ 4221 x = FOUR_BYTE_UINT(aKey); 4222 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4223 lhs = *(i64*)&x; 4224 testcase( lhs<0 ); 4225 break; 4226 } 4227 case 8: 4228 lhs = 0; 4229 break; 4230 case 9: 4231 lhs = 1; 4232 break; 4233 4234 /* This case could be removed without changing the results of running 4235 ** this code. Including it causes gcc to generate a faster switch 4236 ** statement (since the range of switch targets now starts at zero and 4237 ** is contiguous) but does not cause any duplicate code to be generated 4238 ** (as gcc is clever enough to combine the two like cases). Other 4239 ** compilers might be similar. */ 4240 case 0: case 7: 4241 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4242 4243 default: 4244 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4245 } 4246 4247 v = pPKey2->aMem[0].u.i; 4248 if( v>lhs ){ 4249 res = pPKey2->r1; 4250 }else if( v<lhs ){ 4251 res = pPKey2->r2; 4252 }else if( pPKey2->nField>1 ){ 4253 /* The first fields of the two keys are equal. Compare the trailing 4254 ** fields. */ 4255 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4256 }else{ 4257 /* The first fields of the two keys are equal and there are no trailing 4258 ** fields. Return pPKey2->default_rc in this case. */ 4259 res = pPKey2->default_rc; 4260 pPKey2->eqSeen = 1; 4261 } 4262 4263 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4264 return res; 4265 } 4266 4267 /* 4268 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4269 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4270 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4271 ** at the start of (pKey1/nKey1) fits in a single byte. 4272 */ 4273 static int vdbeRecordCompareString( 4274 int nKey1, const void *pKey1, /* Left key */ 4275 UnpackedRecord *pPKey2 /* Right key */ 4276 ){ 4277 const u8 *aKey1 = (const u8*)pKey1; 4278 int serial_type; 4279 int res; 4280 4281 assert( pPKey2->aMem[0].flags & MEM_Str ); 4282 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4283 getVarint32(&aKey1[1], serial_type); 4284 if( serial_type<12 ){ 4285 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4286 }else if( !(serial_type & 0x01) ){ 4287 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4288 }else{ 4289 int nCmp; 4290 int nStr; 4291 int szHdr = aKey1[0]; 4292 4293 nStr = (serial_type-12) / 2; 4294 if( (szHdr + nStr) > nKey1 ){ 4295 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4296 return 0; /* Corruption */ 4297 } 4298 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4299 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4300 4301 if( res==0 ){ 4302 res = nStr - pPKey2->aMem[0].n; 4303 if( res==0 ){ 4304 if( pPKey2->nField>1 ){ 4305 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4306 }else{ 4307 res = pPKey2->default_rc; 4308 pPKey2->eqSeen = 1; 4309 } 4310 }else if( res>0 ){ 4311 res = pPKey2->r2; 4312 }else{ 4313 res = pPKey2->r1; 4314 } 4315 }else if( res>0 ){ 4316 res = pPKey2->r2; 4317 }else{ 4318 res = pPKey2->r1; 4319 } 4320 } 4321 4322 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4323 || CORRUPT_DB 4324 || pPKey2->pKeyInfo->db->mallocFailed 4325 ); 4326 return res; 4327 } 4328 4329 /* 4330 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4331 ** suitable for comparing serialized records to the unpacked record passed 4332 ** as the only argument. 4333 */ 4334 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4335 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4336 ** that the size-of-header varint that occurs at the start of each record 4337 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4338 ** also assumes that it is safe to overread a buffer by at least the 4339 ** maximum possible legal header size plus 8 bytes. Because there is 4340 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4341 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4342 ** limit the size of the header to 64 bytes in cases where the first field 4343 ** is an integer. 4344 ** 4345 ** The easiest way to enforce this limit is to consider only records with 4346 ** 13 fields or less. If the first field is an integer, the maximum legal 4347 ** header size is (12*5 + 1 + 1) bytes. */ 4348 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4349 int flags = p->aMem[0].flags; 4350 if( p->pKeyInfo->aSortOrder[0] ){ 4351 p->r1 = 1; 4352 p->r2 = -1; 4353 }else{ 4354 p->r1 = -1; 4355 p->r2 = 1; 4356 } 4357 if( (flags & MEM_Int) ){ 4358 return vdbeRecordCompareInt; 4359 } 4360 testcase( flags & MEM_Real ); 4361 testcase( flags & MEM_Null ); 4362 testcase( flags & MEM_Blob ); 4363 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4364 assert( flags & MEM_Str ); 4365 return vdbeRecordCompareString; 4366 } 4367 } 4368 4369 return sqlite3VdbeRecordCompare; 4370 } 4371 4372 /* 4373 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4374 ** Read the rowid (the last field in the record) and store it in *rowid. 4375 ** Return SQLITE_OK if everything works, or an error code otherwise. 