xref: /sqlite-3.40.0/src/vdbeapi.c (revision fb92e071)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 (not possible) */
238      SQLITE_NULL,     /* 0x01 NULL */
239      SQLITE_TEXT,     /* 0x02 TEXT */
240      SQLITE_NULL,     /* 0x03 (not possible) */
241      SQLITE_INTEGER,  /* 0x04 INTEGER */
242      SQLITE_NULL,     /* 0x05 (not possible) */
243      SQLITE_INTEGER,  /* 0x06 INTEGER + TEXT */
244      SQLITE_NULL,     /* 0x07 (not possible) */
245      SQLITE_FLOAT,    /* 0x08 FLOAT */
246      SQLITE_NULL,     /* 0x09 (not possible) */
247      SQLITE_FLOAT,    /* 0x0a FLOAT + TEXT */
248      SQLITE_NULL,     /* 0x0b (not possible) */
249      SQLITE_INTEGER,  /* 0x0c (not possible) */
250      SQLITE_NULL,     /* 0x0d (not possible) */
251      SQLITE_INTEGER,  /* 0x0e (not possible) */
252      SQLITE_NULL,     /* 0x0f (not possible) */
253      SQLITE_BLOB,     /* 0x10 BLOB */
254      SQLITE_NULL,     /* 0x11 (not possible) */
255      SQLITE_TEXT,     /* 0x12 (not possible) */
256      SQLITE_NULL,     /* 0x13 (not possible) */
257      SQLITE_INTEGER,  /* 0x14 INTEGER + BLOB */
258      SQLITE_NULL,     /* 0x15 (not possible) */
259      SQLITE_INTEGER,  /* 0x16 (not possible) */
260      SQLITE_NULL,     /* 0x17 (not possible) */
261      SQLITE_FLOAT,    /* 0x18 FLOAT + BLOB */
262      SQLITE_NULL,     /* 0x19 (not possible) */
263      SQLITE_FLOAT,    /* 0x1a (not possible) */
264      SQLITE_NULL,     /* 0x1b (not possible) */
265      SQLITE_INTEGER,  /* 0x1c (not possible) */
266      SQLITE_NULL,     /* 0x1d (not possible) */
267      SQLITE_INTEGER,  /* 0x1e (not possible) */
268      SQLITE_NULL,     /* 0x1f (not possible) */
269      SQLITE_FLOAT,    /* 0x20 INTREAL */
270      SQLITE_NULL,     /* 0x21 (not possible) */
271      SQLITE_TEXT,     /* 0x22 INTREAL + TEXT */
272      SQLITE_NULL,     /* 0x23 (not possible) */
273      SQLITE_FLOAT,    /* 0x24 (not possible) */
274      SQLITE_NULL,     /* 0x25 (not possible) */
275      SQLITE_FLOAT,    /* 0x26 (not possible) */
276      SQLITE_NULL,     /* 0x27 (not possible) */
277      SQLITE_FLOAT,    /* 0x28 (not possible) */
278      SQLITE_NULL,     /* 0x29 (not possible) */
279      SQLITE_FLOAT,    /* 0x2a (not possible) */
280      SQLITE_NULL,     /* 0x2b (not possible) */
281      SQLITE_FLOAT,    /* 0x2c (not possible) */
282      SQLITE_NULL,     /* 0x2d (not possible) */
283      SQLITE_FLOAT,    /* 0x2e (not possible) */
284      SQLITE_NULL,     /* 0x2f (not possible) */
285      SQLITE_BLOB,     /* 0x30 (not possible) */
286      SQLITE_NULL,     /* 0x31 (not possible) */
287      SQLITE_TEXT,     /* 0x32 (not possible) */
288      SQLITE_NULL,     /* 0x33 (not possible) */
289      SQLITE_FLOAT,    /* 0x34 (not possible) */
290      SQLITE_NULL,     /* 0x35 (not possible) */
291      SQLITE_FLOAT,    /* 0x36 (not possible) */
292      SQLITE_NULL,     /* 0x37 (not possible) */
293      SQLITE_FLOAT,    /* 0x38 (not possible) */
294      SQLITE_NULL,     /* 0x39 (not possible) */
295      SQLITE_FLOAT,    /* 0x3a (not possible) */
296      SQLITE_NULL,     /* 0x3b (not possible) */
297      SQLITE_FLOAT,    /* 0x3c (not possible) */
298      SQLITE_NULL,     /* 0x3d (not possible) */
299      SQLITE_FLOAT,    /* 0x3e (not possible) */
300      SQLITE_NULL,     /* 0x3f (not possible) */
301   };
302 #ifdef SQLITE_DEBUG
303   {
304     int eType = SQLITE_BLOB;
305     if( pVal->flags & MEM_Null ){
306       eType = SQLITE_NULL;
307     }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308       eType = SQLITE_FLOAT;
309     }else if( pVal->flags & MEM_Int ){
310       eType = SQLITE_INTEGER;
311     }else if( pVal->flags & MEM_Str ){
312       eType = SQLITE_TEXT;
313     }
314     assert( eType == aType[pVal->flags&MEM_AffMask] );
315   }
316 #endif
317   return aType[pVal->flags&MEM_AffMask];
318 }
319 
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
323 }
324 
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327   return (pVal->flags&MEM_FromBind)!=0;
328 }
329 
330 /* Make a copy of an sqlite3_value object
331 */
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333   sqlite3_value *pNew;
334   if( pOrig==0 ) return 0;
335   pNew = sqlite3_malloc( sizeof(*pNew) );
336   if( pNew==0 ) return 0;
337   memset(pNew, 0, sizeof(*pNew));
338   memcpy(pNew, pOrig, MEMCELLSIZE);
339   pNew->flags &= ~MEM_Dyn;
340   pNew->db = 0;
341   if( pNew->flags&(MEM_Str|MEM_Blob) ){
342     pNew->flags &= ~(MEM_Static|MEM_Dyn);
343     pNew->flags |= MEM_Ephem;
344     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345       sqlite3ValueFree(pNew);
346       pNew = 0;
347     }
348   }else if( pNew->flags & MEM_Null ){
349     /* Do not duplicate pointer values */
350     pNew->flags &= ~(MEM_Term|MEM_Subtype);
351   }
352   return pNew;
353 }
354 
355 /* Destroy an sqlite3_value object previously obtained from
356 ** sqlite3_value_dup().
357 */
358 void sqlite3_value_free(sqlite3_value *pOld){
359   sqlite3ValueFree(pOld);
360 }
361 
362 
363 /**************************** sqlite3_result_  *******************************
364 ** The following routines are used by user-defined functions to specify
365 ** the function result.
366 **
367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
368 ** result as a string or blob.  Appropriate errors are set if the string/blob
369 ** is too big or if an OOM occurs.
370 **
371 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
372 ** on value P is not going to be used and need to be destroyed.
