1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 assert( pParse->szOpAlloc==0 ); 39 return p; 40 } 41 42 /* 43 ** Change the error string stored in Vdbe.zErrMsg 44 */ 45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 46 va_list ap; 47 sqlite3DbFree(p->db, p->zErrMsg); 48 va_start(ap, zFormat); 49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 50 va_end(ap); 51 } 52 53 /* 54 ** Remember the SQL string for a prepared statement. 55 */ 56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 57 assert( isPrepareV2==1 || isPrepareV2==0 ); 58 if( p==0 ) return; 59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 60 if( !isPrepareV2 ) return; 61 #endif 62 assert( p->zSql==0 ); 63 p->zSql = sqlite3DbStrNDup(p->db, z, n); 64 p->isPrepareV2 = (u8)isPrepareV2; 65 } 66 67 /* 68 ** Return the SQL associated with a prepared statement 69 */ 70 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 71 Vdbe *p = (Vdbe *)pStmt; 72 return p ? p->zSql : 0; 73 } 74 75 /* 76 ** Swap all content between two VDBE structures. 77 */ 78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 79 Vdbe tmp, *pTmp; 80 char *zTmp; 81 assert( pA->db==pB->db ); 82 tmp = *pA; 83 *pA = *pB; 84 *pB = tmp; 85 pTmp = pA->pNext; 86 pA->pNext = pB->pNext; 87 pB->pNext = pTmp; 88 pTmp = pA->pPrev; 89 pA->pPrev = pB->pPrev; 90 pB->pPrev = pTmp; 91 zTmp = pA->zSql; 92 pA->zSql = pB->zSql; 93 pB->zSql = zTmp; 94 pB->isPrepareV2 = pA->isPrepareV2; 95 } 96 97 /* 98 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 99 ** than its current size. nOp is guaranteed to be less than or equal 100 ** to 1024/sizeof(Op). 101 ** 102 ** If an out-of-memory error occurs while resizing the array, return 103 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 104 ** unchanged (this is so that any opcodes already allocated can be 105 ** correctly deallocated along with the rest of the Vdbe). 106 */ 107 static int growOpArray(Vdbe *v, int nOp){ 108 VdbeOp *pNew; 109 Parse *p = v->pParse; 110 111 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 112 ** more frequent reallocs and hence provide more opportunities for 113 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 114 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 115 ** by the minimum* amount required until the size reaches 512. Normal 116 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 117 ** size of the op array or add 1KB of space, whichever is smaller. */ 118 #ifdef SQLITE_TEST_REALLOC_STRESS 119 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 120 #else 121 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 122 UNUSED_PARAMETER(nOp); 123 #endif 124 125 assert( nOp<=(1024/sizeof(Op)) ); 126 assert( nNew>=(p->nOpAlloc+nOp) ); 127 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 128 if( pNew ){ 129 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 130 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 131 v->aOp = pNew; 132 } 133 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 134 } 135 136 #ifdef SQLITE_DEBUG 137 /* This routine is just a convenient place to set a breakpoint that will 138 ** fire after each opcode is inserted and displayed using 139 ** "PRAGMA vdbe_addoptrace=on". 140 */ 141 static void test_addop_breakpoint(void){ 142 static int n = 0; 143 n++; 144 } 145 #endif 146 147 /* 148 ** Add a new instruction to the list of instructions current in the 149 ** VDBE. Return the address of the new instruction. 150 ** 151 ** Parameters: 152 ** 153 ** p Pointer to the VDBE 154 ** 155 ** op The opcode for this instruction 156 ** 157 ** p1, p2, p3 Operands 158 ** 159 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 160 ** the sqlite3VdbeChangeP4() function to change the value of the P4 161 ** operand. 162 */ 163 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 164 assert( p->pParse->nOpAlloc<=p->nOp ); 165 if( growOpArray(p, 1) ) return 1; 166 assert( p->pParse->nOpAlloc>p->nOp ); 167 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 168 } 169 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 170 int i; 171 VdbeOp *pOp; 172 173 i = p->nOp; 174 assert( p->magic==VDBE_MAGIC_INIT ); 175 assert( op>=0 && op<0xff ); 176 if( p->pParse->nOpAlloc<=i ){ 177 return growOp3(p, op, p1, p2, p3); 178 } 179 p->nOp++; 180 pOp = &p->aOp[i]; 181 pOp->opcode = (u8)op; 182 pOp->p5 = 0; 183 pOp->p1 = p1; 184 pOp->p2 = p2; 185 pOp->p3 = p3; 186 pOp->p4.p = 0; 187 pOp->p4type = P4_NOTUSED; 188 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 189 pOp->zComment = 0; 190 #endif 191 #ifdef SQLITE_DEBUG 192 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 193 int jj, kk; 194 Parse *pParse = p->pParse; 195 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 196 struct yColCache *x = pParse->aColCache + jj; 197 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 198 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 199 kk++; 200 } 201 if( kk ) printf("\n"); 202 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 203 test_addop_breakpoint(); 204 } 205 #endif 206 #ifdef VDBE_PROFILE 207 pOp->cycles = 0; 208 pOp->cnt = 0; 209 #endif 210 #ifdef SQLITE_VDBE_COVERAGE 211 pOp->iSrcLine = 0; 212 #endif 213 return i; 214 } 215 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 216 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 217 } 218 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 219 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 220 } 221 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 222 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 223 } 224 225 /* Generate code for an unconditional jump to instruction iDest 226 */ 227 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 228 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 229 } 230 231 /* Generate code to cause the string zStr to be loaded into 232 ** register iDest 233 */ 234 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 235 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 236 } 237 238 /* 239 ** Generate code that initializes multiple registers to string or integer 240 ** constants. The registers begin with iDest and increase consecutively. 241 ** One register is initialized for each characgter in zTypes[]. For each 242 ** "s" character in zTypes[], the register is a string if the argument is 243 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 244 ** in zTypes[], the register is initialized to an integer. 245 */ 246 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 247 va_list ap; 248 int i; 249 char c; 250 va_start(ap, zTypes); 251 for(i=0; (c = zTypes[i])!=0; i++){ 252 if( c=='s' ){ 253 const char *z = va_arg(ap, const char*); 254 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 255 }else{ 256 assert( c=='i' ); 257 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 258 } 259 } 260 va_end(ap); 261 } 262 263 /* 264 ** Add an opcode that includes the p4 value as a pointer. 265 */ 266 int sqlite3VdbeAddOp4( 267 Vdbe *p, /* Add the opcode to this VM */ 268 int op, /* The new opcode */ 269 int p1, /* The P1 operand */ 270 int p2, /* The P2 operand */ 271 int p3, /* The P3 operand */ 272 const char *zP4, /* The P4 operand */ 273 int p4type /* P4 operand type */ 274 ){ 275 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 276 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 277 return addr; 278 } 279 280 /* 281 ** Add an opcode that includes the p4 value with a P4_INT64 or 282 ** P4_REAL type. 283 */ 284 int sqlite3VdbeAddOp4Dup8( 285 Vdbe *p, /* Add the opcode to this VM */ 286 int op, /* The new opcode */ 287 int p1, /* The P1 operand */ 288 int p2, /* The P2 operand */ 289 int p3, /* The P3 operand */ 290 const u8 *zP4, /* The P4 operand */ 291 int p4type /* P4 operand type */ 292 ){ 293 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 294 if( p4copy ) memcpy(p4copy, zP4, 8); 295 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 296 } 297 298 /* 299 ** Add an OP_ParseSchema opcode. This routine is broken out from 300 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 301 ** as having been used. 302 ** 303 ** The zWhere string must have been obtained from sqlite3_malloc(). 304 ** This routine will take ownership of the allocated memory. 305 */ 306 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 307 int j; 308 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 309 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 310 } 311 312 /* 313 ** Add an opcode that includes the p4 value as an integer. 314 */ 315 int sqlite3VdbeAddOp4Int( 316 Vdbe *p, /* Add the opcode to this VM */ 317 int op, /* The new opcode */ 318 int p1, /* The P1 operand */ 319 int p2, /* The P2 operand */ 320 int p3, /* The P3 operand */ 321 int p4 /* The P4 operand as an integer */ 322 ){ 323 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 324 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 325 return addr; 326 } 327 328 /* Insert the end of a co-routine 329 */ 330 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 331 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 332 333 /* Clear the temporary register cache, thereby ensuring that each 334 ** co-routine has its own independent set of registers, because co-routines 335 ** might expect their registers to be preserved across an OP_Yield, and 336 ** that could cause problems if two or more co-routines are using the same 337 ** temporary register. 338 */ 339 v->pParse->nTempReg = 0; 340 v->pParse->nRangeReg = 0; 341 } 342 343 /* 344 ** Create a new symbolic label for an instruction that has yet to be 345 ** coded. The symbolic label is really just a negative number. The 346 ** label can be used as the P2 value of an operation. Later, when 347 ** the label is resolved to a specific address, the VDBE will scan 348 ** through its operation list and change all values of P2 which match 349 ** the label into the resolved address. 350 ** 351 ** The VDBE knows that a P2 value is a label because labels are 352 ** always negative and P2 values are suppose to be non-negative. 353 ** Hence, a negative P2 value is a label that has yet to be resolved. 354 ** 355 ** Zero is returned if a malloc() fails. 356 */ 357 int sqlite3VdbeMakeLabel(Vdbe *v){ 358 Parse *p = v->pParse; 359 int i = p->nLabel++; 360 assert( v->magic==VDBE_MAGIC_INIT ); 361 if( (i & (i-1))==0 ){ 362 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 363 (i*2+1)*sizeof(p->aLabel[0])); 364 } 365 if( p->aLabel ){ 366 p->aLabel[i] = -1; 367 } 368 return ADDR(i); 369 } 370 371 /* 372 ** Resolve label "x" to be the address of the next instruction to 373 ** be inserted. The parameter "x" must have been obtained from 374 ** a prior call to sqlite3VdbeMakeLabel(). 375 */ 376 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 377 Parse *p = v->pParse; 378 int j = ADDR(x); 379 assert( v->magic==VDBE_MAGIC_INIT ); 380 assert( j<p->nLabel ); 381 assert( j>=0 ); 382 if( p->aLabel ){ 383 p->aLabel[j] = v->nOp; 384 } 385 p->iFixedOp = v->nOp - 1; 386 } 387 388 /* 389 ** Mark the VDBE as one that can only be run one time. 390 */ 391 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 392 p->runOnlyOnce = 1; 393 } 394 395 /* 396 ** Mark the VDBE as one that can only be run multiple times. 397 */ 398 void sqlite3VdbeReusable(Vdbe *p){ 399 p->runOnlyOnce = 0; 400 } 401 402 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 403 404 /* 405 ** The following type and function are used to iterate through all opcodes 406 ** in a Vdbe main program and each of the sub-programs (triggers) it may 407 ** invoke directly or indirectly. It should be used as follows: 408 ** 409 ** Op *pOp; 410 ** VdbeOpIter sIter; 411 ** 412 ** memset(&sIter, 0, sizeof(sIter)); 413 ** sIter.v = v; // v is of type Vdbe* 414 ** while( (pOp = opIterNext(&sIter)) ){ 415 ** // Do something with pOp 416 ** } 417 ** sqlite3DbFree(v->db, sIter.apSub); 418 ** 419 */ 420 typedef struct VdbeOpIter VdbeOpIter; 421 struct VdbeOpIter { 422 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 423 SubProgram **apSub; /* Array of subprograms */ 424 int nSub; /* Number of entries in apSub */ 425 int iAddr; /* Address of next instruction to return */ 426 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 427 }; 428 static Op *opIterNext(VdbeOpIter *p){ 429 Vdbe *v = p->v; 430 Op *pRet = 0; 431 Op *aOp; 432 int nOp; 433 434 if( p->iSub<=p->nSub ){ 435 436 if( p->iSub==0 ){ 437 aOp = v->aOp; 438 nOp = v->nOp; 439 }else{ 440 aOp = p->apSub[p->iSub-1]->aOp; 441 nOp = p->apSub[p->iSub-1]->nOp; 442 } 443 assert( p->iAddr<nOp ); 444 445 pRet = &aOp[p->iAddr]; 446 p->iAddr++; 447 if( p->iAddr==nOp ){ 448 p->iSub++; 449 p->iAddr = 0; 450 } 451 452 if( pRet->p4type==P4_SUBPROGRAM ){ 453 int nByte = (p->nSub+1)*sizeof(SubProgram*); 454 int j; 455 for(j=0; j<p->nSub; j++){ 456 if( p->apSub[j]==pRet->p4.pProgram ) break; 457 } 458 if( j==p->nSub ){ 459 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 460 if( !p->apSub ){ 461 pRet = 0; 462 }else{ 463 p->apSub[p->nSub++] = pRet->p4.pProgram; 464 } 465 } 466 } 467 } 468 469 return pRet; 470 } 471 472 /* 473 ** Check if the program stored in the VM associated with pParse may 474 ** throw an ABORT exception (causing the statement, but not entire transaction 475 ** to be rolled back). This condition is true if the main program or any 476 ** sub-programs contains any of the following: 477 ** 478 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 479 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 480 ** * OP_Destroy 481 ** * OP_VUpdate 482 ** * OP_VRename 483 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 484 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 485 ** 486 ** Then check that the value of Parse.mayAbort is true if an 487 ** ABORT may be thrown, or false otherwise. Return true if it does 488 ** match, or false otherwise. This function is intended to be used as 489 ** part of an assert statement in the compiler. Similar to: 490 ** 491 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 492 */ 493 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 494 int hasAbort = 0; 495 int hasFkCounter = 0; 496 int hasCreateTable = 0; 497 int hasInitCoroutine = 0; 498 Op *pOp; 499 VdbeOpIter sIter; 500 memset(&sIter, 0, sizeof(sIter)); 501 sIter.v = v; 502 503 while( (pOp = opIterNext(&sIter))!=0 ){ 504 int opcode = pOp->opcode; 505 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 506 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 507 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 508 ){ 509 hasAbort = 1; 510 break; 511 } 512 if( opcode==OP_CreateTable ) hasCreateTable = 1; 513 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 514 #ifndef SQLITE_OMIT_FOREIGN_KEY 515 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 516 hasFkCounter = 1; 517 } 518 #endif 519 } 520 sqlite3DbFree(v->db, sIter.apSub); 521 522 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 523 ** If malloc failed, then the while() loop above may not have iterated 524 ** through all opcodes and hasAbort may be set incorrectly. Return 525 ** true for this case to prevent the assert() in the callers frame 526 ** from failing. */ 527 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 528 || (hasCreateTable && hasInitCoroutine) ); 529 } 530 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 531 532 /* 533 ** This routine is called after all opcodes have been inserted. It loops 534 ** through all the opcodes and fixes up some details. 535 ** 536 ** (1) For each jump instruction with a negative P2 value (a label) 537 ** resolve the P2 value to an actual address. 538 ** 539 ** (2) Compute the maximum number of arguments used by any SQL function 540 ** and store that value in *pMaxFuncArgs. 541 ** 542 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 543 ** indicate what the prepared statement actually does. 544 ** 545 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 546 ** 547 ** (5) Reclaim the memory allocated for storing labels. 548 ** 549 ** This routine will only function correctly if the mkopcodeh.tcl generator 550 ** script numbers the opcodes correctly. Changes to this routine must be 551 ** coordinated with changes to mkopcodeh.tcl. 552 */ 553 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 554 int nMaxArgs = *pMaxFuncArgs; 555 Op *pOp; 556 Parse *pParse = p->pParse; 557 int *aLabel = pParse->aLabel; 558 p->readOnly = 1; 559 p->bIsReader = 0; 560 pOp = &p->aOp[p->nOp-1]; 561 while(1){ 562 563 /* Only JUMP opcodes and the short list of special opcodes in the switch 564 ** below need to be considered. The mkopcodeh.tcl generator script groups 565 ** all these opcodes together near the front of the opcode list. Skip 566 ** any opcode that does not need processing by virtual of the fact that 567 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 568 */ 569 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 570 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 571 ** cases from this switch! */ 572 switch( pOp->opcode ){ 573 case OP_Transaction: { 574 if( pOp->p2!=0 ) p->readOnly = 0; 575 /* fall thru */ 576 } 577 case OP_AutoCommit: 578 case OP_Savepoint: { 579 p->bIsReader = 1; 580 break; 581 } 582 #ifndef SQLITE_OMIT_WAL 583 case OP_Checkpoint: 584 #endif 585 case OP_Vacuum: 586 case OP_JournalMode: { 587 p->readOnly = 0; 588 p->bIsReader = 1; 589 break; 590 } 591 #ifndef SQLITE_OMIT_VIRTUALTABLE 592 case OP_VUpdate: { 593 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 594 break; 595 } 596 case OP_VFilter: { 597 int n; 598 assert( (pOp - p->aOp) >= 3 ); 599 assert( pOp[-1].opcode==OP_Integer ); 600 n = pOp[-1].p1; 601 if( n>nMaxArgs ) nMaxArgs = n; 602 break; 603 } 604 #endif 605 case OP_Next: 606 case OP_NextIfOpen: 607 case OP_SorterNext: { 608 pOp->p4.xAdvance = sqlite3BtreeNext; 609 pOp->p4type = P4_ADVANCE; 610 break; 611 } 612 case OP_Prev: 613 case OP_PrevIfOpen: { 614 pOp->p4.xAdvance = sqlite3BtreePrevious; 615 pOp->p4type = P4_ADVANCE; 616 break; 617 } 618 } 619 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 620 assert( ADDR(pOp->p2)<pParse->nLabel ); 621 pOp->p2 = aLabel[ADDR(pOp->p2)]; 622 } 623 } 624 if( pOp==p->aOp ) break; 625 pOp--; 626 } 627 sqlite3DbFree(p->db, pParse->aLabel); 628 pParse->aLabel = 0; 629 pParse->nLabel = 0; 630 *pMaxFuncArgs = nMaxArgs; 631 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 632 } 633 634 /* 635 ** Return the address of the next instruction to be inserted. 