4376 ** 4377 ** pCur might be pointing to text obtained from a corrupt database file. 4378 ** So the content cannot be trusted. Do appropriate checks on the content. 4379 */ 4380 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4381 i64 nCellKey = 0; 4382 int rc; 4383 u32 szHdr; /* Size of the header */ 4384 u32 typeRowid; /* Serial type of the rowid */ 4385 u32 lenRowid; /* Size of the rowid */ 4386 Mem m, v; 4387 4388 /* Get the size of the index entry. Only indices entries of less 4389 ** than 2GiB are support - anything large must be database corruption. 4390 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4391 ** this code can safely assume that nCellKey is 32-bits 4392 */ 4393 assert( sqlite3BtreeCursorIsValid(pCur) ); 4394 nCellKey = sqlite3BtreePayloadSize(pCur); 4395 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4396 4397 /* Read in the complete content of the index entry */ 4398 sqlite3VdbeMemInit(&m, db, 0); 4399 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4400 if( rc ){ 4401 return rc; 4402 } 4403 4404 /* The index entry must begin with a header size */ 4405 (void)getVarint32((u8*)m.z, szHdr); 4406 testcase( szHdr==3 ); 4407 testcase( szHdr==m.n ); 4408 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4409 goto idx_rowid_corruption; 4410 } 4411 4412 /* The last field of the index should be an integer - the ROWID. 4413 ** Verify that the last entry really is an integer. */ 4414 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4415 testcase( typeRowid==1 ); 4416 testcase( typeRowid==2 ); 4417 testcase( typeRowid==3 ); 4418 testcase( typeRowid==4 ); 4419 testcase( typeRowid==5 ); 4420 testcase( typeRowid==6 ); 4421 testcase( typeRowid==8 ); 4422 testcase( typeRowid==9 ); 4423 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4424 goto idx_rowid_corruption; 4425 } 4426 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4427 testcase( (u32)m.n==szHdr+lenRowid ); 4428 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4429 goto idx_rowid_corruption; 4430 } 4431 4432 /* Fetch the integer off the end of the index record */ 4433 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4434 *rowid = v.u.i; 4435 sqlite3VdbeMemRelease(&m); 4436 return SQLITE_OK; 4437 4438 /* Jump here if database corruption is detected after m has been 4439 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4440 idx_rowid_corruption: 4441 testcase( m.szMalloc!=0 ); 4442 sqlite3VdbeMemRelease(&m); 4443 return SQLITE_CORRUPT_BKPT; 4444 } 4445 4446 /* 4447 ** Compare the key of the index entry that cursor pC is pointing to against 4448 ** the key string in pUnpacked. Write into *pRes a number 4449 ** that is negative, zero, or positive if pC is less than, equal to, 4450 ** or greater than pUnpacked. Return SQLITE_OK on success. 4451 ** 4452 ** pUnpacked is either created without a rowid or is truncated so that it 4453 ** omits the rowid at the end. The rowid at the end of the index entry 4454 ** is ignored as well. Hence, this routine only compares the prefixes 4455 ** of the keys prior to the final rowid, not the entire key. 4456 */ 4457 int sqlite3VdbeIdxKeyCompare( 4458 sqlite3 *db, /* Database connection */ 4459 VdbeCursor *pC, /* The cursor to compare against */ 4460 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4461 int *res /* Write the comparison result here */ 4462 ){ 4463 i64 nCellKey = 0; 4464 int rc; 4465 BtCursor *pCur; 4466 Mem m; 4467 4468 assert( pC->eCurType==CURTYPE_BTREE ); 4469 pCur = pC->uc.pCursor; 4470 assert( sqlite3BtreeCursorIsValid(pCur) ); 4471 nCellKey = sqlite3BtreePayloadSize(pCur); 4472 /* nCellKey will always be between 0 and 0xffffffff because of the way 4473 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4474 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4475 *res = 0; 4476 return SQLITE_CORRUPT_BKPT; 4477 } 4478 sqlite3VdbeMemInit(&m, db, 0); 4479 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4480 if( rc ){ 4481 return rc; 4482 } 4483 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4484 sqlite3VdbeMemRelease(&m); 4485 return SQLITE_OK; 4486 } 4487 4488 /* 4489 ** This routine sets the value to be returned by subsequent calls to 4490 ** sqlite3_changes() on the database handle 'db'. 4491 */ 4492 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4493 assert( sqlite3_mutex_held(db->mutex) ); 4494 db->nChange = nChange; 4495 db->nTotalChange += nChange; 4496 } 4497 4498 /* 4499 ** Set a flag in the vdbe to update the change counter when it is finalised 4500 ** or reset. 4501 */ 4502 void sqlite3VdbeCountChanges(Vdbe *v){ 4503 v->changeCntOn = 1; 4504 } 4505 4506 /* 4507 ** Mark every prepared statement associated with a database connection 4508 ** as expired. 4509 ** 4510 ** An expired statement means that recompilation of the statement is 4511 ** recommend. Statements expire when things happen that make their 4512 ** programs obsolete. Removing user-defined functions or collating 4513 ** sequences, or changing an authorization function are the types of 4514 ** things that make prepared statements obsolete. 