373 */
374 static void setResultStrOrError(
375   sqlite3_context *pCtx,  /* Function context */
376   const char *z,          /* String pointer */
377   int n,                  /* Bytes in string, or negative */
378   u8 enc,                 /* Encoding of z.  0 for BLOBs */
379   void (*xDel)(void*)     /* Destructor function */
380 ){
381   Mem *pOut = pCtx->pOut;
382   int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
383   if( rc ){
384     if( rc==SQLITE_TOOBIG ){
385       sqlite3_result_error_toobig(pCtx);
386     }else{
387       /* The only errors possible from sqlite3VdbeMemSetStr are
388       ** SQLITE_TOOBIG and SQLITE_NOMEM */
389       assert( rc==SQLITE_NOMEM );
390       sqlite3_result_error_nomem(pCtx);
391     }
392     return;
393   }
394   if( pOut->enc!=ENC(pOut->db) ){
395     sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db));
396     if( sqlite3VdbeMemTooBig(pOut) ){
397       sqlite3_result_error_toobig(pCtx);
398     }
399   }
400 }
401 static int invokeValueDestructor(
402   const void *p,             /* Value to destroy */
403   void (*xDel)(void*),       /* The destructor */
404   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
405 ){
406   assert( xDel!=SQLITE_DYNAMIC );
407   if( xDel==0 ){
408     /* noop */
409   }else if( xDel==SQLITE_TRANSIENT ){
410     /* noop */
411   }else{
412     xDel((void*)p);
413   }
414   sqlite3_result_error_toobig(pCtx);
415   return SQLITE_TOOBIG;
416 }
417 void sqlite3_result_blob(
418   sqlite3_context *pCtx,
419   const void *z,
420   int n,
421   void (*xDel)(void *)
422 ){
423   assert( n>=0 );
424   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
425   setResultStrOrError(pCtx, z, n, 0, xDel);
426 }
427 void sqlite3_result_blob64(
428   sqlite3_context *pCtx,
429   const void *z,
430   sqlite3_uint64 n,
431   void (*xDel)(void *)
432 ){
433   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
434   assert( xDel!=SQLITE_DYNAMIC );
435   if( n>0x7fffffff ){
436     (void)invokeValueDestructor(z, xDel, pCtx);
437   }else{
438     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
439   }
440 }
441 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
442   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
443   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
444 }
445 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
446   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
447   pCtx->isError = SQLITE_ERROR;
448   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
449 }
450 #ifndef SQLITE_OMIT_UTF16
451 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
452   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
453   pCtx->isError = SQLITE_ERROR;
454   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
455 }
456 #endif
457 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
458   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
459   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
460 }
461 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
462   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
463   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
464 }
465 void sqlite3_result_null(sqlite3_context *pCtx){
466   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
467   sqlite3VdbeMemSetNull(pCtx->pOut);
468 }
469 void sqlite3_result_pointer(
470   sqlite3_context *pCtx,
471   void *pPtr,
472   const char *zPType,
473   void (*xDestructor)(void*)
474 ){
475   Mem *pOut = pCtx->pOut;
476   assert( sqlite3_mutex_held(pOut->db->mutex) );
477   sqlite3VdbeMemRelease(pOut);
478   pOut->flags = MEM_Null;
479   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
480 }
481 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
482   Mem *pOut = pCtx->pOut;
483   assert( sqlite3_mutex_held(pOut->db->mutex) );
484   pOut->eSubtype = eSubtype & 0xff;
485   pOut->flags |= MEM_Subtype;
486 }
487 void sqlite3_result_text(
488   sqlite3_context *pCtx,
489   const char *z,
490   int n,
491   void (*xDel)(void *)
492 ){
493   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
494   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
495 }
496 void sqlite3_result_text64(
497   sqlite3_context *pCtx,
498   const char *z,
499   sqlite3_uint64 n,
500   void (*xDel)(void *),
501   unsigned char enc
502 ){
503   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
504   assert( xDel!=SQLITE_DYNAMIC );
505   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
506   if( n>0x7fffffff ){
507     (void)invokeValueDestructor(z, xDel, pCtx);
508   }else{
509     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
510   }
511 }
512 #ifndef SQLITE_OMIT_UTF16
513 void sqlite3_result_text16(
514   sqlite3_context *pCtx,
515   const void *z,
516   int n,
517   void (*xDel)(void *)
518 ){
519   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
520   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
521 }
522 void sqlite3_result_text16be(
523   sqlite3_context *pCtx,
524   const void *z,
525   int n,
526   void (*xDel)(void *)
527 ){
528   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
529   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
530 }
531 void sqlite3_result_text16le(
532   sqlite3_context *pCtx,
533   const void *z,
534   int n,
535   void (*xDel)(void *)
536 ){
537   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
538   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
539 }
540 #endif /* SQLITE_OMIT_UTF16 */
541 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
542   Mem *pOut = pCtx->pOut;
543   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
544   sqlite3VdbeMemCopy(pOut, pValue);
545   sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db));
546   if( sqlite3VdbeMemTooBig(pOut) ){
547     sqlite3_result_error_toobig(pCtx);
548   }
549 }
550 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
551   sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
552 }
553 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
554   Mem *pOut = pCtx->pOut;
555   assert( sqlite3_mutex_held(pOut->db->mutex) );
556   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
557     sqlite3_result_error_toobig(pCtx);
558     return SQLITE_TOOBIG;
559   }
560 #ifndef SQLITE_OMIT_INCRBLOB
561   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
562   return SQLITE_OK;
563 #else
564   return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
565 #endif
566 }
567 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
568   pCtx->isError = errCode ? errCode : -1;
569 #ifdef SQLITE_DEBUG
570   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
571 #endif
572   if( pCtx->pOut->flags & MEM_Null ){
573     setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
574                         SQLITE_STATIC);
575   }
576 }
577 
578 /* Force an SQLITE_TOOBIG error. */
579 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
580   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
581   pCtx->isError = SQLITE_TOOBIG;
582   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
583                        SQLITE_UTF8, SQLITE_STATIC);
584 }
585 
586 /* An SQLITE_NOMEM error. */
587 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
588   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
589   sqlite3VdbeMemSetNull(pCtx->pOut);
590   pCtx->isError = SQLITE_NOMEM_BKPT;
591   sqlite3OomFault(pCtx->pOut->db);
592 }
593 
594 #ifndef SQLITE_UNTESTABLE
595 /* Force the INT64 value currently stored as the result to be
596 ** a MEM_IntReal value.  See the SQLITE_TESTCTRL_RESULT_INTREAL
597 ** test-control.
598 */
599 void sqlite3ResultIntReal(sqlite3_context *pCtx){
600   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
601   if( pCtx->pOut->flags & MEM_Int ){
602     pCtx->pOut->flags &= ~MEM_Int;
603     pCtx->pOut->flags |= MEM_IntReal;
604   }
605 }
606 #endif
607 
608 
609 /*
610 ** This function is called after a transaction has been committed. It
611 ** invokes callbacks registered with sqlite3_wal_hook() as required.
612 */
613 static int doWalCallbacks(sqlite3 *db){
614   int rc = SQLITE_OK;
615 #ifndef SQLITE_OMIT_WAL
616   int i;
617   for(i=0; i<db->nDb; i++){
618     Btree *pBt = db->aDb[i].pBt;
619     if( pBt ){
620       int nEntry;
621       sqlite3BtreeEnter(pBt);
622       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
623       sqlite3BtreeLeave(pBt);
624       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
625         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
626       }
627     }
628   }
629 #endif
630   return rc;
631 }
632 
633 
634 /*
635 ** Execute the statement pStmt, either until a row of data is ready, the
636 ** statement is completely executed or an error occurs.
637 **
638 ** This routine implements the bulk of the logic behind the sqlite_step()
639 ** API.  The only thing omitted is the automatic recompile if a
640 ** schema change has occurred.  That detail is handled by the
641 ** outer sqlite3_step() wrapper procedure.
642 */
643 static int sqlite3Step(Vdbe *p){
644   sqlite3 *db;
645   int rc;
646 
647   assert(p);
648   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
649     /* We used to require that sqlite3_reset() be called before retrying
650     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
651     ** with version 3.7.0, we changed this so that sqlite3_reset() would
652     ** be called automatically instead of throwing the SQLITE_MISUSE error.
653     ** This "automatic-reset" change is not technically an incompatibility,
654     ** since any application that receives an SQLITE_MISUSE is broken by
655     ** definition.
656     **
657     ** Nevertheless, some published applications that were originally written
658     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
659     ** returns, and those were broken by the automatic-reset change.  As a
660     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
661     ** legacy behavior of returning SQLITE_MISUSE for cases where the
662     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
663     ** or SQLITE_BUSY error.
664     */
665 #ifdef SQLITE_OMIT_AUTORESET
666     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
667       sqlite3_reset((sqlite3_stmt*)p);
668     }else{
669       return SQLITE_MISUSE_BKPT;
670     }
671 #else
672     sqlite3_reset((sqlite3_stmt*)p);
673 #endif
674   }
675 
676   /* Check that malloc() has not failed. If it has, return early. */
677   db = p->db;
678   if( db->mallocFailed ){
679     p->rc = SQLITE_NOMEM;
680     return SQLITE_NOMEM_BKPT;
681   }
682 
683   if( p->pc<0 && p->expired ){
684     p->rc = SQLITE_SCHEMA;
685     rc = SQLITE_ERROR;
686     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
687       /* If this statement was prepared using saved SQL and an
688       ** error has occurred, then return the error code in p->rc to the
689       ** caller. Set the error code in the database handle to the same value.