636 */ 637 int sqlite3VdbeCurrentAddr(Vdbe *p){ 638 assert( p->magic==VDBE_MAGIC_INIT ); 639 return p->nOp; 640 } 641 642 /* 643 ** Verify that at least N opcode slots are available in p without 644 ** having to malloc for more space (except when compiled using 645 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 646 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 647 ** fail due to a OOM fault and hence that the return value from 648 ** sqlite3VdbeAddOpList() will always be non-NULL. 649 */ 650 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 651 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 652 assert( p->nOp + N <= p->pParse->nOpAlloc ); 653 } 654 #endif 655 656 /* 657 ** This function returns a pointer to the array of opcodes associated with 658 ** the Vdbe passed as the first argument. It is the callers responsibility 659 ** to arrange for the returned array to be eventually freed using the 660 ** vdbeFreeOpArray() function. 661 ** 662 ** Before returning, *pnOp is set to the number of entries in the returned 663 ** array. Also, *pnMaxArg is set to the larger of its current value and 664 ** the number of entries in the Vdbe.apArg[] array required to execute the 665 ** returned program. 666 */ 667 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 668 VdbeOp *aOp = p->aOp; 669 assert( aOp && !p->db->mallocFailed ); 670 671 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 672 assert( DbMaskAllZero(p->btreeMask) ); 673 674 resolveP2Values(p, pnMaxArg); 675 *pnOp = p->nOp; 676 p->aOp = 0; 677 return aOp; 678 } 679 680 /* 681 ** Add a whole list of operations to the operation stack. Return a 682 ** pointer to the first operation inserted. 683 ** 684 ** Non-zero P2 arguments to jump instructions are automatically adjusted 685 ** so that the jump target is relative to the first operation inserted. 686 */ 687 VdbeOp *sqlite3VdbeAddOpList( 688 Vdbe *p, /* Add opcodes to the prepared statement */ 689 int nOp, /* Number of opcodes to add */ 690 VdbeOpList const *aOp, /* The opcodes to be added */ 691 int iLineno /* Source-file line number of first opcode */ 692 ){ 693 int i; 694 VdbeOp *pOut, *pFirst; 695 assert( nOp>0 ); 696 assert( p->magic==VDBE_MAGIC_INIT ); 697 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 698 return 0; 699 } 700 pFirst = pOut = &p->aOp[p->nOp]; 701 for(i=0; i<nOp; i++, aOp++, pOut++){ 702 pOut->opcode = aOp->opcode; 703 pOut->p1 = aOp->p1; 704 pOut->p2 = aOp->p2; 705 assert( aOp->p2>=0 ); 706 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 707 pOut->p2 += p->nOp; 708 } 709 pOut->p3 = aOp->p3; 710 pOut->p4type = P4_NOTUSED; 711 pOut->p4.p = 0; 712 pOut->p5 = 0; 713 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 714 pOut->zComment = 0; 715 #endif 716 #ifdef SQLITE_VDBE_COVERAGE 717 pOut->iSrcLine = iLineno+i; 718 #else 719 (void)iLineno; 720 #endif 721 #ifdef SQLITE_DEBUG 722 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 723 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 724 } 725 #endif 726 } 727 p->nOp += nOp; 728 return pFirst; 729 } 730 731 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 732 /* 733 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 734 */ 735 void sqlite3VdbeScanStatus( 736 Vdbe *p, /* VM to add scanstatus() to */ 737 int addrExplain, /* Address of OP_Explain (or 0) */ 738 int addrLoop, /* Address of loop counter */ 739 int addrVisit, /* Address of rows visited counter */ 740 LogEst nEst, /* Estimated number of output rows */ 741 const char *zName /* Name of table or index being scanned */ 742 ){ 743 int nByte = (p->nScan+1) * sizeof(ScanStatus); 744 ScanStatus *aNew; 745 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 746 if( aNew ){ 747 ScanStatus *pNew = &aNew[p->nScan++]; 748 pNew->addrExplain = addrExplain; 749 pNew->addrLoop = addrLoop; 750 pNew->addrVisit = addrVisit; 751 pNew->nEst = nEst; 752 pNew->zName = sqlite3DbStrDup(p->db, zName); 753 p->aScan = aNew; 754 } 755 } 756 #endif 757 758 759 /* 760 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 761 ** for a specific instruction. 762 */ 763 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 764 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 765 } 766 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 767 sqlite3VdbeGetOp(p,addr)->p1 = val; 768 } 769 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 770 sqlite3VdbeGetOp(p,addr)->p2 = val; 771 } 772 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 773 sqlite3VdbeGetOp(p,addr)->p3 = val; 774 } 775 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 776 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5; 777 } 778 779 /* 780 ** Change the P2 operand of instruction addr so that it points to 781 ** the address of the next instruction to be coded. 782 */ 783 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 784 p->pParse->iFixedOp = p->nOp - 1; 785 sqlite3VdbeChangeP2(p, addr, p->nOp); 786 } 787 788 789 /* 790 ** If the input FuncDef structure is ephemeral, then free it. If 791 ** the FuncDef is not ephermal, then do nothing. 792 */ 793 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 794 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 795 sqlite3DbFree(db, pDef); 796 } 797 } 798 799 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 800 801 /* 802 ** Delete a P4 value if necessary. 803 */ 804 static void freeP4(sqlite3 *db, int p4type, void *p4){ 805 assert( db ); 806 switch( p4type ){ 807 case P4_FUNCCTX: { 808 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 809 /* Fall through into the next case */ 810 } 811 case P4_REAL: 812 case P4_INT64: 813 case P4_DYNAMIC: 814 case P4_INTARRAY: { 815 sqlite3DbFree(db, p4); 816 break; 817 } 818 case P4_KEYINFO: { 819 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 820 break; 821 } 822 #ifdef SQLITE_ENABLE_CURSOR_HINTS 823 case P4_EXPR: { 824 sqlite3ExprDelete(db, (Expr*)p4); 825 break; 826 } 827 #endif 828 case P4_MPRINTF: { 829 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 830 break; 831 } 832 case P4_FUNCDEF: { 833 freeEphemeralFunction(db, (FuncDef*)p4); 834 break; 835 } 836 case P4_MEM: { 837 if( db->pnBytesFreed==0 ){ 838 sqlite3ValueFree((sqlite3_value*)p4); 839 }else{ 840 Mem *p = (Mem*)p4; 841 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 842 sqlite3DbFree(db, p); 843 } 844 break; 845 } 846 case P4_VTAB : { 847 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 848 break; 849 } 850 } 851 } 852 853 /* 854 ** Free the space allocated for aOp and any p4 values allocated for the 855 ** opcodes contained within. If aOp is not NULL it is assumed to contain 856 ** nOp entries. 857 */ 858 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 859 if( aOp ){ 860 Op *pOp; 861 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 862 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 863 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 864 sqlite3DbFree(db, pOp->zComment); 865 #endif 866 } 867 } 868 sqlite3DbFree(db, aOp); 869 } 870 871 /* 872 ** Link the SubProgram object passed as the second argument into the linked 873 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 874 ** objects when the VM is no longer required. 875 */ 876 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 877 p->pNext = pVdbe->pProgram; 878 pVdbe->pProgram = p; 879 } 880 881 /* 882 ** Change the opcode at addr into OP_Noop 883 */ 884 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 885 VdbeOp *pOp; 886 if( p->db->mallocFailed ) return 0; 887 assert( addr>=0 && addr<p->nOp ); 888 pOp = &p->aOp[addr]; 889 freeP4(p->db, pOp->p4type, pOp->p4.p); 890 pOp->p4type = P4_NOTUSED; 891 pOp->p4.z = 0; 892 pOp->opcode = OP_Noop; 893 return 1; 894 } 895 896 /* 897 ** If the last opcode is "op" and it is not a jump destination, 898 ** then remove it. Return true if and only if an opcode was removed. 899 */ 900 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 901 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 902 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 903 }else{ 904 return 0; 905 } 906 } 907 908 /* 909 ** Change the value of the P4 operand for a specific instruction. 910 ** This routine is useful when a large program is loaded from a 911 ** static array using sqlite3VdbeAddOpList but we want to make a 912 ** few minor changes to the program. 913 ** 914 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 915 ** the string is made into memory obtained from sqlite3_malloc(). 916 ** A value of n==0 means copy bytes of zP4 up to and including the 917 ** first null byte. If n>0 then copy n+1 bytes of zP4. 918 ** 919 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 920 ** to a string or structure that is guaranteed to exist for the lifetime of 921 ** the Vdbe. In these cases we can just copy the pointer. 922 ** 923 ** If addr<0 then change P4 on the most recently inserted instruction. 924 */ 925 static void SQLITE_NOINLINE vdbeChangeP4Full( 926 Vdbe *p, 927 Op *pOp, 928 const char *zP4, 929 int n 930 ){ 931 if( pOp->p4type ){ 932 freeP4(p->db, pOp->p4type, pOp->p4.p); 933 pOp->p4type = 0; 934 pOp->p4.p = 0; 935 } 936 if( n<0 ){ 937 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 938 }else{ 939 if( n==0 ) n = sqlite3Strlen30(zP4); 940 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 941 pOp->p4type = P4_DYNAMIC; 942 } 943 } 944 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 945 Op *pOp; 946 sqlite3 *db; 947 assert( p!=0 ); 948 db = p->db; 949 assert( p->magic==VDBE_MAGIC_INIT ); 950 assert( p->aOp!=0 || db->mallocFailed ); 951 if( db->mallocFailed ){ 952 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 953 return; 954 } 955 assert( p->nOp>0 ); 956 assert( addr<p->nOp ); 957 if( addr<0 ){ 958 addr = p->nOp - 1; 959 } 960 pOp = &p->aOp[addr]; 961 if( n>=0 || pOp->p4type ){ 962 vdbeChangeP4Full(p, pOp, zP4, n); 963 return; 964 } 965 if( n==P4_INT32 ){ 966 /* Note: this cast is safe, because the origin data point was an int 967 ** that was cast to a (const char *). */ 968 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 969 pOp->p4type = P4_INT32; 970 }else if( zP4!=0 ){ 971 assert( n<0 ); 972 pOp->p4.p = (void*)zP4; 973 pOp->p4type = (signed char)n; 974 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 975 } 976 } 977 978 /* 979 ** Set the P4 on the most recently added opcode to the KeyInfo for the 980 ** index given. 981 */ 982 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 983 Vdbe *v = pParse->pVdbe; 984 assert( v!=0 ); 985 assert( pIdx!=0 ); 986 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 987 P4_KEYINFO); 988 } 989 990 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 991 /* 992 ** Change the comment on the most recently coded instruction. Or 993 ** insert a No-op and add the comment to that new instruction. This 994 ** makes the code easier to read during debugging. None of this happens 995 ** in a production build. 996 */ 997 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 998 assert( p->nOp>0 || p->aOp==0 ); 999 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1000 if( p->nOp ){ 1001 assert( p->aOp ); 1002 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1003 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1004 } 1005 } 1006 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1007 va_list ap; 1008 if( p ){ 1009 va_start(ap, zFormat); 1010 vdbeVComment(p, zFormat, ap); 1011 va_end(ap); 1012 } 1013 } 1014 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1015 va_list ap; 1016 if( p ){ 1017 sqlite3VdbeAddOp0(p, OP_Noop); 1018 va_start(ap, zFormat); 1019 vdbeVComment(p, zFormat, ap); 1020 va_end(ap); 1021 } 1022 } 1023 #endif /* NDEBUG */ 1024 1025 #ifdef SQLITE_VDBE_COVERAGE 1026 /* 1027 ** Set the value if the iSrcLine field for the previously coded instruction. 1028 */ 1029 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1030 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1031 } 1032 #endif /* SQLITE_VDBE_COVERAGE */ 1033 1034 /* 1035 ** Return the opcode for a given address. If the address is -1, then 1036 ** return the most recently inserted opcode. 1037 ** 1038 ** If a memory allocation error has occurred prior to the calling of this 1039 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1040 ** is readable but not writable, though it is cast to a writable value. 1041 ** The return of a dummy opcode allows the call to continue functioning 1042 ** after an OOM fault without having to check to see if the return from 1043 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1044 ** dummy will never be written to. This is verified by code inspection and 1045 ** by running with Valgrind. 1046 */ 1047 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1048 /* C89 specifies that the constant "dummy" will be initialized to all 1049 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1050 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1051 assert( p->magic==VDBE_MAGIC_INIT ); 1052 if( addr<0 ){ 1053 addr = p->nOp - 1; 1054 } 1055 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1056 if( p->db->mallocFailed ){ 1057 return (VdbeOp*)&dummy; 1058 }else{ 1059 return &p->aOp[addr]; 1060 } 1061 } 1062 1063 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1064 /* 1065 ** Return an integer value for one of the parameters to the opcode pOp 1066 ** determined by character c. 1067 */ 1068 static int translateP(char c, const Op *pOp){ 1069 if( c=='1' ) return pOp->p1; 1070 if( c=='2' ) return pOp->p2; 1071 if( c=='3' ) return pOp->p3; 1072 if( c=='4' ) return pOp->p4.i; 1073 return pOp->p5; 1074 } 1075 1076 /* 1077 ** Compute a string for the "comment" field of a VDBE opcode listing. 1078 ** 1079 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1080 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1081 ** absence of other comments, this synopsis becomes the comment on the opcode. 1082 ** Some translation occurs: 1083 ** 1084 ** "PX" -> "r[X]" 1085 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1086 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1087 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1088 */ 1089 static int displayComment( 1090 const Op *pOp, /* The opcode to be commented */ 1091 const char *zP4, /* Previously obtained value for P4 */ 1092 char *zTemp, /* Write result here */ 1093 int nTemp /* Space available in zTemp[] */ 1094 ){ 1095 const char *zOpName; 1096 const char *zSynopsis; 1097 int nOpName; 1098 int ii, jj; 1099 zOpName = sqlite3OpcodeName(pOp->opcode); 1100 nOpName = sqlite3Strlen30(zOpName); 1101 if( zOpName[nOpName+1] ){ 1102 int seenCom = 0; 1103 char c; 1104 zSynopsis = zOpName += nOpName + 1; 1105 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1106 if( c=='P' ){ 1107 c = zSynopsis[++ii]; 1108 if( c=='4' ){ 1109 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1110 }else if( c=='X' ){ 1111 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1112 seenCom = 1; 1113 }else{ 1114 int v1 = translateP(c, pOp); 1115 int v2; 1116 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1117 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1118 ii += 3; 1119 jj += sqlite3Strlen30(zTemp+jj); 1120 v2 = translateP(zSynopsis[ii], pOp); 1121 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1122 ii += 2; 1123 v2++; 1124 } 1125 if( v2>1 ){ 1126 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1127 } 1128 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1129 ii += 4; 1130 } 1131 } 1132 jj += sqlite3Strlen30(zTemp+jj); 1133 }else{ 1134 zTemp[jj++] = c; 1135 } 1136 } 1137 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1138 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1139 jj += sqlite3Strlen30(zTemp+jj); 1140 } 1141 if( jj<nTemp ) zTemp[jj] = 0; 1142 }else if( pOp->zComment ){ 1143 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1144 jj = sqlite3Strlen30(zTemp); 1145 }else{ 1146 zTemp[0] = 0; 1147 jj = 0; 1148 } 1149 return jj; 1150 } 1151 #endif /* SQLITE_DEBUG */ 1152 1153 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1154 /* 1155 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1156 ** that can be displayed in the P4 column of EXPLAIN output. 1157 */ 1158 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1159 const char *zOp = 0; 1160 switch( pExpr->op ){ 1161 case TK_STRING: 1162 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1163 break; 1164 case TK_INTEGER: 1165 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1166 break; 1167 case TK_NULL: 1168 sqlite3XPrintf(p, "NULL"); 1169 break; 1170 case TK_REGISTER: { 1171 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1172 break; 1173 } 1174 case TK_COLUMN: { 1175 if( pExpr->iColumn<0 ){ 1176 sqlite3XPrintf(p, "rowid"); 1177 }else{ 1178 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1179 } 1180 break; 1181 } 1182 case TK_LT: zOp = "LT"; break; 1183 case TK_LE: zOp = "LE"; break; 1184 case TK_GT: zOp = "GT"; break; 1185 case TK_GE: zOp = "GE"; break; 1186 case TK_NE: zOp = "NE"; break; 1187 case TK_EQ: zOp = "EQ"; break; 1188 case TK_IS: zOp = "IS"; break; 1189 case TK_ISNOT: zOp = "ISNOT"; break; 1190 case TK_AND: zOp = "AND"; break; 1191 case TK_OR: zOp = "OR"; break; 1192 case TK_PLUS: zOp = "ADD"; break; 1193 case TK_STAR: zOp = "MUL"; break; 1194 case TK_MINUS: zOp = "SUB"; break; 1195 case TK_REM: zOp = "REM"; break; 1196 case TK_BITAND: zOp = "BITAND"; break; 1197 case TK_BITOR: zOp = "BITOR"; break; 1198 case TK_SLASH: zOp = "DIV"; break; 1199 case TK_LSHIFT: zOp = "LSHIFT"; break; 1200 case TK_RSHIFT: zOp = "RSHIFT"; break; 1201 case TK_CONCAT: zOp = "CONCAT"; break; 1202 case TK_UMINUS: zOp = "MINUS"; break; 1203 case TK_UPLUS: zOp = "PLUS"; break; 1204 case TK_BITNOT: zOp = "BITNOT"; break; 1205 case TK_NOT: zOp = "NOT"; break; 1206 case TK_ISNULL: zOp = "ISNULL"; break; 1207 case TK_NOTNULL: zOp = "NOTNULL"; break; 1208 1209 default: 1210 sqlite3XPrintf(p, "%s", "expr"); 1211 break; 1212 } 1213 1214 if( zOp ){ 1215 sqlite3XPrintf(p, "%s(", zOp); 1216 displayP4Expr(p, pExpr->pLeft); 1217 if( pExpr->pRight ){ 1218 sqlite3StrAccumAppend(p, ",", 1); 1219 displayP4Expr(p, pExpr->pRight); 1220 } 1221 sqlite3StrAccumAppend(p, ")", 1); 1222 } 1223 } 1224 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1225 1226 1227 #if VDBE_DISPLAY_P4 1228 /* 1229 ** Compute a string that describes the P4 parameter for an opcode. 1230 ** Use zTemp for any required temporary buffer space. 