xref: /sqlite-3.40.0/src/vdbeaux.c (revision 02267cc2)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /*
19 ** Create a new virtual database engine.
20 */
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22   sqlite3 *db = pParse->db;
23   Vdbe *p;
24   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
25   if( p==0 ) return 0;
26   p->db = db;
27   if( db->pVdbe ){
28     db->pVdbe->pPrev = p;
29   }
30   p->pNext = db->pVdbe;
31   p->pPrev = 0;
32   db->pVdbe = p;
33   p->magic = VDBE_MAGIC_INIT;
34   p->pParse = pParse;
35   assert( pParse->aLabel==0 );
36   assert( pParse->nLabel==0 );
37   assert( pParse->nOpAlloc==0 );
38   assert( pParse->szOpAlloc==0 );
39   return p;
40 }
41 
42 /*
43 ** Change the error string stored in Vdbe.zErrMsg
44 */
45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
46   va_list ap;
47   sqlite3DbFree(p->db, p->zErrMsg);
48   va_start(ap, zFormat);
49   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
50   va_end(ap);
51 }
52 
53 /*
54 ** Remember the SQL string for a prepared statement.
55 */
56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
57   assert( isPrepareV2==1 || isPrepareV2==0 );
58   if( p==0 ) return;
59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
60   if( !isPrepareV2 ) return;
61 #endif
62   assert( p->zSql==0 );
63   p->zSql = sqlite3DbStrNDup(p->db, z, n);
64   p->isPrepareV2 = (u8)isPrepareV2;
65 }
66 
67 /*
68 ** Return the SQL associated with a prepared statement
69 */
70 const char *sqlite3_sql(sqlite3_stmt *pStmt){
71   Vdbe *p = (Vdbe *)pStmt;
72   return p ? p->zSql : 0;
73 }
74 
75 /*
76 ** Swap all content between two VDBE structures.
77 */
78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
79   Vdbe tmp, *pTmp;
80   char *zTmp;
81   assert( pA->db==pB->db );
82   tmp = *pA;
83   *pA = *pB;
84   *pB = tmp;
85   pTmp = pA->pNext;
86   pA->pNext = pB->pNext;
87   pB->pNext = pTmp;
88   pTmp = pA->pPrev;
89   pA->pPrev = pB->pPrev;
90   pB->pPrev = pTmp;
91   zTmp = pA->zSql;
92   pA->zSql = pB->zSql;
93   pB->zSql = zTmp;
94   pB->isPrepareV2 = pA->isPrepareV2;
95 }
96 
97 /*
98 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
99 ** than its current size. nOp is guaranteed to be less than or equal
100 ** to 1024/sizeof(Op).
101 **
102 ** If an out-of-memory error occurs while resizing the array, return
103 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
104 ** unchanged (this is so that any opcodes already allocated can be
105 ** correctly deallocated along with the rest of the Vdbe).
106 */
107 static int growOpArray(Vdbe *v, int nOp){
108   VdbeOp *pNew;
109   Parse *p = v->pParse;
110 
111   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
112   ** more frequent reallocs and hence provide more opportunities for
113   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
114   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
115   ** by the minimum* amount required until the size reaches 512.  Normal
116   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
117   ** size of the op array or add 1KB of space, whichever is smaller. */
118 #ifdef SQLITE_TEST_REALLOC_STRESS
119   int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
120 #else
121   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
122   UNUSED_PARAMETER(nOp);
123 #endif
124 
125   assert( nOp<=(1024/sizeof(Op)) );
126   assert( nNew>=(p->nOpAlloc+nOp) );
127   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
128   if( pNew ){
129     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
130     p->nOpAlloc = p->szOpAlloc/sizeof(Op);
131     v->aOp = pNew;
132   }
133   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
134 }
135 
136 #ifdef SQLITE_DEBUG
137 /* This routine is just a convenient place to set a breakpoint that will
138 ** fire after each opcode is inserted and displayed using
139 ** "PRAGMA vdbe_addoptrace=on".
140 */
141 static void test_addop_breakpoint(void){
142   static int n = 0;
143   n++;
144 }
145 #endif
146 
147 /*
148 ** Add a new instruction to the list of instructions current in the
149 ** VDBE.  Return the address of the new instruction.
150 **
151 ** Parameters:
152 **
153 **    p               Pointer to the VDBE
154 **
155 **    op              The opcode for this instruction
156 **
157 **    p1, p2, p3      Operands
158 **
159 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
160 ** the sqlite3VdbeChangeP4() function to change the value of the P4
161 ** operand.
162 */
163 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
164   assert( p->pParse->nOpAlloc<=p->nOp );
165   if( growOpArray(p, 1) ) return 1;
166   assert( p->pParse->nOpAlloc>p->nOp );
167   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
168 }
169 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
170   int i;
171   VdbeOp *pOp;
172 
173   i = p->nOp;
174   assert( p->magic==VDBE_MAGIC_INIT );
175   assert( op>=0 && op<0xff );
176   if( p->pParse->nOpAlloc<=i ){
177     return growOp3(p, op, p1, p2, p3);
178   }
179   p->nOp++;
180   pOp = &p->aOp[i];
181   pOp->opcode = (u8)op;
182   pOp->p5 = 0;
183   pOp->p1 = p1;
184   pOp->p2 = p2;
185   pOp->p3 = p3;
186   pOp->p4.p = 0;
187   pOp->p4type = P4_NOTUSED;
188 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
189   pOp->zComment = 0;
190 #endif
191 #ifdef SQLITE_DEBUG
192   if( p->db->flags & SQLITE_VdbeAddopTrace ){
193     int jj, kk;
194     Parse *pParse = p->pParse;
195     for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
196       struct yColCache *x = pParse->aColCache + jj;
197       if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
198       printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
199       kk++;
200     }
201     if( kk ) printf("\n");
202     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
203     test_addop_breakpoint();
204   }
205 #endif
206 #ifdef VDBE_PROFILE
207   pOp->cycles = 0;
208   pOp->cnt = 0;
209 #endif
210 #ifdef SQLITE_VDBE_COVERAGE
211   pOp->iSrcLine = 0;
212 #endif
213   return i;
214 }
215 int sqlite3VdbeAddOp0(Vdbe *p, int op){
216   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
217 }
218 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
219   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
220 }
221 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
222   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
223 }
224 
225 /* Generate code for an unconditional jump to instruction iDest
226 */
227 int sqlite3VdbeGoto(Vdbe *p, int iDest){
228   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
229 }
230 
231 /* Generate code to cause the string zStr to be loaded into
232 ** register iDest
233 */
234 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
235   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
236 }
237 
238 /*
239 ** Generate code that initializes multiple registers to string or integer
240 ** constants.  The registers begin with iDest and increase consecutively.
241 ** One register is initialized for each characgter in zTypes[].  For each
242 ** "s" character in zTypes[], the register is a string if the argument is
243 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
244 ** in zTypes[], the register is initialized to an integer.
245 */
246 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
247   va_list ap;
248   int i;
249   char c;
250   va_start(ap, zTypes);
251   for(i=0; (c = zTypes[i])!=0; i++){
252     if( c=='s' ){
253       const char *z = va_arg(ap, const char*);
254       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
255     }else{
256       assert( c=='i' );
257       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
258     }
259   }
260   va_end(ap);
261 }
262 
263 /*
264 ** Add an opcode that includes the p4 value as a pointer.
265 */
266 int sqlite3VdbeAddOp4(
267   Vdbe *p,            /* Add the opcode to this VM */
268   int op,             /* The new opcode */
269   int p1,             /* The P1 operand */
270   int p2,             /* The P2 operand */
271   int p3,             /* The P3 operand */
272   const char *zP4,    /* The P4 operand */
273   int p4type          /* P4 operand type */
274 ){
275   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
276   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
277   return addr;
278 }
279 
280 /*
281 ** Add an opcode that includes the p4 value with a P4_INT64 or
282 ** P4_REAL type.
283 */
284 int sqlite3VdbeAddOp4Dup8(
285   Vdbe *p,            /* Add the opcode to this VM */
286   int op,             /* The new opcode */
287   int p1,             /* The P1 operand */
288   int p2,             /* The P2 operand */
289   int p3,             /* The P3 operand */
290   const u8 *zP4,      /* The P4 operand */
291   int p4type          /* P4 operand type */
292 ){
293   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
294   if( p4copy ) memcpy(p4copy, zP4, 8);
295   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
296 }
297 
298 /*
299 ** Add an OP_ParseSchema opcode.  This routine is broken out from
300 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
301 ** as having been used.
302 **
303 ** The zWhere string must have been obtained from sqlite3_malloc().
304 ** This routine will take ownership of the allocated memory.
305 */
306 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
307   int j;
308   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
309   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
310 }
311 
312 /*
313 ** Add an opcode that includes the p4 value as an integer.
314 */
315 int sqlite3VdbeAddOp4Int(
316   Vdbe *p,            /* Add the opcode to this VM */
317   int op,             /* The new opcode */
318   int p1,             /* The P1 operand */
319   int p2,             /* The P2 operand */
320   int p3,             /* The P3 operand */
321   int p4              /* The P4 operand as an integer */
322 ){
323   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
324   sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
325   return addr;
326 }
327 
328 /* Insert the end of a co-routine
329 */
330 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
331   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
332 
333   /* Clear the temporary register cache, thereby ensuring that each
334   ** co-routine has its own independent set of registers, because co-routines
335   ** might expect their registers to be preserved across an OP_Yield, and
336   ** that could cause problems if two or more co-routines are using the same
337   ** temporary register.
338   */
339   v->pParse->nTempReg = 0;
340   v->pParse->nRangeReg = 0;
341 }
342 
343 /*
344 ** Create a new symbolic label for an instruction that has yet to be
345 ** coded.  The symbolic label is really just a negative number.  The
346 ** label can be used as the P2 value of an operation.  Later, when
347 ** the label is resolved to a specific address, the VDBE will scan
348 ** through its operation list and change all values of P2 which match
349 ** the label into the resolved address.
350 **
351 ** The VDBE knows that a P2 value is a label because labels are
352 ** always negative and P2 values are suppose to be non-negative.
353 ** Hence, a negative P2 value is a label that has yet to be resolved.
354 **
355 ** Zero is returned if a malloc() fails.
356 */
357 int sqlite3VdbeMakeLabel(Vdbe *v){
358   Parse *p = v->pParse;
359   int i = p->nLabel++;
360   assert( v->magic==VDBE_MAGIC_INIT );
361   if( (i & (i-1))==0 ){
362     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
363                                        (i*2+1)*sizeof(p->aLabel[0]));
364   }
365   if( p->aLabel ){
366     p->aLabel[i] = -1;
367   }
368   return ADDR(i);
369 }
370 
371 /*
372 ** Resolve label "x" to be the address of the next instruction to
373 ** be inserted.  The parameter "x" must have been obtained from
374 ** a prior call to sqlite3VdbeMakeLabel().
375 */
376 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
377   Parse *p = v->pParse;
378   int j = ADDR(x);
379   assert( v->magic==VDBE_MAGIC_INIT );
380   assert( j<p->nLabel );
381   assert( j>=0 );
382   if( p->aLabel ){
383     p->aLabel[j] = v->nOp;
384   }
385   p->iFixedOp = v->nOp - 1;
386 }
387 
388 /*
389 ** Mark the VDBE as one that can only be run one time.
390 */
391 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
392   p->runOnlyOnce = 1;
393 }
394 
395 /*
396 ** Mark the VDBE as one that can only be run multiple times.
397 */
398 void sqlite3VdbeReusable(Vdbe *p){
399   p->runOnlyOnce = 0;
400 }
401 
402 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
403 
404 /*
405 ** The following type and function are used to iterate through all opcodes
406 ** in a Vdbe main program and each of the sub-programs (triggers) it may
407 ** invoke directly or indirectly. It should be used as follows:
408 **
409 **   Op *pOp;
410 **   VdbeOpIter sIter;
411 **
412 **   memset(&sIter, 0, sizeof(sIter));
413 **   sIter.v = v;                            // v is of type Vdbe*
414 **   while( (pOp = opIterNext(&sIter)) ){
415 **     // Do something with pOp
416 **   }
417 **   sqlite3DbFree(v->db, sIter.apSub);
418 **
419 */
420 typedef struct VdbeOpIter VdbeOpIter;
421 struct VdbeOpIter {
422   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
423   SubProgram **apSub;        /* Array of subprograms */
424   int nSub;                  /* Number of entries in apSub */
425   int iAddr;                 /* Address of next instruction to return */
426   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
427 };
428 static Op *opIterNext(VdbeOpIter *p){
429   Vdbe *v = p->v;
430   Op *pRet = 0;
431   Op *aOp;
432   int nOp;
433 
434   if( p->iSub<=p->nSub ){
435 
436     if( p->iSub==0 ){
437       aOp = v->aOp;
438       nOp = v->nOp;
439     }else{
440       aOp = p->apSub[p->iSub-1]->aOp;
441       nOp = p->apSub[p->iSub-1]->nOp;
442     }
443     assert( p->iAddr<nOp );
444 
445     pRet = &aOp[p->iAddr];
446     p->iAddr++;
447     if( p->iAddr==nOp ){
448       p->iSub++;
449       p->iAddr = 0;
450     }
451 
452     if( pRet->p4type==P4_SUBPROGRAM ){
453       int nByte = (p->nSub+1)*sizeof(SubProgram*);
454       int j;
455       for(j=0; j<p->nSub; j++){
456         if( p->apSub[j]==pRet->p4.pProgram ) break;
457       }
458       if( j==p->nSub ){
459         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
460         if( !p->apSub ){
461           pRet = 0;
462         }else{
463           p->apSub[p->nSub++] = pRet->p4.pProgram;
464         }
465       }
466     }
467   }
468 
469   return pRet;
470 }
471 
472 /*
473 ** Check if the program stored in the VM associated with pParse may
474 ** throw an ABORT exception (causing the statement, but not entire transaction
475 ** to be rolled back). This condition is true if the main program or any
476 ** sub-programs contains any of the following:
477 **
478 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
479 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
480 **   *  OP_Destroy
481 **   *  OP_VUpdate
482 **   *  OP_VRename
483 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
484 **   *  OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
485 **
486 ** Then check that the value of Parse.mayAbort is true if an
487 ** ABORT may be thrown, or false otherwise. Return true if it does
488 ** match, or false otherwise. This function is intended to be used as
489 ** part of an assert statement in the compiler. Similar to:
490 **
491 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
492 */
493 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
494   int hasAbort = 0;
495   int hasFkCounter = 0;
496   int hasCreateTable = 0;
497   int hasInitCoroutine = 0;
498   Op *pOp;
499   VdbeOpIter sIter;
500   memset(&sIter, 0, sizeof(sIter));
501   sIter.v = v;
502 
503   while( (pOp = opIterNext(&sIter))!=0 ){
504     int opcode = pOp->opcode;
505     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
506      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
507       && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
508     ){
509       hasAbort = 1;
510       break;
511     }
512     if( opcode==OP_CreateTable ) hasCreateTable = 1;
513     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
514 #ifndef SQLITE_OMIT_FOREIGN_KEY
515     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
516       hasFkCounter = 1;
517     }
518 #endif
519   }
520   sqlite3DbFree(v->db, sIter.apSub);
521 
522   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
523   ** If malloc failed, then the while() loop above may not have iterated
524   ** through all opcodes and hasAbort may be set incorrectly. Return
525   ** true for this case to prevent the assert() in the callers frame
526   ** from failing.  */
527   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
528               || (hasCreateTable && hasInitCoroutine) );
529 }
530 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
531 
532 /*
533 ** This routine is called after all opcodes have been inserted.  It loops
534 ** through all the opcodes and fixes up some details.
535 **
536 ** (1) For each jump instruction with a negative P2 value (a label)
537 **     resolve the P2 value to an actual address.
538 **
539 ** (2) Compute the maximum number of arguments used by any SQL function
540 **     and store that value in *pMaxFuncArgs.
541 **
542 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
543 **     indicate what the prepared statement actually does.
544 **
545 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
546 **
547 ** (5) Reclaim the memory allocated for storing labels.
548 **
549 ** This routine will only function correctly if the mkopcodeh.tcl generator
550 ** script numbers the opcodes correctly.  Changes to this routine must be
551 ** coordinated with changes to mkopcodeh.tcl.
552 */
553 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
554   int nMaxArgs = *pMaxFuncArgs;
555   Op *pOp;
556   Parse *pParse = p->pParse;
557   int *aLabel = pParse->aLabel;
558   p->readOnly = 1;
559   p->bIsReader = 0;
560   pOp = &p->aOp[p->nOp-1];
561   while(1){
562 
563     /* Only JUMP opcodes and the short list of special opcodes in the switch
564     ** below need to be considered.  The mkopcodeh.tcl generator script groups
565     ** all these opcodes together near the front of the opcode list.  Skip
566     ** any opcode that does not need processing by virtual of the fact that
567     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
568     */
569     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
570       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
571       ** cases from this switch! */
572       switch( pOp->opcode ){
573         case OP_Transaction: {
574           if( pOp->p2!=0 ) p->readOnly = 0;
575           /* fall thru */
576         }
577         case OP_AutoCommit:
578         case OP_Savepoint: {
579           p->bIsReader = 1;
580           break;
581         }
582 #ifndef SQLITE_OMIT_WAL
583         case OP_Checkpoint:
584 #endif
585         case OP_Vacuum:
586         case OP_JournalMode: {
587           p->readOnly = 0;
588           p->bIsReader = 1;
589           break;
590         }
591 #ifndef SQLITE_OMIT_VIRTUALTABLE
592         case OP_VUpdate: {
593           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
594           break;
595         }
596         case OP_VFilter: {
597           int n;
598           assert( (pOp - p->aOp) >= 3 );
599           assert( pOp[-1].opcode==OP_Integer );
600           n = pOp[-1].p1;
601           if( n>nMaxArgs ) nMaxArgs = n;
602           break;
603         }
604 #endif
605         case OP_Next:
606         case OP_NextIfOpen:
607         case OP_SorterNext: {
608           pOp->p4.xAdvance = sqlite3BtreeNext;
609           pOp->p4type = P4_ADVANCE;
610           break;
611         }
612         case OP_Prev:
613         case OP_PrevIfOpen: {
614           pOp->p4.xAdvance = sqlite3BtreePrevious;
615           pOp->p4type = P4_ADVANCE;
616           break;
617         }
618       }
619       if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){
620         assert( ADDR(pOp->p2)<pParse->nLabel );
621         pOp->p2 = aLabel[ADDR(pOp->p2)];
622       }
623     }
624     if( pOp==p->aOp ) break;
625     pOp--;
626   }
627   sqlite3DbFree(p->db, pParse->aLabel);
628   pParse->aLabel = 0;
629   pParse->nLabel = 0;
630   *pMaxFuncArgs = nMaxArgs;
631   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
632 }
633 
634 /*
635 ** Return the address of the next instruction to be inserted.