4515 */ 4516 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4517 Vdbe *p; 4518 for(p = db->pVdbe; p; p=p->pNext){ 4519 p->expired = 1; 4520 } 4521 } 4522 4523 /* 4524 ** Return the database associated with the Vdbe. 4525 */ 4526 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4527 return v->db; 4528 } 4529 4530 /* 4531 ** Return a pointer to an sqlite3_value structure containing the value bound 4532 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4533 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4534 ** constants) to the value before returning it. 4535 ** 4536 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4537 */ 4538 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4539 assert( iVar>0 ); 4540 if( v ){ 4541 Mem *pMem = &v->aVar[iVar-1]; 4542 if( 0==(pMem->flags & MEM_Null) ){ 4543 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4544 if( pRet ){ 4545 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4546 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4547 } 4548 return pRet; 4549 } 4550 } 4551 return 0; 4552 } 4553 4554 /* 4555 ** Configure SQL variable iVar so that binding a new value to it signals 4556 ** to sqlite3_reoptimize() that re-preparing the statement may result 4557 ** in a better query plan. 4558 */ 4559 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4560 assert( iVar>0 ); 4561 if( iVar>=32 ){ 4562 v->expmask |= 0x80000000; 4563 }else{ 4564 v->expmask |= ((u32)1 << (iVar-1)); 4565 } 4566 } 4567 4568 #ifndef SQLITE_OMIT_VIRTUALTABLE 4569 /* 4570 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4571 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4572 ** in memory obtained from sqlite3DbMalloc). 4573 */ 4574 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4575 if( pVtab->zErrMsg ){ 4576 sqlite3 *db = p->db; 4577 sqlite3DbFree(db, p->zErrMsg); 4578 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4579 sqlite3_free(pVtab->zErrMsg); 4580 pVtab->zErrMsg = 0; 4581 } 4582 } 4583 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4584 4585 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4586 4587 /* 4588 ** If the second argument is not NULL, release any allocations associated 4589 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4590 ** structure itself, using sqlite3DbFree(). 4591 ** 4592 ** This function is used to free UnpackedRecord structures allocated by 4593 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4594 */ 4595 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4596 if( p ){ 4597 int i; 4598 for(i=0; i<nField; i++){ 4599 Mem *pMem = &p->aMem[i]; 4600 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4601 } 4602 sqlite3DbFree(db, p); 4603 } 4604 } 4605 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4606 4607 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4608 /* 4609 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4610 ** then cursor passed as the second argument should point to the row about 4611 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4612 ** the required value will be read from the row the cursor points to. 4613 */ 4614 void sqlite3VdbePreUpdateHook( 4615 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4616 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4617 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4618 const char *zDb, /* Database name */ 4619 Table *pTab, /* Modified table */ 4620 i64 iKey1, /* Initial key value */ 4621 int iReg /* Register for new.* record */ 4622 ){ 4623 sqlite3 *db = v->db; 4624 i64 iKey2; 4625 PreUpdate preupdate; 4626 const char *zTbl = pTab->zName; 4627 static const u8 fakeSortOrder = 0; 4628 4629 assert( db->pPreUpdate==0 ); 4630 memset(&preupdate, 0, sizeof(PreUpdate)); 4631 if( HasRowid(pTab)==0 ){ 4632 iKey1 = iKey2 = 0; 4633 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4634 }else{ 4635 if( op==SQLITE_UPDATE ){ 4636 iKey2 = v->aMem[iReg].u.i; 4637 }else{ 4638 iKey2 = iKey1; 4639 } 4640 } 4641 4642 assert( pCsr->nField==pTab->nCol 4643 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4644 ); 4645 4646 preupdate.v = v; 4647 preupdate.pCsr = pCsr; 4648 preupdate.op = op; 4649 preupdate.iNewReg = iReg; 4650 preupdate.keyinfo.db = db; 4651 preupdate.keyinfo.enc = ENC(db); 4652 preupdate.keyinfo.nField = pTab->nCol; 4653 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4654 preupdate.iKey1 = iKey1; 4655 preupdate.iKey2 = iKey2; 4656 preupdate.pTab = pTab; 4657 4658 db->pPreUpdate = &preupdate; 4659 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4660 db->pPreUpdate = 0; 4661 sqlite3DbFree(db, preupdate.aRecord); 4662 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked); 4663 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked); 4664 if( preupdate.aNew ){ 4665 int i; 4666 for(i=0; i<pCsr->nField; i++){ 4667 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4668 } 4669 sqlite3DbFree(db, preupdate.aNew); 4670 } 4671 } 4672 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4673