690       */
691       rc = sqlite3VdbeTransferError(p);
692     }
693     goto end_of_step;
694   }
695   if( p->pc<0 ){
696     /* If there are no other statements currently running, then
697     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
698     ** from interrupting a statement that has not yet started.
699     */
700     if( db->nVdbeActive==0 ){
701       AtomicStore(&db->u1.isInterrupted, 0);
702     }
703 
704     assert( db->nVdbeWrite>0 || db->autoCommit==0
705         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
706     );
707 
708 #ifndef SQLITE_OMIT_TRACE
709     if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
710         && !db->init.busy && p->zSql ){
711       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
712     }else{
713       assert( p->startTime==0 );
714     }
715 #endif
716 
717     db->nVdbeActive++;
718     if( p->readOnly==0 ) db->nVdbeWrite++;
719     if( p->bIsReader ) db->nVdbeRead++;
720     p->pc = 0;
721   }
722 #ifdef SQLITE_DEBUG
723   p->rcApp = SQLITE_OK;
724 #endif
725 #ifndef SQLITE_OMIT_EXPLAIN
726   if( p->explain ){
727     rc = sqlite3VdbeList(p);
728   }else
729 #endif /* SQLITE_OMIT_EXPLAIN */
730   {
731     db->nVdbeExec++;
732     rc = sqlite3VdbeExec(p);
733     db->nVdbeExec--;
734   }
735 
736   if( rc!=SQLITE_ROW ){
737 #ifndef SQLITE_OMIT_TRACE
738     /* If the statement completed successfully, invoke the profile callback */
739     checkProfileCallback(db, p);
740 #endif
741 
742     if( rc==SQLITE_DONE && db->autoCommit ){
743       assert( p->rc==SQLITE_OK );
744       p->rc = doWalCallbacks(db);
745       if( p->rc!=SQLITE_OK ){
746         rc = SQLITE_ERROR;
747       }
748     }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
749       /* If this statement was prepared using saved SQL and an
750       ** error has occurred, then return the error code in p->rc to the
751       ** caller. Set the error code in the database handle to the same value.
752       */
753       rc = sqlite3VdbeTransferError(p);
754     }
755   }
756 
757   db->errCode = rc;
758   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
759     p->rc = SQLITE_NOMEM_BKPT;
760     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
761   }
762 end_of_step:
763   /* There are only a limited number of result codes allowed from the
764   ** statements prepared using the legacy sqlite3_prepare() interface */
765   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
766        || rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
767        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
768   );
769   return (rc&db->errMask);
770 }
771 
772 /*
773 ** This is the top-level implementation of sqlite3_step().  Call
774 ** sqlite3Step() to do most of the work.  If a schema error occurs,
775 ** call sqlite3Reprepare() and try again.
776 */
777 int sqlite3_step(sqlite3_stmt *pStmt){
778   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
779   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
780   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
781   sqlite3 *db;             /* The database connection */
782 
783   if( vdbeSafetyNotNull(v) ){
784     return SQLITE_MISUSE_BKPT;
785   }
786   db = v->db;
787   sqlite3_mutex_enter(db->mutex);
788   v->doingRerun = 0;
789   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
790          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
791     int savedPc = v->pc;
792     rc = sqlite3Reprepare(v);
793     if( rc!=SQLITE_OK ){
794       /* This case occurs after failing to recompile an sql statement.
795       ** The error message from the SQL compiler has already been loaded
796       ** into the database handle. This block copies the error message
797       ** from the database handle into the statement and sets the statement
798       ** program counter to 0 to ensure that when the statement is
799       ** finalized or reset the parser error message is available via
800       ** sqlite3_errmsg() and sqlite3_errcode().
801       */
802       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
803       sqlite3DbFree(db, v->zErrMsg);
804       if( !db->mallocFailed ){
805         v->zErrMsg = sqlite3DbStrDup(db, zErr);
806         v->rc = rc = sqlite3ApiExit(db, rc);
807       } else {
808         v->zErrMsg = 0;
809         v->rc = rc = SQLITE_NOMEM_BKPT;
810       }
811       break;
812     }
813     sqlite3_reset(pStmt);
814     if( savedPc>=0 ) v->doingRerun = 1;
815     assert( v->expired==0 );
816   }
817   sqlite3_mutex_leave(db->mutex);
818   return rc;
819 }
820 
821 
822 /*
823 ** Extract the user data from a sqlite3_context structure and return a
824 ** pointer to it.
825 */
826 void *sqlite3_user_data(sqlite3_context *p){
827   assert( p && p->pFunc );
828   return p->pFunc->pUserData;
829 }
830 
831 /*
832 ** Extract the user data from a sqlite3_context structure and return a
833 ** pointer to it.
834 **
835 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
836 ** returns a copy of the pointer to the database connection (the 1st
837 ** parameter) of the sqlite3_create_function() and
838 ** sqlite3_create_function16() routines that originally registered the
839 ** application defined function.
840 */
841 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
842   assert( p && p->pOut );
843   return p->pOut->db;
844 }
845 
846 /*
847 ** If this routine is invoked from within an xColumn method of a virtual
848 ** table, then it returns true if and only if the the call is during an
849 ** UPDATE operation and the value of the column will not be modified
850 ** by the UPDATE.
851 **
852 ** If this routine is called from any context other than within the
853 ** xColumn method of a virtual table, then the return value is meaningless
854 ** and arbitrary.
855 **
856 ** Virtual table implements might use this routine to optimize their
857 ** performance by substituting a NULL result, or some other light-weight
858 ** value, as a signal to the xUpdate routine that the column is unchanged.
859 */
860 int sqlite3_vtab_nochange(sqlite3_context *p){
861   assert( p );
862   return sqlite3_value_nochange(p->pOut);
863 }
864 
865 /*
866 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
867 ** sqlite3_vtab_in_next() (if bNext!=0).
868 */
869 static int valueFromValueList(
870   sqlite3_value *pVal,        /* Pointer to the ValueList object */
871   sqlite3_value **ppOut,      /* Store the next value from the list here */
872   int bNext                   /* 1 for _next(). 0 for _first() */
873 ){
874   int rc;
875   ValueList *pRhs;
876 
877   *ppOut = 0;
878   if( pVal==0 ) return SQLITE_MISUSE;
879   pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
880   if( pRhs==0 ) return SQLITE_MISUSE;
881   if( bNext ){
882     rc = sqlite3BtreeNext(pRhs->pCsr, 0);
883   }else{
884     int dummy = 0;
885     rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
886     assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
887     if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
888   }
889   if( rc==SQLITE_OK ){
890     u32 sz;       /* Size of current row in bytes */
891     Mem sMem;     /* Raw content of current row */
892     memset(&sMem, 0, sizeof(sMem));
893     sz = sqlite3BtreePayloadSize(pRhs->pCsr);
894     rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
895     if( rc==SQLITE_OK ){
896       u8 *zBuf = (u8*)sMem.z;
897       u32 iSerial;
898       sqlite3_value *pOut = pRhs->pOut;
899       int iOff = 1 + getVarint32(&zBuf[1], iSerial);
900       sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
901       pOut->enc = ENC(pOut->db);
902       if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
903         rc = SQLITE_NOMEM;
904       }else{
905         *ppOut = pOut;
906       }
907     }
908     sqlite3VdbeMemRelease(&sMem);
909   }
910   return rc;
911 }
912 
913 /*
914 ** Set the iterator value pVal to point to the first value in the set.
915 ** Set (*ppOut) to point to this value before returning.
916 */
917 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
918   return valueFromValueList(pVal, ppOut, 0);
919 }
920 
921 /*
922 ** Set the iterator value pVal to point to the next value in the set.
923 ** Set (*ppOut) to point to this value before returning.