636 */
637 int sqlite3VdbeCurrentAddr(Vdbe *p){
638   assert( p->magic==VDBE_MAGIC_INIT );
639   return p->nOp;
640 }
641 
642 /*
643 ** Verify that at least N opcode slots are available in p without
644 ** having to malloc for more space (except when compiled using
645 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
646 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
647 ** fail due to a OOM fault and hence that the return value from
648 ** sqlite3VdbeAddOpList() will always be non-NULL.
649 */
650 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
651 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
652   assert( p->nOp + N <= p->pParse->nOpAlloc );
653 }
654 #endif
655 
656 /*
657 ** This function returns a pointer to the array of opcodes associated with
658 ** the Vdbe passed as the first argument. It is the callers responsibility
659 ** to arrange for the returned array to be eventually freed using the
660 ** vdbeFreeOpArray() function.
661 **
662 ** Before returning, *pnOp is set to the number of entries in the returned
663 ** array. Also, *pnMaxArg is set to the larger of its current value and
664 ** the number of entries in the Vdbe.apArg[] array required to execute the
665 ** returned program.
666 */
667 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
668   VdbeOp *aOp = p->aOp;
669   assert( aOp && !p->db->mallocFailed );
670 
671   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
672   assert( DbMaskAllZero(p->btreeMask) );
673 
674   resolveP2Values(p, pnMaxArg);
675   *pnOp = p->nOp;
676   p->aOp = 0;
677   return aOp;
678 }
679 
680 /*
681 ** Add a whole list of operations to the operation stack.  Return a
682 ** pointer to the first operation inserted.
683 **
684 ** Non-zero P2 arguments to jump instructions are automatically adjusted
685 ** so that the jump target is relative to the first operation inserted.
686 */
687 VdbeOp *sqlite3VdbeAddOpList(
688   Vdbe *p,                     /* Add opcodes to the prepared statement */
689   int nOp,                     /* Number of opcodes to add */
690   VdbeOpList const *aOp,       /* The opcodes to be added */
691   int iLineno                  /* Source-file line number of first opcode */
692 ){
693   int i;
694   VdbeOp *pOut, *pFirst;
695   assert( nOp>0 );
696   assert( p->magic==VDBE_MAGIC_INIT );
697   if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
698     return 0;
699   }
700   pFirst = pOut = &p->aOp[p->nOp];
701   for(i=0; i<nOp; i++, aOp++, pOut++){
702     pOut->opcode = aOp->opcode;
703     pOut->p1 = aOp->p1;
704     pOut->p2 = aOp->p2;
705     assert( aOp->p2>=0 );
706     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
707       pOut->p2 += p->nOp;
708     }
709     pOut->p3 = aOp->p3;
710     pOut->p4type = P4_NOTUSED;
711     pOut->p4.p = 0;
712     pOut->p5 = 0;
713 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
714     pOut->zComment = 0;
715 #endif
716 #ifdef SQLITE_VDBE_COVERAGE
717     pOut->iSrcLine = iLineno+i;
718 #else
719     (void)iLineno;
720 #endif
721 #ifdef SQLITE_DEBUG
722     if( p->db->flags & SQLITE_VdbeAddopTrace ){
723       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
724     }
725 #endif
726   }
727   p->nOp += nOp;
728   return pFirst;
729 }
730 
731 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
732 /*
733 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
734 */
735 void sqlite3VdbeScanStatus(
736   Vdbe *p,                        /* VM to add scanstatus() to */
737   int addrExplain,                /* Address of OP_Explain (or 0) */
738   int addrLoop,                   /* Address of loop counter */
739   int addrVisit,                  /* Address of rows visited counter */
740   LogEst nEst,                    /* Estimated number of output rows */
741   const char *zName               /* Name of table or index being scanned */
742 ){
743   int nByte = (p->nScan+1) * sizeof(ScanStatus);
744   ScanStatus *aNew;
745   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
746   if( aNew ){
747     ScanStatus *pNew = &aNew[p->nScan++];
748     pNew->addrExplain = addrExplain;
749     pNew->addrLoop = addrLoop;
750     pNew->addrVisit = addrVisit;
751     pNew->nEst = nEst;
752     pNew->zName = sqlite3DbStrDup(p->db, zName);
753     p->aScan = aNew;
754   }
755 }
756 #endif
757 
758 
759 /*
760 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
761 ** for a specific instruction.
762 */
763 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
764   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
765 }
766 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
767   sqlite3VdbeGetOp(p,addr)->p1 = val;
768 }
769 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
770   sqlite3VdbeGetOp(p,addr)->p2 = val;
771 }
772 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
773   sqlite3VdbeGetOp(p,addr)->p3 = val;
774 }
775 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
776   if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5;
777 }
778 
779 /*
780 ** Change the P2 operand of instruction addr so that it points to
781 ** the address of the next instruction to be coded.
782 */
783 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
784   p->pParse->iFixedOp = p->nOp - 1;
785   sqlite3VdbeChangeP2(p, addr, p->nOp);
786 }
787 
788 
789 /*
790 ** If the input FuncDef structure is ephemeral, then free it.  If
791 ** the FuncDef is not ephermal, then do nothing.
792 */
793 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
794   if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
795     sqlite3DbFree(db, pDef);
796   }
797 }
798 
799 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
800 
801 /*
802 ** Delete a P4 value if necessary.
803 */
804 static void freeP4(sqlite3 *db, int p4type, void *p4){
805   assert( db );
806   switch( p4type ){
807     case P4_FUNCCTX: {
808       freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
809       /* Fall through into the next case */
810     }
811     case P4_REAL:
812     case P4_INT64:
813     case P4_DYNAMIC:
814     case P4_INTARRAY: {
815       sqlite3DbFree(db, p4);
816       break;
817     }
818     case P4_KEYINFO: {
819       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
820       break;
821     }
822 #ifdef SQLITE_ENABLE_CURSOR_HINTS
823     case P4_EXPR: {
824       sqlite3ExprDelete(db, (Expr*)p4);
825       break;
826     }
827 #endif
828     case P4_MPRINTF: {
829       if( db->pnBytesFreed==0 ) sqlite3_free(p4);
830       break;
831     }
832     case P4_FUNCDEF: {
833       freeEphemeralFunction(db, (FuncDef*)p4);
834       break;
835     }
836     case P4_MEM: {
837       if( db->pnBytesFreed==0 ){
838         sqlite3ValueFree((sqlite3_value*)p4);
839       }else{
840         Mem *p = (Mem*)p4;
841         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
842         sqlite3DbFree(db, p);
843       }
844       break;
845     }
846     case P4_VTAB : {
847       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
848       break;
849     }
850   }
851 }
852 
853 /*
854 ** Free the space allocated for aOp and any p4 values allocated for the
855 ** opcodes contained within. If aOp is not NULL it is assumed to contain
856 ** nOp entries.
857 */
858 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
859   if( aOp ){
860     Op *pOp;
861     for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
862       if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
863 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
864       sqlite3DbFree(db, pOp->zComment);
865 #endif
866     }
867   }
868   sqlite3DbFree(db, aOp);
869 }
870 
871 /*
872 ** Link the SubProgram object passed as the second argument into the linked
873 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
874 ** objects when the VM is no longer required.
875 */
876 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
877   p->pNext = pVdbe->pProgram;
878   pVdbe->pProgram = p;
879 }
880 
881 /*
882 ** Change the opcode at addr into OP_Noop
883 */
884 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
885   VdbeOp *pOp;
886   if( p->db->mallocFailed ) return 0;
887   assert( addr>=0 && addr<p->nOp );
888   pOp = &p->aOp[addr];
889   freeP4(p->db, pOp->p4type, pOp->p4.p);
890   pOp->p4type = P4_NOTUSED;
891   pOp->p4.z = 0;
892   pOp->opcode = OP_Noop;
893   return 1;
894 }
895 
896 /*
897 ** If the last opcode is "op" and it is not a jump destination,
898 ** then remove it.  Return true if and only if an opcode was removed.
899 */
900 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
901   if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
902     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
903   }else{
904     return 0;
905   }
906 }
907 
908 /*
909 ** Change the value of the P4 operand for a specific instruction.
910 ** This routine is useful when a large program is loaded from a
911 ** static array using sqlite3VdbeAddOpList but we want to make a
912 ** few minor changes to the program.
913 **
914 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
915 ** the string is made into memory obtained from sqlite3_malloc().
916 ** A value of n==0 means copy bytes of zP4 up to and including the
917 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
918 **
919 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
920 ** to a string or structure that is guaranteed to exist for the lifetime of
921 ** the Vdbe. In these cases we can just copy the pointer.
922 **
923 ** If addr<0 then change P4 on the most recently inserted instruction.
924 */
925 static void SQLITE_NOINLINE vdbeChangeP4Full(
926   Vdbe *p,
927   Op *pOp,
928   const char *zP4,
929   int n
930 ){
931   if( pOp->p4type ){
932     freeP4(p->db, pOp->p4type, pOp->p4.p);
933     pOp->p4type = 0;
934     pOp->p4.p = 0;
935   }
936   if( n<0 ){
937     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
938   }else{
939     if( n==0 ) n = sqlite3Strlen30(zP4);
940     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
941     pOp->p4type = P4_DYNAMIC;
942   }
943 }
944 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
945   Op *pOp;
946   sqlite3 *db;
947   assert( p!=0 );
948   db = p->db;
949   assert( p->magic==VDBE_MAGIC_INIT );
950   assert( p->aOp!=0 || db->mallocFailed );
951   if( db->mallocFailed ){
952     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
953     return;
954   }
955   assert( p->nOp>0 );
956   assert( addr<p->nOp );
957   if( addr<0 ){
958     addr = p->nOp - 1;
959   }
960   pOp = &p->aOp[addr];
961   if( n>=0 || pOp->p4type ){
962     vdbeChangeP4Full(p, pOp, zP4, n);
963     return;
964   }
965   if( n==P4_INT32 ){
966     /* Note: this cast is safe, because the origin data point was an int
967     ** that was cast to a (const char *). */
968     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
969     pOp->p4type = P4_INT32;
970   }else if( zP4!=0 ){
971     assert( n<0 );
972     pOp->p4.p = (void*)zP4;
973     pOp->p4type = (signed char)n;
974     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
975   }
976 }
977 
978 /*
979 ** Set the P4 on the most recently added opcode to the KeyInfo for the
980 ** index given.
981 */
982 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
983   Vdbe *v = pParse->pVdbe;
984   assert( v!=0 );
985   assert( pIdx!=0 );
986   sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
987                       P4_KEYINFO);
988 }
989 
990 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
991 /*
992 ** Change the comment on the most recently coded instruction.  Or
993 ** insert a No-op and add the comment to that new instruction.  This
994 ** makes the code easier to read during debugging.  None of this happens
995 ** in a production build.
996 */
997 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
998   assert( p->nOp>0 || p->aOp==0 );
999   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1000   if( p->nOp ){
1001     assert( p->aOp );
1002     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1003     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1004   }
1005 }
1006 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1007   va_list ap;
1008   if( p ){
1009     va_start(ap, zFormat);
1010     vdbeVComment(p, zFormat, ap);
1011     va_end(ap);
1012   }
1013 }
1014 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1015   va_list ap;
1016   if( p ){
1017     sqlite3VdbeAddOp0(p, OP_Noop);
1018     va_start(ap, zFormat);
1019     vdbeVComment(p, zFormat, ap);
1020     va_end(ap);
1021   }
1022 }
1023 #endif  /* NDEBUG */
1024 
1025 #ifdef SQLITE_VDBE_COVERAGE
1026 /*
1027 ** Set the value if the iSrcLine field for the previously coded instruction.
1028 */
1029 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1030   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1031 }
1032 #endif /* SQLITE_VDBE_COVERAGE */
1033 
1034 /*
1035 ** Return the opcode for a given address.  If the address is -1, then
1036 ** return the most recently inserted opcode.
1037 **
1038 ** If a memory allocation error has occurred prior to the calling of this
1039 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1040 ** is readable but not writable, though it is cast to a writable value.
1041 ** The return of a dummy opcode allows the call to continue functioning
1042 ** after an OOM fault without having to check to see if the return from
1043 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1044 ** dummy will never be written to.  This is verified by code inspection and
1045 ** by running with Valgrind.
1046 */
1047 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1048   /* C89 specifies that the constant "dummy" will be initialized to all
1049   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1050   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1051   assert( p->magic==VDBE_MAGIC_INIT );
1052   if( addr<0 ){
1053     addr = p->nOp - 1;
1054   }
1055   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1056   if( p->db->mallocFailed ){
1057     return (VdbeOp*)&dummy;
1058   }else{
1059     return &p->aOp[addr];
1060   }
1061 }
1062 
1063 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1064 /*
1065 ** Return an integer value for one of the parameters to the opcode pOp
1066 ** determined by character c.
1067 */
1068 static int translateP(char c, const Op *pOp){
1069   if( c=='1' ) return pOp->p1;
1070   if( c=='2' ) return pOp->p2;
1071   if( c=='3' ) return pOp->p3;
1072   if( c=='4' ) return pOp->p4.i;
1073   return pOp->p5;
1074 }
1075 
1076 /*
1077 ** Compute a string for the "comment" field of a VDBE opcode listing.
1078 **
1079 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1080 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1081 ** absence of other comments, this synopsis becomes the comment on the opcode.
1082 ** Some translation occurs:
1083 **
1084 **       "PX"      ->  "r[X]"
1085 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1086 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1087 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1088 */
1089 static int displayComment(
1090   const Op *pOp,     /* The opcode to be commented */
1091   const char *zP4,   /* Previously obtained value for P4 */
1092   char *zTemp,       /* Write result here */
1093   int nTemp          /* Space available in zTemp[] */
1094 ){
1095   const char *zOpName;
1096   const char *zSynopsis;
1097   int nOpName;
1098   int ii, jj;
1099   zOpName = sqlite3OpcodeName(pOp->opcode);
1100   nOpName = sqlite3Strlen30(zOpName);
1101   if( zOpName[nOpName+1] ){
1102     int seenCom = 0;
1103     char c;
1104     zSynopsis = zOpName += nOpName + 1;
1105     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1106       if( c=='P' ){
1107         c = zSynopsis[++ii];
1108         if( c=='4' ){
1109           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1110         }else if( c=='X' ){
1111           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1112           seenCom = 1;
1113         }else{
1114           int v1 = translateP(c, pOp);
1115           int v2;
1116           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1117           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1118             ii += 3;
1119             jj += sqlite3Strlen30(zTemp+jj);
1120             v2 = translateP(zSynopsis[ii], pOp);
1121             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1122               ii += 2;
1123               v2++;
1124             }
1125             if( v2>1 ){
1126               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1127             }
1128           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1129             ii += 4;
1130           }
1131         }
1132         jj += sqlite3Strlen30(zTemp+jj);
1133       }else{
1134         zTemp[jj++] = c;
1135       }
1136     }
1137     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1138       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1139       jj += sqlite3Strlen30(zTemp+jj);
1140     }
1141     if( jj<nTemp ) zTemp[jj] = 0;
1142   }else if( pOp->zComment ){
1143     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1144     jj = sqlite3Strlen30(zTemp);
1145   }else{
1146     zTemp[0] = 0;
1147     jj = 0;
1148   }
1149   return jj;
1150 }
1151 #endif /* SQLITE_DEBUG */
1152 
1153 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1154 /*
1155 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1156 ** that can be displayed in the P4 column of EXPLAIN output.
1157 */
1158 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1159   const char *zOp = 0;
1160   switch( pExpr->op ){
1161     case TK_STRING:
1162       sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1163       break;
1164     case TK_INTEGER:
1165       sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1166       break;
1167     case TK_NULL:
1168       sqlite3XPrintf(p, "NULL");
1169       break;
1170     case TK_REGISTER: {
1171       sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1172       break;
1173     }
1174     case TK_COLUMN: {
1175       if( pExpr->iColumn<0 ){
1176         sqlite3XPrintf(p, "rowid");
1177       }else{
1178         sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1179       }
1180       break;
1181     }
1182     case TK_LT:      zOp = "LT";      break;
1183     case TK_LE:      zOp = "LE";      break;
1184     case TK_GT:      zOp = "GT";      break;
1185     case TK_GE:      zOp = "GE";      break;
1186     case TK_NE:      zOp = "NE";      break;
1187     case TK_EQ:      zOp = "EQ";      break;
1188     case TK_IS:      zOp = "IS";      break;
1189     case TK_ISNOT:   zOp = "ISNOT";   break;
1190     case TK_AND:     zOp = "AND";     break;
1191     case TK_OR:      zOp = "OR";      break;
1192     case TK_PLUS:    zOp = "ADD";     break;
1193     case TK_STAR:    zOp = "MUL";     break;
1194     case TK_MINUS:   zOp = "SUB";     break;
1195     case TK_REM:     zOp = "REM";     break;
1196     case TK_BITAND:  zOp = "BITAND";  break;
1197     case TK_BITOR:   zOp = "BITOR";   break;
1198     case TK_SLASH:   zOp = "DIV";     break;
1199     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1200     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1201     case TK_CONCAT:  zOp = "CONCAT";  break;
1202     case TK_UMINUS:  zOp = "MINUS";   break;
1203     case TK_UPLUS:   zOp = "PLUS";    break;
1204     case TK_BITNOT:  zOp = "BITNOT";  break;
1205     case TK_NOT:     zOp = "NOT";     break;
1206     case TK_ISNULL:  zOp = "ISNULL";  break;
1207     case TK_NOTNULL: zOp = "NOTNULL"; break;
1208 
1209     default:
1210       sqlite3XPrintf(p, "%s", "expr");
1211       break;
1212   }
1213 
1214   if( zOp ){
1215     sqlite3XPrintf(p, "%s(", zOp);
1216     displayP4Expr(p, pExpr->pLeft);
1217     if( pExpr->pRight ){
1218       sqlite3StrAccumAppend(p, ",", 1);
1219       displayP4Expr(p, pExpr->pRight);
1220     }
1221     sqlite3StrAccumAppend(p, ")", 1);
1222   }
1223 }
1224 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1225 
1226 
1227 #if VDBE_DISPLAY_P4
1228 /*
1229 ** Compute a string that describes the P4 parameter for an opcode.