1231 */ 1232 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1233 char *zP4 = zTemp; 1234 StrAccum x; 1235 assert( nTemp>=20 ); 1236 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1237 switch( pOp->p4type ){ 1238 case P4_KEYINFO: { 1239 int j; 1240 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1241 assert( pKeyInfo->aSortOrder!=0 ); 1242 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1243 for(j=0; j<pKeyInfo->nField; j++){ 1244 CollSeq *pColl = pKeyInfo->aColl[j]; 1245 const char *zColl = pColl ? pColl->zName : ""; 1246 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1247 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1248 } 1249 sqlite3StrAccumAppend(&x, ")", 1); 1250 break; 1251 } 1252 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1253 case P4_EXPR: { 1254 displayP4Expr(&x, pOp->p4.pExpr); 1255 break; 1256 } 1257 #endif 1258 case P4_COLLSEQ: { 1259 CollSeq *pColl = pOp->p4.pColl; 1260 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1261 break; 1262 } 1263 case P4_FUNCDEF: { 1264 FuncDef *pDef = pOp->p4.pFunc; 1265 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1266 break; 1267 } 1268 #ifdef SQLITE_DEBUG 1269 case P4_FUNCCTX: { 1270 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1271 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1272 break; 1273 } 1274 #endif 1275 case P4_INT64: { 1276 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1277 break; 1278 } 1279 case P4_INT32: { 1280 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1281 break; 1282 } 1283 case P4_REAL: { 1284 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1285 break; 1286 } 1287 case P4_MEM: { 1288 Mem *pMem = pOp->p4.pMem; 1289 if( pMem->flags & MEM_Str ){ 1290 zP4 = pMem->z; 1291 }else if( pMem->flags & MEM_Int ){ 1292 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1293 }else if( pMem->flags & MEM_Real ){ 1294 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1295 }else if( pMem->flags & MEM_Null ){ 1296 zP4 = "NULL"; 1297 }else{ 1298 assert( pMem->flags & MEM_Blob ); 1299 zP4 = "(blob)"; 1300 } 1301 break; 1302 } 1303 #ifndef SQLITE_OMIT_VIRTUALTABLE 1304 case P4_VTAB: { 1305 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1306 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1307 break; 1308 } 1309 #endif 1310 case P4_INTARRAY: { 1311 int i; 1312 int *ai = pOp->p4.ai; 1313 int n = ai[0]; /* The first element of an INTARRAY is always the 1314 ** count of the number of elements to follow */ 1315 for(i=1; i<n; i++){ 1316 sqlite3XPrintf(&x, ",%d", ai[i]); 1317 } 1318 zTemp[0] = '['; 1319 sqlite3StrAccumAppend(&x, "]", 1); 1320 break; 1321 } 1322 case P4_SUBPROGRAM: { 1323 sqlite3XPrintf(&x, "program"); 1324 break; 1325 } 1326 case P4_ADVANCE: { 1327 zTemp[0] = 0; 1328 break; 1329 } 1330 case P4_TABLE: { 1331 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1332 break; 1333 } 1334 default: { 1335 zP4 = pOp->p4.z; 1336 if( zP4==0 ){ 1337 zP4 = zTemp; 1338 zTemp[0] = 0; 1339 } 1340 } 1341 } 1342 sqlite3StrAccumFinish(&x); 1343 assert( zP4!=0 ); 1344 return zP4; 1345 } 1346 #endif /* VDBE_DISPLAY_P4 */ 1347 1348 /* 1349 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1350 ** 1351 ** The prepared statements need to know in advance the complete set of 1352 ** attached databases that will be use. A mask of these databases 1353 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1354 ** p->btreeMask of databases that will require a lock. 1355 */ 1356 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1357 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1358 assert( i<(int)sizeof(p->btreeMask)*8 ); 1359 DbMaskSet(p->btreeMask, i); 1360 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1361 DbMaskSet(p->lockMask, i); 1362 } 1363 } 1364 1365 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1366 /* 1367 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1368 ** this routine obtains the mutex associated with each BtShared structure 1369 ** that may be accessed by the VM passed as an argument. In doing so it also 1370 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1371 ** that the correct busy-handler callback is invoked if required. 1372 ** 1373 ** If SQLite is not threadsafe but does support shared-cache mode, then 1374 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1375 ** of all of BtShared structures accessible via the database handle 1376 ** associated with the VM. 1377 ** 1378 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1379 ** function is a no-op. 1380 ** 1381 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1382 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1383 ** corresponding to btrees that use shared cache. Then the runtime of 1384 ** this routine is N*N. But as N is rarely more than 1, this should not 1385 ** be a problem. 1386 */ 1387 void sqlite3VdbeEnter(Vdbe *p){ 1388 int i; 1389 sqlite3 *db; 1390 Db *aDb; 1391 int nDb; 1392 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1393 db = p->db; 1394 aDb = db->aDb; 1395 nDb = db->nDb; 1396 for(i=0; i<nDb; i++){ 1397 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1398 sqlite3BtreeEnter(aDb[i].pBt); 1399 } 1400 } 1401 } 1402 #endif 1403 1404 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1405 /* 1406 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1407 */ 1408 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1409 int i; 1410 sqlite3 *db; 1411 Db *aDb; 1412 int nDb; 1413 db = p->db; 1414 aDb = db->aDb; 1415 nDb = db->nDb; 1416 for(i=0; i<nDb; i++){ 1417 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1418 sqlite3BtreeLeave(aDb[i].pBt); 1419 } 1420 } 1421 } 1422 void sqlite3VdbeLeave(Vdbe *p){ 1423 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1424 vdbeLeave(p); 1425 } 1426 #endif 1427 1428 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1429 /* 1430 ** Print a single opcode. This routine is used for debugging only. 1431 */ 1432 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1433 char *zP4; 1434 char zPtr[50]; 1435 char zCom[100]; 1436 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1437 if( pOut==0 ) pOut = stdout; 1438 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1439 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1440 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1441 #else 1442 zCom[0] = 0; 1443 #endif 1444 /* NB: The sqlite3OpcodeName() function is implemented by code created 1445 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1446 ** information from the vdbe.c source text */ 1447 fprintf(pOut, zFormat1, pc, 1448 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1449 zCom 1450 ); 1451 fflush(pOut); 1452 } 1453 #endif 1454 1455 /* 1456 ** Release an array of N Mem elements 1457 */ 1458 static void releaseMemArray(Mem *p, int N){ 1459 if( p && N ){ 1460 Mem *pEnd = &p[N]; 1461 sqlite3 *db = p->db; 1462 if( db->pnBytesFreed ){ 1463 do{ 1464 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1465 }while( (++p)<pEnd ); 1466 return; 1467 } 1468 do{ 1469 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1470 assert( sqlite3VdbeCheckMemInvariants(p) ); 1471 1472 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1473 ** that takes advantage of the fact that the memory cell value is 1474 ** being set to NULL after releasing any dynamic resources. 1475 ** 1476 ** The justification for duplicating code is that according to 1477 ** callgrind, this causes a certain test case to hit the CPU 4.7 1478 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1479 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1480 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1481 ** with no indexes using a single prepared INSERT statement, bind() 1482 ** and reset(). Inserts are grouped into a transaction. 1483 */ 1484 testcase( p->flags & MEM_Agg ); 1485 testcase( p->flags & MEM_Dyn ); 1486 testcase( p->flags & MEM_Frame ); 1487 testcase( p->flags & MEM_RowSet ); 1488 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1489 sqlite3VdbeMemRelease(p); 1490 }else if( p->szMalloc ){ 1491 sqlite3DbFree(db, p->zMalloc); 1492 p->szMalloc = 0; 1493 } 1494 1495 p->flags = MEM_Undefined; 1496 }while( (++p)<pEnd ); 1497 } 1498 } 1499 1500 /* 1501 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1502 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1503 */ 1504 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1505 int i; 1506 Mem *aMem = VdbeFrameMem(p); 1507 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1508 for(i=0; i<p->nChildCsr; i++){ 1509 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1510 } 1511 releaseMemArray(aMem, p->nChildMem); 1512 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1513 sqlite3DbFree(p->v->db, p); 1514 } 1515 1516 #ifndef SQLITE_OMIT_EXPLAIN 1517 /* 1518 ** Give a listing of the program in the virtual machine. 1519 ** 1520 ** The interface is the same as sqlite3VdbeExec(). But instead of 1521 ** running the code, it invokes the callback once for each instruction. 1522 ** This feature is used to implement "EXPLAIN". 1523 ** 1524 ** When p->explain==1, each instruction is listed. When 1525 ** p->explain==2, only OP_Explain instructions are listed and these 1526 ** are shown in a different format. p->explain==2 is used to implement 1527 ** EXPLAIN QUERY PLAN. 1528 ** 1529 ** When p->explain==1, first the main program is listed, then each of 1530 ** the trigger subprograms are listed one by one. 1531 */ 1532 int sqlite3VdbeList( 1533 Vdbe *p /* The VDBE */ 1534 ){ 1535 int nRow; /* Stop when row count reaches this */ 1536 int nSub = 0; /* Number of sub-vdbes seen so far */ 1537 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1538 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1539 sqlite3 *db = p->db; /* The database connection */ 1540 int i; /* Loop counter */ 1541 int rc = SQLITE_OK; /* Return code */ 1542 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1543 1544 assert( p->explain ); 1545 assert( p->magic==VDBE_MAGIC_RUN ); 1546 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1547 1548 /* Even though this opcode does not use dynamic strings for 1549 ** the result, result columns may become dynamic if the user calls 1550 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1551 */ 1552 releaseMemArray(pMem, 8); 1553 p->pResultSet = 0; 1554 1555 if( p->rc==SQLITE_NOMEM_BKPT ){ 1556 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1557 ** sqlite3_column_text16() failed. */ 1558 sqlite3OomFault(db); 1559 return SQLITE_ERROR; 1560 } 1561 1562 /* When the number of output rows reaches nRow, that means the 1563 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1564 ** nRow is the sum of the number of rows in the main program, plus 1565 ** the sum of the number of rows in all trigger subprograms encountered 1566 ** so far. The nRow value will increase as new trigger subprograms are 1567 ** encountered, but p->pc will eventually catch up to nRow. 1568 */ 1569 nRow = p->nOp; 1570 if( p->explain==1 ){ 1571 /* The first 8 memory cells are used for the result set. So we will 1572 ** commandeer the 9th cell to use as storage for an array of pointers 1573 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1574 ** cells. */ 1575 assert( p->nMem>9 ); 1576 pSub = &p->aMem[9]; 1577 if( pSub->flags&MEM_Blob ){ 1578 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1579 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1580 nSub = pSub->n/sizeof(Vdbe*); 1581 apSub = (SubProgram **)pSub->z; 1582 } 1583 for(i=0; i<nSub; i++){ 1584 nRow += apSub[i]->nOp; 1585 } 1586 } 1587 1588 do{ 1589 i = p->pc++; 1590 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1591 if( i>=nRow ){ 1592 p->rc = SQLITE_OK; 1593 rc = SQLITE_DONE; 1594 }else if( db->u1.isInterrupted ){ 1595 p->rc = SQLITE_INTERRUPT; 1596 rc = SQLITE_ERROR; 1597 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1598 }else{ 1599 char *zP4; 1600 Op *pOp; 1601 if( i<p->nOp ){ 1602 /* The output line number is small enough that we are still in the 1603 ** main program. */ 1604 pOp = &p->aOp[i]; 1605 }else{ 1606 /* We are currently listing subprograms. Figure out which one and 1607 ** pick up the appropriate opcode. */ 1608 int j; 1609 i -= p->nOp; 1610 for(j=0; i>=apSub[j]->nOp; j++){ 1611 i -= apSub[j]->nOp; 1612 } 1613 pOp = &apSub[j]->aOp[i]; 1614 } 1615 if( p->explain==1 ){ 1616 pMem->flags = MEM_Int; 1617 pMem->u.i = i; /* Program counter */ 1618 pMem++; 1619 1620 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1621 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1622 assert( pMem->z!=0 ); 1623 pMem->n = sqlite3Strlen30(pMem->z); 1624 pMem->enc = SQLITE_UTF8; 1625 pMem++; 1626 1627 /* When an OP_Program opcode is encounter (the only opcode that has 1628 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1629 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1630 ** has not already been seen. 1631 */ 1632 if( pOp->p4type==P4_SUBPROGRAM ){ 1633 int nByte = (nSub+1)*sizeof(SubProgram*); 1634 int j; 1635 for(j=0; j<nSub; j++){ 1636 if( apSub[j]==pOp->p4.pProgram ) break; 1637 } 1638 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1639 apSub = (SubProgram **)pSub->z; 1640 apSub[nSub++] = pOp->p4.pProgram; 1641 pSub->flags |= MEM_Blob; 1642 pSub->n = nSub*sizeof(SubProgram*); 1643 } 1644 } 1645 } 1646 1647 pMem->flags = MEM_Int; 1648 pMem->u.i = pOp->p1; /* P1 */ 1649 pMem++; 1650 1651 pMem->flags = MEM_Int; 1652 pMem->u.i = pOp->p2; /* P2 */ 1653 pMem++; 1654 1655 pMem->flags = MEM_Int; 1656 pMem->u.i = pOp->p3; /* P3 */ 1657 pMem++; 1658 1659 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1660 assert( p->db->mallocFailed ); 1661 return SQLITE_ERROR; 1662 } 1663 pMem->flags = MEM_Str|MEM_Term; 1664 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1665 if( zP4!=pMem->z ){ 1666 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1667 }else{ 1668 assert( pMem->z!=0 ); 1669 pMem->n = sqlite3Strlen30(pMem->z); 1670 pMem->enc = SQLITE_UTF8; 1671 } 1672 pMem++; 1673 1674 if( p->explain==1 ){ 1675 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1676 assert( p->db->mallocFailed ); 1677 return SQLITE_ERROR; 1678 } 1679 pMem->flags = MEM_Str|MEM_Term; 1680 pMem->n = 2; 1681 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1682 pMem->enc = SQLITE_UTF8; 1683 pMem++; 1684 1685 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1686 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1687 assert( p->db->mallocFailed ); 1688 return SQLITE_ERROR; 1689 } 1690 pMem->flags = MEM_Str|MEM_Term; 1691 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1692 pMem->enc = SQLITE_UTF8; 1693 #else 1694 pMem->flags = MEM_Null; /* Comment */ 1695 #endif 1696 } 1697 1698 p->nResColumn = 8 - 4*(p->explain-1); 1699 p->pResultSet = &p->aMem[1]; 1700 p->rc = SQLITE_OK; 1701 rc = SQLITE_ROW; 1702 } 1703 return rc; 1704 } 1705 #endif /* SQLITE_OMIT_EXPLAIN */ 1706 1707 #ifdef SQLITE_DEBUG 1708 /* 1709 ** Print the SQL that was used to generate a VDBE program. 1710 */ 1711 void sqlite3VdbePrintSql(Vdbe *p){ 1712 const char *z = 0; 1713 if( p->zSql ){ 1714 z = p->zSql; 1715 }else if( p->nOp>=1 ){ 1716 const VdbeOp *pOp = &p->aOp[0]; 1717 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1718 z = pOp->p4.z; 1719 while( sqlite3Isspace(*z) ) z++; 1720 } 1721 } 1722 if( z ) printf("SQL: [%s]\n", z); 1723 } 1724 #endif 1725 1726 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1727 /* 1728 ** Print an IOTRACE message showing SQL content. 1729 */ 1730 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1731 int nOp = p->nOp; 1732 VdbeOp *pOp; 1733 if( sqlite3IoTrace==0 ) return; 1734 if( nOp<1 ) return; 1735 pOp = &p->aOp[0]; 1736 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1737 int i, j; 1738 char z[1000]; 1739 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1740 for(i=0; sqlite3Isspace(z[i]); i++){} 1741 for(j=0; z[i]; i++){ 1742 if( sqlite3Isspace(z[i]) ){ 1743 if( z[i-1]!=' ' ){ 1744 z[j++] = ' '; 1745 } 1746 }else{ 1747 z[j++] = z[i]; 1748 } 1749 } 1750 z[j] = 0; 1751 sqlite3IoTrace("SQL %s\n", z); 1752 } 1753 } 1754 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1755 1756 /* An instance of this object describes bulk memory available for use 1757 ** by subcomponents of a prepared statement. Space is allocated out 1758 ** of a ReusableSpace object by the allocSpace() routine below. 1759 */ 1760 struct ReusableSpace { 1761 u8 *pSpace; /* Available memory */ 1762 int nFree; /* Bytes of available memory */ 1763 int nNeeded; /* Total bytes that could not be allocated */ 1764 }; 1765 1766 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1767 ** from the ReusableSpace object. Return a pointer to the allocated 1768 ** memory on success. If insufficient memory is available in the 1769 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1770 ** value by the amount needed and return NULL. 1771 ** 1772 ** If pBuf is not initially NULL, that means that the memory has already 1773 ** been allocated by a prior call to this routine, so just return a copy 1774 ** of pBuf and leave ReusableSpace unchanged. 1775 ** 1776 ** This allocator is employed to repurpose unused slots at the end of the 1777 ** opcode array of prepared state for other memory needs of the prepared 1778 ** statement. 1779 */ 1780 static void *allocSpace( 1781 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1782 void *pBuf, /* Pointer to a prior allocation */ 1783 int nByte /* Bytes of memory needed */ 1784 ){ 1785 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1786 if( pBuf==0 ){ 1787 nByte = ROUND8(nByte); 1788 if( nByte <= p->nFree ){ 1789 p->nFree -= nByte; 1790 pBuf = &p->pSpace[p->nFree]; 1791 }else{ 1792 p->nNeeded += nByte; 1793 } 1794 } 1795 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1796 return pBuf; 1797 } 1798 1799 /* 1800 ** Rewind the VDBE back to the beginning in preparation for 1801 ** running it. 1802 */ 1803 void sqlite3VdbeRewind(Vdbe *p){ 1804 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1805 int i; 1806 #endif 1807 assert( p!=0 ); 1808 assert( p->magic==VDBE_MAGIC_INIT ); 1809 1810 /* There should be at least one opcode. 