924 */
925 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
926   return valueFromValueList(pVal, ppOut, 1);
927 }
928 
929 /*
930 ** Return the current time for a statement.  If the current time
931 ** is requested more than once within the same run of a single prepared
932 ** statement, the exact same time is returned for each invocation regardless
933 ** of the amount of time that elapses between invocations.  In other words,
934 ** the time returned is always the time of the first call.
935 */
936 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
937   int rc;
938 #ifndef SQLITE_ENABLE_STAT4
939   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
940   assert( p->pVdbe!=0 );
941 #else
942   sqlite3_int64 iTime = 0;
943   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
944 #endif
945   if( *piTime==0 ){
946     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
947     if( rc ) *piTime = 0;
948   }
949   return *piTime;
950 }
951 
952 /*
953 ** Create a new aggregate context for p and return a pointer to
954 ** its pMem->z element.
955 */
956 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
957   Mem *pMem = p->pMem;
958   assert( (pMem->flags & MEM_Agg)==0 );
959   if( nByte<=0 ){
960     sqlite3VdbeMemSetNull(pMem);
961     pMem->z = 0;
962   }else{
963     sqlite3VdbeMemClearAndResize(pMem, nByte);
964     pMem->flags = MEM_Agg;
965     pMem->u.pDef = p->pFunc;
966     if( pMem->z ){
967       memset(pMem->z, 0, nByte);
968     }
969   }
970   return (void*)pMem->z;
971 }
972 
973 /*
974 ** Allocate or return the aggregate context for a user function.  A new
975 ** context is allocated on the first call.  Subsequent calls return the
976 ** same context that was returned on prior calls.
977 */
978 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
979   assert( p && p->pFunc && p->pFunc->xFinalize );
980   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
981   testcase( nByte<0 );
982   if( (p->pMem->flags & MEM_Agg)==0 ){
983     return createAggContext(p, nByte);
984   }else{
985     return (void*)p->pMem->z;
986   }
987 }
988 
989 /*
990 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
991 ** the user-function defined by pCtx.
992 **
993 ** The left-most argument is 0.
994 **
995 ** Undocumented behavior:  If iArg is negative then access a cache of
996 ** auxiliary data pointers that is available to all functions within a
997 ** single prepared statement.  The iArg values must match.
998 */
999 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
1000   AuxData *pAuxData;
1001 
1002   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1003 #if SQLITE_ENABLE_STAT4
1004   if( pCtx->pVdbe==0 ) return 0;
1005 #else
1006   assert( pCtx->pVdbe!=0 );
1007 #endif
1008   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1009     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1010       return pAuxData->pAux;
1011     }
1012   }
1013   return 0;
1014 }
1015 
1016 /*
1017 ** Set the auxiliary data pointer and delete function, for the iArg'th
1018 ** argument to the user-function defined by pCtx. Any previous value is
1019 ** deleted by calling the delete function specified when it was set.
1020 **
1021 ** The left-most argument is 0.
1022 **
1023 ** Undocumented behavior:  If iArg is negative then make the data available
1024 ** to all functions within the current prepared statement using iArg as an
1025 ** access code.
1026 */
1027 void sqlite3_set_auxdata(
1028   sqlite3_context *pCtx,
1029   int iArg,
1030   void *pAux,
1031   void (*xDelete)(void*)
1032 ){
1033   AuxData *pAuxData;
1034   Vdbe *pVdbe = pCtx->pVdbe;
1035 
1036   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1037 #ifdef SQLITE_ENABLE_STAT4
1038   if( pVdbe==0 ) goto failed;
1039 #else
1040   assert( pVdbe!=0 );
1041 #endif
1042 
1043   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1044     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1045       break;
1046     }
1047   }
1048   if( pAuxData==0 ){
1049     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1050     if( !pAuxData ) goto failed;
1051     pAuxData->iAuxOp = pCtx->iOp;
1052     pAuxData->iAuxArg = iArg;
1053     pAuxData->pNextAux = pVdbe->pAuxData;
1054     pVdbe->pAuxData = pAuxData;
1055     if( pCtx->isError==0 ) pCtx->isError = -1;
1056   }else if( pAuxData->xDeleteAux ){
1057     pAuxData->xDeleteAux(pAuxData->pAux);
1058   }
1059 
1060   pAuxData->pAux = pAux;
1061   pAuxData->xDeleteAux = xDelete;
1062   return;
1063 
1064 failed:
1065   if( xDelete ){
1066     xDelete(pAux);
1067   }
1068 }
1069 
1070 #ifndef SQLITE_OMIT_DEPRECATED
1071 /*
1072 ** Return the number of times the Step function of an aggregate has been
1073 ** called.
1074 **
1075 ** This function is deprecated.  Do not use it for new code.  It is
1076 ** provide only to avoid breaking legacy code.  New aggregate function
1077 ** implementations should keep their own counts within their aggregate
1078 ** context.
1079 */
1080 int sqlite3_aggregate_count(sqlite3_context *p){
1081   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1082   return p->pMem->n;
1083 }
1084 #endif
1085 
1086 /*
1087 ** Return the number of columns in the result set for the statement pStmt.
1088 */
1089 int sqlite3_column_count(sqlite3_stmt *pStmt){
1090   Vdbe *pVm = (Vdbe *)pStmt;
1091   return pVm ? pVm->nResColumn : 0;
1092 }
1093 
1094 /*
1095 ** Return the number of values available from the current row of the
1096 ** currently executing statement pStmt.
1097 */
1098 int sqlite3_data_count(sqlite3_stmt *pStmt){
1099   Vdbe *pVm = (Vdbe *)pStmt;
1100   if( pVm==0 || pVm->pResultSet==0 ) return 0;
1101   return pVm->nResColumn;
1102 }
1103 
1104 /*
1105 ** Return a pointer to static memory containing an SQL NULL value.
1106 */
1107 static const Mem *columnNullValue(void){
1108   /* Even though the Mem structure contains an element
1109   ** of type i64, on certain architectures (x86) with certain compiler
1110   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1111   ** instead of an 8-byte one. This all works fine, except that when
1112   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1113   ** that a Mem structure is located on an 8-byte boundary. To prevent
1114   ** these assert()s from failing, when building with SQLITE_DEBUG defined
1115   ** using gcc, we force nullMem to be 8-byte aligned using the magical
1116   ** __attribute__((aligned(8))) macro.  */
1117   static const Mem nullMem
1118 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1119     __attribute__((aligned(8)))
1120 #endif
1121     = {
1122         /* .u          = */ {0},
1123         /* .z          = */ (char*)0,
1124         /* .n          = */ (int)0,
1125         /* .flags      = */ (u16)MEM_Null,
1126         /* .enc        = */ (u8)0,
1127         /* .eSubtype   = */ (u8)0,
1128         /* .db         = */ (sqlite3*)0,
1129         /* .szMalloc   = */ (int)0,
1130         /* .uTemp      = */ (u32)0,
1131         /* .zMalloc    = */ (char*)0,
1132         /* .xDel       = */ (void(*)(void*))0,
1133 #ifdef SQLITE_DEBUG
1134         /* .pScopyFrom = */ (Mem*)0,
1135         /* .mScopyFlags= */ 0,
1136 #endif
1137       };
1138   return &nullMem;
1139 }
1140 
1141 /*
1142 ** Check to see if column iCol of the given statement is valid.  If
1143 ** it is, return a pointer to the Mem for the value of that column.
1144 ** If iCol is not valid, return a pointer to a Mem which has a value
1145 ** of NULL.
1146 */
1147 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1148   Vdbe *pVm;
1149   Mem *pOut;
1150 
1151   pVm = (Vdbe *)pStmt;
1152   if( pVm==0 ) return (Mem*)columnNullValue();
1153   assert( pVm->db );
1154   sqlite3_mutex_enter(pVm->db->mutex);
1155   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1156     pOut = &pVm->pResultSet[i];
1157   }else{
1158     sqlite3Error(pVm->db, SQLITE_RANGE);
1159     pOut = (Mem*)columnNullValue();
1160   }
1161   return pOut;
1162 }
1163 
1164 /*
1165 ** This function is called after invoking an sqlite3_value_XXX function on a
1166 ** column value (i.e. a value returned by evaluating an SQL expression in the
1167 ** select list of a SELECT statement) that may cause a malloc() failure. If
1168 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1169 ** code of statement pStmt set to SQLITE_NOMEM.