1230 ** Use zTemp for any required temporary buffer space.
1231 */
1232 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1233   char *zP4 = zTemp;
1234   StrAccum x;
1235   assert( nTemp>=20 );
1236   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1237   switch( pOp->p4type ){
1238     case P4_KEYINFO: {
1239       int j;
1240       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1241       assert( pKeyInfo->aSortOrder!=0 );
1242       sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
1243       for(j=0; j<pKeyInfo->nField; j++){
1244         CollSeq *pColl = pKeyInfo->aColl[j];
1245         const char *zColl = pColl ? pColl->zName : "";
1246         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1247         sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1248       }
1249       sqlite3StrAccumAppend(&x, ")", 1);
1250       break;
1251     }
1252 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1253     case P4_EXPR: {
1254       displayP4Expr(&x, pOp->p4.pExpr);
1255       break;
1256     }
1257 #endif
1258     case P4_COLLSEQ: {
1259       CollSeq *pColl = pOp->p4.pColl;
1260       sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1261       break;
1262     }
1263     case P4_FUNCDEF: {
1264       FuncDef *pDef = pOp->p4.pFunc;
1265       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1266       break;
1267     }
1268 #ifdef SQLITE_DEBUG
1269     case P4_FUNCCTX: {
1270       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1271       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1272       break;
1273     }
1274 #endif
1275     case P4_INT64: {
1276       sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1277       break;
1278     }
1279     case P4_INT32: {
1280       sqlite3XPrintf(&x, "%d", pOp->p4.i);
1281       break;
1282     }
1283     case P4_REAL: {
1284       sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1285       break;
1286     }
1287     case P4_MEM: {
1288       Mem *pMem = pOp->p4.pMem;
1289       if( pMem->flags & MEM_Str ){
1290         zP4 = pMem->z;
1291       }else if( pMem->flags & MEM_Int ){
1292         sqlite3XPrintf(&x, "%lld", pMem->u.i);
1293       }else if( pMem->flags & MEM_Real ){
1294         sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1295       }else if( pMem->flags & MEM_Null ){
1296         zP4 = "NULL";
1297       }else{
1298         assert( pMem->flags & MEM_Blob );
1299         zP4 = "(blob)";
1300       }
1301       break;
1302     }
1303 #ifndef SQLITE_OMIT_VIRTUALTABLE
1304     case P4_VTAB: {
1305       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1306       sqlite3XPrintf(&x, "vtab:%p", pVtab);
1307       break;
1308     }
1309 #endif
1310     case P4_INTARRAY: {
1311       int i;
1312       int *ai = pOp->p4.ai;
1313       int n = ai[0];   /* The first element of an INTARRAY is always the
1314                        ** count of the number of elements to follow */
1315       for(i=1; i<n; i++){
1316         sqlite3XPrintf(&x, ",%d", ai[i]);
1317       }
1318       zTemp[0] = '[';
1319       sqlite3StrAccumAppend(&x, "]", 1);
1320       break;
1321     }
1322     case P4_SUBPROGRAM: {
1323       sqlite3XPrintf(&x, "program");
1324       break;
1325     }
1326     case P4_ADVANCE: {
1327       zTemp[0] = 0;
1328       break;
1329     }
1330     case P4_TABLE: {
1331       sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1332       break;
1333     }
1334     default: {
1335       zP4 = pOp->p4.z;
1336       if( zP4==0 ){
1337         zP4 = zTemp;
1338         zTemp[0] = 0;
1339       }
1340     }
1341   }
1342   sqlite3StrAccumFinish(&x);
1343   assert( zP4!=0 );
1344   return zP4;
1345 }
1346 #endif /* VDBE_DISPLAY_P4 */
1347 
1348 /*
1349 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1350 **
1351 ** The prepared statements need to know in advance the complete set of
1352 ** attached databases that will be use.  A mask of these databases
1353 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1354 ** p->btreeMask of databases that will require a lock.
1355 */
1356 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1357   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1358   assert( i<(int)sizeof(p->btreeMask)*8 );
1359   DbMaskSet(p->btreeMask, i);
1360   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1361     DbMaskSet(p->lockMask, i);
1362   }
1363 }
1364 
1365 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1366 /*
1367 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1368 ** this routine obtains the mutex associated with each BtShared structure
1369 ** that may be accessed by the VM passed as an argument. In doing so it also
1370 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1371 ** that the correct busy-handler callback is invoked if required.
1372 **
1373 ** If SQLite is not threadsafe but does support shared-cache mode, then
1374 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1375 ** of all of BtShared structures accessible via the database handle
1376 ** associated with the VM.
1377 **
1378 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1379 ** function is a no-op.
1380 **
1381 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1382 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1383 ** corresponding to btrees that use shared cache.  Then the runtime of
1384 ** this routine is N*N.  But as N is rarely more than 1, this should not
1385 ** be a problem.
1386 */
1387 void sqlite3VdbeEnter(Vdbe *p){
1388   int i;
1389   sqlite3 *db;
1390   Db *aDb;
1391   int nDb;
1392   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1393   db = p->db;
1394   aDb = db->aDb;
1395   nDb = db->nDb;
1396   for(i=0; i<nDb; i++){
1397     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1398       sqlite3BtreeEnter(aDb[i].pBt);
1399     }
1400   }
1401 }
1402 #endif
1403 
1404 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1405 /*
1406 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1407 */
1408 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1409   int i;
1410   sqlite3 *db;
1411   Db *aDb;
1412   int nDb;
1413   db = p->db;
1414   aDb = db->aDb;
1415   nDb = db->nDb;
1416   for(i=0; i<nDb; i++){
1417     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1418       sqlite3BtreeLeave(aDb[i].pBt);
1419     }
1420   }
1421 }
1422 void sqlite3VdbeLeave(Vdbe *p){
1423   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1424   vdbeLeave(p);
1425 }
1426 #endif
1427 
1428 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1429 /*
1430 ** Print a single opcode.  This routine is used for debugging only.
1431 */
1432 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1433   char *zP4;
1434   char zPtr[50];
1435   char zCom[100];
1436   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1437   if( pOut==0 ) pOut = stdout;
1438   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1439 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1440   displayComment(pOp, zP4, zCom, sizeof(zCom));
1441 #else
1442   zCom[0] = 0;
1443 #endif
1444   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1445   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1446   ** information from the vdbe.c source text */
1447   fprintf(pOut, zFormat1, pc,
1448       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1449       zCom
1450   );
1451   fflush(pOut);
1452 }
1453 #endif
1454 
1455 /*
1456 ** Release an array of N Mem elements
1457 */
1458 static void releaseMemArray(Mem *p, int N){
1459   if( p && N ){
1460     Mem *pEnd = &p[N];
1461     sqlite3 *db = p->db;
1462     if( db->pnBytesFreed ){
1463       do{
1464         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1465       }while( (++p)<pEnd );
1466       return;
1467     }
1468     do{
1469       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1470       assert( sqlite3VdbeCheckMemInvariants(p) );
1471 
1472       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1473       ** that takes advantage of the fact that the memory cell value is
1474       ** being set to NULL after releasing any dynamic resources.
1475       **
1476       ** The justification for duplicating code is that according to
1477       ** callgrind, this causes a certain test case to hit the CPU 4.7
1478       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1479       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1480       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1481       ** with no indexes using a single prepared INSERT statement, bind()
1482       ** and reset(). Inserts are grouped into a transaction.
1483       */
1484       testcase( p->flags & MEM_Agg );
1485       testcase( p->flags & MEM_Dyn );
1486       testcase( p->flags & MEM_Frame );
1487       testcase( p->flags & MEM_RowSet );
1488       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1489         sqlite3VdbeMemRelease(p);
1490       }else if( p->szMalloc ){
1491         sqlite3DbFree(db, p->zMalloc);
1492         p->szMalloc = 0;
1493       }
1494 
1495       p->flags = MEM_Undefined;
1496     }while( (++p)<pEnd );
1497   }
1498 }
1499 
1500 /*
1501 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1502 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1503 */
1504 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1505   int i;
1506   Mem *aMem = VdbeFrameMem(p);
1507   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1508   for(i=0; i<p->nChildCsr; i++){
1509     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1510   }
1511   releaseMemArray(aMem, p->nChildMem);
1512   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1513   sqlite3DbFree(p->v->db, p);
1514 }
1515 
1516 #ifndef SQLITE_OMIT_EXPLAIN
1517 /*
1518 ** Give a listing of the program in the virtual machine.
1519 **
1520 ** The interface is the same as sqlite3VdbeExec().  But instead of
1521 ** running the code, it invokes the callback once for each instruction.
1522 ** This feature is used to implement "EXPLAIN".
1523 **
1524 ** When p->explain==1, each instruction is listed.  When
1525 ** p->explain==2, only OP_Explain instructions are listed and these
1526 ** are shown in a different format.  p->explain==2 is used to implement
1527 ** EXPLAIN QUERY PLAN.
1528 **
1529 ** When p->explain==1, first the main program is listed, then each of
1530 ** the trigger subprograms are listed one by one.
1531 */
1532 int sqlite3VdbeList(
1533   Vdbe *p                   /* The VDBE */
1534 ){
1535   int nRow;                            /* Stop when row count reaches this */
1536   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1537   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1538   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1539   sqlite3 *db = p->db;                 /* The database connection */
1540   int i;                               /* Loop counter */
1541   int rc = SQLITE_OK;                  /* Return code */
1542   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1543 
1544   assert( p->explain );
1545   assert( p->magic==VDBE_MAGIC_RUN );
1546   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1547 
1548   /* Even though this opcode does not use dynamic strings for
1549   ** the result, result columns may become dynamic if the user calls
1550   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1551   */
1552   releaseMemArray(pMem, 8);
1553   p->pResultSet = 0;
1554 
1555   if( p->rc==SQLITE_NOMEM_BKPT ){
1556     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1557     ** sqlite3_column_text16() failed.  */
1558     sqlite3OomFault(db);
1559     return SQLITE_ERROR;
1560   }
1561 
1562   /* When the number of output rows reaches nRow, that means the
1563   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1564   ** nRow is the sum of the number of rows in the main program, plus
1565   ** the sum of the number of rows in all trigger subprograms encountered
1566   ** so far.  The nRow value will increase as new trigger subprograms are
1567   ** encountered, but p->pc will eventually catch up to nRow.
1568   */
1569   nRow = p->nOp;
1570   if( p->explain==1 ){
1571     /* The first 8 memory cells are used for the result set.  So we will
1572     ** commandeer the 9th cell to use as storage for an array of pointers
1573     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1574     ** cells.  */
1575     assert( p->nMem>9 );
1576     pSub = &p->aMem[9];
1577     if( pSub->flags&MEM_Blob ){
1578       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1579       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1580       nSub = pSub->n/sizeof(Vdbe*);
1581       apSub = (SubProgram **)pSub->z;
1582     }
1583     for(i=0; i<nSub; i++){
1584       nRow += apSub[i]->nOp;
1585     }
1586   }
1587 
1588   do{
1589     i = p->pc++;
1590   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1591   if( i>=nRow ){
1592     p->rc = SQLITE_OK;
1593     rc = SQLITE_DONE;
1594   }else if( db->u1.isInterrupted ){
1595     p->rc = SQLITE_INTERRUPT;
1596     rc = SQLITE_ERROR;
1597     sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1598   }else{
1599     char *zP4;
1600     Op *pOp;
1601     if( i<p->nOp ){
1602       /* The output line number is small enough that we are still in the
1603       ** main program. */
1604       pOp = &p->aOp[i];
1605     }else{
1606       /* We are currently listing subprograms.  Figure out which one and
1607       ** pick up the appropriate opcode. */
1608       int j;
1609       i -= p->nOp;
1610       for(j=0; i>=apSub[j]->nOp; j++){
1611         i -= apSub[j]->nOp;
1612       }
1613       pOp = &apSub[j]->aOp[i];
1614     }
1615     if( p->explain==1 ){
1616       pMem->flags = MEM_Int;
1617       pMem->u.i = i;                                /* Program counter */
1618       pMem++;
1619 
1620       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1621       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1622       assert( pMem->z!=0 );
1623       pMem->n = sqlite3Strlen30(pMem->z);
1624       pMem->enc = SQLITE_UTF8;
1625       pMem++;
1626 
1627       /* When an OP_Program opcode is encounter (the only opcode that has
1628       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1629       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1630       ** has not already been seen.
1631       */
1632       if( pOp->p4type==P4_SUBPROGRAM ){
1633         int nByte = (nSub+1)*sizeof(SubProgram*);
1634         int j;
1635         for(j=0; j<nSub; j++){
1636           if( apSub[j]==pOp->p4.pProgram ) break;
1637         }
1638         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1639           apSub = (SubProgram **)pSub->z;
1640           apSub[nSub++] = pOp->p4.pProgram;
1641           pSub->flags |= MEM_Blob;
1642           pSub->n = nSub*sizeof(SubProgram*);
1643         }
1644       }
1645     }
1646 
1647     pMem->flags = MEM_Int;
1648     pMem->u.i = pOp->p1;                          /* P1 */
1649     pMem++;
1650 
1651     pMem->flags = MEM_Int;
1652     pMem->u.i = pOp->p2;                          /* P2 */
1653     pMem++;
1654 
1655     pMem->flags = MEM_Int;
1656     pMem->u.i = pOp->p3;                          /* P3 */
1657     pMem++;
1658 
1659     if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1660       assert( p->db->mallocFailed );
1661       return SQLITE_ERROR;
1662     }
1663     pMem->flags = MEM_Str|MEM_Term;
1664     zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1665     if( zP4!=pMem->z ){
1666       sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1667     }else{
1668       assert( pMem->z!=0 );
1669       pMem->n = sqlite3Strlen30(pMem->z);
1670       pMem->enc = SQLITE_UTF8;
1671     }
1672     pMem++;
1673 
1674     if( p->explain==1 ){
1675       if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1676         assert( p->db->mallocFailed );
1677         return SQLITE_ERROR;
1678       }
1679       pMem->flags = MEM_Str|MEM_Term;
1680       pMem->n = 2;
1681       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
1682       pMem->enc = SQLITE_UTF8;
1683       pMem++;
1684 
1685 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1686       if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1687         assert( p->db->mallocFailed );
1688         return SQLITE_ERROR;
1689       }
1690       pMem->flags = MEM_Str|MEM_Term;
1691       pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1692       pMem->enc = SQLITE_UTF8;
1693 #else
1694       pMem->flags = MEM_Null;                       /* Comment */
1695 #endif
1696     }
1697 
1698     p->nResColumn = 8 - 4*(p->explain-1);
1699     p->pResultSet = &p->aMem[1];
1700     p->rc = SQLITE_OK;
1701     rc = SQLITE_ROW;
1702   }
1703   return rc;
1704 }
1705 #endif /* SQLITE_OMIT_EXPLAIN */
1706 
1707 #ifdef SQLITE_DEBUG
1708 /*
1709 ** Print the SQL that was used to generate a VDBE program.
1710 */
1711 void sqlite3VdbePrintSql(Vdbe *p){
1712   const char *z = 0;
1713   if( p->zSql ){
1714     z = p->zSql;
1715   }else if( p->nOp>=1 ){
1716     const VdbeOp *pOp = &p->aOp[0];
1717     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1718       z = pOp->p4.z;
1719       while( sqlite3Isspace(*z) ) z++;
1720     }
1721   }
1722   if( z ) printf("SQL: [%s]\n", z);
1723 }
1724 #endif
1725 
1726 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1727 /*
1728 ** Print an IOTRACE message showing SQL content.
1729 */
1730 void sqlite3VdbeIOTraceSql(Vdbe *p){
1731   int nOp = p->nOp;
1732   VdbeOp *pOp;
1733   if( sqlite3IoTrace==0 ) return;
1734   if( nOp<1 ) return;
1735   pOp = &p->aOp[0];
1736   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1737     int i, j;
1738     char z[1000];
1739     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1740     for(i=0; sqlite3Isspace(z[i]); i++){}
1741     for(j=0; z[i]; i++){
1742       if( sqlite3Isspace(z[i]) ){
1743         if( z[i-1]!=' ' ){
1744           z[j++] = ' ';
1745         }
1746       }else{
1747         z[j++] = z[i];
1748       }
1749     }
1750     z[j] = 0;
1751     sqlite3IoTrace("SQL %s\n", z);
1752   }
1753 }
1754 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1755 
1756 /* An instance of this object describes bulk memory available for use
1757 ** by subcomponents of a prepared statement.  Space is allocated out
1758 ** of a ReusableSpace object by the allocSpace() routine below.
1759 */
1760 struct ReusableSpace {
1761   u8 *pSpace;          /* Available memory */
1762   int nFree;           /* Bytes of available memory */
1763   int nNeeded;         /* Total bytes that could not be allocated */
1764 };
1765 
1766 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1767 ** from the ReusableSpace object.  Return a pointer to the allocated
1768 ** memory on success.  If insufficient memory is available in the
1769 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1770 ** value by the amount needed and return NULL.
1771 **
1772 ** If pBuf is not initially NULL, that means that the memory has already
1773 ** been allocated by a prior call to this routine, so just return a copy
1774 ** of pBuf and leave ReusableSpace unchanged.
1775 **
1776 ** This allocator is employed to repurpose unused slots at the end of the
1777 ** opcode array of prepared state for other memory needs of the prepared
1778 ** statement.
1779 */
1780 static void *allocSpace(
1781   struct ReusableSpace *p,  /* Bulk memory available for allocation */
1782   void *pBuf,               /* Pointer to a prior allocation */
1783   int nByte                 /* Bytes of memory needed */
1784 ){
1785   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1786   if( pBuf==0 ){
1787     nByte = ROUND8(nByte);
1788     if( nByte <= p->nFree ){
1789       p->nFree -= nByte;
1790       pBuf = &p->pSpace[p->nFree];
1791     }else{
1792       p->nNeeded += nByte;
1793     }
1794   }
1795   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1796   return pBuf;
1797 }
1798 
1799 /*
1800 ** Rewind the VDBE back to the beginning in preparation for
1801 ** running it.