1811 */ 1812 assert( p->nOp>0 ); 1813 1814 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1815 p->magic = VDBE_MAGIC_RUN; 1816 1817 #ifdef SQLITE_DEBUG 1818 for(i=0; i<p->nMem; i++){ 1819 assert( p->aMem[i].db==p->db ); 1820 } 1821 #endif 1822 p->pc = -1; 1823 p->rc = SQLITE_OK; 1824 p->errorAction = OE_Abort; 1825 p->nChange = 0; 1826 p->cacheCtr = 1; 1827 p->minWriteFileFormat = 255; 1828 p->iStatement = 0; 1829 p->nFkConstraint = 0; 1830 #ifdef VDBE_PROFILE 1831 for(i=0; i<p->nOp; i++){ 1832 p->aOp[i].cnt = 0; 1833 p->aOp[i].cycles = 0; 1834 } 1835 #endif 1836 } 1837 1838 /* 1839 ** Prepare a virtual machine for execution for the first time after 1840 ** creating the virtual machine. This involves things such 1841 ** as allocating registers and initializing the program counter. 1842 ** After the VDBE has be prepped, it can be executed by one or more 1843 ** calls to sqlite3VdbeExec(). 1844 ** 1845 ** This function may be called exactly once on each virtual machine. 1846 ** After this routine is called the VM has been "packaged" and is ready 1847 ** to run. After this routine is called, further calls to 1848 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1849 ** the Vdbe from the Parse object that helped generate it so that the 1850 ** the Vdbe becomes an independent entity and the Parse object can be 1851 ** destroyed. 1852 ** 1853 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1854 ** to its initial state after it has been run. 1855 */ 1856 void sqlite3VdbeMakeReady( 1857 Vdbe *p, /* The VDBE */ 1858 Parse *pParse /* Parsing context */ 1859 ){ 1860 sqlite3 *db; /* The database connection */ 1861 int nVar; /* Number of parameters */ 1862 int nMem; /* Number of VM memory registers */ 1863 int nCursor; /* Number of cursors required */ 1864 int nArg; /* Number of arguments in subprograms */ 1865 int nOnce; /* Number of OP_Once instructions */ 1866 int n; /* Loop counter */ 1867 struct ReusableSpace x; /* Reusable bulk memory */ 1868 1869 assert( p!=0 ); 1870 assert( p->nOp>0 ); 1871 assert( pParse!=0 ); 1872 assert( p->magic==VDBE_MAGIC_INIT ); 1873 assert( pParse==p->pParse ); 1874 db = p->db; 1875 assert( db->mallocFailed==0 ); 1876 nVar = pParse->nVar; 1877 nMem = pParse->nMem; 1878 nCursor = pParse->nTab; 1879 nArg = pParse->nMaxArg; 1880 nOnce = pParse->nOnce; 1881 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1882 1883 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1884 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1885 ** space at the end of aMem[] for cursors 1 and greater. 1886 ** See also: allocateCursor(). 1887 */ 1888 nMem += nCursor; 1889 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1890 1891 /* Figure out how much reusable memory is available at the end of the 1892 ** opcode array. This extra memory will be reallocated for other elements 1893 ** of the prepared statement. 1894 */ 1895 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1896 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1897 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1898 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1899 assert( x.nFree>=0 ); 1900 if( x.nFree>0 ){ 1901 memset(x.pSpace, 0, x.nFree); 1902 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1903 } 1904 1905 resolveP2Values(p, &nArg); 1906 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1907 if( pParse->explain && nMem<10 ){ 1908 nMem = 10; 1909 } 1910 p->expired = 0; 1911 1912 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1913 ** passes. On the first pass, we try to reuse unused memory at the 1914 ** end of the opcode array. If we are unable to satisfy all memory 1915 ** requirements by reusing the opcode array tail, then the second 1916 ** pass will fill in the remainder using a fresh memory allocation. 1917 ** 1918 ** This two-pass approach that reuses as much memory as possible from 1919 ** the leftover memory at the end of the opcode array. This can significantly 1920 ** reduce the amount of memory held by a prepared statement. 1921 */ 1922 do { 1923 x.nNeeded = 0; 1924 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1925 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1926 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1927 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1928 p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce); 1929 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1930 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1931 #endif 1932 if( x.nNeeded==0 ) break; 1933 x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded); 1934 x.nFree = x.nNeeded; 1935 }while( !db->mallocFailed ); 1936 1937 p->nCursor = nCursor; 1938 p->nOnceFlag = nOnce; 1939 if( p->aVar ){ 1940 p->nVar = (ynVar)nVar; 1941 for(n=0; n<nVar; n++){ 1942 p->aVar[n].flags = MEM_Null; 1943 p->aVar[n].db = db; 1944 } 1945 } 1946 p->nzVar = pParse->nzVar; 1947 p->azVar = pParse->azVar; 1948 pParse->nzVar = 0; 1949 pParse->azVar = 0; 1950 if( p->aMem ){ 1951 p->nMem = nMem; 1952 for(n=0; n<nMem; n++){ 1953 p->aMem[n].flags = MEM_Undefined; 1954 p->aMem[n].db = db; 1955 } 1956 } 1957 p->explain = pParse->explain; 1958 sqlite3VdbeRewind(p); 1959 } 1960 1961 /* 1962 ** Close a VDBE cursor and release all the resources that cursor 1963 ** happens to hold. 1964 */ 1965 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1966 if( pCx==0 ){ 1967 return; 1968 } 1969 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE ); 1970 switch( pCx->eCurType ){ 1971 case CURTYPE_SORTER: { 1972 sqlite3VdbeSorterClose(p->db, pCx); 1973 break; 1974 } 1975 case CURTYPE_BTREE: { 1976 if( pCx->pBt ){ 1977 sqlite3BtreeClose(pCx->pBt); 1978 /* The pCx->pCursor will be close automatically, if it exists, by 1979 ** the call above. */ 1980 }else{ 1981 assert( pCx->uc.pCursor!=0 ); 1982 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 1983 } 1984 break; 1985 } 1986 #ifndef SQLITE_OMIT_VIRTUALTABLE 1987 case CURTYPE_VTAB: { 1988 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 1989 const sqlite3_module *pModule = pVCur->pVtab->pModule; 1990 assert( pVCur->pVtab->nRef>0 ); 1991 pVCur->pVtab->nRef--; 1992 pModule->xClose(pVCur); 1993 break; 1994 } 1995 #endif 1996 } 1997 } 1998 1999 /* 2000 ** Close all cursors in the current frame. 2001 */ 2002 static void closeCursorsInFrame(Vdbe *p){ 2003 if( p->apCsr ){ 2004 int i; 2005 for(i=0; i<p->nCursor; i++){ 2006 VdbeCursor *pC = p->apCsr[i]; 2007 if( pC ){ 2008 sqlite3VdbeFreeCursor(p, pC); 2009 p->apCsr[i] = 0; 2010 } 2011 } 2012 } 2013 } 2014 2015 /* 2016 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2017 ** is used, for example, when a trigger sub-program is halted to restore 2018 ** control to the main program. 2019 */ 2020 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2021 Vdbe *v = pFrame->v; 2022 closeCursorsInFrame(v); 2023 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2024 v->anExec = pFrame->anExec; 2025 #endif 2026 v->aOnceFlag = pFrame->aOnceFlag; 2027 v->nOnceFlag = pFrame->nOnceFlag; 2028 v->aOp = pFrame->aOp; 2029 v->nOp = pFrame->nOp; 2030 v->aMem = pFrame->aMem; 2031 v->nMem = pFrame->nMem; 2032 v->apCsr = pFrame->apCsr; 2033 v->nCursor = pFrame->nCursor; 2034 v->db->lastRowid = pFrame->lastRowid; 2035 v->nChange = pFrame->nChange; 2036 v->db->nChange = pFrame->nDbChange; 2037 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2038 v->pAuxData = pFrame->pAuxData; 2039 pFrame->pAuxData = 0; 2040 return pFrame->pc; 2041 } 2042 2043 /* 2044 ** Close all cursors. 2045 ** 2046 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2047 ** cell array. This is necessary as the memory cell array may contain 2048 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2049 ** open cursors. 2050 */ 2051 static void closeAllCursors(Vdbe *p){ 2052 if( p->pFrame ){ 2053 VdbeFrame *pFrame; 2054 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2055 sqlite3VdbeFrameRestore(pFrame); 2056 p->pFrame = 0; 2057 p->nFrame = 0; 2058 } 2059 assert( p->nFrame==0 ); 2060 closeCursorsInFrame(p); 2061 if( p->aMem ){ 2062 releaseMemArray(p->aMem, p->nMem); 2063 } 2064 while( p->pDelFrame ){ 2065 VdbeFrame *pDel = p->pDelFrame; 2066 p->pDelFrame = pDel->pParent; 2067 sqlite3VdbeFrameDelete(pDel); 2068 } 2069 2070 /* Delete any auxdata allocations made by the VM */ 2071 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2072 assert( p->pAuxData==0 ); 2073 } 2074 2075 /* 2076 ** Clean up the VM after a single run. 2077 */ 2078 static void Cleanup(Vdbe *p){ 2079 sqlite3 *db = p->db; 2080 2081 #ifdef SQLITE_DEBUG 2082 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2083 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2084 int i; 2085 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2086 if( p->aMem ){ 2087 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2088 } 2089 #endif 2090 2091 sqlite3DbFree(db, p->zErrMsg); 2092 p->zErrMsg = 0; 2093 p->pResultSet = 0; 2094 } 2095 2096 /* 2097 ** Set the number of result columns that will be returned by this SQL 2098 ** statement. This is now set at compile time, rather than during 2099 ** execution of the vdbe program so that sqlite3_column_count() can 2100 ** be called on an SQL statement before sqlite3_step(). 2101 */ 2102 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2103 Mem *pColName; 2104 int n; 2105 sqlite3 *db = p->db; 2106 2107 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2108 sqlite3DbFree(db, p->aColName); 2109 n = nResColumn*COLNAME_N; 2110 p->nResColumn = (u16)nResColumn; 2111 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 2112 if( p->aColName==0 ) return; 2113 while( n-- > 0 ){ 2114 pColName->flags = MEM_Null; 2115 pColName->db = p->db; 2116 pColName++; 2117 } 2118 } 2119 2120 /* 2121 ** Set the name of the idx'th column to be returned by the SQL statement. 2122 ** zName must be a pointer to a nul terminated string. 2123 ** 2124 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2125 ** 2126 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2127 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2128 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2129 */ 2130 int sqlite3VdbeSetColName( 2131 Vdbe *p, /* Vdbe being configured */ 2132 int idx, /* Index of column zName applies to */ 2133 int var, /* One of the COLNAME_* constants */ 2134 const char *zName, /* Pointer to buffer containing name */ 2135 void (*xDel)(void*) /* Memory management strategy for zName */ 2136 ){ 2137 int rc; 2138 Mem *pColName; 2139 assert( idx<p->nResColumn ); 2140 assert( var<COLNAME_N ); 2141 if( p->db->mallocFailed ){ 2142 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2143 return SQLITE_NOMEM_BKPT; 2144 } 2145 assert( p->aColName!=0 ); 2146 pColName = &(p->aColName[idx+var*p->nResColumn]); 2147 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2148 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2149 return rc; 2150 } 2151 2152 /* 2153 ** A read or write transaction may or may not be active on database handle 2154 ** db. If a transaction is active, commit it. If there is a 2155 ** write-transaction spanning more than one database file, this routine 2156 ** takes care of the master journal trickery. 2157 */ 2158 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2159 int i; 2160 int nTrans = 0; /* Number of databases with an active write-transaction 2161 ** that are candidates for a two-phase commit using a 2162 ** master-journal */ 2163 int rc = SQLITE_OK; 2164 int needXcommit = 0; 2165 2166 #ifdef SQLITE_OMIT_VIRTUALTABLE 2167 /* With this option, sqlite3VtabSync() is defined to be simply 2168 ** SQLITE_OK so p is not used. 2169 */ 2170 UNUSED_PARAMETER(p); 2171 #endif 2172 2173 /* Before doing anything else, call the xSync() callback for any 2174 ** virtual module tables written in this transaction. This has to 2175 ** be done before determining whether a master journal file is 2176 ** required, as an xSync() callback may add an attached database 2177 ** to the transaction. 2178 */ 2179 rc = sqlite3VtabSync(db, p); 2180 2181 /* This loop determines (a) if the commit hook should be invoked and 2182 ** (b) how many database files have open write transactions, not 2183 ** including the temp database. (b) is important because if more than 2184 ** one database file has an open write transaction, a master journal 2185 ** file is required for an atomic commit. 2186 */ 2187 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2188 Btree *pBt = db->aDb[i].pBt; 2189 if( sqlite3BtreeIsInTrans(pBt) ){ 2190 /* Whether or not a database might need a master journal depends upon 2191 ** its journal mode (among other things). This matrix determines which 2192 ** journal modes use a master journal and which do not */ 2193 static const u8 aMJNeeded[] = { 2194 /* DELETE */ 1, 2195 /* PERSIST */ 1, 2196 /* OFF */ 0, 2197 /* TRUNCATE */ 1, 2198 /* MEMORY */ 0, 2199 /* WAL */ 0 2200 }; 2201 Pager *pPager; /* Pager associated with pBt */ 2202 needXcommit = 1; 2203 sqlite3BtreeEnter(pBt); 2204 pPager = sqlite3BtreePager(pBt); 2205 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2206 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2207 ){ 2208 assert( i!=1 ); 2209 nTrans++; 2210 } 2211 rc = sqlite3PagerExclusiveLock(pPager); 2212 sqlite3BtreeLeave(pBt); 2213 } 2214 } 2215 if( rc!=SQLITE_OK ){ 2216 return rc; 2217 } 2218 2219 /* If there are any write-transactions at all, invoke the commit hook */ 2220 if( needXcommit && db->xCommitCallback ){ 2221 rc = db->xCommitCallback(db->pCommitArg); 2222 if( rc ){ 2223 return SQLITE_CONSTRAINT_COMMITHOOK; 2224 } 2225 } 2226 2227 /* The simple case - no more than one database file (not counting the 2228 ** TEMP database) has a transaction active. There is no need for the 2229 ** master-journal. 2230 ** 2231 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2232 ** string, it means the main database is :memory: or a temp file. In 2233 ** that case we do not support atomic multi-file commits, so use the 2234 ** simple case then too. 2235 */ 2236 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2237 || nTrans<=1 2238 ){ 2239 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2240 Btree *pBt = db->aDb[i].pBt; 2241 if( pBt ){ 2242 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2243 } 2244 } 2245 2246 /* Do the commit only if all databases successfully complete phase 1. 2247 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2248 ** IO error while deleting or truncating a journal file. It is unlikely, 2249 ** but could happen. In this case abandon processing and return the error. 2250 */ 2251 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2252 Btree *pBt = db->aDb[i].pBt; 2253 if( pBt ){ 2254 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2255 } 2256 } 2257 if( rc==SQLITE_OK ){ 2258 sqlite3VtabCommit(db); 2259 } 2260 } 2261 2262 /* The complex case - There is a multi-file write-transaction active. 2263 ** This requires a master journal file to ensure the transaction is 2264 ** committed atomically. 2265 */ 2266 #ifndef SQLITE_OMIT_DISKIO 2267 else{ 2268 sqlite3_vfs *pVfs = db->pVfs; 2269 char *zMaster = 0; /* File-name for the master journal */ 2270 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2271 sqlite3_file *pMaster = 0; 2272 i64 offset = 0; 2273 int res; 2274 int retryCount = 0; 2275 int nMainFile; 2276 2277 /* Select a master journal file name */ 2278 nMainFile = sqlite3Strlen30(zMainFile); 2279 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2280 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2281 do { 2282 u32 iRandom; 2283 if( retryCount ){ 2284 if( retryCount>100 ){ 2285 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2286 sqlite3OsDelete(pVfs, zMaster, 0); 2287 break; 2288 }else if( retryCount==1 ){ 2289 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2290 } 2291 } 2292 retryCount++; 2293 sqlite3_randomness(sizeof(iRandom), &iRandom); 2294 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2295 (iRandom>>8)&0xffffff, iRandom&0xff); 2296 /* The antipenultimate character of the master journal name must 2297 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2298 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2299 sqlite3FileSuffix3(zMainFile, zMaster); 2300 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2301 }while( rc==SQLITE_OK && res ); 2302 if( rc==SQLITE_OK ){ 2303 /* Open the master journal. */ 2304 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2305 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2306 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2307 ); 2308 } 2309 if( rc!=SQLITE_OK ){ 2310 sqlite3DbFree(db, zMaster); 2311 return rc; 2312 } 2313 2314 /* Write the name of each database file in the transaction into the new 2315 ** master journal file. If an error occurs at this point close 2316 ** and delete the master journal file. All the individual journal files 2317 ** still have 'null' as the master journal pointer, so they will roll 2318 ** back independently if a failure occurs. 2319 */ 2320 for(i=0; i<db->nDb; i++){ 2321 Btree *pBt = db->aDb[i].pBt; 2322 if( sqlite3BtreeIsInTrans(pBt) ){ 2323 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2324 if( zFile==0 ){ 2325 continue; /* Ignore TEMP and :memory: databases */ 2326 } 2327 assert( zFile[0]!=0 ); 2328 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2329 offset += sqlite3Strlen30(zFile)+1; 2330 if( rc!=SQLITE_OK ){ 2331 sqlite3OsCloseFree(pMaster); 2332 sqlite3OsDelete(pVfs, zMaster, 0); 2333 sqlite3DbFree(db, zMaster); 2334 return rc; 2335 } 2336 } 2337 } 2338 2339 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2340 ** flag is set this is not required. 2341 */ 2342 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2343 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2344 ){ 2345 sqlite3OsCloseFree(pMaster); 2346 sqlite3OsDelete(pVfs, zMaster, 0); 2347 sqlite3DbFree(db, zMaster); 2348 return rc; 2349 } 2350 2351 /* Sync all the db files involved in the transaction. The same call 2352 ** sets the master journal pointer in each individual journal. If 2353 ** an error occurs here, do not delete the master journal file. 2354 ** 2355 ** If the error occurs during the first call to 2356 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2357 ** master journal file will be orphaned. But we cannot delete it, 2358 ** in case the master journal file name was written into the journal 2359 ** file before the failure occurred. 2360 */ 2361 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2362 Btree *pBt = db->aDb[i].pBt; 2363 if( pBt ){ 2364 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2365 } 2366 } 2367 sqlite3OsCloseFree(pMaster); 2368 assert( rc!=SQLITE_BUSY ); 2369 if( rc!