1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 } 349 return pNew; 350 } 351 352 /* Destroy an sqlite3_value object previously obtained from 353 ** sqlite3_value_dup(). 354 */ 355 void sqlite3_value_free(sqlite3_value *pOld){ 356 sqlite3ValueFree(pOld); 357 } 358 359 360 /**************************** sqlite3_result_ ******************************* 361 ** The following routines are used by user-defined functions to specify 362 ** the function result. 363 ** 364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 365 ** result as a string or blob. Appropriate errors are set if the string/blob 366 ** is too big or if an OOM occurs. 367 ** 368 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 369 ** on value P is not going to be used and need to be destroyed. 370 */ 371 static void setResultStrOrError( 372 sqlite3_context *pCtx, /* Function context */ 373 const char *z, /* String pointer */ 374 int n, /* Bytes in string, or negative */ 375 u8 enc, /* Encoding of z. 0 for BLOBs */ 376 void (*xDel)(void*) /* Destructor function */ 377 ){ 378 int rc = sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel); 379 if( rc ){ 380 if( rc==SQLITE_TOOBIG ){ 381 sqlite3_result_error_toobig(pCtx); 382 }else{ 383 /* The only errors possible from sqlite3VdbeMemSetStr are 384 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 385 assert( rc==SQLITE_NOMEM ); 386 sqlite3_result_error_nomem(pCtx); 387 } 388 } 389 } 390 static int invokeValueDestructor( 391 const void *p, /* Value to destroy */ 392 void (*xDel)(void*), /* The destructor */ 393 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 394 ){ 395 assert( xDel!=SQLITE_DYNAMIC ); 396 if( xDel==0 ){ 397 /* noop */ 398 }else if( xDel==SQLITE_TRANSIENT ){ 399 /* noop */ 400 }else{ 401 xDel((void*)p); 402 } 403 sqlite3_result_error_toobig(pCtx); 404 return SQLITE_TOOBIG; 405 } 406 void sqlite3_result_blob( 407 sqlite3_context *pCtx, 408 const void *z, 409 int n, 410 void (*xDel)(void *) 411 ){ 412 assert( n>=0 ); 413 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 414 setResultStrOrError(pCtx, z, n, 0, xDel); 415 } 416 void sqlite3_result_blob64( 417 sqlite3_context *pCtx, 418 const void *z, 419 sqlite3_uint64 n, 420 void (*xDel)(void *) 421 ){ 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 assert( xDel!=SQLITE_DYNAMIC ); 424 if( n>0x7fffffff ){ 425 (void)invokeValueDestructor(z, xDel, pCtx); 426 }else{ 427 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 428 } 429 } 430 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 433 } 434 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 435 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 436 pCtx->isError = SQLITE_ERROR; 437 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 438 } 439 #ifndef SQLITE_OMIT_UTF16 440 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 441 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 442 pCtx->isError = SQLITE_ERROR; 443 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 444 } 445 #endif 446 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 448 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 449 } 450 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 451 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 452 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 453 } 454 void sqlite3_result_null(sqlite3_context *pCtx){ 455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 456 sqlite3VdbeMemSetNull(pCtx->pOut); 457 } 458 void sqlite3_result_pointer( 459 sqlite3_context *pCtx, 460 void *pPtr, 461 const char *zPType, 462 void (*xDestructor)(void*) 463 ){ 464 Mem *pOut = pCtx->pOut; 465 assert( sqlite3_mutex_held(pOut->db->mutex) ); 466 sqlite3VdbeMemRelease(pOut); 467 pOut->flags = MEM_Null; 468 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 469 } 470 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 471 Mem *pOut = pCtx->pOut; 472 assert( sqlite3_mutex_held(pOut->db->mutex) ); 473 pOut->eSubtype = eSubtype & 0xff; 474 pOut->flags |= MEM_Subtype; 475 } 476 void sqlite3_result_text( 477 sqlite3_context *pCtx, 478 const char *z, 479 int n, 480 void (*xDel)(void *) 481 ){ 482 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 483 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 484 } 485 void sqlite3_result_text64( 486 sqlite3_context *pCtx, 487 const char *z, 488 sqlite3_uint64 n, 489 void (*xDel)(void *), 490 unsigned char enc 491 ){ 492 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 493 assert( xDel!=SQLITE_DYNAMIC ); 494 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 495 if( n>0x7fffffff ){ 496 (void)invokeValueDestructor(z, xDel, pCtx); 497 }else{ 498 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 499 } 500 } 501 #ifndef SQLITE_OMIT_UTF16 502 void sqlite3_result_text16( 503 sqlite3_context *pCtx, 504 const void *z, 505 int n, 506 void (*xDel)(void *) 507 ){ 508 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 509 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 510 } 511 void sqlite3_result_text16be( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 519 } 520 void sqlite3_result_text16le( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 528 } 529 #endif /* SQLITE_OMIT_UTF16 */ 530 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 531 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 532 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 533 } 534 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 537 } 538 