1802 */
1803 void sqlite3VdbeRewind(Vdbe *p){
1804 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1805   int i;
1806 #endif
1807   assert( p!=0 );
1808   assert( p->magic==VDBE_MAGIC_INIT );
1809 
1810   /* There should be at least one opcode.
1811   */
1812   assert( p->nOp>0 );
1813 
1814   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1815   p->magic = VDBE_MAGIC_RUN;
1816 
1817 #ifdef SQLITE_DEBUG
1818   for(i=0; i<p->nMem; i++){
1819     assert( p->aMem[i].db==p->db );
1820   }
1821 #endif
1822   p->pc = -1;
1823   p->rc = SQLITE_OK;
1824   p->errorAction = OE_Abort;
1825   p->nChange = 0;
1826   p->cacheCtr = 1;
1827   p->minWriteFileFormat = 255;
1828   p->iStatement = 0;
1829   p->nFkConstraint = 0;
1830 #ifdef VDBE_PROFILE
1831   for(i=0; i<p->nOp; i++){
1832     p->aOp[i].cnt = 0;
1833     p->aOp[i].cycles = 0;
1834   }
1835 #endif
1836 }
1837 
1838 /*
1839 ** Prepare a virtual machine for execution for the first time after
1840 ** creating the virtual machine.  This involves things such
1841 ** as allocating registers and initializing the program counter.
1842 ** After the VDBE has be prepped, it can be executed by one or more
1843 ** calls to sqlite3VdbeExec().
1844 **
1845 ** This function may be called exactly once on each virtual machine.
1846 ** After this routine is called the VM has been "packaged" and is ready
1847 ** to run.  After this routine is called, further calls to
1848 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
1849 ** the Vdbe from the Parse object that helped generate it so that the
1850 ** the Vdbe becomes an independent entity and the Parse object can be
1851 ** destroyed.
1852 **
1853 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1854 ** to its initial state after it has been run.
1855 */
1856 void sqlite3VdbeMakeReady(
1857   Vdbe *p,                       /* The VDBE */
1858   Parse *pParse                  /* Parsing context */
1859 ){
1860   sqlite3 *db;                   /* The database connection */
1861   int nVar;                      /* Number of parameters */
1862   int nMem;                      /* Number of VM memory registers */
1863   int nCursor;                   /* Number of cursors required */
1864   int nArg;                      /* Number of arguments in subprograms */
1865   int nOnce;                     /* Number of OP_Once instructions */
1866   int n;                         /* Loop counter */
1867   struct ReusableSpace x;        /* Reusable bulk memory */
1868 
1869   assert( p!=0 );
1870   assert( p->nOp>0 );
1871   assert( pParse!=0 );
1872   assert( p->magic==VDBE_MAGIC_INIT );
1873   assert( pParse==p->pParse );
1874   db = p->db;
1875   assert( db->mallocFailed==0 );
1876   nVar = pParse->nVar;
1877   nMem = pParse->nMem;
1878   nCursor = pParse->nTab;
1879   nArg = pParse->nMaxArg;
1880   nOnce = pParse->nOnce;
1881   if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1882 
1883   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
1884   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
1885   ** space at the end of aMem[] for cursors 1 and greater.
1886   ** See also: allocateCursor().
1887   */
1888   nMem += nCursor;
1889   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
1890 
1891   /* Figure out how much reusable memory is available at the end of the
1892   ** opcode array.  This extra memory will be reallocated for other elements
1893   ** of the prepared statement.
1894   */
1895   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
1896   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
1897   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1898   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
1899   assert( x.nFree>=0 );
1900   if( x.nFree>0 ){
1901     memset(x.pSpace, 0, x.nFree);
1902     assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1903   }
1904 
1905   resolveP2Values(p, &nArg);
1906   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1907   if( pParse->explain && nMem<10 ){
1908     nMem = 10;
1909   }
1910   p->expired = 0;
1911 
1912   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1913   ** passes.  On the first pass, we try to reuse unused memory at the
1914   ** end of the opcode array.  If we are unable to satisfy all memory
1915   ** requirements by reusing the opcode array tail, then the second
1916   ** pass will fill in the remainder using a fresh memory allocation.
1917   **
1918   ** This two-pass approach that reuses as much memory as possible from
1919   ** the leftover memory at the end of the opcode array.  This can significantly
1920   ** reduce the amount of memory held by a prepared statement.
1921   */
1922   do {
1923     x.nNeeded = 0;
1924     p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1925     p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1926     p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1927     p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
1928     p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce);
1929 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1930     p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
1931 #endif
1932     if( x.nNeeded==0 ) break;
1933     x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded);
1934     x.nFree = x.nNeeded;
1935   }while( !db->mallocFailed );
1936 
1937   p->nCursor = nCursor;
1938   p->nOnceFlag = nOnce;
1939   if( p->aVar ){
1940     p->nVar = (ynVar)nVar;
1941     for(n=0; n<nVar; n++){
1942       p->aVar[n].flags = MEM_Null;
1943       p->aVar[n].db = db;
1944     }
1945   }
1946   p->nzVar = pParse->nzVar;
1947   p->azVar = pParse->azVar;
1948   pParse->nzVar =  0;
1949   pParse->azVar = 0;
1950   if( p->aMem ){
1951     p->nMem = nMem;
1952     for(n=0; n<nMem; n++){
1953       p->aMem[n].flags = MEM_Undefined;
1954       p->aMem[n].db = db;
1955     }
1956   }
1957   p->explain = pParse->explain;
1958   sqlite3VdbeRewind(p);
1959 }
1960 
1961 /*
1962 ** Close a VDBE cursor and release all the resources that cursor
1963 ** happens to hold.
1964 */
1965 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1966   if( pCx==0 ){
1967     return;
1968   }
1969   assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
1970   switch( pCx->eCurType ){
1971     case CURTYPE_SORTER: {
1972       sqlite3VdbeSorterClose(p->db, pCx);
1973       break;
1974     }
1975     case CURTYPE_BTREE: {
1976       if( pCx->pBt ){
1977         sqlite3BtreeClose(pCx->pBt);
1978         /* The pCx->pCursor will be close automatically, if it exists, by
1979         ** the call above. */
1980       }else{
1981         assert( pCx->uc.pCursor!=0 );
1982         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
1983       }
1984       break;
1985     }
1986 #ifndef SQLITE_OMIT_VIRTUALTABLE
1987     case CURTYPE_VTAB: {
1988       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
1989       const sqlite3_module *pModule = pVCur->pVtab->pModule;
1990       assert( pVCur->pVtab->nRef>0 );
1991       pVCur->pVtab->nRef--;
1992       pModule->xClose(pVCur);
1993       break;
1994     }
1995 #endif
1996   }
1997 }
1998 
1999 /*
2000 ** Close all cursors in the current frame.
2001 */
2002 static void closeCursorsInFrame(Vdbe *p){
2003   if( p->apCsr ){
2004     int i;
2005     for(i=0; i<p->nCursor; i++){
2006       VdbeCursor *pC = p->apCsr[i];
2007       if( pC ){
2008         sqlite3VdbeFreeCursor(p, pC);
2009         p->apCsr[i] = 0;
2010       }
2011     }
2012   }
2013 }
2014 
2015 /*
2016 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2017 ** is used, for example, when a trigger sub-program is halted to restore
2018 ** control to the main program.
2019 */
2020 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2021   Vdbe *v = pFrame->v;
2022   closeCursorsInFrame(v);
2023 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2024   v->anExec = pFrame->anExec;
2025 #endif
2026   v->aOnceFlag = pFrame->aOnceFlag;
2027   v->nOnceFlag = pFrame->nOnceFlag;
2028   v->aOp = pFrame->aOp;
2029   v->nOp = pFrame->nOp;
2030   v->aMem = pFrame->aMem;
2031   v->nMem = pFrame->nMem;
2032   v->apCsr = pFrame->apCsr;
2033   v->nCursor = pFrame->nCursor;
2034   v->db->lastRowid = pFrame->lastRowid;
2035   v->nChange = pFrame->nChange;
2036   v->db->nChange = pFrame->nDbChange;
2037   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2038   v->pAuxData = pFrame->pAuxData;
2039   pFrame->pAuxData = 0;
2040   return pFrame->pc;
2041 }
2042 
2043 /*
2044 ** Close all cursors.
2045 **
2046 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2047 ** cell array. This is necessary as the memory cell array may contain
2048 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2049 ** open cursors.
2050 */
2051 static void closeAllCursors(Vdbe *p){
2052   if( p->pFrame ){
2053     VdbeFrame *pFrame;
2054     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2055     sqlite3VdbeFrameRestore(pFrame);
2056     p->pFrame = 0;
2057     p->nFrame = 0;
2058   }
2059   assert( p->nFrame==0 );
2060   closeCursorsInFrame(p);
2061   if( p->aMem ){
2062     releaseMemArray(p->aMem, p->nMem);
2063   }
2064   while( p->pDelFrame ){
2065     VdbeFrame *pDel = p->pDelFrame;
2066     p->pDelFrame = pDel->pParent;
2067     sqlite3VdbeFrameDelete(pDel);
2068   }
2069 
2070   /* Delete any auxdata allocations made by the VM */
2071   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2072   assert( p->pAuxData==0 );
2073 }
2074 
2075 /*
2076 ** Clean up the VM after a single run.
2077 */
2078 static void Cleanup(Vdbe *p){
2079   sqlite3 *db = p->db;
2080 
2081 #ifdef SQLITE_DEBUG
2082   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2083   ** Vdbe.aMem[] arrays have already been cleaned up.  */
2084   int i;
2085   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2086   if( p->aMem ){
2087     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2088   }
2089 #endif
2090 
2091   sqlite3DbFree(db, p->zErrMsg);
2092   p->zErrMsg = 0;
2093   p->pResultSet = 0;
2094 }
2095 
2096 /*
2097 ** Set the number of result columns that will be returned by this SQL
2098 ** statement. This is now set at compile time, rather than during
2099 ** execution of the vdbe program so that sqlite3_column_count() can
2100 ** be called on an SQL statement before sqlite3_step().
2101 */
2102 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2103   Mem *pColName;
2104   int n;
2105   sqlite3 *db = p->db;
2106 
2107   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2108   sqlite3DbFree(db, p->aColName);
2109   n = nResColumn*COLNAME_N;
2110   p->nResColumn = (u16)nResColumn;
2111   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
2112   if( p->aColName==0 ) return;
2113   while( n-- > 0 ){
2114     pColName->flags = MEM_Null;
2115     pColName->db = p->db;
2116     pColName++;
2117   }
2118 }
2119 
2120 /*
2121 ** Set the name of the idx'th column to be returned by the SQL statement.
2122 ** zName must be a pointer to a nul terminated string.
2123 **
2124 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2125 **
2126 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2127 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2128 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2129 */
2130 int sqlite3VdbeSetColName(
2131   Vdbe *p,                         /* Vdbe being configured */
2132   int idx,                         /* Index of column zName applies to */
2133   int var,                         /* One of the COLNAME_* constants */
2134   const char *zName,               /* Pointer to buffer containing name */
2135   void (*xDel)(void*)              /* Memory management strategy for zName */
2136 ){
2137   int rc;
2138   Mem *pColName;
2139   assert( idx<p->nResColumn );
2140   assert( var<COLNAME_N );
2141   if( p->db->mallocFailed ){
2142     assert( !zName || xDel!=SQLITE_DYNAMIC );
2143     return SQLITE_NOMEM_BKPT;
2144   }
2145   assert( p->aColName!=0 );
2146   pColName = &(p->aColName[idx+var*p->nResColumn]);
2147   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2148   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2149   return rc;
2150 }
2151 
2152 /*
2153 ** A read or write transaction may or may not be active on database handle
2154 ** db. If a transaction is active, commit it. If there is a
2155 ** write-transaction spanning more than one database file, this routine
2156 ** takes care of the master journal trickery.
2157 */
2158 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2159   int i;
2160   int nTrans = 0;  /* Number of databases with an active write-transaction
2161                    ** that are candidates for a two-phase commit using a
2162                    ** master-journal */
2163   int rc = SQLITE_OK;
2164   int needXcommit = 0;
2165 
2166 #ifdef SQLITE_OMIT_VIRTUALTABLE
2167   /* With this option, sqlite3VtabSync() is defined to be simply
2168   ** SQLITE_OK so p is not used.
2169   */
2170   UNUSED_PARAMETER(p);
2171 #endif
2172 
2173   /* Before doing anything else, call the xSync() callback for any
2174   ** virtual module tables written in this transaction. This has to
2175   ** be done before determining whether a master journal file is
2176   ** required, as an xSync() callback may add an attached database
2177   ** to the transaction.
2178   */
2179   rc = sqlite3VtabSync(db, p);
2180 
2181   /* This loop determines (a) if the commit hook should be invoked and
2182   ** (b) how many database files have open write transactions, not
2183   ** including the temp database. (b) is important because if more than
2184   ** one database file has an open write transaction, a master journal
2185   ** file is required for an atomic commit.
2186   */
2187   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2188     Btree *pBt = db->aDb[i].pBt;
2189     if( sqlite3BtreeIsInTrans(pBt) ){
2190       /* Whether or not a database might need a master journal depends upon
2191       ** its journal mode (among other things).  This matrix determines which
2192       ** journal modes use a master journal and which do not */
2193       static const u8 aMJNeeded[] = {
2194         /* DELETE   */  1,
2195         /* PERSIST   */ 1,
2196         /* OFF       */ 0,
2197         /* TRUNCATE  */ 1,
2198         /* MEMORY    */ 0,
2199         /* WAL       */ 0
2200       };
2201       Pager *pPager;   /* Pager associated with pBt */
2202       needXcommit = 1;
2203       sqlite3BtreeEnter(pBt);
2204       pPager = sqlite3BtreePager(pBt);
2205       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2206        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2207       ){
2208         assert( i!=1 );
2209         nTrans++;
2210       }
2211       rc = sqlite3PagerExclusiveLock(pPager);
2212       sqlite3BtreeLeave(pBt);
2213     }
2214   }
2215   if( rc!=SQLITE_OK ){
2216     return rc;
2217   }
2218 
2219   /* If there are any write-transactions at all, invoke the commit hook */
2220   if( needXcommit && db->xCommitCallback ){
2221     rc = db->xCommitCallback(db->pCommitArg);
2222     if( rc ){
2223       return SQLITE_CONSTRAINT_COMMITHOOK;
2224     }
2225   }
2226 
2227   /* The simple case - no more than one database file (not counting the
2228   ** TEMP database) has a transaction active.   There is no need for the
2229   ** master-journal.
2230   **
2231   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2232   ** string, it means the main database is :memory: or a temp file.  In
2233   ** that case we do not support atomic multi-file commits, so use the
2234   ** simple case then too.
2235   */
2236   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2237    || nTrans<=1
2238   ){
2239     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2240       Btree *pBt = db->aDb[i].pBt;
2241       if( pBt ){
2242         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2243       }
2244     }
2245 
2246     /* Do the commit only if all databases successfully complete phase 1.
2247     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2248     ** IO error while deleting or truncating a journal file. It is unlikely,
2249     ** but could happen. In this case abandon processing and return the error.
2250     */
2251     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2252       Btree *pBt = db->aDb[i].pBt;
2253       if( pBt ){
2254         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2255       }
2256     }
2257     if( rc==SQLITE_OK ){
2258       sqlite3VtabCommit(db);
2259     }
2260   }
2261 
2262   /* The complex case - There is a multi-file write-transaction active.
2263   ** This requires a master journal file to ensure the transaction is
2264   ** committed atomically.
2265   */
2266 #ifndef SQLITE_OMIT_DISKIO
2267   else{
2268     sqlite3_vfs *pVfs = db->pVfs;
2269     char *zMaster = 0;   /* File-name for the master journal */
2270     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2271     sqlite3_file *pMaster = 0;
2272     i64 offset = 0;
2273     int res;
2274     int retryCount = 0;
2275     int nMainFile;
2276 
2277     /* Select a master journal file name */
2278     nMainFile = sqlite3Strlen30(zMainFile);
2279     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2280     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2281     do {
2282       u32 iRandom;
2283       if( retryCount ){
2284         if( retryCount>100 ){
2285           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2286           sqlite3OsDelete(pVfs, zMaster, 0);
2287           break;
2288         }else if( retryCount==1 ){
2289           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2290         }
2291       }
2292       retryCount++;
2293       sqlite3_randomness(sizeof(iRandom), &iRandom);
2294       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2295                                (iRandom>>8)&0xffffff, iRandom&0xff);
2296       /* The antipenultimate character of the master journal name must
2297       ** be "9" to avoid name collisions when using 8+3 filenames. */
2298       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2299       sqlite3FileSuffix3(zMainFile, zMaster);
2300       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2301     }while( rc==SQLITE_OK && res );
2302     if( rc==SQLITE_OK ){
2303       /* Open the master journal. */
2304       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2305           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2306           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2307       );
2308     }
2309     if( rc!=SQLITE_OK ){
2310       sqlite3DbFree(db, zMaster);
2311       return rc;
2312     }
2313 
2314     /* Write the name of each database file in the transaction into the new
2315     ** master journal file. If an error occurs at this point close
2316     ** and delete the master journal file. All the individual journal files
2317     ** still have 'null' as the master journal pointer, so they will roll
2318     ** back independently if a failure occurs.
2319     */
2320     for(i=0; i<db->nDb; i++){
2321       Btree *pBt = db->aDb[i].pBt;
2322       if( sqlite3BtreeIsInTrans(pBt) ){
2323         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2324         if( zFile==0 ){
2325           continue;  /* Ignore TEMP and :memory: databases */
2326         }
2327         assert( zFile[0]!=0 );
2328         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2329         offset += sqlite3Strlen30(zFile)+1;
2330         if( rc!=SQLITE_OK ){
2331           sqlite3OsCloseFree(pMaster);
2332           sqlite3OsDelete(pVfs, zMaster, 0);
2333           sqlite3DbFree(db, zMaster);
2334           return rc;
2335         }
2336       }
2337     }
2338 
2339     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2340     ** flag is set this is not required.