=SQLITE_OK ){ 2370 sqlite3DbFree(db, zMaster); 2371 return rc; 2372 } 2373 2374 /* Delete the master journal file. This commits the transaction. After 2375 ** doing this the directory is synced again before any individual 2376 ** transaction files are deleted. 2377 */ 2378 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2379 sqlite3DbFree(db, zMaster); 2380 zMaster = 0; 2381 if( rc ){ 2382 return rc; 2383 } 2384 2385 /* All files and directories have already been synced, so the following 2386 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2387 ** deleting or truncating journals. If something goes wrong while 2388 ** this is happening we don't really care. The integrity of the 2389 ** transaction is already guaranteed, but some stray 'cold' journals 2390 ** may be lying around. Returning an error code won't help matters. 2391 */ 2392 disable_simulated_io_errors(); 2393 sqlite3BeginBenignMalloc(); 2394 for(i=0; i<db->nDb; i++){ 2395 Btree *pBt = db->aDb[i].pBt; 2396 if( pBt ){ 2397 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2398 } 2399 } 2400 sqlite3EndBenignMalloc(); 2401 enable_simulated_io_errors(); 2402 2403 sqlite3VtabCommit(db); 2404 } 2405 #endif 2406 2407 return rc; 2408 } 2409 2410 /* 2411 ** This routine checks that the sqlite3.nVdbeActive count variable 2412 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2413 ** currently active. An assertion fails if the two counts do not match. 2414 ** This is an internal self-check only - it is not an essential processing 2415 ** step. 2416 ** 2417 ** This is a no-op if NDEBUG is defined. 2418 */ 2419 #ifndef NDEBUG 2420 static void checkActiveVdbeCnt(sqlite3 *db){ 2421 Vdbe *p; 2422 int cnt = 0; 2423 int nWrite = 0; 2424 int nRead = 0; 2425 p = db->pVdbe; 2426 while( p ){ 2427 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2428 cnt++; 2429 if( p->readOnly==0 ) nWrite++; 2430 if( p->bIsReader ) nRead++; 2431 } 2432 p = p->pNext; 2433 } 2434 assert( cnt==db->nVdbeActive ); 2435 assert( nWrite==db->nVdbeWrite ); 2436 assert( nRead==db->nVdbeRead ); 2437 } 2438 #else 2439 #define checkActiveVdbeCnt(x) 2440 #endif 2441 2442 /* 2443 ** If the Vdbe passed as the first argument opened a statement-transaction, 2444 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2445 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2446 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2447 ** statement transaction is committed. 2448 ** 2449 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2450 ** Otherwise SQLITE_OK. 2451 */ 2452 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2453 sqlite3 *const db = p->db; 2454 int rc = SQLITE_OK; 2455 2456 /* If p->iStatement is greater than zero, then this Vdbe opened a 2457 ** statement transaction that should be closed here. The only exception 2458 ** is that an IO error may have occurred, causing an emergency rollback. 2459 ** In this case (db->nStatement==0), and there is nothing to do. 2460 */ 2461 if( db->nStatement && p->iStatement ){ 2462 int i; 2463 const int iSavepoint = p->iStatement-1; 2464 2465 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2466 assert( db->nStatement>0 ); 2467 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2468 2469 for(i=0; i<db->nDb; i++){ 2470 int rc2 = SQLITE_OK; 2471 Btree *pBt = db->aDb[i].pBt; 2472 if( pBt ){ 2473 if( eOp==SAVEPOINT_ROLLBACK ){ 2474 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2475 } 2476 if( rc2==SQLITE_OK ){ 2477 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2478 } 2479 if( rc==SQLITE_OK ){ 2480 rc = rc2; 2481 } 2482 } 2483 } 2484 db->nStatement--; 2485 p->iStatement = 0; 2486 2487 if( rc==SQLITE_OK ){ 2488 if( eOp==SAVEPOINT_ROLLBACK ){ 2489 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2490 } 2491 if( rc==SQLITE_OK ){ 2492 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2493 } 2494 } 2495 2496 /* If the statement transaction is being rolled back, also restore the 2497 ** database handles deferred constraint counter to the value it had when 2498 ** the statement transaction was opened. */ 2499 if( eOp==SAVEPOINT_ROLLBACK ){ 2500 db->nDeferredCons = p->nStmtDefCons; 2501 db->nDeferredImmCons = p->nStmtDefImmCons; 2502 } 2503 } 2504 return rc; 2505 } 2506 2507 /* 2508 ** This function is called when a transaction opened by the database 2509 ** handle associated with the VM passed as an argument is about to be 2510 ** committed. If there are outstanding deferred foreign key constraint 2511 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2512 ** 2513 ** If there are outstanding FK violations and this function returns 2514 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2515 ** and write an error message to it. Then return SQLITE_ERROR. 2516 */ 2517 #ifndef SQLITE_OMIT_FOREIGN_KEY 2518 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2519 sqlite3 *db = p->db; 2520 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2521 || (!deferred && p->nFkConstraint>0) 2522 ){ 2523 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2524 p->errorAction = OE_Abort; 2525 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2526 return SQLITE_ERROR; 2527 } 2528 return SQLITE_OK; 2529 } 2530 #endif 2531 2532 /* 2533 ** This routine is called the when a VDBE tries to halt. If the VDBE 2534 ** has made changes and is in autocommit mode, then commit those 2535 ** changes. If a rollback is needed, then do the rollback. 2536 ** 2537 ** This routine is the only way to move the state of a VM from 2538 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2539 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2540 ** 2541 ** Return an error code. If the commit could not complete because of 2542 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2543 ** means the close did not happen and needs to be repeated. 2544 */ 2545 int sqlite3VdbeHalt(Vdbe *p){ 2546 int rc; /* Used to store transient return codes */ 2547 sqlite3 *db = p->db; 2548 2549 /* This function contains the logic that determines if a statement or 2550 ** transaction will be committed or rolled back as a result of the 2551 ** execution of this virtual machine. 2552 ** 2553 ** If any of the following errors occur: 2554 ** 2555 ** SQLITE_NOMEM 2556 ** SQLITE_IOERR 2557 ** SQLITE_FULL 2558 ** SQLITE_INTERRUPT 2559 ** 2560 ** Then the internal cache might have been left in an inconsistent 2561 ** state. We need to rollback the statement transaction, if there is 2562 ** one, or the complete transaction if there is no statement transaction. 2563 */ 2564 2565 if( db->mallocFailed ){ 2566 p->rc = SQLITE_NOMEM_BKPT; 2567 } 2568 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2569 closeAllCursors(p); 2570 if( p->magic!=VDBE_MAGIC_RUN ){ 2571 return SQLITE_OK; 2572 } 2573 checkActiveVdbeCnt(db); 2574 2575 /* No commit or rollback needed if the program never started or if the 2576 ** SQL statement does not read or write a database file. */ 2577 if( p->pc>=0 && p->bIsReader ){ 2578 int mrc; /* Primary error code from p->rc */ 2579 int eStatementOp = 0; 2580 int isSpecialError; /* Set to true if a 'special' error */ 2581 2582 /* Lock all btrees used by the statement */ 2583 sqlite3VdbeEnter(p); 2584 2585 /* Check for one of the special errors */ 2586 mrc = p->rc & 0xff; 2587 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2588 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2589 if( isSpecialError ){ 2590 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2591 ** no rollback is necessary. Otherwise, at least a savepoint 2592 ** transaction must be rolled back to restore the database to a 2593 ** consistent state. 2594 ** 2595 ** Even if the statement is read-only, it is important to perform 2596 ** a statement or transaction rollback operation. If the error 2597 ** occurred while writing to the journal, sub-journal or database 2598 ** file as part of an effort to free up cache space (see function 2599 ** pagerStress() in pager.c), the rollback is required to restore 2600 ** the pager to a consistent state. 2601 */ 2602 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2603 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2604 eStatementOp = SAVEPOINT_ROLLBACK; 2605 }else{ 2606 /* We are forced to roll back the active transaction. Before doing 2607 ** so, abort any other statements this handle currently has active. 2608 */ 2609 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2610 sqlite3CloseSavepoints(db); 2611 db->autoCommit = 1; 2612 p->nChange = 0; 2613 } 2614 } 2615 } 2616 2617 /* Check for immediate foreign key violations. */ 2618 if( p->rc==SQLITE_OK ){ 2619 sqlite3VdbeCheckFk(p, 0); 2620 } 2621 2622 /* If the auto-commit flag is set and this is the only active writer 2623 ** VM, then we do either a commit or rollback of the current transaction. 2624 ** 2625 ** Note: This block also runs if one of the special errors handled 2626 ** above has occurred. 2627 */ 2628 if( !sqlite3VtabInSync(db) 2629 && db->autoCommit 2630 && db->nVdbeWrite==(p->readOnly==0) 2631 ){ 2632 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2633 rc = sqlite3VdbeCheckFk(p, 1); 2634 if( rc!=SQLITE_OK ){ 2635 if( NEVER(p->readOnly) ){ 2636 sqlite3VdbeLeave(p); 2637 return SQLITE_ERROR; 2638 } 2639 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2640 }else{ 2641 /* The auto-commit flag is true, the vdbe program was successful 2642 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2643 ** key constraints to hold up the transaction. This means a commit 2644 ** is required. */ 2645 rc = vdbeCommit(db, p); 2646 } 2647 if( rc==SQLITE_BUSY && p->readOnly ){ 2648 sqlite3VdbeLeave(p); 2649 return SQLITE_BUSY; 2650 }else if( rc!=SQLITE_OK ){ 2651 p->rc = rc; 2652 sqlite3RollbackAll(db, SQLITE_OK); 2653 p->nChange = 0; 2654 }else{ 2655 db->nDeferredCons = 0; 2656 db->nDeferredImmCons = 0; 2657 db->flags &= ~SQLITE_DeferFKs; 2658 sqlite3CommitInternalChanges(db); 2659 } 2660 }else{ 2661 sqlite3RollbackAll(db, SQLITE_OK); 2662 p->nChange = 0; 2663 } 2664 db->nStatement = 0; 2665 }else if( eStatementOp==0 ){ 2666 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2667 eStatementOp = SAVEPOINT_RELEASE; 2668 }else if( p->errorAction==OE_Abort ){ 2669 eStatementOp = SAVEPOINT_ROLLBACK; 2670 }else{ 2671 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2672 sqlite3CloseSavepoints(db); 2673 db->autoCommit = 1; 2674 p->nChange = 0; 2675 } 2676 } 2677 2678 /* If eStatementOp is non-zero, then a statement transaction needs to 2679 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2680 ** do so. If this operation returns an error, and the current statement 2681 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2682 ** current statement error code. 2683 */ 2684 if( eStatementOp ){ 2685 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2686 if( rc ){ 2687 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2688 p->rc = rc; 2689 sqlite3DbFree(db, p->zErrMsg); 2690 p->zErrMsg = 0; 2691 } 2692 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2693 sqlite3CloseSavepoints(db); 2694 db->autoCommit = 1; 2695 p->nChange = 0; 2696 } 2697 } 2698 2699 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2700 ** has been rolled back, update the database connection change-counter. 2701 */ 2702 if( p->changeCntOn ){ 2703 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2704 sqlite3VdbeSetChanges(db, p->nChange); 2705 }else{ 2706 sqlite3VdbeSetChanges(db, 0); 2707 } 2708 p->nChange = 0; 2709 } 2710 2711 /* Release the locks */ 2712 sqlite3VdbeLeave(p); 2713 } 2714 2715 /* We have successfully halted and closed the VM. Record this fact. */ 2716 if( p->pc>=0 ){ 2717 db->nVdbeActive--; 2718 if( !p->readOnly ) db->nVdbeWrite--; 2719 if( p->bIsReader ) db->nVdbeRead--; 2720 assert( db->nVdbeActive>=db->nVdbeRead ); 2721 assert( db->nVdbeRead>=db->nVdbeWrite ); 2722 assert( db->nVdbeWrite>=0 ); 2723 } 2724 p->magic = VDBE_MAGIC_HALT; 2725 checkActiveVdbeCnt(db); 2726 if( db->mallocFailed ){ 2727 p->rc = SQLITE_NOMEM_BKPT; 2728 } 2729 2730 /* If the auto-commit flag is set to true, then any locks that were held 2731 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2732 ** to invoke any required unlock-notify callbacks. 2733 */ 2734 if( db->autoCommit ){ 2735 sqlite3ConnectionUnlocked(db); 2736 } 2737 2738 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2739 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2740 } 2741 2742 2743 /* 2744 ** Each VDBE holds the result of the most recent sqlite3_step() call 2745 ** in p->rc. This routine sets that result back to SQLITE_OK. 2746 */ 2747 void sqlite3VdbeResetStepResult(Vdbe *p){ 2748 p->rc = SQLITE_OK; 2749 } 2750 2751 /* 2752 ** Copy the error code and error message belonging to the VDBE passed 2753 ** as the first argument to its database handle (so that they will be 2754 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2755 ** 2756 ** This function does not clear the VDBE error code or message, just 2757 ** copies them to the database handle. 2758 */ 2759 int sqlite3VdbeTransferError(Vdbe *p){ 2760 sqlite3 *db = p->db; 2761 int rc = p->rc; 2762 if( p->zErrMsg ){ 2763 db->bBenignMalloc++; 2764 sqlite3BeginBenignMalloc(); 2765 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2766 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2767 sqlite3EndBenignMalloc(); 2768 db->bBenignMalloc--; 2769 db->errCode = rc; 2770 }else{ 2771 sqlite3Error(db, rc); 2772 } 2773 return rc; 2774 } 2775 2776 #ifdef SQLITE_ENABLE_SQLLOG 2777 /* 2778 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2779 ** invoke it. 2780 */ 2781 static void vdbeInvokeSqllog(Vdbe *v){ 2782 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2783 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2784 assert( v->db->init.busy==0 ); 2785 if( zExpanded ){ 2786 sqlite3GlobalConfig.xSqllog( 2787 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2788 ); 2789 sqlite3DbFree(v->db, zExpanded); 2790 } 2791 } 2792 } 2793 #else 2794 # define vdbeInvokeSqllog(x) 2795 #endif 2796 2797 /* 2798 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2799 ** Write any error messages into *pzErrMsg. Return the result code. 2800 ** 2801 ** After this routine is run, the VDBE should be ready to be executed 2802 ** again. 2803 ** 2804 ** To look at it another way, this routine resets the state of the 2805 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2806 ** VDBE_MAGIC_INIT. 2807 */ 2808 int sqlite3VdbeReset(Vdbe *p){ 2809 sqlite3 *db; 2810 db = p->db; 2811 2812 /* If the VM did not run to completion or if it encountered an 2813 ** error, then it might not have been halted properly. So halt 2814 ** it now. 2815 */ 2816 sqlite3VdbeHalt(p); 2817 2818 /* If the VDBE has be run even partially, then transfer the error code 2819 ** and error message from the VDBE into the main database structure. But 2820 ** if the VDBE has just been set to run but has not actually executed any 2821 ** instructions yet, leave the main database error information unchanged. 2822 */ 2823 if( p->pc>=0 ){ 2824 vdbeInvokeSqllog(p); 2825 sqlite3VdbeTransferError(p); 2826 sqlite3DbFree(db, p->zErrMsg); 2827 p->zErrMsg = 0; 2828 if( p->runOnlyOnce ) p->expired = 1; 2829 }else if( p->rc && p->expired ){ 2830 /* The expired flag was set on the VDBE before the first call 2831 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2832 ** called), set the database error in this case as well. 2833 */ 2834 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2835 sqlite3DbFree(db, p->zErrMsg); 2836 p->zErrMsg = 0; 2837 } 2838 2839 /* Reclaim all memory used by the VDBE 2840 */ 2841 Cleanup(p); 2842 2843 /* Save profiling information from this VDBE run. 2844 */ 2845 #ifdef VDBE_PROFILE 2846 { 2847 FILE *out = fopen("vdbe_profile.out", "a"); 2848 if( out ){ 2849 int i; 2850 fprintf(out, "---- "); 2851 for(i=0; i<p->nOp; i++){ 2852 fprintf(out, "%02x", p->aOp[i].opcode); 2853 } 2854 fprintf(out, "\n"); 2855 if( p->zSql ){ 2856 char c, pc = 0; 2857 fprintf(out, "-- "); 2858 for(i=0; (c = p->zSql[i])!=0; i++){ 2859 if( pc=='\n' ) fprintf(out, "-- "); 2860 putc(c, out); 2861 pc = c; 2862 } 2863 if( pc!='\n' ) fprintf(out, "\n"); 2864 } 2865 for(i=0; i<p->nOp; i++){ 2866 char zHdr[100]; 2867 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2868 p->aOp[i].cnt, 2869 p->aOp[i].cycles, 2870 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2871 ); 2872 fprintf(out, "%s", zHdr); 2873 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2874 } 2875 fclose(out); 2876 } 2877 } 2878 #endif 2879 p->iCurrentTime = 0; 2880 p->magic = VDBE_MAGIC_INIT; 2881 return p->rc & db->errMask; 2882 } 2883 2884 /* 2885 ** Clean up and delete a VDBE after execution. Return an integer which is 2886 ** the result code. Write any error message text into *pzErrMsg. 2887 */ 2888 int sqlite3VdbeFinalize(Vdbe *p){ 2889 int rc = SQLITE_OK; 2890 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2891 rc = sqlite3VdbeReset(p); 2892 assert( (rc & p->db->errMask)==rc ); 2893 } 2894 sqlite3VdbeDelete(p); 2895 return rc; 2896 } 2897 2898 /* 2899 ** If parameter iOp is less than zero, then invoke the destructor for 2900 ** all auxiliary data pointers currently cached by the VM passed as 2901 ** the first argument. 2902 ** 2903 ** Or, if iOp is greater than or equal to zero, then the destructor is 2904 ** only invoked for those auxiliary data pointers created by the user 2905 ** function invoked by the OP_Function opcode at instruction iOp of 2906 ** VM pVdbe, and only then if: 2907 ** 2908 ** * the associated function parameter is the 32nd or later (counting 2909 ** from left to right), or 2910 ** 2911 ** * the corresponding bit in argument mask is clear (where the first 2912 ** function parameter corresponds to bit 0 etc.). 2913 */ 2914 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2915 while( *pp ){ 2916 AuxData *pAux = *pp; 2917 if( (iOp<0) 2918 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2919 ){ 2920 testcase( pAux->iArg==31 ); 2921 if( pAux->xDelete ){ 2922 pAux->xDelete(pAux->pAux); 2923 } 2924 *pp = pAux->pNext; 2925 sqlite3DbFree(db, pAux); 2926 }else{ 2927 pp= &pAux->pNext; 2928 } 2929 } 2930 } 2931 2932 /* 2933 ** Free all memory associated with the Vdbe passed as the second argument, 2934 ** except for object itself, which is preserved. 2935 ** 2936 ** The difference between this function and sqlite3VdbeDelete() is that 2937 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2938 ** the database connection and frees the object itself. 