1170 **
1171 ** Specifically, this is called from within:
1172 **
1173 **     sqlite3_column_int()
1174 **     sqlite3_column_int64()
1175 **     sqlite3_column_text()
1176 **     sqlite3_column_text16()
1177 **     sqlite3_column_real()
1178 **     sqlite3_column_bytes()
1179 **     sqlite3_column_bytes16()
1180 **     sqiite3_column_blob()
1181 */
1182 static void columnMallocFailure(sqlite3_stmt *pStmt)
1183 {
1184   /* If malloc() failed during an encoding conversion within an
1185   ** sqlite3_column_XXX API, then set the return code of the statement to
1186   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1187   ** and _finalize() will return NOMEM.
1188   */
1189   Vdbe *p = (Vdbe *)pStmt;
1190   if( p ){
1191     assert( p->db!=0 );
1192     assert( sqlite3_mutex_held(p->db->mutex) );
1193     p->rc = sqlite3ApiExit(p->db, p->rc);
1194     sqlite3_mutex_leave(p->db->mutex);
1195   }
1196 }
1197 
1198 /**************************** sqlite3_column_  *******************************
1199 ** The following routines are used to access elements of the current row
1200 ** in the result set.
1201 */
1202 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1203   const void *val;
1204   val = sqlite3_value_blob( columnMem(pStmt,i) );
1205   /* Even though there is no encoding conversion, value_blob() might
1206   ** need to call malloc() to expand the result of a zeroblob()
1207   ** expression.
1208   */
1209   columnMallocFailure(pStmt);
1210   return val;
1211 }
1212 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1213   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1214   columnMallocFailure(pStmt);
1215   return val;
1216 }
1217 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1218   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1219   columnMallocFailure(pStmt);
1220   return val;
1221 }
1222 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1223   double val = sqlite3_value_double( columnMem(pStmt,i) );
1224   columnMallocFailure(pStmt);
1225   return val;
1226 }
1227 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1228   int val = sqlite3_value_int( columnMem(pStmt,i) );
1229   columnMallocFailure(pStmt);
1230   return val;
1231 }
1232 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1233   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1234   columnMallocFailure(pStmt);
1235   return val;
1236 }
1237 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1238   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1239   columnMallocFailure(pStmt);
1240   return val;
1241 }
1242 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1243   Mem *pOut = columnMem(pStmt, i);
1244   if( pOut->flags&MEM_Static ){
1245     pOut->flags &= ~MEM_Static;
1246     pOut->flags |= MEM_Ephem;
1247   }
1248   columnMallocFailure(pStmt);
1249   return (sqlite3_value *)pOut;
1250 }
1251 #ifndef SQLITE_OMIT_UTF16
1252 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1253   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1254   columnMallocFailure(pStmt);
1255   return val;
1256 }
1257 #endif /* SQLITE_OMIT_UTF16 */
1258 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1259   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1260   columnMallocFailure(pStmt);
1261   return iType;
1262 }
1263 
1264 /*
1265 ** Convert the N-th element of pStmt->pColName[] into a string using
1266 ** xFunc() then return that string.  If N is out of range, return 0.
1267 **
1268 ** There are up to 5 names for each column.  useType determines which
1269 ** name is returned.  Here are the names:
1270 **
1271 **    0      The column name as it should be displayed for output
1272 **    1      The datatype name for the column
1273 **    2      The name of the database that the column derives from
1274 **    3      The name of the table that the column derives from
1275 **    4      The name of the table column that the result column derives from
1276 **
1277 ** If the result is not a simple column reference (if it is an expression
1278 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1279 */
1280 static const void *columnName(
1281   sqlite3_stmt *pStmt,     /* The statement */
1282   int N,                   /* Which column to get the name for */
1283   int useUtf16,            /* True to return the name as UTF16 */
1284   int useType              /* What type of name */
1285 ){
1286   const void *ret;
1287   Vdbe *p;
1288   int n;
1289   sqlite3 *db;
1290 #ifdef SQLITE_ENABLE_API_ARMOR
1291   if( pStmt==0 ){
1292     (void)SQLITE_MISUSE_BKPT;
1293     return 0;
1294   }
1295 #endif
1296   ret = 0;
1297   p = (Vdbe *)pStmt;
1298   db = p->db;
1299   assert( db!=0 );
1300   n = sqlite3_column_count(pStmt);
1301   if( N<n && N>=0 ){
1302     N += useType*n;
1303     sqlite3_mutex_enter(db->mutex);
1304     assert( db->mallocFailed==0 );
1305 #ifndef SQLITE_OMIT_UTF16
1306     if( useUtf16 ){
1307       ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1308     }else
1309 #endif
1310     {
1311       ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1312     }
1313     /* A malloc may have failed inside of the _text() call. If this
1314     ** is the case, clear the mallocFailed flag and return NULL.
1315     */
1316     if( db->mallocFailed ){
1317       sqlite3OomClear(db);
1318       ret = 0;
1319     }
1320     sqlite3_mutex_leave(db->mutex);
1321   }
1322   return ret;
1323 }
1324 
1325 /*
1326 ** Return the name of the Nth column of the result set returned by SQL
1327 ** statement pStmt.
1328 */
1329 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1330   return columnName(pStmt, N, 0, COLNAME_NAME);
1331 }
1332 #ifndef SQLITE_OMIT_UTF16
1333 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1334   return columnName(pStmt, N, 1, COLNAME_NAME);
1335 }
1336 #endif
1337 
1338 /*
1339 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1340 ** not define OMIT_DECLTYPE.
1341 */
1342 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1343 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1344          and SQLITE_ENABLE_COLUMN_METADATA"
1345 #endif
1346 
1347 #ifndef SQLITE_OMIT_DECLTYPE
1348 /*
1349 ** Return the column declaration type (if applicable) of the 'i'th column
1350 ** of the result set of SQL statement pStmt.
1351 */
1352 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1353   return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1354 }
1355 #ifndef SQLITE_OMIT_UTF16
1356 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1357   return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1358 }
1359 #endif /* SQLITE_OMIT_UTF16 */
1360 #endif /* SQLITE_OMIT_DECLTYPE */
1361 
1362 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1363 /*
1364 ** Return the name of the database from which a result column derives.
1365 ** NULL is returned if the result column is an expression or constant or
1366 ** anything else which is not an unambiguous reference to a database column.
1367 */
1368 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1369   return columnName(pStmt, N, 0, COLNAME_DATABASE);
1370 }
1371 #ifndef SQLITE_OMIT_UTF16
1372 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1373   return columnName(pStmt, N, 1, COLNAME_DATABASE);
1374 }
1375 #endif /* SQLITE_OMIT_UTF16 */
1376 
1377 /*
1378 ** Return the name of the table from which a result column derives.
1379 ** NULL is returned if the result column is an expression or constant or
1380 ** anything else which is not an unambiguous reference to a database column.
1381 */
1382 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1383   return columnName(pStmt, N, 0, COLNAME_TABLE);
1384 }
1385 #ifndef SQLITE_OMIT_UTF16
1386 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1387   return columnName(pStmt, N, 1, COLNAME_TABLE);
1388 }
1389 #endif /* SQLITE_OMIT_UTF16 */
1390 
1391 /*
1392 ** Return the name of the table column from which a result column derives.
1393 ** NULL is returned if the result column is an expression or constant or
1394 ** anything else which is not an unambiguous reference to a database column.
1395 */
1396 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1397   return columnName(pStmt, N, 0, COLNAME_COLUMN);
1398 }
1399 #ifndef SQLITE_OMIT_UTF16
1400 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1401   return columnName(pStmt, N, 1, COLNAME_COLUMN);
1402 }
1403 #endif /* SQLITE_OMIT_UTF16 */
1404 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1405 
1406 
1407 /******************************* sqlite3_bind_  ***************************
1408 **
1409 ** Routines used to attach values to wildcards in a compiled SQL statement.