2341     */
2342     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2343      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2344     ){
2345       sqlite3OsCloseFree(pMaster);
2346       sqlite3OsDelete(pVfs, zMaster, 0);
2347       sqlite3DbFree(db, zMaster);
2348       return rc;
2349     }
2350 
2351     /* Sync all the db files involved in the transaction. The same call
2352     ** sets the master journal pointer in each individual journal. If
2353     ** an error occurs here, do not delete the master journal file.
2354     **
2355     ** If the error occurs during the first call to
2356     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2357     ** master journal file will be orphaned. But we cannot delete it,
2358     ** in case the master journal file name was written into the journal
2359     ** file before the failure occurred.
2360     */
2361     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2362       Btree *pBt = db->aDb[i].pBt;
2363       if( pBt ){
2364         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2365       }
2366     }
2367     sqlite3OsCloseFree(pMaster);
2368     assert( rc!=SQLITE_BUSY );
2369     if( rc!=SQLITE_OK ){
2370       sqlite3DbFree(db, zMaster);
2371       return rc;
2372     }
2373 
2374     /* Delete the master journal file. This commits the transaction. After
2375     ** doing this the directory is synced again before any individual
2376     ** transaction files are deleted.
2377     */
2378     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2379     sqlite3DbFree(db, zMaster);
2380     zMaster = 0;
2381     if( rc ){
2382       return rc;
2383     }
2384 
2385     /* All files and directories have already been synced, so the following
2386     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2387     ** deleting or truncating journals. If something goes wrong while
2388     ** this is happening we don't really care. The integrity of the
2389     ** transaction is already guaranteed, but some stray 'cold' journals
2390     ** may be lying around. Returning an error code won't help matters.
2391     */
2392     disable_simulated_io_errors();
2393     sqlite3BeginBenignMalloc();
2394     for(i=0; i<db->nDb; i++){
2395       Btree *pBt = db->aDb[i].pBt;
2396       if( pBt ){
2397         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2398       }
2399     }
2400     sqlite3EndBenignMalloc();
2401     enable_simulated_io_errors();
2402 
2403     sqlite3VtabCommit(db);
2404   }
2405 #endif
2406 
2407   return rc;
2408 }
2409 
2410 /*
2411 ** This routine checks that the sqlite3.nVdbeActive count variable
2412 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2413 ** currently active. An assertion fails if the two counts do not match.
2414 ** This is an internal self-check only - it is not an essential processing
2415 ** step.
2416 **
2417 ** This is a no-op if NDEBUG is defined.
2418 */
2419 #ifndef NDEBUG
2420 static void checkActiveVdbeCnt(sqlite3 *db){
2421   Vdbe *p;
2422   int cnt = 0;
2423   int nWrite = 0;
2424   int nRead = 0;
2425   p = db->pVdbe;
2426   while( p ){
2427     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2428       cnt++;
2429       if( p->readOnly==0 ) nWrite++;
2430       if( p->bIsReader ) nRead++;
2431     }
2432     p = p->pNext;
2433   }
2434   assert( cnt==db->nVdbeActive );
2435   assert( nWrite==db->nVdbeWrite );
2436   assert( nRead==db->nVdbeRead );
2437 }
2438 #else
2439 #define checkActiveVdbeCnt(x)
2440 #endif
2441 
2442 /*
2443 ** If the Vdbe passed as the first argument opened a statement-transaction,
2444 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2445 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2446 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2447 ** statement transaction is committed.
2448 **
2449 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2450 ** Otherwise SQLITE_OK.
2451 */
2452 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2453   sqlite3 *const db = p->db;
2454   int rc = SQLITE_OK;
2455 
2456   /* If p->iStatement is greater than zero, then this Vdbe opened a
2457   ** statement transaction that should be closed here. The only exception
2458   ** is that an IO error may have occurred, causing an emergency rollback.
2459   ** In this case (db->nStatement==0), and there is nothing to do.
2460   */
2461   if( db->nStatement && p->iStatement ){
2462     int i;
2463     const int iSavepoint = p->iStatement-1;
2464 
2465     assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2466     assert( db->nStatement>0 );
2467     assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2468 
2469     for(i=0; i<db->nDb; i++){
2470       int rc2 = SQLITE_OK;
2471       Btree *pBt = db->aDb[i].pBt;
2472       if( pBt ){
2473         if( eOp==SAVEPOINT_ROLLBACK ){
2474           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2475         }
2476         if( rc2==SQLITE_OK ){
2477           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2478         }
2479         if( rc==SQLITE_OK ){
2480           rc = rc2;
2481         }
2482       }
2483     }
2484     db->nStatement--;
2485     p->iStatement = 0;
2486 
2487     if( rc==SQLITE_OK ){
2488       if( eOp==SAVEPOINT_ROLLBACK ){
2489         rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2490       }
2491       if( rc==SQLITE_OK ){
2492         rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2493       }
2494     }
2495 
2496     /* If the statement transaction is being rolled back, also restore the
2497     ** database handles deferred constraint counter to the value it had when
2498     ** the statement transaction was opened.  */
2499     if( eOp==SAVEPOINT_ROLLBACK ){
2500       db->nDeferredCons = p->nStmtDefCons;
2501       db->nDeferredImmCons = p->nStmtDefImmCons;
2502     }
2503   }
2504   return rc;
2505 }
2506 
2507 /*
2508 ** This function is called when a transaction opened by the database
2509 ** handle associated with the VM passed as an argument is about to be
2510 ** committed. If there are outstanding deferred foreign key constraint
2511 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2512 **
2513 ** If there are outstanding FK violations and this function returns
2514 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2515 ** and write an error message to it. Then return SQLITE_ERROR.
2516 */
2517 #ifndef SQLITE_OMIT_FOREIGN_KEY
2518 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2519   sqlite3 *db = p->db;
2520   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2521    || (!deferred && p->nFkConstraint>0)
2522   ){
2523     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2524     p->errorAction = OE_Abort;
2525     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2526     return SQLITE_ERROR;
2527   }
2528   return SQLITE_OK;
2529 }
2530 #endif
2531 
2532 /*
2533 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2534 ** has made changes and is in autocommit mode, then commit those
2535 ** changes.  If a rollback is needed, then do the rollback.
2536 **
2537 ** This routine is the only way to move the state of a VM from
2538 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2539 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2540 **
2541 ** Return an error code.  If the commit could not complete because of
2542 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2543 ** means the close did not happen and needs to be repeated.
2544 */
2545 int sqlite3VdbeHalt(Vdbe *p){
2546   int rc;                         /* Used to store transient return codes */
2547   sqlite3 *db = p->db;
2548 
2549   /* This function contains the logic that determines if a statement or
2550   ** transaction will be committed or rolled back as a result of the
2551   ** execution of this virtual machine.
2552   **
2553   ** If any of the following errors occur:
2554   **
2555   **     SQLITE_NOMEM
2556   **     SQLITE_IOERR
2557   **     SQLITE_FULL
2558   **     SQLITE_INTERRUPT
2559   **
2560   ** Then the internal cache might have been left in an inconsistent
2561   ** state.  We need to rollback the statement transaction, if there is
2562   ** one, or the complete transaction if there is no statement transaction.
2563   */
2564 
2565   if( db->mallocFailed ){
2566     p->rc = SQLITE_NOMEM_BKPT;
2567   }
2568   if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2569   closeAllCursors(p);
2570   if( p->magic!=VDBE_MAGIC_RUN ){
2571     return SQLITE_OK;
2572   }
2573   checkActiveVdbeCnt(db);
2574 
2575   /* No commit or rollback needed if the program never started or if the
2576   ** SQL statement does not read or write a database file.  */
2577   if( p->pc>=0 && p->bIsReader ){
2578     int mrc;   /* Primary error code from p->rc */
2579     int eStatementOp = 0;
2580     int isSpecialError;            /* Set to true if a 'special' error */
2581 
2582     /* Lock all btrees used by the statement */
2583     sqlite3VdbeEnter(p);
2584 
2585     /* Check for one of the special errors */
2586     mrc = p->rc & 0xff;
2587     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2588                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2589     if( isSpecialError ){
2590       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2591       ** no rollback is necessary. Otherwise, at least a savepoint
2592       ** transaction must be rolled back to restore the database to a
2593       ** consistent state.
2594       **
2595       ** Even if the statement is read-only, it is important to perform
2596       ** a statement or transaction rollback operation. If the error
2597       ** occurred while writing to the journal, sub-journal or database
2598       ** file as part of an effort to free up cache space (see function
2599       ** pagerStress() in pager.c), the rollback is required to restore
2600       ** the pager to a consistent state.
2601       */
2602       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2603         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2604           eStatementOp = SAVEPOINT_ROLLBACK;
2605         }else{
2606           /* We are forced to roll back the active transaction. Before doing
2607           ** so, abort any other statements this handle currently has active.
2608           */
2609           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2610           sqlite3CloseSavepoints(db);
2611           db->autoCommit = 1;
2612           p->nChange = 0;
2613         }
2614       }
2615     }
2616 
2617     /* Check for immediate foreign key violations. */
2618     if( p->rc==SQLITE_OK ){
2619       sqlite3VdbeCheckFk(p, 0);
2620     }
2621 
2622     /* If the auto-commit flag is set and this is the only active writer
2623     ** VM, then we do either a commit or rollback of the current transaction.
2624     **
2625     ** Note: This block also runs if one of the special errors handled
2626     ** above has occurred.
2627     */
2628     if( !sqlite3VtabInSync(db)
2629      && db->autoCommit
2630      && db->nVdbeWrite==(p->readOnly==0)
2631     ){
2632       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2633         rc = sqlite3VdbeCheckFk(p, 1);
2634         if( rc!=SQLITE_OK ){
2635           if( NEVER(p->readOnly) ){
2636             sqlite3VdbeLeave(p);
2637             return SQLITE_ERROR;
2638           }
2639           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2640         }else{
2641           /* The auto-commit flag is true, the vdbe program was successful
2642           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2643           ** key constraints to hold up the transaction. This means a commit
2644           ** is required. */
2645           rc = vdbeCommit(db, p);
2646         }
2647         if( rc==SQLITE_BUSY && p->readOnly ){
2648           sqlite3VdbeLeave(p);
2649           return SQLITE_BUSY;
2650         }else if( rc!=SQLITE_OK ){
2651           p->rc = rc;
2652           sqlite3RollbackAll(db, SQLITE_OK);
2653           p->nChange = 0;
2654         }else{
2655           db->nDeferredCons = 0;
2656           db->nDeferredImmCons = 0;
2657           db->flags &= ~SQLITE_DeferFKs;
2658           sqlite3CommitInternalChanges(db);
2659         }
2660       }else{
2661         sqlite3RollbackAll(db, SQLITE_OK);
2662         p->nChange = 0;
2663       }
2664       db->nStatement = 0;
2665     }else if( eStatementOp==0 ){
2666       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2667         eStatementOp = SAVEPOINT_RELEASE;
2668       }else if( p->errorAction==OE_Abort ){
2669         eStatementOp = SAVEPOINT_ROLLBACK;
2670       }else{
2671         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2672         sqlite3CloseSavepoints(db);
2673         db->autoCommit = 1;
2674         p->nChange = 0;
2675       }
2676     }
2677 
2678     /* If eStatementOp is non-zero, then a statement transaction needs to
2679     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2680     ** do so. If this operation returns an error, and the current statement
2681     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2682     ** current statement error code.
2683     */
2684     if( eStatementOp ){
2685       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2686       if( rc ){
2687         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2688           p->rc = rc;
2689           sqlite3DbFree(db, p->zErrMsg);
2690           p->zErrMsg = 0;
2691         }
2692         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2693         sqlite3CloseSavepoints(db);
2694         db->autoCommit = 1;
2695         p->nChange = 0;
2696       }
2697     }
2698 
2699     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2700     ** has been rolled back, update the database connection change-counter.
2701     */
2702     if( p->changeCntOn ){
2703       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2704         sqlite3VdbeSetChanges(db, p->nChange);
2705       }else{
2706         sqlite3VdbeSetChanges(db, 0);
2707       }
2708       p->nChange = 0;
2709     }
2710 
2711     /* Release the locks */
2712     sqlite3VdbeLeave(p);
2713   }
2714 
2715   /* We have successfully halted and closed the VM.  Record this fact. */
2716   if( p->pc>=0 ){
2717     db->nVdbeActive--;
2718     if( !p->readOnly ) db->nVdbeWrite--;
2719     if( p->bIsReader ) db->nVdbeRead--;
2720     assert( db->nVdbeActive>=db->nVdbeRead );
2721     assert( db->nVdbeRead>=db->nVdbeWrite );
2722     assert( db->nVdbeWrite>=0 );
2723   }
2724   p->magic = VDBE_MAGIC_HALT;
2725   checkActiveVdbeCnt(db);
2726   if( db->mallocFailed ){
2727     p->rc = SQLITE_NOMEM_BKPT;
2728   }
2729 
2730   /* If the auto-commit flag is set to true, then any locks that were held
2731   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2732   ** to invoke any required unlock-notify callbacks.
2733   */
2734   if( db->autoCommit ){
2735     sqlite3ConnectionUnlocked(db);
2736   }
2737 
2738   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2739   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2740 }
2741 
2742 
2743 /*
2744 ** Each VDBE holds the result of the most recent sqlite3_step() call
2745 ** in p->rc.  This routine sets that result back to SQLITE_OK.
2746 */
2747 void sqlite3VdbeResetStepResult(Vdbe *p){
2748   p->rc = SQLITE_OK;
2749 }
2750 
2751 /*
2752 ** Copy the error code and error message belonging to the VDBE passed
2753 ** as the first argument to its database handle (so that they will be
2754 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2755 **
2756 ** This function does not clear the VDBE error code or message, just
2757 ** copies them to the database handle.
2758 */
2759 int sqlite3VdbeTransferError(Vdbe *p){
2760   sqlite3 *db = p->db;
2761   int rc = p->rc;
2762   if( p->zErrMsg ){
2763     db->bBenignMalloc++;
2764     sqlite3BeginBenignMalloc();
2765     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2766     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2767     sqlite3EndBenignMalloc();
2768     db->bBenignMalloc--;
2769     db->errCode = rc;
2770   }else{
2771     sqlite3Error(db, rc);
2772   }
2773   return rc;
2774 }
2775 
2776 #ifdef SQLITE_ENABLE_SQLLOG
2777 /*
2778 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2779 ** invoke it.
2780 */
2781 static void vdbeInvokeSqllog(Vdbe *v){
2782   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2783     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2784     assert( v->db->init.busy==0 );
2785     if( zExpanded ){
2786       sqlite3GlobalConfig.xSqllog(
2787           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2788       );
2789       sqlite3DbFree(v->db, zExpanded);
2790     }
2791   }
2792 }
2793 #else
2794 # define vdbeInvokeSqllog(x)
2795 #endif
2796 
2797 /*
2798 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2799 ** Write any error messages into *pzErrMsg.  Return the result code.
2800 **
2801 ** After this routine is run, the VDBE should be ready to be executed
2802 ** again.
2803 **
2804 ** To look at it another way, this routine resets the state of the
2805 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2806 ** VDBE_MAGIC_INIT.
2807 */
2808 int sqlite3VdbeReset(Vdbe *p){
2809   sqlite3 *db;
2810   db = p->db;
2811 
2812   /* If the VM did not run to completion or if it encountered an
2813   ** error, then it might not have been halted properly.  So halt
2814   ** it now.
2815   */
2816   sqlite3VdbeHalt(p);
2817 
2818   /* If the VDBE has be run even partially, then transfer the error code
2819   ** and error message from the VDBE into the main database structure.  But
2820   ** if the VDBE has just been set to run but has not actually executed any
2821   ** instructions yet, leave the main database error information unchanged.
2822   */
2823   if( p->pc>=0 ){
2824     vdbeInvokeSqllog(p);
2825     sqlite3VdbeTransferError(p);
2826     sqlite3DbFree(db, p->zErrMsg);
2827     p->zErrMsg = 0;
2828     if( p->runOnlyOnce ) p->expired = 1;
2829   }else if( p->rc && p->expired ){
2830     /* The expired flag was set on the VDBE before the first call
2831     ** to sqlite3_step(). For consistency (since sqlite3_step() was
2832     ** called), set the database error in this case as well.
2833     */
2834     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2835     sqlite3DbFree(db, p->zErrMsg);
2836     p->zErrMsg = 0;
2837   }
2838 
2839   /* Reclaim all memory used by the VDBE
2840   */
2841   Cleanup(p);
2842 
2843   /* Save profiling information from this VDBE run.
2844   */
2845 #ifdef VDBE_PROFILE
2846   {
2847     FILE *out = fopen("vdbe_profile.out", "a");
2848     if( out ){
2849       int i;
2850       fprintf(out, "---- ");
2851       for(i=0; i<p->nOp; i++){
2852         fprintf(out, "%02x", p->aOp[i].opcode);
2853       }
2854       fprintf(out, "\n");
2855       if( p->zSql ){
2856         char c, pc = 0;
2857         fprintf(out, "-- ");
2858         for(i=0; (c = p->zSql[i])!=0; i++){
2859           if( pc=='\n' ) fprintf(out, "-- ");
2860           putc(c, out);
2861           pc = c;
2862         }
2863         if( pc!='\n' ) fprintf(out, "\n");
2864       }
2865       for(i=0; i<p->nOp; i++){
2866         char zHdr[100];
2867         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2868            p->aOp[i].cnt,
2869            p->aOp[i].cycles,
2870            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2871         );
2872         fprintf(out, "%s", zHdr);
2873         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2874       }
2875       fclose(out);
2876     }
2877   }
2878 #endif
2879   p->iCurrentTime = 0;
2880   p->magic = VDBE_MAGIC_INIT;
2881   return p->rc & db->errMask;
2882 }
2883 
2884 /*
2885 ** Clean up and delete a VDBE after execution.  Return an integer which is
2886 ** the result code.  Write any error message text into *pzErrMsg.
2887 */
2888 int sqlite3VdbeFinalize(Vdbe *p){
2889   int rc = SQLITE_OK;
2890   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2891     rc = sqlite3VdbeReset(p);
2892     assert( (rc & p->db->errMask)==rc );
2893   }
2894   sqlite3VdbeDelete(p);
2895   return rc;
2896 }
2897 
2898 /*
2899 ** If parameter iOp is less than zero, then invoke the destructor for
2900 ** all auxiliary data pointers currently cached by the VM passed as
2901 ** the first argument.