2939 */ 2940 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2941 SubProgram *pSub, *pNext; 2942 int i; 2943 assert( p->db==0 || p->db==db ); 2944 releaseMemArray(p->aVar, p->nVar); 2945 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2946 for(pSub=p->pProgram; pSub; pSub=pNext){ 2947 pNext = pSub->pNext; 2948 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2949 sqlite3DbFree(db, pSub); 2950 } 2951 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2952 sqlite3DbFree(db, p->azVar); 2953 vdbeFreeOpArray(db, p->aOp, p->nOp); 2954 sqlite3DbFree(db, p->aColName); 2955 sqlite3DbFree(db, p->zSql); 2956 sqlite3DbFree(db, p->pFree); 2957 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2958 for(i=0; i<p->nScan; i++){ 2959 sqlite3DbFree(db, p->aScan[i].zName); 2960 } 2961 sqlite3DbFree(db, p->aScan); 2962 #endif 2963 } 2964 2965 /* 2966 ** Delete an entire VDBE. 2967 */ 2968 void sqlite3VdbeDelete(Vdbe *p){ 2969 sqlite3 *db; 2970 2971 if( NEVER(p==0) ) return; 2972 db = p->db; 2973 assert( sqlite3_mutex_held(db->mutex) ); 2974 sqlite3VdbeClearObject(db, p); 2975 if( p->pPrev ){ 2976 p->pPrev->pNext = p->pNext; 2977 }else{ 2978 assert( db->pVdbe==p ); 2979 db->pVdbe = p->pNext; 2980 } 2981 if( p->pNext ){ 2982 p->pNext->pPrev = p->pPrev; 2983 } 2984 p->magic = VDBE_MAGIC_DEAD; 2985 p->db = 0; 2986 sqlite3DbFree(db, p); 2987 } 2988 2989 /* 2990 ** The cursor "p" has a pending seek operation that has not yet been 2991 ** carried out. Seek the cursor now. If an error occurs, return 2992 ** the appropriate error code. 2993 */ 2994 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2995 int res, rc; 2996 #ifdef SQLITE_TEST 2997 extern int sqlite3_search_count; 2998 #endif 2999 assert( p->deferredMoveto ); 3000 assert( p->isTable ); 3001 assert( p->eCurType==CURTYPE_BTREE ); 3002 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3003 if( rc ) return rc; 3004 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3005 #ifdef SQLITE_TEST 3006 sqlite3_search_count++; 3007 #endif 3008 p->deferredMoveto = 0; 3009 p->cacheStatus = CACHE_STALE; 3010 return SQLITE_OK; 3011 } 3012 3013 /* 3014 ** Something has moved cursor "p" out of place. Maybe the row it was 3015 ** pointed to was deleted out from under it. Or maybe the btree was 3016 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3017 ** is supposed to be pointing. If the row was deleted out from under the 3018 ** cursor, set the cursor to point to a NULL row. 3019 */ 3020 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3021 int isDifferentRow, rc; 3022 assert( p->eCurType==CURTYPE_BTREE ); 3023 assert( p->uc.pCursor!=0 ); 3024 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3025 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3026 p->cacheStatus = CACHE_STALE; 3027 if( isDifferentRow ) p->nullRow = 1; 3028 return rc; 3029 } 3030 3031 /* 3032 ** Check to ensure that the cursor is valid. Restore the cursor 3033 ** if need be. Return any I/O error from the restore operation. 3034 */ 3035 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3036 assert( p->eCurType==CURTYPE_BTREE ); 3037 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3038 return handleMovedCursor(p); 3039 } 3040 return SQLITE_OK; 3041 } 3042 3043 /* 3044 ** Make sure the cursor p is ready to read or write the row to which it 3045 ** was last positioned. Return an error code if an OOM fault or I/O error 3046 ** prevents us from positioning the cursor to its correct position. 3047 ** 3048 ** If a MoveTo operation is pending on the given cursor, then do that 3049 ** MoveTo now. If no move is pending, check to see if the row has been 3050 ** deleted out from under the cursor and if it has, mark the row as 3051 ** a NULL row. 3052 ** 3053 ** If the cursor is already pointing to the correct row and that row has 3054 ** not been deleted out from under the cursor, then this routine is a no-op. 3055 */ 3056 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3057 VdbeCursor *p = *pp; 3058 if( p->eCurType==CURTYPE_BTREE ){ 3059 if( p->deferredMoveto ){ 3060 int iMap; 3061 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3062 *pp = p->pAltCursor; 3063 *piCol = iMap - 1; 3064 return SQLITE_OK; 3065 } 3066 return handleDeferredMoveto(p); 3067 } 3068 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3069 return handleMovedCursor(p); 3070 } 3071 } 3072 return SQLITE_OK; 3073 } 3074 3075 /* 3076 ** The following functions: 3077 ** 3078 ** sqlite3VdbeSerialType() 3079 ** sqlite3VdbeSerialTypeLen() 3080 ** sqlite3VdbeSerialLen() 3081 ** sqlite3VdbeSerialPut() 3082 ** sqlite3VdbeSerialGet() 3083 ** 3084 ** encapsulate the code that serializes values for storage in SQLite 3085 ** data and index records. Each serialized value consists of a 3086 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3087 ** integer, stored as a varint. 3088 ** 3089 ** In an SQLite index record, the serial type is stored directly before 3090 ** the blob of data that it corresponds to. In a table record, all serial 3091 ** types are stored at the start of the record, and the blobs of data at 3092 ** the end. Hence these functions allow the caller to handle the 3093 ** serial-type and data blob separately. 3094 ** 3095 ** The following table describes the various storage classes for data: 3096 ** 3097 ** serial type bytes of data type 3098 ** -------------- --------------- --------------- 3099 ** 0 0 NULL 3100 ** 1 1 signed integer 3101 ** 2 2 signed integer 3102 ** 3 3 signed integer 3103 ** 4 4 signed integer 3104 ** 5 6 signed integer 3105 ** 6 8 signed integer 3106 ** 7 8 IEEE float 3107 ** 8 0 Integer constant 0 3108 ** 9 0 Integer constant 1 3109 ** 10,11 reserved for expansion 3110 ** N>=12 and even (N-12)/2 BLOB 3111 ** N>=13 and odd (N-13)/2 text 3112 ** 3113 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3114 ** of SQLite will not understand those serial types. 3115 */ 3116 3117 /* 3118 ** Return the serial-type for the value stored in pMem. 3119 */ 3120 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3121 int flags = pMem->flags; 3122 u32 n; 3123 3124 assert( pLen!=0 ); 3125 if( flags&MEM_Null ){ 3126 *pLen = 0; 3127 return 0; 3128 } 3129 if( flags&MEM_Int ){ 3130 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3131 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3132 i64 i = pMem->u.i; 3133 u64 u; 3134 if( i<0 ){ 3135 u = ~i; 3136 }else{ 3137 u = i; 3138 } 3139 if( u<=127 ){ 3140 if( (i&1)==i && file_format>=4 ){ 3141 *pLen = 0; 3142 return 8+(u32)u; 3143 }else{ 3144 *pLen = 1; 3145 return 1; 3146 } 3147 } 3148 if( u<=32767 ){ *pLen = 2; return 2; } 3149 if( u<=8388607 ){ *pLen = 3; return 3; } 3150 if( u<=2147483647 ){ *pLen = 4; return 4; } 3151 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3152 *pLen = 8; 3153 return 6; 3154 } 3155 if( flags&MEM_Real ){ 3156 *pLen = 8; 3157 return 7; 3158 } 3159 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3160 assert( pMem->n>=0 ); 3161 n = (u32)pMem->n; 3162 if( flags & MEM_Zero ){ 3163 n += pMem->u.nZero; 3164 } 3165 *pLen = n; 3166 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3167 } 3168 3169 /* 3170 ** The sizes for serial types less than 128 3171 */ 3172 static const u8 sqlite3SmallTypeSizes[] = { 3173 /* 0 1 2 3 4 5 6 7 8 9 */ 3174 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3175 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3176 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3177 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3178 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3179 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3180 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3181 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3182 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3183 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3184 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3185 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3186 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3187 }; 3188 3189 /* 3190 ** Return the length of the data corresponding to the supplied serial-type. 3191 */ 3192 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3193 if( serial_type>=128 ){ 3194 return (serial_type-12)/2; 3195 }else{ 3196 assert( serial_type<12 3197 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3198 return sqlite3SmallTypeSizes[serial_type]; 3199 } 3200 } 3201 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3202 assert( serial_type<128 ); 3203 return sqlite3SmallTypeSizes[serial_type]; 3204 } 3205 3206 /* 3207 ** If we are on an architecture with mixed-endian floating 3208 ** points (ex: ARM7) then swap the lower 4 bytes with the 3209 ** upper 4 bytes. Return the result. 3210 ** 3211 ** For most architectures, this is a no-op. 3212 ** 3213 ** (later): It is reported to me that the mixed-endian problem 3214 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3215 ** that early versions of GCC stored the two words of a 64-bit 3216 ** float in the wrong order. And that error has been propagated 3217 ** ever since. The blame is not necessarily with GCC, though. 3218 ** GCC might have just copying the problem from a prior compiler. 3219 ** I am also told that newer versions of GCC that follow a different 3220 ** ABI get the byte order right. 3221 ** 3222 ** Developers using SQLite on an ARM7 should compile and run their 3223 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3224 ** enabled, some asserts below will ensure that the byte order of 3225 ** floating point values is correct. 3226 ** 3227 ** (2007-08-30) Frank van Vugt has studied this problem closely 3228 ** and has send his findings to the SQLite developers. Frank 3229 ** writes that some Linux kernels offer floating point hardware 3230 ** emulation that uses only 32-bit mantissas instead of a full 3231 ** 48-bits as required by the IEEE standard. (This is the 3232 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3233 ** byte swapping becomes very complicated. To avoid problems, 3234 ** the necessary byte swapping is carried out using a 64-bit integer 3235 ** rather than a 64-bit float. Frank assures us that the code here 3236 ** works for him. We, the developers, have no way to independently 3237 ** verify this, but Frank seems to know what he is talking about 3238 ** so we trust him. 3239 */ 3240 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3241 static u64 floatSwap(u64 in){ 3242 union { 3243 u64 r; 3244 u32 i[2]; 3245 } u; 3246 u32 t; 3247 3248 u.r = in; 3249 t = u.i[0]; 3250 u.i[0] = u.i[1]; 3251 u.i[1] = t; 3252 return u.r; 3253 } 3254 # define swapMixedEndianFloat(X) X = floatSwap(X) 3255 #else 3256 # define swapMixedEndianFloat(X) 3257 #endif 3258 3259 /* 3260 ** Write the serialized data blob for the value stored in pMem into 3261 ** buf. It is assumed that the caller has allocated sufficient space. 3262 ** Return the number of bytes written. 3263 ** 3264 ** nBuf is the amount of space left in buf[]. The caller is responsible 3265 ** for allocating enough space to buf[] to hold the entire field, exclusive 3266 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3267 ** 3268 ** Return the number of bytes actually written into buf[]. The number 3269 ** of bytes in the zero-filled tail is included in the return value only 3270 ** if those bytes were zeroed in buf[]. 3271 */ 3272 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3273 u32 len; 3274 3275 /* Integer and Real */ 3276 if( serial_type<=7 && serial_type>0 ){ 3277 u64 v; 3278 u32 i; 3279 if( serial_type==7 ){ 3280 assert( sizeof(v)==sizeof(pMem->u.r) ); 3281 memcpy(&v, &pMem->u.r, sizeof(v)); 3282 swapMixedEndianFloat(v); 3283 }else{ 3284 v = pMem->u.i; 3285 } 3286 len = i = sqlite3SmallTypeSizes[serial_type]; 3287 assert( i>0 ); 3288 do{ 3289 buf[--i] = (u8)(v&0xFF); 3290 v >>= 8; 3291 }while( i ); 3292 return len; 3293 } 3294 3295 /* String or blob */ 3296 if( serial_type>=12 ){ 3297 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3298 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3299 len = pMem->n; 3300 if( len>0 ) memcpy(buf, pMem->z, len); 3301 return len; 3302 } 3303 3304 /* NULL or constants 0 or 1 */ 3305 return 0; 3306 } 3307 3308 /* Input "x" is a sequence of unsigned characters that represent a 3309 ** big-endian integer. Return the equivalent native integer 3310 */ 3311 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3312 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3313 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3314 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3315 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3316 3317 /* 3318 ** Deserialize the data blob pointed to by buf as serial type serial_type 3319 ** and store the result in pMem. Return the number of bytes read. 3320 ** 3321 ** This function is implemented as two separate routines for performance. 3322 ** The few cases that require local variables are broken out into a separate 3323 ** routine so that in most cases the overhead of moving the stack pointer 3324 ** is avoided. 3325 */ 3326 static u32 SQLITE_NOINLINE serialGet( 3327 const unsigned char *buf, /* Buffer to deserialize from */ 3328 u32 serial_type, /* Serial type to deserialize */ 3329 Mem *pMem /* Memory cell to write value into */ 3330 ){ 3331 u64 x = FOUR_BYTE_UINT(buf); 3332 u32 y = FOUR_BYTE_UINT(buf+4); 3333 x = (x<<32) + y; 3334 if( serial_type==6 ){ 3335 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3336 ** twos-complement integer. */ 3337 pMem->u.i = *(i64*)&x; 3338 pMem->flags = MEM_Int; 3339 testcase( pMem->u.i<0 ); 3340 }else{ 3341 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3342 ** floating point number. */ 3343 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3344 /* Verify that integers and floating point values use the same 3345 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3346 ** defined that 64-bit floating point values really are mixed 3347 ** endian. 3348 */ 3349 static const u64 t1 = ((u64)0x3ff00000)<<32; 3350 static const double r1 = 1.0; 3351 u64 t2 = t1; 3352 swapMixedEndianFloat(t2); 3353 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3354 #endif 3355 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3356 swapMixedEndianFloat(x); 3357 memcpy(&pMem->u.r, &x, sizeof(x)); 3358 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3359 } 3360 return 8; 3361 } 3362 u32 sqlite3VdbeSerialGet( 3363 const unsigned char *buf, /* Buffer to deserialize from */ 3364 u32 serial_type, /* Serial type to deserialize */ 3365 Mem *pMem /* Memory cell to write value into */ 3366 ){ 3367 switch( serial_type ){ 3368 case 10: /* Reserved for future use */ 3369 case 11: /* Reserved for future use */ 3370 case 0: { /* Null */ 3371 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3372 pMem->flags = MEM_Null; 3373 break; 3374 } 3375 case 1: { 3376 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3377 ** integer. */ 3378 pMem->u.i = ONE_BYTE_INT(buf); 3379 pMem->flags = MEM_Int; 3380 testcase( pMem->u.i<0 ); 3381 return 1; 3382 } 3383 case 2: { /* 2-byte signed integer */ 3384 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3385 ** twos-complement integer. */ 3386 pMem->u.i = TWO_BYTE_INT(buf); 3387 pMem->flags = MEM_Int; 3388 testcase( pMem->u.i<0 ); 3389 return 2; 3390 } 3391 case 3: { /* 3-byte signed integer */ 3392 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3393 ** twos-complement integer. */ 3394 pMem->u.i = THREE_BYTE_INT(buf); 3395 pMem->flags = MEM_Int; 3396 testcase( pMem->u.i<0 ); 3397 return 3; 3398 } 3399 case 4: { /* 4-byte signed integer */ 3400 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3401 ** twos-complement integer. */ 3402 pMem->u.i = FOUR_BYTE_INT(buf); 3403 #ifdef __HP_cc 3404 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3405 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3406 #endif 3407 pMem->flags = MEM_Int; 3408 testcase( pMem->u.i<0 ); 3409 return 4; 3410 } 3411 case 5: { /* 6-byte signed integer */ 3412 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3413 ** twos-complement integer. */ 3414 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3415 pMem->flags = MEM_Int; 3416 testcase( pMem->u.i<0 ); 3417 return 6; 3418 } 3419 case 6: /* 8-byte signed integer */ 3420 case 7: { /* IEEE floating point */ 3421 /* These use local variables, so do them in a separate routine 3422 ** to avoid having to move the frame pointer in the common case */ 3423 return serialGet(buf,serial_type,pMem); 3424 } 3425 case 8: /* Integer 0 */ 3426 case 9: { /* Integer 1 */ 3427 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3428 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3429 pMem->u.i = serial_type-8; 3430 pMem->flags = MEM_Int; 3431 return 0; 3432 } 3433 default: { 3434 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3435 ** length. 3436 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3437 ** (N-13)/2 bytes in length. */ 3438 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3439 pMem->z = (char *)buf; 3440 pMem->n = (serial_type-12)/2; 3441 pMem->flags = aFlag[serial_type&1]; 3442 return pMem->n; 3443 } 3444 } 3445 return 0; 3446 } 3447 /* 3448 ** This routine is used to allocate sufficient space for an UnpackedRecord 3449 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3450 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3451 ** 3452 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3453 ** the unaligned buffer passed via the second and third arguments (presumably 3454 ** stack space). If the former, then *ppFree is set to a pointer that should 3455 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3456 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3457 ** before returning. 3458 ** 3459 ** If an OOM error occurs, NULL is returned. 3460 */ 3461 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3462 KeyInfo *pKeyInfo, /* Description of the record */ 3463 char *pSpace, /* Unaligned space available */ 3464 int szSpace, /* Size of pSpace[] in bytes */ 3465 char **ppFree /* OUT: Caller should free this pointer */ 3466 ){ 3467 UnpackedRecord *p; /* Unpacked record to return */ 3468 int nOff; /* Increment pSpace by nOff to align it */ 3469 int nByte; /* Number of bytes required for *p */ 3470 3471 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3472 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3473 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3474 */ 3475 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3476 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3477 if( nByte>szSpace+nOff ){ 3478 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3479 *ppFree = (char *)p; 3480 if( !p ) return 0; 3481 }else{ 3482 p = (UnpackedRecord*)&pSpace[nOff]; 3483 *ppFree = 0; 3484 } 3485 3486 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3487 assert( pKeyInfo->aSortOrder!