1410 */
1411 /*
1412 ** Unbind the value bound to variable i in virtual machine p. This is the
1413 ** the same as binding a NULL value to the column. If the "i" parameter is
1414 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1415 **
1416 ** A successful evaluation of this routine acquires the mutex on p.
1417 ** the mutex is released if any kind of error occurs.
1418 **
1419 ** The error code stored in database p->db is overwritten with the return
1420 ** value in any case.
1421 */
1422 static int vdbeUnbind(Vdbe *p, int i){
1423   Mem *pVar;
1424   if( vdbeSafetyNotNull(p) ){
1425     return SQLITE_MISUSE_BKPT;
1426   }
1427   sqlite3_mutex_enter(p->db->mutex);
1428   if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1429     sqlite3Error(p->db, SQLITE_MISUSE);
1430     sqlite3_mutex_leave(p->db->mutex);
1431     sqlite3_log(SQLITE_MISUSE,
1432         "bind on a busy prepared statement: [%s]", p->zSql);
1433     return SQLITE_MISUSE_BKPT;
1434   }
1435   if( i<1 || i>p->nVar ){
1436     sqlite3Error(p->db, SQLITE_RANGE);
1437     sqlite3_mutex_leave(p->db->mutex);
1438     return SQLITE_RANGE;
1439   }
1440   i--;
1441   pVar = &p->aVar[i];
1442   sqlite3VdbeMemRelease(pVar);
1443   pVar->flags = MEM_Null;
1444   p->db->errCode = SQLITE_OK;
1445 
1446   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1447   ** binding a new value to this variable invalidates the current query plan.
1448   **
1449   ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1450   ** parameter in the WHERE clause might influence the choice of query plan
1451   ** for a statement, then the statement will be automatically recompiled,
1452   ** as if there had been a schema change, on the first sqlite3_step() call
1453   ** following any change to the bindings of that parameter.
1454   */
1455   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1456   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1457     p->expired = 1;
1458   }
1459   return SQLITE_OK;
1460 }
1461 
1462 /*
1463 ** Bind a text or BLOB value.
1464 */
1465 static int bindText(
1466   sqlite3_stmt *pStmt,   /* The statement to bind against */
1467   int i,                 /* Index of the parameter to bind */
1468   const void *zData,     /* Pointer to the data to be bound */
1469   i64 nData,             /* Number of bytes of data to be bound */
1470   void (*xDel)(void*),   /* Destructor for the data */
1471   u8 encoding            /* Encoding for the data */
1472 ){
1473   Vdbe *p = (Vdbe *)pStmt;
1474   Mem *pVar;
1475   int rc;
1476 
1477   rc = vdbeUnbind(p, i);
1478   if( rc==SQLITE_OK ){
1479     if( zData!=0 ){
1480       pVar = &p->aVar[i-1];
1481       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1482       if( rc==SQLITE_OK && encoding!=0 ){
1483         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1484       }
1485       if( rc ){
1486         sqlite3Error(p->db, rc);
1487         rc = sqlite3ApiExit(p->db, rc);
1488       }
1489     }
1490     sqlite3_mutex_leave(p->db->mutex);
1491   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1492     xDel((void*)zData);
1493   }
1494   return rc;
1495 }
1496 
1497 
1498 /*
1499 ** Bind a blob value to an SQL statement variable.
1500 */
1501 int sqlite3_bind_blob(
1502   sqlite3_stmt *pStmt,
1503   int i,
1504   const void *zData,
1505   int nData,
1506   void (*xDel)(void*)
1507 ){
1508 #ifdef SQLITE_ENABLE_API_ARMOR
1509   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1510 #endif
1511   return bindText(pStmt, i, zData, nData, xDel, 0);
1512 }
1513 int sqlite3_bind_blob64(
1514   sqlite3_stmt *pStmt,
1515   int i,
1516   const void *zData,
1517   sqlite3_uint64 nData,
1518   void (*xDel)(void*)
1519 ){
1520   assert( xDel!=SQLITE_DYNAMIC );
1521   return bindText(pStmt, i, zData, nData, xDel, 0);
1522 }
1523 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1524   int rc;
1525   Vdbe *p = (Vdbe *)pStmt;
1526   rc = vdbeUnbind(p, i);
1527   if( rc==SQLITE_OK ){
1528     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1529     sqlite3_mutex_leave(p->db->mutex);
1530   }
1531   return rc;
1532 }
1533 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1534   return sqlite3_bind_int64(p, i, (i64)iValue);
1535 }
1536 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1537   int rc;
1538   Vdbe *p = (Vdbe *)pStmt;
1539   rc = vdbeUnbind(p, i);
1540   if( rc==SQLITE_OK ){
1541     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1542     sqlite3_mutex_leave(p->db->mutex);
1543   }
1544   return rc;
1545 }
1546 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1547   int rc;
1548   Vdbe *p = (Vdbe*)pStmt;
1549   rc = vdbeUnbind(p, i);
1550   if( rc==SQLITE_OK ){
1551     sqlite3_mutex_leave(p->db->mutex);
1552   }
1553   return rc;
1554 }
1555 int sqlite3_bind_pointer(
1556   sqlite3_stmt *pStmt,
1557   int i,
1558   void *pPtr,
1559   const char *zPTtype,
1560   void (*xDestructor)(void*)
1561 ){
1562   int rc;
1563   Vdbe *p = (Vdbe*)pStmt;
1564   rc = vdbeUnbind(p, i);
1565   if( rc==SQLITE_OK ){
1566     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1567     sqlite3_mutex_leave(p->db->mutex);
1568   }else if( xDestructor ){
1569     xDestructor(pPtr);
1570   }
1571   return rc;
1572 }
1573 int sqlite3_bind_text(
1574   sqlite3_stmt *pStmt,
1575   int i,
1576   const char *zData,
1577   int nData,
1578   void (*xDel)(void*)
1579 ){
1580   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1581 }
1582 int sqlite3_bind_text64(
1583   sqlite3_stmt *pStmt,
1584   int i,
1585   const char *zData,
1586   sqlite3_uint64 nData,
1587   void (*xDel)(void*),
1588   unsigned char enc
1589 ){
1590   assert( xDel!=SQLITE_DYNAMIC );
1591   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1592   return bindText(pStmt, i, zData, nData, xDel, enc);
1593 }
1594 #ifndef SQLITE_OMIT_UTF16
1595 int sqlite3_bind_text16(
1596   sqlite3_stmt *pStmt,
1597   int i,
1598   const void *zData,
1599   int nData,
1600   void (*xDel)(void*)
1601 ){
1602   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1603 }
1604 #endif /* SQLITE_OMIT_UTF16 */
1605 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1606   int rc;
1607   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1608     case SQLITE_INTEGER: {
1609       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1610       break;
1611     }
1612     case SQLITE_FLOAT: {
1613       assert( pValue->flags & (MEM_Real|MEM_IntReal) );
1614       rc = sqlite3_bind_double(pStmt, i,
1615           (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
1616       );
1617       break;
1618     }
1619     case SQLITE_BLOB: {
1620       if( pValue->flags & MEM_Zero ){
1621         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1622       }else{
1623         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1624       }
1625       break;
1626     }
1627     case SQLITE_TEXT: {
1628       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1629                               pValue->enc);
1630       break;
1631     }
1632     default: {
1633       rc = sqlite3_bind_null(pStmt, i);
1634       break;
1635     }
1636   }
1637   return rc;
1638 }
1639 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1640   int rc;
1641   Vdbe *p = (Vdbe *)pStmt;
1642   rc = vdbeUnbind(p, i);
1643   if( rc==SQLITE_OK ){
1644 #ifndef SQLITE_OMIT_INCRBLOB
1645     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1646 #else
1647     rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1648 #endif
1649     sqlite3_mutex_leave(p->db->mutex);
1650   }
1651   return rc;
1652 }
1653 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1654   int rc;
1655   Vdbe *p = (Vdbe *)pStmt;
1656   sqlite3_mutex_enter(p->db->mutex);
1657   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1658     rc = SQLITE_TOOBIG;
1659   }else{
1660     assert( (n & 0x7FFFFFFF)==n );
1661     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1662   }
1663   rc = sqlite3ApiExit(p->db, rc);
1664   sqlite3_mutex_leave(p->db->mutex);
1665   return rc;
1666 }
1667 
1668 /*
1669 ** Return the number of wildcards that can be potentially bound to.