2902 **
2903 ** Or, if iOp is greater than or equal to zero, then the destructor is
2904 ** only invoked for those auxiliary data pointers created by the user
2905 ** function invoked by the OP_Function opcode at instruction iOp of
2906 ** VM pVdbe, and only then if:
2907 **
2908 **    * the associated function parameter is the 32nd or later (counting
2909 **      from left to right), or
2910 **
2911 **    * the corresponding bit in argument mask is clear (where the first
2912 **      function parameter corresponds to bit 0 etc.).
2913 */
2914 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2915   while( *pp ){
2916     AuxData *pAux = *pp;
2917     if( (iOp<0)
2918      || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2919     ){
2920       testcase( pAux->iArg==31 );
2921       if( pAux->xDelete ){
2922         pAux->xDelete(pAux->pAux);
2923       }
2924       *pp = pAux->pNext;
2925       sqlite3DbFree(db, pAux);
2926     }else{
2927       pp= &pAux->pNext;
2928     }
2929   }
2930 }
2931 
2932 /*
2933 ** Free all memory associated with the Vdbe passed as the second argument,
2934 ** except for object itself, which is preserved.
2935 **
2936 ** The difference between this function and sqlite3VdbeDelete() is that
2937 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2938 ** the database connection and frees the object itself.
2939 */
2940 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2941   SubProgram *pSub, *pNext;
2942   int i;
2943   assert( p->db==0 || p->db==db );
2944   releaseMemArray(p->aVar, p->nVar);
2945   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2946   for(pSub=p->pProgram; pSub; pSub=pNext){
2947     pNext = pSub->pNext;
2948     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2949     sqlite3DbFree(db, pSub);
2950   }
2951   for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2952   sqlite3DbFree(db, p->azVar);
2953   vdbeFreeOpArray(db, p->aOp, p->nOp);
2954   sqlite3DbFree(db, p->aColName);
2955   sqlite3DbFree(db, p->zSql);
2956   sqlite3DbFree(db, p->pFree);
2957 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2958   for(i=0; i<p->nScan; i++){
2959     sqlite3DbFree(db, p->aScan[i].zName);
2960   }
2961   sqlite3DbFree(db, p->aScan);
2962 #endif
2963 }
2964 
2965 /*
2966 ** Delete an entire VDBE.
2967 */
2968 void sqlite3VdbeDelete(Vdbe *p){
2969   sqlite3 *db;
2970 
2971   if( NEVER(p==0) ) return;
2972   db = p->db;
2973   assert( sqlite3_mutex_held(db->mutex) );
2974   sqlite3VdbeClearObject(db, p);
2975   if( p->pPrev ){
2976     p->pPrev->pNext = p->pNext;
2977   }else{
2978     assert( db->pVdbe==p );
2979     db->pVdbe = p->pNext;
2980   }
2981   if( p->pNext ){
2982     p->pNext->pPrev = p->pPrev;
2983   }
2984   p->magic = VDBE_MAGIC_DEAD;
2985   p->db = 0;
2986   sqlite3DbFree(db, p);
2987 }
2988 
2989 /*
2990 ** The cursor "p" has a pending seek operation that has not yet been
2991 ** carried out.  Seek the cursor now.  If an error occurs, return
2992 ** the appropriate error code.
2993 */
2994 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2995   int res, rc;
2996 #ifdef SQLITE_TEST
2997   extern int sqlite3_search_count;
2998 #endif
2999   assert( p->deferredMoveto );
3000   assert( p->isTable );
3001   assert( p->eCurType==CURTYPE_BTREE );
3002   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3003   if( rc ) return rc;
3004   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3005 #ifdef SQLITE_TEST
3006   sqlite3_search_count++;
3007 #endif
3008   p->deferredMoveto = 0;
3009   p->cacheStatus = CACHE_STALE;
3010   return SQLITE_OK;
3011 }
3012 
3013 /*
3014 ** Something has moved cursor "p" out of place.  Maybe the row it was
3015 ** pointed to was deleted out from under it.  Or maybe the btree was
3016 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3017 ** is supposed to be pointing.  If the row was deleted out from under the
3018 ** cursor, set the cursor to point to a NULL row.
3019 */
3020 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3021   int isDifferentRow, rc;
3022   assert( p->eCurType==CURTYPE_BTREE );
3023   assert( p->uc.pCursor!=0 );
3024   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3025   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3026   p->cacheStatus = CACHE_STALE;
3027   if( isDifferentRow ) p->nullRow = 1;
3028   return rc;
3029 }
3030 
3031 /*
3032 ** Check to ensure that the cursor is valid.  Restore the cursor
3033 ** if need be.  Return any I/O error from the restore operation.
3034 */
3035 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3036   assert( p->eCurType==CURTYPE_BTREE );
3037   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3038     return handleMovedCursor(p);
3039   }
3040   return SQLITE_OK;
3041 }
3042 
3043 /*
3044 ** Make sure the cursor p is ready to read or write the row to which it
3045 ** was last positioned.  Return an error code if an OOM fault or I/O error
3046 ** prevents us from positioning the cursor to its correct position.
3047 **
3048 ** If a MoveTo operation is pending on the given cursor, then do that
3049 ** MoveTo now.  If no move is pending, check to see if the row has been
3050 ** deleted out from under the cursor and if it has, mark the row as
3051 ** a NULL row.
3052 **
3053 ** If the cursor is already pointing to the correct row and that row has
3054 ** not been deleted out from under the cursor, then this routine is a no-op.
3055 */
3056 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3057   VdbeCursor *p = *pp;
3058   if( p->eCurType==CURTYPE_BTREE ){
3059     if( p->deferredMoveto ){
3060       int iMap;
3061       if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3062         *pp = p->pAltCursor;
3063         *piCol = iMap - 1;
3064         return SQLITE_OK;
3065       }
3066       return handleDeferredMoveto(p);
3067     }
3068     if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3069       return handleMovedCursor(p);
3070     }
3071   }
3072   return SQLITE_OK;
3073 }
3074 
3075 /*
3076 ** The following functions:
3077 **
3078 ** sqlite3VdbeSerialType()
3079 ** sqlite3VdbeSerialTypeLen()
3080 ** sqlite3VdbeSerialLen()
3081 ** sqlite3VdbeSerialPut()
3082 ** sqlite3VdbeSerialGet()
3083 **
3084 ** encapsulate the code that serializes values for storage in SQLite
3085 ** data and index records. Each serialized value consists of a
3086 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3087 ** integer, stored as a varint.
3088 **
3089 ** In an SQLite index record, the serial type is stored directly before
3090 ** the blob of data that it corresponds to. In a table record, all serial
3091 ** types are stored at the start of the record, and the blobs of data at
3092 ** the end. Hence these functions allow the caller to handle the
3093 ** serial-type and data blob separately.
3094 **
3095 ** The following table describes the various storage classes for data:
3096 **
3097 **   serial type        bytes of data      type
3098 **   --------------     ---------------    ---------------
3099 **      0                     0            NULL
3100 **      1                     1            signed integer
3101 **      2                     2            signed integer
3102 **      3                     3            signed integer
3103 **      4                     4            signed integer
3104 **      5                     6            signed integer
3105 **      6                     8            signed integer
3106 **      7                     8            IEEE float
3107 **      8                     0            Integer constant 0
3108 **      9                     0            Integer constant 1
3109 **     10,11                               reserved for expansion
3110 **    N>=12 and even       (N-12)/2        BLOB
3111 **    N>=13 and odd        (N-13)/2        text
3112 **
3113 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3114 ** of SQLite will not understand those serial types.
3115 */
3116 
3117 /*
3118 ** Return the serial-type for the value stored in pMem.
3119 */
3120 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3121   int flags = pMem->flags;
3122   u32 n;
3123 
3124   assert( pLen!=0 );
3125   if( flags&MEM_Null ){
3126     *pLen = 0;
3127     return 0;
3128   }
3129   if( flags&MEM_Int ){
3130     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3131 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3132     i64 i = pMem->u.i;
3133     u64 u;
3134     if( i<0 ){
3135       u = ~i;
3136     }else{
3137       u = i;
3138     }
3139     if( u<=127 ){
3140       if( (i&1)==i && file_format>=4 ){
3141         *pLen = 0;
3142         return 8+(u32)u;
3143       }else{
3144         *pLen = 1;
3145         return 1;
3146       }
3147     }
3148     if( u<=32767 ){ *pLen = 2; return 2; }
3149     if( u<=8388607 ){ *pLen = 3; return 3; }
3150     if( u<=2147483647 ){ *pLen = 4; return 4; }
3151     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3152     *pLen = 8;
3153     return 6;
3154   }
3155   if( flags&MEM_Real ){
3156     *pLen = 8;
3157     return 7;
3158   }
3159   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3160   assert( pMem->n>=0 );
3161   n = (u32)pMem->n;
3162   if( flags & MEM_Zero ){
3163     n += pMem->u.nZero;
3164   }
3165   *pLen = n;
3166   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3167 }
3168 
3169 /*
3170 ** The sizes for serial types less than 128
3171 */
3172 static const u8 sqlite3SmallTypeSizes[] = {
3173         /*  0   1   2   3   4   5   6   7   8   9 */
3174 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3175 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3176 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3177 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3178 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3179 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3180 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3181 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3182 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3183 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3184 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3185 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3186 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3187 };
3188 
3189 /*
3190 ** Return the length of the data corresponding to the supplied serial-type.
3191 */
3192 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3193   if( serial_type>=128 ){
3194     return (serial_type-12)/2;
3195   }else{
3196     assert( serial_type<12
3197             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3198     return sqlite3SmallTypeSizes[serial_type];
3199   }
3200 }
3201 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3202   assert( serial_type<128 );
3203   return sqlite3SmallTypeSizes[serial_type];
3204 }
3205 
3206 /*
3207 ** If we are on an architecture with mixed-endian floating
3208 ** points (ex: ARM7) then swap the lower 4 bytes with the
3209 ** upper 4 bytes.  Return the result.
3210 **
3211 ** For most architectures, this is a no-op.
3212 **
3213 ** (later):  It is reported to me that the mixed-endian problem
3214 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3215 ** that early versions of GCC stored the two words of a 64-bit
3216 ** float in the wrong order.  And that error has been propagated
3217 ** ever since.  The blame is not necessarily with GCC, though.
3218 ** GCC might have just copying the problem from a prior compiler.
3219 ** I am also told that newer versions of GCC that follow a different
3220 ** ABI get the byte order right.
3221 **
3222 ** Developers using SQLite on an ARM7 should compile and run their
3223 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3224 ** enabled, some asserts below will ensure that the byte order of
3225 ** floating point values is correct.
3226 **
3227 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3228 ** and has send his findings to the SQLite developers.  Frank
3229 ** writes that some Linux kernels offer floating point hardware
3230 ** emulation that uses only 32-bit mantissas instead of a full
3231 ** 48-bits as required by the IEEE standard.  (This is the
3232 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3233 ** byte swapping becomes very complicated.  To avoid problems,
3234 ** the necessary byte swapping is carried out using a 64-bit integer
3235 ** rather than a 64-bit float.  Frank assures us that the code here
3236 ** works for him.  We, the developers, have no way to independently
3237 ** verify this, but Frank seems to know what he is talking about
3238 ** so we trust him.
3239 */
3240 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3241 static u64 floatSwap(u64 in){
3242   union {
3243     u64 r;
3244     u32 i[2];
3245   } u;
3246   u32 t;
3247 
3248   u.r = in;
3249   t = u.i[0];
3250   u.i[0] = u.i[1];
3251   u.i[1] = t;
3252   return u.r;
3253 }
3254 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3255 #else
3256 # define swapMixedEndianFloat(X)
3257 #endif
3258 
3259 /*
3260 ** Write the serialized data blob for the value stored in pMem into
3261 ** buf. It is assumed that the caller has allocated sufficient space.
3262 ** Return the number of bytes written.
3263 **
3264 ** nBuf is the amount of space left in buf[].  The caller is responsible
3265 ** for allocating enough space to buf[] to hold the entire field, exclusive
3266 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3267 **
3268 ** Return the number of bytes actually written into buf[].  The number
3269 ** of bytes in the zero-filled tail is included in the return value only
3270 ** if those bytes were zeroed in buf[].
3271 */
3272 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3273   u32 len;
3274 
3275   /* Integer and Real */
3276   if( serial_type<=7 && serial_type>0 ){
3277     u64 v;
3278     u32 i;
3279     if( serial_type==7 ){
3280       assert( sizeof(v)==sizeof(pMem->u.r) );
3281       memcpy(&v, &pMem->u.r, sizeof(v));
3282       swapMixedEndianFloat(v);
3283     }else{
3284       v = pMem->u.i;
3285     }
3286     len = i = sqlite3SmallTypeSizes[serial_type];
3287     assert( i>0 );
3288     do{
3289       buf[--i] = (u8)(v&0xFF);
3290       v >>= 8;
3291     }while( i );
3292     return len;
3293   }
3294 
3295   /* String or blob */
3296   if( serial_type>=12 ){
3297     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3298              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3299     len = pMem->n;
3300     if( len>0 ) memcpy(buf, pMem->z, len);
3301     return len;
3302   }
3303 
3304   /* NULL or constants 0 or 1 */
3305   return 0;
3306 }
3307 
3308 /* Input "x" is a sequence of unsigned characters that represent a
3309 ** big-endian integer.  Return the equivalent native integer
3310 */
3311 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3312 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3313 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3314 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3315 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3316 
3317 /*
3318 ** Deserialize the data blob pointed to by buf as serial type serial_type
3319 ** and store the result in pMem.  Return the number of bytes read.
3320 **
3321 ** This function is implemented as two separate routines for performance.
3322 ** The few cases that require local variables are broken out into a separate
3323 ** routine so that in most cases the overhead of moving the stack pointer
3324 ** is avoided.
3325 */
3326 static u32 SQLITE_NOINLINE serialGet(
3327   const unsigned char *buf,     /* Buffer to deserialize from */
3328   u32 serial_type,              /* Serial type to deserialize */
3329   Mem *pMem                     /* Memory cell to write value into */
3330 ){
3331   u64 x = FOUR_BYTE_UINT(buf);
3332   u32 y = FOUR_BYTE_UINT(buf+4);
3333   x = (x<<32) + y;
3334   if( serial_type==6 ){
3335     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3336     ** twos-complement integer. */
3337     pMem->u.i = *(i64*)&x;
3338     pMem->flags = MEM_Int;
3339     testcase( pMem->u.i<0 );
3340   }else{
3341     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3342     ** floating point number. */
3343 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3344     /* Verify that integers and floating point values use the same
3345     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3346     ** defined that 64-bit floating point values really are mixed
3347     ** endian.
3348     */
3349     static const u64 t1 = ((u64)0x3ff00000)<<32;
3350     static const double r1 = 1.0;
3351     u64 t2 = t1;
3352     swapMixedEndianFloat(t2);
3353     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3354 #endif
3355     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3356     swapMixedEndianFloat(x);
3357     memcpy(&pMem->u.r, &x, sizeof(x));
3358     pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3359   }
3360   return 8;
3361 }
3362 u32 sqlite3VdbeSerialGet(
3363   const unsigned char *buf,     /* Buffer to deserialize from */
3364   u32 serial_type,              /* Serial type to deserialize */
3365   Mem *pMem                     /* Memory cell to write value into */
3366 ){
3367   switch( serial_type ){
3368     case 10:   /* Reserved for future use */
3369     case 11:   /* Reserved for future use */
3370     case 0: {  /* Null */
3371       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3372       pMem->flags = MEM_Null;
3373       break;
3374     }
3375     case 1: {
3376       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3377       ** integer. */
3378       pMem->u.i = ONE_BYTE_INT(buf);
3379       pMem->flags = MEM_Int;
3380       testcase( pMem->u.i<0 );
3381       return 1;
3382     }
3383     case 2: { /* 2-byte signed integer */
3384       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3385       ** twos-complement integer. */
3386       pMem->u.i = TWO_BYTE_INT(buf);
3387       pMem->flags = MEM_Int;
3388       testcase( pMem->u.i<0 );
3389       return 2;
3390     }
3391     case 3: { /* 3-byte signed integer */
3392       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3393       ** twos-complement integer. */
3394       pMem->u.i = THREE_BYTE_INT(buf);
3395       pMem->flags = MEM_Int;
3396       testcase( pMem->u.i<0 );
3397       return 3;
3398     }
3399     case 4: { /* 4-byte signed integer */
3400       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3401       ** twos-complement integer. */
3402       pMem->u.i = FOUR_BYTE_INT(buf);
3403 #ifdef __HP_cc
3404       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3405       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3406 #endif
3407       pMem->flags = MEM_Int;
3408       testcase( pMem->u.i<0 );
3409       return 4;
3410     }
3411     case 5: { /* 6-byte signed integer */
3412       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3413       ** twos-complement integer. */
3414       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3415       pMem->flags = MEM_Int;
3416       testcase( pMem->u.i<0 );
3417       return 6;
3418     }
3419     case 6:   /* 8-byte signed integer */
3420     case 7: { /* IEEE floating point */
3421       /* These use local variables, so do them in a separate routine
3422       ** to avoid having to move the frame pointer in the common case */
3423       return serialGet(buf,serial_type,pMem);
3424     }
3425     case 8:    /* Integer 0 */
3426     case 9: {  /* Integer 1 */
3427       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3428       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3429       pMem->u.i = serial_type-8;
3430       pMem->flags = MEM_Int;
3431       return 0;
3432     }
3433     default: {
3434       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3435       ** length.
3436       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3437       ** (N-13)/2 bytes in length. */
3438       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3439       pMem->z = (char *)buf;
3440       pMem->n = (serial_type-12)/2;
3441       pMem->flags = aFlag[serial_type&1];
3442       return pMem->n;
3443     }
3444   }
3445   return 0;
3446 }
3447 /*
3448 ** This routine is used to allocate sufficient space for an UnpackedRecord
3449 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3450 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3451 **
3452 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3453 ** the unaligned buffer passed via the second and third arguments (presumably
3454 ** stack space). If the former, then *ppFree is set to a pointer that should
3455 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3456 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3457 ** before returning.