=0 ); 3488 p->pKeyInfo = pKeyInfo; 3489 p->nField = pKeyInfo->nField + 1; 3490 return p; 3491 } 3492 3493 /* 3494 ** Given the nKey-byte encoding of a record in pKey[], populate the 3495 ** UnpackedRecord structure indicated by the fourth argument with the 3496 ** contents of the decoded record. 3497 */ 3498 void sqlite3VdbeRecordUnpack( 3499 KeyInfo *pKeyInfo, /* Information about the record format */ 3500 int nKey, /* Size of the binary record */ 3501 const void *pKey, /* The binary record */ 3502 UnpackedRecord *p /* Populate this structure before returning. */ 3503 ){ 3504 const unsigned char *aKey = (const unsigned char *)pKey; 3505 int d; 3506 u32 idx; /* Offset in aKey[] to read from */ 3507 u16 u; /* Unsigned loop counter */ 3508 u32 szHdr; 3509 Mem *pMem = p->aMem; 3510 3511 p->default_rc = 0; 3512 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3513 idx = getVarint32(aKey, szHdr); 3514 d = szHdr; 3515 u = 0; 3516 while( idx<szHdr && d<=nKey ){ 3517 u32 serial_type; 3518 3519 idx += getVarint32(&aKey[idx], serial_type); 3520 pMem->enc = pKeyInfo->enc; 3521 pMem->db = pKeyInfo->db; 3522 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3523 pMem->szMalloc = 0; 3524 pMem->z = 0; 3525 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3526 pMem++; 3527 if( (++u)>=p->nField ) break; 3528 } 3529 assert( u<=pKeyInfo->nField + 1 ); 3530 p->nField = u; 3531 } 3532 3533 #if SQLITE_DEBUG 3534 /* 3535 ** This function compares two index or table record keys in the same way 3536 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3537 ** this function deserializes and compares values using the 3538 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3539 ** in assert() statements to ensure that the optimized code in 3540 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3541 ** 3542 ** Return true if the result of comparison is equivalent to desiredResult. 3543 ** Return false if there is a disagreement. 3544 */ 3545 static int vdbeRecordCompareDebug( 3546 int nKey1, const void *pKey1, /* Left key */ 3547 const UnpackedRecord *pPKey2, /* Right key */ 3548 int desiredResult /* Correct answer */ 3549 ){ 3550 u32 d1; /* Offset into aKey[] of next data element */ 3551 u32 idx1; /* Offset into aKey[] of next header element */ 3552 u32 szHdr1; /* Number of bytes in header */ 3553 int i = 0; 3554 int rc = 0; 3555 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3556 KeyInfo *pKeyInfo; 3557 Mem mem1; 3558 3559 pKeyInfo = pPKey2->pKeyInfo; 3560 if( pKeyInfo->db==0 ) return 1; 3561 mem1.enc = pKeyInfo->enc; 3562 mem1.db = pKeyInfo->db; 3563 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3564 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3565 3566 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3567 ** We could initialize it, as shown here, to silence those complaints. 3568 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3569 ** the unnecessary initialization has a measurable negative performance 3570 ** impact, since this routine is a very high runner. And so, we choose 3571 ** to ignore the compiler warnings and leave this variable uninitialized. 3572 */ 3573 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3574 3575 idx1 = getVarint32(aKey1, szHdr1); 3576 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3577 d1 = szHdr1; 3578 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3579 assert( pKeyInfo->aSortOrder!=0 ); 3580 assert( pKeyInfo->nField>0 ); 3581 assert( idx1<=szHdr1 || CORRUPT_DB ); 3582 do{ 3583 u32 serial_type1; 3584 3585 /* Read the serial types for the next element in each key. */ 3586 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3587 3588 /* Verify that there is enough key space remaining to avoid 3589 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3590 ** always be greater than or equal to the amount of required key space. 3591 ** Use that approximation to avoid the more expensive call to 3592 ** sqlite3VdbeSerialTypeLen() in the common case. 3593 */ 3594 if( d1+serial_type1+2>(u32)nKey1 3595 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3596 ){ 3597 break; 3598 } 3599 3600 /* Extract the values to be compared. 3601 */ 3602 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3603 3604 /* Do the comparison 3605 */ 3606 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3607 if( rc!=0 ){ 3608 assert( mem1.szMalloc==0 ); /* See comment below */ 3609 if( pKeyInfo->aSortOrder[i] ){ 3610 rc = -rc; /* Invert the result for DESC sort order. */ 3611 } 3612 goto debugCompareEnd; 3613 } 3614 i++; 3615 }while( idx1<szHdr1 && i<pPKey2->nField ); 3616 3617 /* No memory allocation is ever used on mem1. Prove this using 3618 ** the following assert(). If the assert() fails, it indicates a 3619 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3620 */ 3621 assert( mem1.szMalloc==0 ); 3622 3623 /* rc==0 here means that one of the keys ran out of fields and 3624 ** all the fields up to that point were equal. Return the default_rc 3625 ** value. */ 3626 rc = pPKey2->default_rc; 3627 3628 debugCompareEnd: 3629 if( desiredResult==0 && rc==0 ) return 1; 3630 if( desiredResult<0 && rc<0 ) return 1; 3631 if( desiredResult>0 && rc>0 ) return 1; 3632 if( CORRUPT_DB ) return 1; 3633 if( pKeyInfo->db->mallocFailed ) return 1; 3634 return 0; 3635 } 3636 #endif 3637 3638 #if SQLITE_DEBUG 3639 /* 3640 ** Count the number of fields (a.k.a. columns) in the record given by 3641 ** pKey,nKey. The verify that this count is less than or equal to the 3642 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3643 ** 3644 ** If this constraint is not satisfied, it means that the high-speed 3645 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3646 ** not work correctly. If this assert() ever fires, it probably means 3647 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3648 ** incorrectly. 3649 */ 3650 static void vdbeAssertFieldCountWithinLimits( 3651 int nKey, const void *pKey, /* The record to verify */ 3652 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3653 ){ 3654 int nField = 0; 3655 u32 szHdr; 3656 u32 idx; 3657 u32 notUsed; 3658 const unsigned char *aKey = (const unsigned char*)pKey; 3659 3660 if( CORRUPT_DB ) return; 3661 idx = getVarint32(aKey, szHdr); 3662 assert( nKey>=0 ); 3663 assert( szHdr<=(u32)nKey ); 3664 while( idx<szHdr ){ 3665 idx += getVarint32(aKey+idx, notUsed); 3666 nField++; 3667 } 3668 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3669 } 3670 #else 3671 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3672 #endif 3673 3674 /* 3675 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3676 ** using the collation sequence pColl. As usual, return a negative , zero 3677 ** or positive value if *pMem1 is less than, equal to or greater than 3678 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3679 */ 3680 static int vdbeCompareMemString( 3681 const Mem *pMem1, 3682 const Mem *pMem2, 3683 const CollSeq *pColl, 3684 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3685 ){ 3686 if( pMem1->enc==pColl->enc ){ 3687 /* The strings are already in the correct encoding. Call the 3688 ** comparison function directly */ 3689 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3690 }else{ 3691 int rc; 3692 const void *v1, *v2; 3693 int n1, n2; 3694 Mem c1; 3695 Mem c2; 3696 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3697 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3698 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3699 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3700 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3701 n1 = v1==0 ? 0 : c1.n; 3702 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3703 n2 = v2==0 ? 0 : c2.n; 3704 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3705 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3706 sqlite3VdbeMemRelease(&c1); 3707 sqlite3VdbeMemRelease(&c2); 3708 return rc; 3709 } 3710 } 3711 3712 /* 3713 ** Compare two blobs. Return negative, zero, or positive if the first 3714 ** is less than, equal to, or greater than the second, respectively. 3715 ** If one blob is a prefix of the other, then the shorter is the lessor. 3716 */ 3717 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3718 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3719 if( c ) return c; 3720 return pB1->n - pB2->n; 3721 } 3722 3723 /* 3724 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3725 ** number. Return negative, zero, or positive if the first (i64) is less than, 3726 ** equal to, or greater than the second (double). 3727 */ 3728 static int sqlite3IntFloatCompare(i64 i, double r){ 3729 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3730 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3731 if( x<r ) return -1; 3732 if( x>r ) return +1; 3733 return 0; 3734 }else{ 3735 i64 y; 3736 double s; 3737 if( r<-9223372036854775808.0 ) return +1; 3738 if( r>9223372036854775807.0 ) return -1; 3739 y = (i64)r; 3740 if( i<y ) return -1; 3741 if( i>y ){ 3742 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3743 return +1; 3744 } 3745 s = (double)i; 3746 if( s<r ) return -1; 3747 if( s>r ) return +1; 3748 return 0; 3749 } 3750 } 3751 3752 /* 3753 ** Compare the values contained by the two memory cells, returning 3754 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3755 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3756 ** and reals) sorted numerically, followed by text ordered by the collating 3757 ** sequence pColl and finally blob's ordered by memcmp(). 3758 ** 3759 ** Two NULL values are considered equal by this function. 3760 */ 3761 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3762 int f1, f2; 3763 int combined_flags; 3764 3765 f1 = pMem1->flags; 3766 f2 = pMem2->flags; 3767 combined_flags = f1|f2; 3768 assert( (combined_flags & MEM_RowSet)==0 ); 3769 3770 /* If one value is NULL, it is less than the other. If both values 3771 ** are NULL, return 0. 3772 */ 3773 if( combined_flags&MEM_Null ){ 3774 return (f2&MEM_Null) - (f1&MEM_Null); 3775 } 3776 3777 /* At least one of the two values is a number 3778 */ 3779 if( combined_flags&(MEM_Int|MEM_Real) ){ 3780 if( (f1 & f2 & MEM_Int)!=0 ){ 3781 if( pMem1->u.i < pMem2->u.i ) return -1; 3782 if( pMem1->u.i > pMem2->u.i ) return +1; 3783 return 0; 3784 } 3785 if( (f1 & f2 & MEM_Real)!=0 ){ 3786 if( pMem1->u.r < pMem2->u.r ) return -1; 3787 if( pMem1->u.r > pMem2->u.r ) return +1; 3788 return 0; 3789 } 3790 if( (f1&MEM_Int)!=0 ){ 3791 if( (f2&MEM_Real)!=0 ){ 3792 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3793 }else{ 3794 return -1; 3795 } 3796 } 3797 if( (f1&MEM_Real)!=0 ){ 3798 if( (f2&MEM_Int)!=0 ){ 3799 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3800 }else{ 3801 return -1; 3802 } 3803 } 3804 return +1; 3805 } 3806 3807 /* If one value is a string and the other is a blob, the string is less. 3808 ** If both are strings, compare using the collating functions. 3809 */ 3810 if( combined_flags&MEM_Str ){ 3811 if( (f1 & MEM_Str)==0 ){ 3812 return 1; 3813 } 3814 if( (f2 & MEM_Str)==0 ){ 3815 return -1; 3816 } 3817 3818 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3819 assert( pMem1->enc==SQLITE_UTF8 || 3820 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3821 3822 /* The collation sequence must be defined at this point, even if 3823 ** the user deletes the collation sequence after the vdbe program is 3824 ** compiled (this was not always the case). 3825 */ 3826 assert( !pColl || pColl->xCmp ); 3827 3828 if( pColl ){ 3829 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3830 } 3831 /* If a NULL pointer was passed as the collate function, fall through 3832 ** to the blob case and use memcmp(). */ 3833 } 3834 3835 /* Both values must be blobs. Compare using memcmp(). */ 3836 return sqlite3BlobCompare(pMem1, pMem2); 3837 } 3838 3839 3840 /* 3841 ** The first argument passed to this function is a serial-type that 3842 ** corresponds to an integer - all values between 1 and 9 inclusive 3843 ** except 7. The second points to a buffer containing an integer value 3844 ** serialized according to serial_type. This function deserializes 3845 ** and returns the value. 3846 */ 3847 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3848 u32 y; 3849 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3850 switch( serial_type ){ 3851 case 0: 3852 case 1: 3853 testcase( aKey[0]&0x80 ); 3854 return ONE_BYTE_INT(aKey); 3855 case 2: 3856 testcase( aKey[0]&0x80 ); 3857 return TWO_BYTE_INT(aKey); 3858 case 3: 3859 testcase( aKey[0]&0x80 ); 3860 return THREE_BYTE_INT(aKey); 3861 case 4: { 3862 testcase( aKey[0]&0x80 ); 3863 y = FOUR_BYTE_UINT(aKey); 3864 return (i64)*(int*)&y; 3865 } 3866 case 5: { 3867 testcase( aKey[0]&0x80 ); 3868 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3869 } 3870 case 6: { 3871 u64 x = FOUR_BYTE_UINT(aKey); 3872 testcase( aKey[0]&0x80 ); 3873 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3874 return (i64)*(i64*)&x; 3875 } 3876 } 3877 3878 return (serial_type - 8); 3879 } 3880 3881 /* 3882 ** This function compares the two table rows or index records 3883 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3884 ** or positive integer if key1 is less than, equal to or 3885 ** greater than key2. The {nKey1, pKey1} key must be a blob 3886 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3887 ** key must be a parsed key such as obtained from 3888 ** sqlite3VdbeParseRecord. 3889 ** 3890 ** If argument bSkip is non-zero, it is assumed that the caller has already 3891 ** determined that the first fields of the keys are equal. 3892 ** 3893 ** Key1 and Key2 do not have to contain the same number of fields. If all 3894 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3895 ** returned. 3896 ** 3897 ** If database corruption is discovered, set pPKey2->errCode to 3898 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3899 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3900 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3901 */ 3902 int sqlite3VdbeRecordCompareWithSkip( 3903 int nKey1, const void *pKey1, /* Left key */ 3904 UnpackedRecord *pPKey2, /* Right key */ 3905 int bSkip /* If true, skip the first field */ 3906 ){ 3907 u32 d1; /* Offset into aKey[] of next data element */ 3908 int i; /* Index of next field to compare */ 3909 u32 szHdr1; /* Size of record header in bytes */ 3910 u32 idx1; /* Offset of first type in header */ 3911 int rc = 0; /* Return value */ 3912 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3913 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3914 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3915 Mem mem1; 3916 3917 /* If bSkip is true, then the caller has already determined that the first 3918 ** two elements in the keys are equal. Fix the various stack variables so 3919 ** that this routine begins comparing at the second field. */ 3920 if( bSkip ){ 3921 u32 s1; 3922 idx1 = 1 + getVarint32(&aKey1[1], s1); 3923 szHdr1 = aKey1[0]; 3924 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3925 i = 1; 3926 pRhs++; 3927 }else{ 3928 idx1 = getVarint32(aKey1, szHdr1); 3929 d1 = szHdr1; 3930 if( d1>(unsigned)nKey1 ){ 3931 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3932 return 0; /* Corruption */ 3933 } 3934 i = 0; 3935 } 3936 3937 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3938 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3939 || CORRUPT_DB ); 3940 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3941 assert( pPKey2->pKeyInfo->nField>0 ); 3942 assert( idx1<=szHdr1 || CORRUPT_DB ); 3943 do{ 3944 u32 serial_type; 3945 3946 /* RHS is an integer */ 3947 if( pRhs->flags & MEM_Int ){ 3948 serial_type = aKey1[idx1]; 3949 testcase( serial_type==12 ); 3950 if( serial_type>=10 ){ 3951 rc = +1; 3952 }else if( serial_type==0 ){ 3953 rc = -1; 3954 }else if( serial_type==7 ){ 3955 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3956 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 3957 }else{ 3958 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3959 i64 rhs = pRhs->u.i; 3960 if( lhs<rhs ){ 3961 rc = -1; 3962 }else if( lhs>rhs ){ 3963 rc = +1; 3964 } 3965 } 3966 } 3967 3968 /* RHS is real */ 3969 else if( pRhs->flags & MEM_Real ){ 3970 serial_type = aKey1[idx1]; 3971 if( serial_type>=10 ){ 3972 /* Serial types 12 or greater are strings and blobs (greater than 3973 ** numbers). Types 10 and 11 are currently "reserved for future 3974 ** use", so it doesn't really matter what the results of comparing 3975 ** them to numberic values are. */ 3976 rc = +1; 3977 }else if( serial_type==0 ){ 3978 rc = -1; 3979 }else{ 3980 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3981 if( serial_type==7 ){ 3982 if( mem1.u.r<pRhs->u.r ){ 3983 rc = -1; 3984 }else if( mem1.u.r>pRhs->u.r ){ 3985 rc = +1; 3986 } 3987 }else{ 3988 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 3989 } 3990 } 3991 } 3992 3993 /* RHS is a string */ 3994 else if( pRhs->flags & MEM_Str ){ 3995 getVarint32(&aKey1[idx1], serial_type); 3996 testcase( serial_type==12 ); 3997 if( serial_type<12 ){ 3998 rc = -1; 3999 }else if( !(serial_type & 0x01) ){ 4000 rc = +1; 4001 }else{ 4002 mem1.n = (serial_type - 12) / 2; 4003 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4004 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4005 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4006 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4007 return 0; /* Corruption */ 4008 }else if( pKeyInfo->aColl[i] ){ 4009 mem1.enc = pKeyInfo->enc; 4010 mem1.db = pKeyInfo->db; 4011 mem1.flags = MEM_Str; 4012 mem1.z = (char*)&aKey1[d1]; 4013 rc = vdbeCompareMemString( 4014 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4015 ); 4016 }else{ 4017 int nCmp = MIN(mem1.n, pRhs->n); 4018 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4019 if( rc==0 ) rc = mem1.n - pRhs->n; 4020 } 4021 } 4022 } 4023 4024 /* RHS is a blob */ 4025 else if( pRhs->flags & MEM_Blob ){ 4026 getVarint32(&aKey1[idx1], serial_type); 4027 testcase( serial_type==12 ); 4028 if( serial_type<12 || (serial_type & 0x01) ){ 4029 rc = -1; 4030 }else{ 4031 int nStr = (serial_type - 12) / 2; 4032 testcase( (d1+nStr)==(unsigned)nKey1 ); 4033 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4034 if( (d1+nStr) > (unsigned)nKey1 ){ 4035 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4036 return 0; /* Corruption */ 4037 }else{ 4038 int nCmp = MIN(nStr, pRhs->n); 4039 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4040 if( rc==0 ) rc = nStr - pRhs->n; 4041 } 4042 } 4043 } 4044 4045 /* RHS is null */ 4046 else{ 4047 serial_type = aKey1[idx1]; 4048 rc = (serial_type!