1670 ** This routine is added to support DBD::SQLite.
1671 */
1672 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1673   Vdbe *p = (Vdbe*)pStmt;
1674   return p ? p->nVar : 0;
1675 }
1676 
1677 /*
1678 ** Return the name of a wildcard parameter.  Return NULL if the index
1679 ** is out of range or if the wildcard is unnamed.
1680 **
1681 ** The result is always UTF-8.
1682 */
1683 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1684   Vdbe *p = (Vdbe*)pStmt;
1685   if( p==0 ) return 0;
1686   return sqlite3VListNumToName(p->pVList, i);
1687 }
1688 
1689 /*
1690 ** Given a wildcard parameter name, return the index of the variable
1691 ** with that name.  If there is no variable with the given name,
1692 ** return 0.
1693 */
1694 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1695   if( p==0 || zName==0 ) return 0;
1696   return sqlite3VListNameToNum(p->pVList, zName, nName);
1697 }
1698 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1699   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1700 }
1701 
1702 /*
1703 ** Transfer all bindings from the first statement over to the second.
1704 */
1705 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1706   Vdbe *pFrom = (Vdbe*)pFromStmt;
1707   Vdbe *pTo = (Vdbe*)pToStmt;
1708   int i;
1709   assert( pTo->db==pFrom->db );
1710   assert( pTo->nVar==pFrom->nVar );
1711   sqlite3_mutex_enter(pTo->db->mutex);
1712   for(i=0; i<pFrom->nVar; i++){
1713     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1714   }
1715   sqlite3_mutex_leave(pTo->db->mutex);
1716   return SQLITE_OK;
1717 }
1718 
1719 #ifndef SQLITE_OMIT_DEPRECATED
1720 /*
1721 ** Deprecated external interface.  Internal/core SQLite code
1722 ** should call sqlite3TransferBindings.
1723 **
1724 ** It is misuse to call this routine with statements from different
1725 ** database connections.  But as this is a deprecated interface, we
1726 ** will not bother to check for that condition.
1727 **
1728 ** If the two statements contain a different number of bindings, then
1729 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1730 ** SQLITE_OK is returned.
1731 */
1732 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1733   Vdbe *pFrom = (Vdbe*)pFromStmt;
1734   Vdbe *pTo = (Vdbe*)pToStmt;
1735   if( pFrom->nVar!=pTo->nVar ){
1736     return SQLITE_ERROR;
1737   }
1738   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1739   if( pTo->expmask ){
1740     pTo->expired = 1;
1741   }
1742   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1743   if( pFrom->expmask ){
1744     pFrom->expired = 1;
1745   }
1746   return sqlite3TransferBindings(pFromStmt, pToStmt);
1747 }
1748 #endif
1749 
1750 /*
1751 ** Return the sqlite3* database handle to which the prepared statement given
1752 ** in the argument belongs.  This is the same database handle that was
1753 ** the first argument to the sqlite3_prepare() that was used to create
1754 ** the statement in the first place.
1755 */
1756 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1757   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1758 }
1759 
1760 /*
1761 ** Return true if the prepared statement is guaranteed to not modify the
1762 ** database.
1763 */
1764 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1765   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1766 }
1767 
1768 /*
1769 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1770 ** statement is an EXPLAIN QUERY PLAN
1771 */
1772 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1773   return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1774 }
1775 
1776 /*
1777 ** Return true if the prepared statement is in need of being reset.
1778 */
1779 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1780   Vdbe *v = (Vdbe*)pStmt;
1781   return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0;
1782 }
1783 
1784 /*
1785 ** Return a pointer to the next prepared statement after pStmt associated
1786 ** with database connection pDb.  If pStmt is NULL, return the first
1787 ** prepared statement for the database connection.  Return NULL if there
1788 ** are no more.
1789 */
1790 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1791   sqlite3_stmt *pNext;
1792 #ifdef SQLITE_ENABLE_API_ARMOR
1793   if( !sqlite3SafetyCheckOk(pDb) ){
1794     (void)SQLITE_MISUSE_BKPT;
1795     return 0;
1796   }
1797 #endif
1798   sqlite3_mutex_enter(pDb->mutex);
1799   if( pStmt==0 ){
1800     pNext = (sqlite3_stmt*)pDb->pVdbe;
1801   }else{
1802     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1803   }
1804   sqlite3_mutex_leave(pDb->mutex);
1805   return pNext;
1806 }
1807 
1808 /*
1809 ** Return the value of a status counter for a prepared statement
1810 */
1811 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1812   Vdbe *pVdbe = (Vdbe*)pStmt;
1813   u32 v;
1814 #ifdef SQLITE_ENABLE_API_ARMOR
1815   if( !pStmt
1816    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1817   ){
1818     (void)SQLITE_MISUSE_BKPT;
1819     return 0;
1820   }
1821 #endif
1822   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1823     sqlite3 *db = pVdbe->db;
1824     sqlite3_mutex_enter(db->mutex);
1825     v = 0;
1826     db->pnBytesFreed = (int*)&v;
1827     sqlite3VdbeClearObject(db, pVdbe);
1828     sqlite3DbFree(db, pVdbe);
1829     db->pnBytesFreed = 0;
1830     sqlite3_mutex_leave(db->mutex);
1831   }else{
1832     v = pVdbe->aCounter[op];
1833     if( resetFlag ) pVdbe->aCounter[op] = 0;
1834   }
1835   return (int)v;
1836 }
1837 
1838 /*
1839 ** Return the SQL associated with a prepared statement
1840 */
1841 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1842   Vdbe *p = (Vdbe *)pStmt;
1843   return p ? p->zSql : 0;
1844 }
1845 
1846 /*
1847 ** Return the SQL associated with a prepared statement with
1848 ** bound parameters expanded.  Space to hold the returned string is
1849 ** obtained from sqlite3_malloc().  The caller is responsible for
1850 ** freeing the returned string by passing it to sqlite3_free().
1851 **
1852 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1853 ** expanded bound parameters.
1854 */
1855 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1856 #ifdef SQLITE_OMIT_TRACE
1857   return 0;
1858 #else
1859   char *z = 0;
1860   const char *zSql = sqlite3_sql(pStmt);
1861   if( zSql ){
1862     Vdbe *p = (Vdbe *)pStmt;
1863     sqlite3_mutex_enter(p->db->mutex);
1864     z = sqlite3VdbeExpandSql(p, zSql);
1865     sqlite3_mutex_leave(p->db->mutex);
1866   }
1867   return z;
1868 #endif
1869 }
1870 
1871 #ifdef SQLITE_ENABLE_NORMALIZE
1872 /*
1873 ** Return the normalized SQL associated with a prepared statement.
1874 */
1875 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1876   Vdbe *p = (Vdbe *)pStmt;
1877   if( p==0 ) return 0;
1878   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1879     sqlite3_mutex_enter(p->db->mutex);
1880     p->zNormSql = sqlite3Normalize(p, p->zSql);
1881     sqlite3_mutex_leave(p->db->mutex);
1882   }
1883   return p->zNormSql;
1884 }
1885 #endif /* SQLITE_ENABLE_NORMALIZE */
1886 
1887 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1888 /*
1889 ** Allocate and populate an UnpackedRecord structure based on the serialized
1890 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1891 ** if successful, or a NULL pointer if an OOM error is encountered.
1892 */
1893 static UnpackedRecord *vdbeUnpackRecord(
1894   KeyInfo *pKeyInfo,
1895   int nKey,
1896   const void *pKey
1897 ){
1898   UnpackedRecord *pRet;           /* Return value */
1899 
1900   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1901   if( pRet ){
1902     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1903     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1904   }
1905   return pRet;
1906 }
1907 
1908 /*
1909 ** This function is called from within a pre-update callback to retrieve
1910 ** a field of the row currently being updated or deleted.