3458 **
3459 ** If an OOM error occurs, NULL is returned.
3460 */
3461 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3462   KeyInfo *pKeyInfo,              /* Description of the record */
3463   char *pSpace,                   /* Unaligned space available */
3464   int szSpace,                    /* Size of pSpace[] in bytes */
3465   char **ppFree                   /* OUT: Caller should free this pointer */
3466 ){
3467   UnpackedRecord *p;              /* Unpacked record to return */
3468   int nOff;                       /* Increment pSpace by nOff to align it */
3469   int nByte;                      /* Number of bytes required for *p */
3470 
3471   /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
3472   ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3473   ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
3474   */
3475   nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
3476   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3477   if( nByte>szSpace+nOff ){
3478     p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3479     *ppFree = (char *)p;
3480     if( !p ) return 0;
3481   }else{
3482     p = (UnpackedRecord*)&pSpace[nOff];
3483     *ppFree = 0;
3484   }
3485 
3486   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3487   assert( pKeyInfo->aSortOrder!=0 );
3488   p->pKeyInfo = pKeyInfo;
3489   p->nField = pKeyInfo->nField + 1;
3490   return p;
3491 }
3492 
3493 /*
3494 ** Given the nKey-byte encoding of a record in pKey[], populate the
3495 ** UnpackedRecord structure indicated by the fourth argument with the
3496 ** contents of the decoded record.
3497 */
3498 void sqlite3VdbeRecordUnpack(
3499   KeyInfo *pKeyInfo,     /* Information about the record format */
3500   int nKey,              /* Size of the binary record */
3501   const void *pKey,      /* The binary record */
3502   UnpackedRecord *p      /* Populate this structure before returning. */
3503 ){
3504   const unsigned char *aKey = (const unsigned char *)pKey;
3505   int d;
3506   u32 idx;                        /* Offset in aKey[] to read from */
3507   u16 u;                          /* Unsigned loop counter */
3508   u32 szHdr;
3509   Mem *pMem = p->aMem;
3510 
3511   p->default_rc = 0;
3512   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3513   idx = getVarint32(aKey, szHdr);
3514   d = szHdr;
3515   u = 0;
3516   while( idx<szHdr && d<=nKey ){
3517     u32 serial_type;
3518 
3519     idx += getVarint32(&aKey[idx], serial_type);
3520     pMem->enc = pKeyInfo->enc;
3521     pMem->db = pKeyInfo->db;
3522     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3523     pMem->szMalloc = 0;
3524     pMem->z = 0;
3525     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3526     pMem++;
3527     if( (++u)>=p->nField ) break;
3528   }
3529   assert( u<=pKeyInfo->nField + 1 );
3530   p->nField = u;
3531 }
3532 
3533 #if SQLITE_DEBUG
3534 /*
3535 ** This function compares two index or table record keys in the same way
3536 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3537 ** this function deserializes and compares values using the
3538 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3539 ** in assert() statements to ensure that the optimized code in
3540 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3541 **
3542 ** Return true if the result of comparison is equivalent to desiredResult.
3543 ** Return false if there is a disagreement.
3544 */
3545 static int vdbeRecordCompareDebug(
3546   int nKey1, const void *pKey1, /* Left key */
3547   const UnpackedRecord *pPKey2, /* Right key */
3548   int desiredResult             /* Correct answer */
3549 ){
3550   u32 d1;            /* Offset into aKey[] of next data element */
3551   u32 idx1;          /* Offset into aKey[] of next header element */
3552   u32 szHdr1;        /* Number of bytes in header */
3553   int i = 0;
3554   int rc = 0;
3555   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3556   KeyInfo *pKeyInfo;
3557   Mem mem1;
3558 
3559   pKeyInfo = pPKey2->pKeyInfo;
3560   if( pKeyInfo->db==0 ) return 1;
3561   mem1.enc = pKeyInfo->enc;
3562   mem1.db = pKeyInfo->db;
3563   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
3564   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3565 
3566   /* Compilers may complain that mem1.u.i is potentially uninitialized.
3567   ** We could initialize it, as shown here, to silence those complaints.
3568   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3569   ** the unnecessary initialization has a measurable negative performance
3570   ** impact, since this routine is a very high runner.  And so, we choose
3571   ** to ignore the compiler warnings and leave this variable uninitialized.
3572   */
3573   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
3574 
3575   idx1 = getVarint32(aKey1, szHdr1);
3576   if( szHdr1>98307 ) return SQLITE_CORRUPT;
3577   d1 = szHdr1;
3578   assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3579   assert( pKeyInfo->aSortOrder!=0 );
3580   assert( pKeyInfo->nField>0 );
3581   assert( idx1<=szHdr1 || CORRUPT_DB );
3582   do{
3583     u32 serial_type1;
3584 
3585     /* Read the serial types for the next element in each key. */
3586     idx1 += getVarint32( aKey1+idx1, serial_type1 );
3587 
3588     /* Verify that there is enough key space remaining to avoid
3589     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
3590     ** always be greater than or equal to the amount of required key space.
3591     ** Use that approximation to avoid the more expensive call to
3592     ** sqlite3VdbeSerialTypeLen() in the common case.
3593     */
3594     if( d1+serial_type1+2>(u32)nKey1
3595      && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3596     ){
3597       break;
3598     }
3599 
3600     /* Extract the values to be compared.
3601     */
3602     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3603 
3604     /* Do the comparison
3605     */
3606     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3607     if( rc!=0 ){
3608       assert( mem1.szMalloc==0 );  /* See comment below */
3609       if( pKeyInfo->aSortOrder[i] ){
3610         rc = -rc;  /* Invert the result for DESC sort order. */
3611       }
3612       goto debugCompareEnd;
3613     }
3614     i++;
3615   }while( idx1<szHdr1 && i<pPKey2->nField );
3616 
3617   /* No memory allocation is ever used on mem1.  Prove this using
3618   ** the following assert().  If the assert() fails, it indicates a
3619   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3620   */
3621   assert( mem1.szMalloc==0 );
3622 
3623   /* rc==0 here means that one of the keys ran out of fields and
3624   ** all the fields up to that point were equal. Return the default_rc
3625   ** value.  */
3626   rc = pPKey2->default_rc;
3627 
3628 debugCompareEnd:
3629   if( desiredResult==0 && rc==0 ) return 1;
3630   if( desiredResult<0 && rc<0 ) return 1;
3631   if( desiredResult>0 && rc>0 ) return 1;
3632   if( CORRUPT_DB ) return 1;
3633   if( pKeyInfo->db->mallocFailed ) return 1;
3634   return 0;
3635 }
3636 #endif
3637 
3638 #if SQLITE_DEBUG
3639 /*
3640 ** Count the number of fields (a.k.a. columns) in the record given by
3641 ** pKey,nKey.  The verify that this count is less than or equal to the
3642 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3643 **
3644 ** If this constraint is not satisfied, it means that the high-speed
3645 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3646 ** not work correctly.  If this assert() ever fires, it probably means
3647 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3648 ** incorrectly.
3649 */
3650 static void vdbeAssertFieldCountWithinLimits(
3651   int nKey, const void *pKey,   /* The record to verify */
3652   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
3653 ){
3654   int nField = 0;
3655   u32 szHdr;
3656   u32 idx;
3657   u32 notUsed;
3658   const unsigned char *aKey = (const unsigned char*)pKey;
3659 
3660   if( CORRUPT_DB ) return;
3661   idx = getVarint32(aKey, szHdr);
3662   assert( nKey>=0 );
3663   assert( szHdr<=(u32)nKey );
3664   while( idx<szHdr ){
3665     idx += getVarint32(aKey+idx, notUsed);
3666     nField++;
3667   }
3668   assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3669 }
3670 #else
3671 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3672 #endif
3673 
3674 /*
3675 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3676 ** using the collation sequence pColl. As usual, return a negative , zero
3677 ** or positive value if *pMem1 is less than, equal to or greater than
3678 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3679 */
3680 static int vdbeCompareMemString(
3681   const Mem *pMem1,
3682   const Mem *pMem2,
3683   const CollSeq *pColl,
3684   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
3685 ){
3686   if( pMem1->enc==pColl->enc ){
3687     /* The strings are already in the correct encoding.  Call the
3688      ** comparison function directly */
3689     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3690   }else{
3691     int rc;
3692     const void *v1, *v2;
3693     int n1, n2;
3694     Mem c1;
3695     Mem c2;
3696     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3697     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3698     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3699     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3700     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3701     n1 = v1==0 ? 0 : c1.n;
3702     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3703     n2 = v2==0 ? 0 : c2.n;
3704     rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3705     if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3706     sqlite3VdbeMemRelease(&c1);
3707     sqlite3VdbeMemRelease(&c2);
3708     return rc;
3709   }
3710 }
3711 
3712 /*
3713 ** Compare two blobs.  Return negative, zero, or positive if the first
3714 ** is less than, equal to, or greater than the second, respectively.
3715 ** If one blob is a prefix of the other, then the shorter is the lessor.
3716 */
3717 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3718   int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3719   if( c ) return c;
3720   return pB1->n - pB2->n;
3721 }
3722 
3723 /*
3724 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3725 ** number.  Return negative, zero, or positive if the first (i64) is less than,
3726 ** equal to, or greater than the second (double).
3727 */
3728 static int sqlite3IntFloatCompare(i64 i, double r){
3729   if( sizeof(LONGDOUBLE_TYPE)>8 ){
3730     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3731     if( x<r ) return -1;
3732     if( x>r ) return +1;
3733     return 0;
3734   }else{
3735     i64 y;
3736     double s;
3737     if( r<-9223372036854775808.0 ) return +1;
3738     if( r>9223372036854775807.0 ) return -1;
3739     y = (i64)r;
3740     if( i<y ) return -1;
3741     if( i>y ){
3742       if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3743       return +1;
3744     }
3745     s = (double)i;
3746     if( s<r ) return -1;
3747     if( s>r ) return +1;
3748     return 0;
3749   }
3750 }
3751 
3752 /*
3753 ** Compare the values contained by the two memory cells, returning
3754 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3755 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3756 ** and reals) sorted numerically, followed by text ordered by the collating
3757 ** sequence pColl and finally blob's ordered by memcmp().
3758 **
3759 ** Two NULL values are considered equal by this function.
3760 */
3761 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3762   int f1, f2;
3763   int combined_flags;
3764 
3765   f1 = pMem1->flags;
3766   f2 = pMem2->flags;
3767   combined_flags = f1|f2;
3768   assert( (combined_flags & MEM_RowSet)==0 );
3769 
3770   /* If one value is NULL, it is less than the other. If both values
3771   ** are NULL, return 0.
3772   */
3773   if( combined_flags&MEM_Null ){
3774     return (f2&MEM_Null) - (f1&MEM_Null);
3775   }
3776 
3777   /* At least one of the two values is a number
3778   */
3779   if( combined_flags&(MEM_Int|MEM_Real) ){
3780     if( (f1 & f2 & MEM_Int)!=0 ){
3781       if( pMem1->u.i < pMem2->u.i ) return -1;
3782       if( pMem1->u.i > pMem2->u.i ) return +1;
3783       return 0;
3784     }
3785     if( (f1 & f2 & MEM_Real)!=0 ){
3786       if( pMem1->u.r < pMem2->u.r ) return -1;
3787       if( pMem1->u.r > pMem2->u.r ) return +1;
3788       return 0;
3789     }
3790     if( (f1&MEM_Int)!=0 ){
3791       if( (f2&MEM_Real)!=0 ){
3792         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3793       }else{
3794         return -1;
3795       }
3796     }
3797     if( (f1&MEM_Real)!=0 ){
3798       if( (f2&MEM_Int)!=0 ){
3799         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3800       }else{
3801         return -1;
3802       }
3803     }
3804     return +1;
3805   }
3806 
3807   /* If one value is a string and the other is a blob, the string is less.
3808   ** If both are strings, compare using the collating functions.
3809   */
3810   if( combined_flags&MEM_Str ){
3811     if( (f1 & MEM_Str)==0 ){
3812       return 1;
3813     }
3814     if( (f2 & MEM_Str)==0 ){
3815       return -1;
3816     }
3817 
3818     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3819     assert( pMem1->enc==SQLITE_UTF8 ||
3820             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3821 
3822     /* The collation sequence must be defined at this point, even if
3823     ** the user deletes the collation sequence after the vdbe program is
3824     ** compiled (this was not always the case).
3825     */
3826     assert( !pColl || pColl->xCmp );
3827 
3828     if( pColl ){
3829       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3830     }
3831     /* If a NULL pointer was passed as the collate function, fall through
3832     ** to the blob case and use memcmp().  */
3833   }
3834 
3835   /* Both values must be blobs.  Compare using memcmp().  */
3836   return sqlite3BlobCompare(pMem1, pMem2);
3837 }
3838 
3839 
3840 /*
3841 ** The first argument passed to this function is a serial-type that
3842 ** corresponds to an integer - all values between 1 and 9 inclusive
3843 ** except 7. The second points to a buffer containing an integer value
3844 ** serialized according to serial_type. This function deserializes
3845 ** and returns the value.
3846 */
3847 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3848   u32 y;
3849   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3850   switch( serial_type ){
3851     case 0:
3852     case 1:
3853       testcase( aKey[0]&0x80 );
3854       return ONE_BYTE_INT(aKey);
3855     case 2:
3856       testcase( aKey[0]&0x80 );
3857       return TWO_BYTE_INT(aKey);
3858     case 3:
3859       testcase( aKey[0]&0x80 );
3860       return THREE_BYTE_INT(aKey);
3861     case 4: {
3862       testcase( aKey[0]&0x80 );
3863       y = FOUR_BYTE_UINT(aKey);
3864       return (i64)*(int*)&y;
3865     }
3866     case 5: {
3867       testcase( aKey[0]&0x80 );
3868       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3869     }
3870     case 6: {
3871       u64 x = FOUR_BYTE_UINT(aKey);
3872       testcase( aKey[0]&0x80 );
3873       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3874       return (i64)*(i64*)&x;
3875     }
3876   }
3877 
3878   return (serial_type - 8);
3879 }
3880 
3881 /*
3882 ** This function compares the two table rows or index records
3883 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
3884 ** or positive integer if key1 is less than, equal to or
3885 ** greater than key2.  The {nKey1, pKey1} key must be a blob
3886 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
3887 ** key must be a parsed key such as obtained from
3888 ** sqlite3VdbeParseRecord.
3889 **
3890 ** If argument bSkip is non-zero, it is assumed that the caller has already
3891 ** determined that the first fields of the keys are equal.
3892 **
3893 ** Key1 and Key2 do not have to contain the same number of fields. If all
3894 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3895 ** returned.
3896 **
3897 ** If database corruption is discovered, set pPKey2->errCode to
3898 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3899 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3900 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3901 */
3902 int sqlite3VdbeRecordCompareWithSkip(
3903   int nKey1, const void *pKey1,   /* Left key */
3904   UnpackedRecord *pPKey2,         /* Right key */
3905   int bSkip                       /* If true, skip the first field */
3906 ){
3907   u32 d1;                         /* Offset into aKey[] of next data element */
3908   int i;                          /* Index of next field to compare */
3909   u32 szHdr1;                     /* Size of record header in bytes */
3910   u32 idx1;                       /* Offset of first type in header */
3911   int rc = 0;                     /* Return value */
3912   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
3913   KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3914   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3915   Mem mem1;
3916 
3917   /* If bSkip is true, then the caller has already determined that the first
3918   ** two elements in the keys are equal. Fix the various stack variables so
3919   ** that this routine begins comparing at the second field. */
3920   if( bSkip ){
3921     u32 s1;
3922     idx1 = 1 + getVarint32(&aKey1[1], s1);
3923     szHdr1 = aKey1[0];
3924     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3925     i = 1;
3926     pRhs++;
3927   }else{
3928     idx1 = getVarint32(aKey1, szHdr1);
3929     d1 = szHdr1;
3930     if( d1>(unsigned)nKey1 ){
3931       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3932       return 0;  /* Corruption */
3933     }
3934     i = 0;
3935   }
3936 
3937   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3938   assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3939        || CORRUPT_DB );
3940   assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3941   assert( pPKey2->pKeyInfo->nField>0 );
3942   assert( idx1<=szHdr1 || CORRUPT_DB );
3943   do{
3944     u32 serial_type;
3945 
3946     /* RHS is an integer */
3947     if( pRhs->flags & MEM_Int ){
3948       serial_type = aKey1[idx1];
3949       testcase( serial_type==12 );
3950       if( serial_type>=10 ){
3951         rc = +1;
3952       }else if( serial_type==0 ){
3953         rc = -1;
3954       }else if( serial_type==7 ){
3955         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3956         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
3957       }else{
3958         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3959         i64 rhs = pRhs->u.i;
3960         if( lhs<rhs ){
3961           rc = -1;
3962         }else if( lhs>rhs ){
3963           rc = +1;
3964         }
3965       }
3966     }
3967 
3968     /* RHS is real */
3969     else if( pRhs->flags & MEM_Real ){
3970       serial_type = aKey1[idx1];
3971       if( serial_type>=10 ){
3972         /* Serial types 12 or greater are strings and blobs (greater than
3973         ** numbers). Types 10 and 11 are currently "reserved for future
3974         ** use", so it doesn't really matter what the results of comparing
3975         ** them to numberic values are.  */
3976         rc = +1;
3977       }else if( serial_type==0 ){
3978         rc = -1;
3979       }else{
3980         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3981         if( serial_type==7 ){
3982           if( mem1.u.r<pRhs->u.r ){
3983             rc = -1;
3984           }else if( mem1.u.r>pRhs->u.r ){
3985             rc = +1;
3986           }
3987         }else{
3988           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
3989         }
3990       }
3991     }
3992 
3993     /* RHS is a string */
3994     else if( pRhs->flags & MEM_Str ){
3995       getVarint32(&aKey1[idx1], serial_type);
3996       testcase( serial_type==12 );
3997       if( serial_type<12 ){
3998         rc = -1;
3999       }else if( !(serial_type & 0x01) ){
4000         rc = +1;
4001       }else{
4002         mem1.n = (serial_type - 12) / 2;
4003         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4004         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4005         if( (d1+mem1.n) > (unsigned)nKey1 ){
4006           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4007           return 0;                /* Corruption */
4008         }else if( pKeyInfo->aColl[i] ){
4009           mem1.enc = pKeyInfo->enc;
4010           mem1.db = pKeyInfo->db;
4011           mem1.flags = MEM_Str;
4012           mem1.z = (char*)&aKey1[d1];
4013           rc = vdbeCompareMemString(
4014               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4015           );
4016         }else{
4017           int nCmp = MIN(mem1.n, pRhs->n);
4018           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4019           if( rc==0 ) rc = mem1.n - pRhs->n;
4020         }
4021       }
4022     }
4023 
4024     /* RHS is a blob */
4025     else if( pRhs->flags & MEM_Blob ){
4026       getVarint32(&aKey1[idx1], serial_type);
4027       testcase( serial_type==12 );
4028       if( serial_type<12 || (serial_type & 0x01) ){
4029         rc = -1;
4030       }else{
4031         int nStr = (serial_type - 12) / 2;
4032         testcase( (d1+nStr)==(unsigned)nKey1 );
4033         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4034         if( (d1+nStr) > (unsigned)nKey1 ){
4035           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4036           return 0;                /* Corruption */
4037         }else{
4038           int nCmp = MIN(nStr, pRhs->n);
4039           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4040           if( rc==0 ) rc = nStr - pRhs->n;
4041         }
4042       }
4043     }
4044 
4045     /* RHS is null */
4046     else{
4047       serial_type = aKey1[idx1];
4048       rc = (serial_type!=0);
4049     }
4050 
4051     if( rc!=0 ){
4052       if( pKeyInfo->aSortOrder[i] ){
4053         rc = -rc;
4054       }
4055       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4056       assert( mem1.szMalloc==0 );  /* See comment below */
4057       return rc;
4058     }
4059 
4060     i++;
4061     pRhs++;
4062     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4063     idx1 += sqlite3VarintLen(serial_type);
4064   }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4065 
4066   /* No memory allocation is ever used on mem1.  Prove this using
4067   ** the following assert().  If the assert() fails, it indicates a
4068   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4069   assert( mem1.szMalloc==0 );
4070 
4071   /* rc==0 here means that one or both of the keys ran out of fields and
4072   ** all the fields up to that point were equal. Return the default_rc
4073   ** value.  */
4074   assert( CORRUPT_DB
4075        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4076        || pKeyInfo->db->mallocFailed
4077   );
4078   pPKey2->eqSeen = 1;
4079   return pPKey2->default_rc;
4080 }
4081 int sqlite3VdbeRecordCompare(
4082   int nKey1, const void *pKey1,   /* Left key */
4083   UnpackedRecord *pPKey2          /* Right key */
4084 ){
4085   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4086 }
4087 
4088 
4089 /*
4090 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4091 ** that (a) the first field of pPKey2 is an integer, and (b) the
4092 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4093 ** byte (i.e. is less than 128).