=0); 4049 } 4050 4051 if( rc!=0 ){ 4052 if( pKeyInfo->aSortOrder[i] ){ 4053 rc = -rc; 4054 } 4055 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4056 assert( mem1.szMalloc==0 ); /* See comment below */ 4057 return rc; 4058 } 4059 4060 i++; 4061 pRhs++; 4062 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4063 idx1 += sqlite3VarintLen(serial_type); 4064 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4065 4066 /* No memory allocation is ever used on mem1. Prove this using 4067 ** the following assert(). If the assert() fails, it indicates a 4068 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4069 assert( mem1.szMalloc==0 ); 4070 4071 /* rc==0 here means that one or both of the keys ran out of fields and 4072 ** all the fields up to that point were equal. Return the default_rc 4073 ** value. */ 4074 assert( CORRUPT_DB 4075 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4076 || pKeyInfo->db->mallocFailed 4077 ); 4078 pPKey2->eqSeen = 1; 4079 return pPKey2->default_rc; 4080 } 4081 int sqlite3VdbeRecordCompare( 4082 int nKey1, const void *pKey1, /* Left key */ 4083 UnpackedRecord *pPKey2 /* Right key */ 4084 ){ 4085 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4086 } 4087 4088 4089 /* 4090 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4091 ** that (a) the first field of pPKey2 is an integer, and (b) the 4092 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4093 ** byte (i.e. is less than 128). 4094 ** 4095 ** To avoid concerns about buffer overreads, this routine is only used 4096 ** on schemas where the maximum valid header size is 63 bytes or less. 4097 */ 4098 static int vdbeRecordCompareInt( 4099 int nKey1, const void *pKey1, /* Left key */ 4100 UnpackedRecord *pPKey2 /* Right key */ 4101 ){ 4102 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4103 int serial_type = ((const u8*)pKey1)[1]; 4104 int res; 4105 u32 y; 4106 u64 x; 4107 i64 v = pPKey2->aMem[0].u.i; 4108 i64 lhs; 4109 4110 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4111 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4112 switch( serial_type ){ 4113 case 1: { /* 1-byte signed integer */ 4114 lhs = ONE_BYTE_INT(aKey); 4115 testcase( lhs<0 ); 4116 break; 4117 } 4118 case 2: { /* 2-byte signed integer */ 4119 lhs = TWO_BYTE_INT(aKey); 4120 testcase( lhs<0 ); 4121 break; 4122 } 4123 case 3: { /* 3-byte signed integer */ 4124 lhs = THREE_BYTE_INT(aKey); 4125 testcase( lhs<0 ); 4126 break; 4127 } 4128 case 4: { /* 4-byte signed integer */ 4129 y = FOUR_BYTE_UINT(aKey); 4130 lhs = (i64)*(int*)&y; 4131 testcase( lhs<0 ); 4132 break; 4133 } 4134 case 5: { /* 6-byte signed integer */ 4135 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4136 testcase( lhs<0 ); 4137 break; 4138 } 4139 case 6: { /* 8-byte signed integer */ 4140 x = FOUR_BYTE_UINT(aKey); 4141 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4142 lhs = *(i64*)&x; 4143 testcase( lhs<0 ); 4144 break; 4145 } 4146 case 8: 4147 lhs = 0; 4148 break; 4149 case 9: 4150 lhs = 1; 4151 break; 4152 4153 /* This case could be removed without changing the results of running 4154 ** this code. Including it causes gcc to generate a faster switch 4155 ** statement (since the range of switch targets now starts at zero and 4156 ** is contiguous) but does not cause any duplicate code to be generated 4157 ** (as gcc is clever enough to combine the two like cases). Other 4158 ** compilers might be similar. */ 4159 case 0: case 7: 4160 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4161 4162 default: 4163 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4164 } 4165 4166 if( v>lhs ){ 4167 res = pPKey2->r1; 4168 }else if( v<lhs ){ 4169 res = pPKey2->r2; 4170 }else if( pPKey2->nField>1 ){ 4171 /* The first fields of the two keys are equal. Compare the trailing 4172 ** fields. */ 4173 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4174 }else{ 4175 /* The first fields of the two keys are equal and there are no trailing 4176 ** fields. Return pPKey2->default_rc in this case. */ 4177 res = pPKey2->default_rc; 4178 pPKey2->eqSeen = 1; 4179 } 4180 4181 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4182 return res; 4183 } 4184 4185 /* 4186 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4187 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4188 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4189 ** at the start of (pKey1/nKey1) fits in a single byte. 4190 */ 4191 static int vdbeRecordCompareString( 4192 int nKey1, const void *pKey1, /* Left key */ 4193 UnpackedRecord *pPKey2 /* Right key */ 4194 ){ 4195 const u8 *aKey1 = (const u8*)pKey1; 4196 int serial_type; 4197 int res; 4198 4199 assert( pPKey2->aMem[0].flags & MEM_Str ); 4200 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4201 getVarint32(&aKey1[1], serial_type); 4202 if( serial_type<12 ){ 4203 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4204 }else if( !(serial_type & 0x01) ){ 4205 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4206 }else{ 4207 int nCmp; 4208 int nStr; 4209 int szHdr = aKey1[0]; 4210 4211 nStr = (serial_type-12) / 2; 4212 if( (szHdr + nStr) > nKey1 ){ 4213 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4214 return 0; /* Corruption */ 4215 } 4216 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4217 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4218 4219 if( res==0 ){ 4220 res = nStr - pPKey2->aMem[0].n; 4221 if( res==0 ){ 4222 if( pPKey2->nField>1 ){ 4223 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4224 }else{ 4225 res = pPKey2->default_rc; 4226 pPKey2->eqSeen = 1; 4227 } 4228 }else if( res>0 ){ 4229 res = pPKey2->r2; 4230 }else{ 4231 res = pPKey2->r1; 4232 } 4233 }else if( res>0 ){ 4234 res = pPKey2->r2; 4235 }else{ 4236 res = pPKey2->r1; 4237 } 4238 } 4239 4240 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4241 || CORRUPT_DB 4242 || pPKey2->pKeyInfo->db->mallocFailed 4243 ); 4244 return res; 4245 } 4246 4247 /* 4248 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4249 ** suitable for comparing serialized records to the unpacked record passed 4250 ** as the only argument. 4251 */ 4252 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4253 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4254 ** that the size-of-header varint that occurs at the start of each record 4255 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4256 ** also assumes that it is safe to overread a buffer by at least the 4257 ** maximum possible legal header size plus 8 bytes. Because there is 4258 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4259 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4260 ** limit the size of the header to 64 bytes in cases where the first field 4261 ** is an integer. 4262 ** 4263 ** The easiest way to enforce this limit is to consider only records with 4264 ** 13 fields or less. If the first field is an integer, the maximum legal 4265 ** header size is (12*5 + 1 + 1) bytes. */ 4266 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4267 int flags = p->aMem[0].flags; 4268 if( p->pKeyInfo->aSortOrder[0] ){ 4269 p->r1 = 1; 4270 p->r2 = -1; 4271 }else{ 4272 p->r1 = -1; 4273 p->r2 = 1; 4274 } 4275 if( (flags & MEM_Int) ){ 4276 return vdbeRecordCompareInt; 4277 } 4278 testcase( flags & MEM_Real ); 4279 testcase( flags & MEM_Null ); 4280 testcase( flags & MEM_Blob ); 4281 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4282 assert( flags & MEM_Str ); 4283 return vdbeRecordCompareString; 4284 } 4285 } 4286 4287 return sqlite3VdbeRecordCompare; 4288 } 4289 4290 /* 4291 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4292 ** Read the rowid (the last field in the record) and store it in *rowid. 4293 ** Return SQLITE_OK if everything works, or an error code otherwise. 4294 ** 4295 ** pCur might be pointing to text obtained from a corrupt database file. 4296 ** So the content cannot be trusted. Do appropriate checks on the content. 4297 */ 4298 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4299 i64 nCellKey = 0; 4300 int rc; 4301 u32 szHdr; /* Size of the header */ 4302 u32 typeRowid; /* Serial type of the rowid */ 4303 u32 lenRowid; /* Size of the rowid */ 4304 Mem m, v; 4305 4306 /* Get the size of the index entry. Only indices entries of less 4307 ** than 2GiB are support - anything large must be database corruption. 4308 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4309 ** this code can safely assume that nCellKey is 32-bits 4310 */ 4311 assert( sqlite3BtreeCursorIsValid(pCur) ); 4312 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4313 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4314 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4315 4316 /* Read in the complete content of the index entry */ 4317 sqlite3VdbeMemInit(&m, db, 0); 4318 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4319 if( rc ){ 4320 return rc; 4321 } 4322 4323 /* The index entry must begin with a header size */ 4324 (void)getVarint32((u8*)m.z, szHdr); 4325 testcase( szHdr==3 ); 4326 testcase( szHdr==m.n ); 4327 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4328 goto idx_rowid_corruption; 4329 } 4330 4331 /* The last field of the index should be an integer - the ROWID. 4332 ** Verify that the last entry really is an integer. */ 4333 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4334 testcase( typeRowid==1 ); 4335 testcase( typeRowid==2 ); 4336 testcase( typeRowid==3 ); 4337 testcase( typeRowid==4 ); 4338 testcase( typeRowid==5 ); 4339 testcase( typeRowid==6 ); 4340 testcase( typeRowid==8 ); 4341 testcase( typeRowid==9 ); 4342 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4343 goto idx_rowid_corruption; 4344 } 4345 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4346 testcase( (u32)m.n==szHdr+lenRowid ); 4347 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4348 goto idx_rowid_corruption; 4349 } 4350 4351 /* Fetch the integer off the end of the index record */ 4352 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4353 *rowid = v.u.i; 4354 sqlite3VdbeMemRelease(&m); 4355 return SQLITE_OK; 4356 4357 /* Jump here if database corruption is detected after m has been 4358 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4359 idx_rowid_corruption: 4360 testcase( m.szMalloc!=0 ); 4361 sqlite3VdbeMemRelease(&m); 4362 return SQLITE_CORRUPT_BKPT; 4363 } 4364 4365 /* 4366 ** Compare the key of the index entry that cursor pC is pointing to against 4367 ** the key string in pUnpacked. Write into *pRes a number 4368 ** that is negative, zero, or positive if pC is less than, equal to, 4369 ** or greater than pUnpacked. Return SQLITE_OK on success. 4370 ** 4371 ** pUnpacked is either created without a rowid or is truncated so that it 4372 ** omits the rowid at the end. The rowid at the end of the index entry 4373 ** is ignored as well. Hence, this routine only compares the prefixes 4374 ** of the keys prior to the final rowid, not the entire key. 4375 */ 4376 int sqlite3VdbeIdxKeyCompare( 4377 sqlite3 *db, /* Database connection */ 4378 VdbeCursor *pC, /* The cursor to compare against */ 4379 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4380 int *res /* Write the comparison result here */ 4381 ){ 4382 i64 nCellKey = 0; 4383 int rc; 4384 BtCursor *pCur; 4385 Mem m; 4386 4387 assert( pC->eCurType==CURTYPE_BTREE ); 4388 pCur = pC->uc.pCursor; 4389 assert( sqlite3BtreeCursorIsValid(pCur) ); 4390 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4391 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4392 /* nCellKey will always be between 0 and 0xffffffff because of the way 4393 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4394 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4395 *res = 0; 4396 return SQLITE_CORRUPT_BKPT; 4397 } 4398 sqlite3VdbeMemInit(&m, db, 0); 4399 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4400 if( rc ){ 4401 return rc; 4402 } 4403 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4404 sqlite3VdbeMemRelease(&m); 4405 return SQLITE_OK; 4406 } 4407 4408 /* 4409 ** This routine sets the value to be returned by subsequent calls to 4410 ** sqlite3_changes() on the database handle 'db'. 4411 */ 4412 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4413 assert( sqlite3_mutex_held(db->mutex) ); 4414 db->nChange = nChange; 4415 db->nTotalChange += nChange; 4416 } 4417 4418 /* 4419 ** Set a flag in the vdbe to update the change counter when it is finalised 4420 ** or reset. 4421 */ 4422 void sqlite3VdbeCountChanges(Vdbe *v){ 4423 v->changeCntOn = 1; 4424 } 4425 4426 /* 4427 ** Mark every prepared statement associated with a database connection 4428 ** as expired. 4429 ** 4430 ** An expired statement means that recompilation of the statement is 4431 ** recommend. Statements expire when things happen that make their 4432 ** programs obsolete. Removing user-defined functions or collating 4433 ** sequences, or changing an authorization function are the types of 4434 ** things that make prepared statements obsolete. 4435 */ 4436 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4437 Vdbe *p; 4438 for(p = db->pVdbe; p; p=p->pNext){ 4439 p->expired = 1; 4440 } 4441 } 4442 4443 /* 4444 ** Return the database associated with the Vdbe. 4445 */ 4446 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4447 return v->db; 4448 } 4449 4450 /* 4451 ** Return a pointer to an sqlite3_value structure containing the value bound 4452 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4453 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4454 ** constants) to the value before returning it. 4455 ** 4456 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4457 */ 4458 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4459 assert( iVar>0 ); 4460 if( v ){ 4461 Mem *pMem = &v->aVar[iVar-1]; 4462 if( 0==(pMem->flags & MEM_Null) ){ 4463 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4464 if( pRet ){ 4465 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4466 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4467 } 4468 return pRet; 4469 } 4470 } 4471 return 0; 4472 } 4473 4474 /* 4475 ** Configure SQL variable iVar so that binding a new value to it signals 4476 ** to sqlite3_reoptimize() that re-preparing the statement may result 4477 ** in a better query plan. 4478 */ 4479 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4480 assert( iVar>0 ); 4481 if( iVar>32 ){ 4482 v->expmask = 0xffffffff; 4483 }else{ 4484 v->expmask |= ((u32)1 << (iVar-1)); 4485 } 4486 } 4487 4488 #ifndef SQLITE_OMIT_VIRTUALTABLE 4489 /* 4490 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4491 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4492 ** in memory obtained from sqlite3DbMalloc). 4493 */ 4494 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4495 if( pVtab->zErrMsg ){ 4496 sqlite3 *db = p->db; 4497 sqlite3DbFree(db, p->zErrMsg); 4498 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4499 sqlite3_free(pVtab->zErrMsg); 4500 pVtab->zErrMsg = 0; 4501 } 4502 } 4503 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4504 4505 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4506 4507 /* 4508 ** If the second argument is not NULL, release any allocations associated 4509 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4510 ** structure itself, using sqlite3DbFree(). 4511 ** 4512 ** This function is used to free UnpackedRecord structures allocated by 4513 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4514 */ 4515 static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){ 4516 if( p ){ 4517 int i; 4518 for(i=0; i<p->nField; i++){ 4519 Mem *pMem = &p->aMem[i]; 4520 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4521 } 4522 sqlite3DbFree(db, p); 4523 } 4524 } 4525 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4526 4527 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4528 /* 4529 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4530 ** then cursor passed as the second argument should point to the row about 4531 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4532 ** the required value will be read from the row the cursor points to. 4533 */ 4534 void sqlite3VdbePreUpdateHook( 4535 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4536 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4537 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4538 const char *zDb, /* Database name */ 4539 Table *pTab, /* Modified table */ 4540 i64 iKey1, /* Initial key value */ 4541 int iReg /* Register for new.* record */ 4542 ){ 4543 sqlite3 *db = v->db; 4544 i64 iKey2; 4545 PreUpdate preupdate; 4546 const char *zTbl = pTab->zName; 4547 static const u8 fakeSortOrder = 0; 4548 4549 assert( db->pPreUpdate==0 ); 4550 memset(&preupdate, 0, sizeof(PreUpdate)); 4551 if( op==SQLITE_UPDATE ){ 4552 iKey2 = v->aMem[iReg].u.i; 4553 }else{ 4554 iKey2 = iKey1; 4555 } 4556 4557 assert( pCsr->nField==pTab->nCol 4558 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4559 ); 4560 4561 preupdate.v = v; 4562 preupdate.pCsr = pCsr; 4563 preupdate.op = op; 4564 preupdate.iNewReg = iReg; 4565 preupdate.keyinfo.db = db; 4566 preupdate.keyinfo.enc = ENC(db); 4567 preupdate.keyinfo.nField = pTab->nCol; 4568 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4569 preupdate.iKey1 = iKey1; 4570 preupdate.iKey2 = iKey2; 4571 preupdate.iPKey = pTab->iPKey; 4572 4573 db->pPreUpdate = &preupdate; 4574 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4575 db->pPreUpdate = 0; 4576 sqlite3DbFree(db, preupdate.aRecord); 4577 vdbeFreeUnpacked(db, preupdate.pUnpacked); 4578 vdbeFreeUnpacked(db, preupdate.pNewUnpacked); 4579 if( preupdate.aNew ){ 4580 int i; 4581 for(i=0; i<pCsr->nField; i++){ 4582 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4583 } 4584 sqlite3DbFree(db, preupdate.aNew); 4585 } 4586 } 4587 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4588