1911 */
1912 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1913   PreUpdate *p = db->pPreUpdate;
1914   Mem *pMem;
1915   int rc = SQLITE_OK;
1916 
1917   /* Test that this call is being made from within an SQLITE_DELETE or
1918   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1919   if( !p || p->op==SQLITE_INSERT ){
1920     rc = SQLITE_MISUSE_BKPT;
1921     goto preupdate_old_out;
1922   }
1923   if( p->pPk ){
1924     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1925   }
1926   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1927     rc = SQLITE_RANGE;
1928     goto preupdate_old_out;
1929   }
1930 
1931   /* If the old.* record has not yet been loaded into memory, do so now. */
1932   if( p->pUnpacked==0 ){
1933     u32 nRec;
1934     u8 *aRec;
1935 
1936     assert( p->pCsr->eCurType==CURTYPE_BTREE );
1937     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1938     aRec = sqlite3DbMallocRaw(db, nRec);
1939     if( !aRec ) goto preupdate_old_out;
1940     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1941     if( rc==SQLITE_OK ){
1942       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1943       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1944     }
1945     if( rc!=SQLITE_OK ){
1946       sqlite3DbFree(db, aRec);
1947       goto preupdate_old_out;
1948     }
1949     p->aRecord = aRec;
1950   }
1951 
1952   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1953   if( iIdx==p->pTab->iPKey ){
1954     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1955   }else if( iIdx>=p->pUnpacked->nField ){
1956     *ppValue = (sqlite3_value *)columnNullValue();
1957   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1958     if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1959       testcase( pMem->flags & MEM_Int );
1960       testcase( pMem->flags & MEM_IntReal );
1961       sqlite3VdbeMemRealify(pMem);
1962     }
1963   }
1964 
1965  preupdate_old_out:
1966   sqlite3Error(db, rc);
1967   return sqlite3ApiExit(db, rc);
1968 }
1969 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1970 
1971 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1972 /*
1973 ** This function is called from within a pre-update callback to retrieve
1974 ** the number of columns in the row being updated, deleted or inserted.
1975 */
1976 int sqlite3_preupdate_count(sqlite3 *db){
1977   PreUpdate *p = db->pPreUpdate;
1978   return (p ? p->keyinfo.nKeyField : 0);
1979 }
1980 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1981 
1982 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1983 /*
1984 ** This function is designed to be called from within a pre-update callback
1985 ** only. It returns zero if the change that caused the callback was made
1986 ** immediately by a user SQL statement. Or, if the change was made by a
1987 ** trigger program, it returns the number of trigger programs currently
1988 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1989 ** top-level trigger etc.).
1990 **
1991 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1992 ** or SET DEFAULT action is considered a trigger.
1993 */
1994 int sqlite3_preupdate_depth(sqlite3 *db){
1995   PreUpdate *p = db->pPreUpdate;
1996   return (p ? p->v->nFrame : 0);
1997 }
1998 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1999 
2000 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2001 /*
2002 ** This function is designed to be called from within a pre-update callback
2003 ** only.
2004 */
2005 int sqlite3_preupdate_blobwrite(sqlite3 *db){
2006   PreUpdate *p = db->pPreUpdate;
2007   return (p ? p->iBlobWrite : -1);
2008 }
2009 #endif
2010 
2011 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2012 /*
2013 ** This function is called from within a pre-update callback to retrieve
2014 ** a field of the row currently being updated or inserted.
2015 */
2016 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
2017   PreUpdate *p = db->pPreUpdate;
2018   int rc = SQLITE_OK;
2019   Mem *pMem;
2020 
2021   if( !p || p->op==SQLITE_DELETE ){
2022     rc = SQLITE_MISUSE_BKPT;
2023     goto preupdate_new_out;
2024   }
2025   if( p->pPk && p->op!=SQLITE_UPDATE ){
2026     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2027   }
2028   if( iIdx>=p->pCsr->nField || iIdx<0 ){
2029     rc = SQLITE_RANGE;
2030     goto preupdate_new_out;
2031   }
2032 
2033   if( p->op==SQLITE_INSERT ){
2034     /* For an INSERT, memory cell p->iNewReg contains the serialized record
2035     ** that is being inserted. Deserialize it. */
2036     UnpackedRecord *pUnpack = p->pNewUnpacked;
2037     if( !pUnpack ){
2038       Mem *pData = &p->v->aMem[p->iNewReg];
2039       rc = ExpandBlob(pData);
2040       if( rc!=SQLITE_OK ) goto preupdate_new_out;
2041       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2042       if( !pUnpack ){
2043         rc = SQLITE_NOMEM;
2044         goto preupdate_new_out;
2045       }
2046       p->pNewUnpacked = pUnpack;
2047     }
2048     pMem = &pUnpack->aMem[iIdx];
2049     if( iIdx==p->pTab->iPKey ){
2050       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2051     }else if( iIdx>=pUnpack->nField ){
2052       pMem = (sqlite3_value *)columnNullValue();
2053     }
2054   }else{
2055     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2056     ** value. Make a copy of the cell contents and return a pointer to it.
2057     ** It is not safe to return a pointer to the memory cell itself as the
2058     ** caller may modify the value text encoding.
2059     */
2060     assert( p->op==SQLITE_UPDATE );
2061     if( !p->aNew ){
2062       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2063       if( !p->aNew ){
2064         rc = SQLITE_NOMEM;
2065         goto preupdate_new_out;
2066       }
2067     }
2068     assert( iIdx>=0 && iIdx<p->pCsr->nField );
2069     pMem = &p->aNew[iIdx];
2070     if( pMem->flags==0 ){
2071       if( iIdx==p->pTab->iPKey ){
2072         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2073       }else{
2074         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2075         if( rc!=SQLITE_OK ) goto preupdate_new_out;
2076       }
2077     }
2078   }
2079   *ppValue = pMem;
2080 
2081  preupdate_new_out:
2082   sqlite3Error(db, rc);
2083   return sqlite3ApiExit(db, rc);
2084 }
2085 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2086 
2087 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2088 /*
2089 ** Return status data for a single loop within query pStmt.
2090 */
2091 int sqlite3_stmt_scanstatus(
2092   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
2093   int idx,                        /* Index of loop to report on */
2094   int iScanStatusOp,              /* Which metric to return */
2095   void *pOut                      /* OUT: Write the answer here */
2096 ){
2097   Vdbe *p = (Vdbe*)pStmt;
2098   ScanStatus *pScan;
2099   if( idx<0 || idx>=p->nScan ) return 1;
2100   pScan = &p->aScan[idx];
2101   switch( iScanStatusOp ){
2102     case SQLITE_SCANSTAT_NLOOP: {
2103       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2104       break;
2105     }
2106     case SQLITE_SCANSTAT_NVISIT: {
2107       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2108       break;
2109     }
2110     case SQLITE_SCANSTAT_EST: {
2111       double r = 1.0;
2112       LogEst x = pScan->nEst;
2113       while( x<100 ){
2114         x += 10;
2115         r *= 0.5;
2116       }
2117       *(double*)pOut = r*sqlite3LogEstToInt(x);
2118       break;
2119     }
2120     case SQLITE_SCANSTAT_NAME: {
2121       *(const char**)pOut = pScan->zName;
2122       break;
2123     }
2124     case SQLITE_SCANSTAT_EXPLAIN: {
2125       if( pScan->addrExplain ){
2126         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2127       }else{
2128         *(const char**)pOut = 0;
2129       }
2130       break;
2131     }
2132     case SQLITE_SCANSTAT_SELECTID: {
2133       if( pScan->addrExplain ){
2134         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2135       }else{
2136         *(int*)pOut = -1;
2137       }
2138       break;
2139     }
2140     default: {
2141       return 1;
2142     }
2143   }
2144   return 0;
2145 }
2146 
2147 /*
2148 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2149 */
2150 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2151   Vdbe *p = (Vdbe*)pStmt;
2152   memset(p->anExec, 0, p->nOp * sizeof(i64));
2153 }
2154 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
2155