4094 **
4095 ** To avoid concerns about buffer overreads, this routine is only used
4096 ** on schemas where the maximum valid header size is 63 bytes or less.
4097 */
4098 static int vdbeRecordCompareInt(
4099   int nKey1, const void *pKey1, /* Left key */
4100   UnpackedRecord *pPKey2        /* Right key */
4101 ){
4102   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4103   int serial_type = ((const u8*)pKey1)[1];
4104   int res;
4105   u32 y;
4106   u64 x;
4107   i64 v = pPKey2->aMem[0].u.i;
4108   i64 lhs;
4109 
4110   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4111   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4112   switch( serial_type ){
4113     case 1: { /* 1-byte signed integer */
4114       lhs = ONE_BYTE_INT(aKey);
4115       testcase( lhs<0 );
4116       break;
4117     }
4118     case 2: { /* 2-byte signed integer */
4119       lhs = TWO_BYTE_INT(aKey);
4120       testcase( lhs<0 );
4121       break;
4122     }
4123     case 3: { /* 3-byte signed integer */
4124       lhs = THREE_BYTE_INT(aKey);
4125       testcase( lhs<0 );
4126       break;
4127     }
4128     case 4: { /* 4-byte signed integer */
4129       y = FOUR_BYTE_UINT(aKey);
4130       lhs = (i64)*(int*)&y;
4131       testcase( lhs<0 );
4132       break;
4133     }
4134     case 5: { /* 6-byte signed integer */
4135       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4136       testcase( lhs<0 );
4137       break;
4138     }
4139     case 6: { /* 8-byte signed integer */
4140       x = FOUR_BYTE_UINT(aKey);
4141       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4142       lhs = *(i64*)&x;
4143       testcase( lhs<0 );
4144       break;
4145     }
4146     case 8:
4147       lhs = 0;
4148       break;
4149     case 9:
4150       lhs = 1;
4151       break;
4152 
4153     /* This case could be removed without changing the results of running
4154     ** this code. Including it causes gcc to generate a faster switch
4155     ** statement (since the range of switch targets now starts at zero and
4156     ** is contiguous) but does not cause any duplicate code to be generated
4157     ** (as gcc is clever enough to combine the two like cases). Other
4158     ** compilers might be similar.  */
4159     case 0: case 7:
4160       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4161 
4162     default:
4163       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4164   }
4165 
4166   if( v>lhs ){
4167     res = pPKey2->r1;
4168   }else if( v<lhs ){
4169     res = pPKey2->r2;
4170   }else if( pPKey2->nField>1 ){
4171     /* The first fields of the two keys are equal. Compare the trailing
4172     ** fields.  */
4173     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4174   }else{
4175     /* The first fields of the two keys are equal and there are no trailing
4176     ** fields. Return pPKey2->default_rc in this case. */
4177     res = pPKey2->default_rc;
4178     pPKey2->eqSeen = 1;
4179   }
4180 
4181   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4182   return res;
4183 }
4184 
4185 /*
4186 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4187 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4188 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4189 ** at the start of (pKey1/nKey1) fits in a single byte.
4190 */
4191 static int vdbeRecordCompareString(
4192   int nKey1, const void *pKey1, /* Left key */
4193   UnpackedRecord *pPKey2        /* Right key */
4194 ){
4195   const u8 *aKey1 = (const u8*)pKey1;
4196   int serial_type;
4197   int res;
4198 
4199   assert( pPKey2->aMem[0].flags & MEM_Str );
4200   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4201   getVarint32(&aKey1[1], serial_type);
4202   if( serial_type<12 ){
4203     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4204   }else if( !(serial_type & 0x01) ){
4205     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4206   }else{
4207     int nCmp;
4208     int nStr;
4209     int szHdr = aKey1[0];
4210 
4211     nStr = (serial_type-12) / 2;
4212     if( (szHdr + nStr) > nKey1 ){
4213       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4214       return 0;    /* Corruption */
4215     }
4216     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4217     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4218 
4219     if( res==0 ){
4220       res = nStr - pPKey2->aMem[0].n;
4221       if( res==0 ){
4222         if( pPKey2->nField>1 ){
4223           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4224         }else{
4225           res = pPKey2->default_rc;
4226           pPKey2->eqSeen = 1;
4227         }
4228       }else if( res>0 ){
4229         res = pPKey2->r2;
4230       }else{
4231         res = pPKey2->r1;
4232       }
4233     }else if( res>0 ){
4234       res = pPKey2->r2;
4235     }else{
4236       res = pPKey2->r1;
4237     }
4238   }
4239 
4240   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4241        || CORRUPT_DB
4242        || pPKey2->pKeyInfo->db->mallocFailed
4243   );
4244   return res;
4245 }
4246 
4247 /*
4248 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4249 ** suitable for comparing serialized records to the unpacked record passed
4250 ** as the only argument.
4251 */
4252 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4253   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4254   ** that the size-of-header varint that occurs at the start of each record
4255   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4256   ** also assumes that it is safe to overread a buffer by at least the
4257   ** maximum possible legal header size plus 8 bytes. Because there is
4258   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4259   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4260   ** limit the size of the header to 64 bytes in cases where the first field
4261   ** is an integer.
4262   **
4263   ** The easiest way to enforce this limit is to consider only records with
4264   ** 13 fields or less. If the first field is an integer, the maximum legal
4265   ** header size is (12*5 + 1 + 1) bytes.  */
4266   if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
4267     int flags = p->aMem[0].flags;
4268     if( p->pKeyInfo->aSortOrder[0] ){
4269       p->r1 = 1;
4270       p->r2 = -1;
4271     }else{
4272       p->r1 = -1;
4273       p->r2 = 1;
4274     }
4275     if( (flags & MEM_Int) ){
4276       return vdbeRecordCompareInt;
4277     }
4278     testcase( flags & MEM_Real );
4279     testcase( flags & MEM_Null );
4280     testcase( flags & MEM_Blob );
4281     if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4282       assert( flags & MEM_Str );
4283       return vdbeRecordCompareString;
4284     }
4285   }
4286 
4287   return sqlite3VdbeRecordCompare;
4288 }
4289 
4290 /*
4291 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4292 ** Read the rowid (the last field in the record) and store it in *rowid.
4293 ** Return SQLITE_OK if everything works, or an error code otherwise.
4294 **
4295 ** pCur might be pointing to text obtained from a corrupt database file.
4296 ** So the content cannot be trusted.  Do appropriate checks on the content.
4297 */
4298 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4299   i64 nCellKey = 0;
4300   int rc;
4301   u32 szHdr;        /* Size of the header */
4302   u32 typeRowid;    /* Serial type of the rowid */
4303   u32 lenRowid;     /* Size of the rowid */
4304   Mem m, v;
4305 
4306   /* Get the size of the index entry.  Only indices entries of less
4307   ** than 2GiB are support - anything large must be database corruption.
4308   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4309   ** this code can safely assume that nCellKey is 32-bits
4310   */
4311   assert( sqlite3BtreeCursorIsValid(pCur) );
4312   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4313   assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
4314   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4315 
4316   /* Read in the complete content of the index entry */
4317   sqlite3VdbeMemInit(&m, db, 0);
4318   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4319   if( rc ){
4320     return rc;
4321   }
4322 
4323   /* The index entry must begin with a header size */
4324   (void)getVarint32((u8*)m.z, szHdr);
4325   testcase( szHdr==3 );
4326   testcase( szHdr==m.n );
4327   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4328     goto idx_rowid_corruption;
4329   }
4330 
4331   /* The last field of the index should be an integer - the ROWID.
4332   ** Verify that the last entry really is an integer. */
4333   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4334   testcase( typeRowid==1 );
4335   testcase( typeRowid==2 );
4336   testcase( typeRowid==3 );
4337   testcase( typeRowid==4 );
4338   testcase( typeRowid==5 );
4339   testcase( typeRowid==6 );
4340   testcase( typeRowid==8 );
4341   testcase( typeRowid==9 );
4342   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4343     goto idx_rowid_corruption;
4344   }
4345   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4346   testcase( (u32)m.n==szHdr+lenRowid );
4347   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4348     goto idx_rowid_corruption;
4349   }
4350 
4351   /* Fetch the integer off the end of the index record */
4352   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4353   *rowid = v.u.i;
4354   sqlite3VdbeMemRelease(&m);
4355   return SQLITE_OK;
4356 
4357   /* Jump here if database corruption is detected after m has been
4358   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4359 idx_rowid_corruption:
4360   testcase( m.szMalloc!=0 );
4361   sqlite3VdbeMemRelease(&m);
4362   return SQLITE_CORRUPT_BKPT;
4363 }
4364 
4365 /*
4366 ** Compare the key of the index entry that cursor pC is pointing to against
4367 ** the key string in pUnpacked.  Write into *pRes a number
4368 ** that is negative, zero, or positive if pC is less than, equal to,
4369 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4370 **
4371 ** pUnpacked is either created without a rowid or is truncated so that it
4372 ** omits the rowid at the end.  The rowid at the end of the index entry
4373 ** is ignored as well.  Hence, this routine only compares the prefixes
4374 ** of the keys prior to the final rowid, not the entire key.
4375 */
4376 int sqlite3VdbeIdxKeyCompare(
4377   sqlite3 *db,                     /* Database connection */
4378   VdbeCursor *pC,                  /* The cursor to compare against */
4379   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4380   int *res                         /* Write the comparison result here */
4381 ){
4382   i64 nCellKey = 0;
4383   int rc;
4384   BtCursor *pCur;
4385   Mem m;
4386 
4387   assert( pC->eCurType==CURTYPE_BTREE );
4388   pCur = pC->uc.pCursor;
4389   assert( sqlite3BtreeCursorIsValid(pCur) );
4390   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4391   assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
4392   /* nCellKey will always be between 0 and 0xffffffff because of the way
4393   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4394   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4395     *res = 0;
4396     return SQLITE_CORRUPT_BKPT;
4397   }
4398   sqlite3VdbeMemInit(&m, db, 0);
4399   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4400   if( rc ){
4401     return rc;
4402   }
4403   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4404   sqlite3VdbeMemRelease(&m);
4405   return SQLITE_OK;
4406 }
4407 
4408 /*
4409 ** This routine sets the value to be returned by subsequent calls to
4410 ** sqlite3_changes() on the database handle 'db'.
4411 */
4412 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4413   assert( sqlite3_mutex_held(db->mutex) );
4414   db->nChange = nChange;
4415   db->nTotalChange += nChange;
4416 }
4417 
4418 /*
4419 ** Set a flag in the vdbe to update the change counter when it is finalised
4420 ** or reset.
4421 */
4422 void sqlite3VdbeCountChanges(Vdbe *v){
4423   v->changeCntOn = 1;
4424 }
4425 
4426 /*
4427 ** Mark every prepared statement associated with a database connection
4428 ** as expired.
4429 **
4430 ** An expired statement means that recompilation of the statement is
4431 ** recommend.  Statements expire when things happen that make their
4432 ** programs obsolete.  Removing user-defined functions or collating
4433 ** sequences, or changing an authorization function are the types of
4434 ** things that make prepared statements obsolete.
4435 */
4436 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4437   Vdbe *p;
4438   for(p = db->pVdbe; p; p=p->pNext){
4439     p->expired = 1;
4440   }
4441 }
4442 
4443 /*
4444 ** Return the database associated with the Vdbe.
4445 */
4446 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4447   return v->db;
4448 }
4449 
4450 /*
4451 ** Return a pointer to an sqlite3_value structure containing the value bound
4452 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4453 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4454 ** constants) to the value before returning it.
4455 **
4456 ** The returned value must be freed by the caller using sqlite3ValueFree().
4457 */
4458 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4459   assert( iVar>0 );
4460   if( v ){
4461     Mem *pMem = &v->aVar[iVar-1];
4462     if( 0==(pMem->flags & MEM_Null) ){
4463       sqlite3_value *pRet = sqlite3ValueNew(v->db);
4464       if( pRet ){
4465         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4466         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4467       }
4468       return pRet;
4469     }
4470   }
4471   return 0;
4472 }
4473 
4474 /*
4475 ** Configure SQL variable iVar so that binding a new value to it signals
4476 ** to sqlite3_reoptimize() that re-preparing the statement may result
4477 ** in a better query plan.
4478 */
4479 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4480   assert( iVar>0 );
4481   if( iVar>32 ){
4482     v->expmask = 0xffffffff;
4483   }else{
4484     v->expmask |= ((u32)1 << (iVar-1));
4485   }
4486 }
4487 
4488 #ifndef SQLITE_OMIT_VIRTUALTABLE
4489 /*
4490 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4491 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4492 ** in memory obtained from sqlite3DbMalloc).
4493 */
4494 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4495   if( pVtab->zErrMsg ){
4496     sqlite3 *db = p->db;
4497     sqlite3DbFree(db, p->zErrMsg);
4498     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4499     sqlite3_free(pVtab->zErrMsg);
4500     pVtab->zErrMsg = 0;
4501   }
4502 }
4503 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4504 
4505 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4506 
4507 /*
4508 ** If the second argument is not NULL, release any allocations associated
4509 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4510 ** structure itself, using sqlite3DbFree().
4511 **
4512 ** This function is used to free UnpackedRecord structures allocated by
4513 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4514 */
4515 static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){
4516   if( p ){
4517     int i;
4518     for(i=0; i<p->nField; i++){
4519       Mem *pMem = &p->aMem[i];
4520       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4521     }
4522     sqlite3DbFree(db, p);
4523   }
4524 }
4525 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4526 
4527 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4528 /*
4529 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4530 ** then cursor passed as the second argument should point to the row about
4531 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4532 ** the required value will be read from the row the cursor points to.
4533 */
4534 void sqlite3VdbePreUpdateHook(
4535   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
4536   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
4537   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
4538   const char *zDb,                /* Database name */
4539   Table *pTab,                    /* Modified table */
4540   i64 iKey1,                      /* Initial key value */
4541   int iReg                        /* Register for new.* record */
4542 ){
4543   sqlite3 *db = v->db;
4544   i64 iKey2;
4545   PreUpdate preupdate;
4546   const char *zTbl = pTab->zName;
4547   static const u8 fakeSortOrder = 0;
4548 
4549   assert( db->pPreUpdate==0 );
4550   memset(&preupdate, 0, sizeof(PreUpdate));
4551   if( op==SQLITE_UPDATE ){
4552     iKey2 = v->aMem[iReg].u.i;
4553   }else{
4554     iKey2 = iKey1;
4555   }
4556 
4557   assert( pCsr->nField==pTab->nCol
4558        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4559   );
4560 
4561   preupdate.v = v;
4562   preupdate.pCsr = pCsr;
4563   preupdate.op = op;
4564   preupdate.iNewReg = iReg;
4565   preupdate.keyinfo.db = db;
4566   preupdate.keyinfo.enc = ENC(db);
4567   preupdate.keyinfo.nField = pTab->nCol;
4568   preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4569   preupdate.iKey1 = iKey1;
4570   preupdate.iKey2 = iKey2;
4571   preupdate.iPKey = pTab->iPKey;
4572 
4573   db->pPreUpdate = &preupdate;
4574   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4575   db->pPreUpdate = 0;
4576   sqlite3DbFree(db, preupdate.aRecord);
4577   vdbeFreeUnpacked(db, preupdate.pUnpacked);
4578   vdbeFreeUnpacked(db, preupdate.pNewUnpacked);
4579   if( preupdate.aNew ){
4580     int i;
4581     for(i=0; i<pCsr->nField; i++){
4582       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4583     }
4584     sqlite3DbFree(db, preupdate.aNew);
4585   }
4586 }
4587 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4588