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 539 Mem *pOut = pCtx->pOut; 540 assert( sqlite3_mutex_held(pOut->db->mutex) ); 541 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 542 return SQLITE_TOOBIG; 543 } 544 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 545 return SQLITE_OK; 546 } 547 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 548 pCtx->isError = errCode ? errCode : -1; 549 #ifdef SQLITE_DEBUG 550 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 551 #endif 552 if( pCtx->pOut->flags & MEM_Null ){ 553 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 554 SQLITE_UTF8, SQLITE_STATIC); 555 } 556 } 557 558 /* Force an SQLITE_TOOBIG error. */ 559 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 560 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 561 pCtx->isError = SQLITE_TOOBIG; 562 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 563 SQLITE_UTF8, SQLITE_STATIC); 564 } 565 566 /* An SQLITE_NOMEM error. */ 567 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 568 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 569 sqlite3VdbeMemSetNull(pCtx->pOut); 570 pCtx->isError = SQLITE_NOMEM_BKPT; 571 sqlite3OomFault(pCtx->pOut->db); 572 } 573 574 #ifndef SQLITE_UNTESTABLE 575 /* Force the INT64 value currently stored as the result to be 576 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 577 ** test-control. 578 */ 579 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 580 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 581 if( pCtx->pOut->flags & MEM_Int ){ 582 pCtx->pOut->flags &= ~MEM_Int; 583 pCtx->pOut->flags |= MEM_IntReal; 584 } 585 } 586 #endif 587 588 589 /* 590 ** This function is called after a transaction has been committed. It 591 ** invokes callbacks registered with sqlite3_wal_hook() as required. 592 */ 593 static int doWalCallbacks(sqlite3 *db){ 594 int rc = SQLITE_OK; 595 #ifndef SQLITE_OMIT_WAL 596 int i; 597 for(i=0; i<db->nDb; i++){ 598 Btree *pBt = db->aDb[i].pBt; 599 if( pBt ){ 600 int nEntry; 601 sqlite3BtreeEnter(pBt); 602 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 603 sqlite3BtreeLeave(pBt); 604 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 605 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 606 } 607 } 608 } 609 #endif 610 return rc; 611 } 612 613 614 /* 615 ** Execute the statement pStmt, either until a row of data is ready, the 616 ** statement is completely executed or an error occurs. 617 ** 618 ** This routine implements the bulk of the logic behind the sqlite_step() 619 ** API. The only thing omitted is the automatic recompile if a 620 ** schema change has occurred. That detail is handled by the 621 ** outer sqlite3_step() wrapper procedure. 622 */ 623 static int sqlite3Step(Vdbe *p){ 624 sqlite3 *db; 625 int rc; 626 627 assert(p); 628 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 629 /* We used to require that sqlite3_reset() be called before retrying 630 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 631 ** with version 3.7.0, we changed this so that sqlite3_reset() would 632 ** be called automatically instead of throwing the SQLITE_MISUSE error. 633 ** This "automatic-reset" change is not technically an incompatibility, 634 ** since any application that receives an SQLITE_MISUSE is broken by 635 ** definition. 636 ** 637 ** Nevertheless, some published applications that were originally written 638 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 639 ** returns, and those were broken by the automatic-reset change. As a 640 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 641 ** legacy behavior of returning SQLITE_MISUSE for cases where the 642 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 643 ** or SQLITE_BUSY error. 644 */ 645 #ifdef SQLITE_OMIT_AUTORESET 646 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 647 sqlite3_reset((sqlite3_stmt*)p); 648 }else{ 649 return SQLITE_MISUSE_BKPT; 650 } 651 #else 652 sqlite3_reset((sqlite3_stmt*)p); 653 #endif 654 } 655 656 /* Check that malloc() has not failed. If it has, return early. */ 657 db = p->db; 658 if( db->mallocFailed ){ 659 p->rc = SQLITE_NOMEM; 660 return SQLITE_NOMEM_BKPT; 661 } 662 663 if( p->pc<0 && p->expired ){ 664 p->rc = SQLITE_SCHEMA; 665 rc = SQLITE_ERROR; 666 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 667 /* If this statement was prepared using saved SQL and an 668 ** error has occurred, then return the error code in p->rc to the 669 ** caller. Set the error code in the database handle to the same value. 670 */ 671 rc = sqlite3VdbeTransferError(p); 672 } 673 goto end_of_step; 674 } 675 if( p->pc<0 ){ 676 /* If there are no other statements currently running, then 677 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 678 ** from interrupting a statement that has not yet started. 679 */ 680 if( db->nVdbeActive==0 ){ 681 AtomicStore(&db->u1.isInterrupted, 0); 682 } 683 684 assert( db->nVdbeWrite>0 || db->autoCommit==0 685 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 686 ); 687 688 #ifndef SQLITE_OMIT_TRACE 689 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 690 && !db->init.busy && p->zSql ){ 691 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 692 }else{ 693 assert( p->startTime==0 ); 694 } 695 #endif 696 697 db->nVdbeActive++; 698 if( p->readOnly==0 ) db->nVdbeWrite++; 699 if( p->bIsReader ) db->nVdbeRead++; 700 p->pc = 0; 701 } 702 #ifdef SQLITE_DEBUG 703 p->rcApp = SQLITE_OK; 704 #endif 705 #ifndef SQLITE_OMIT_EXPLAIN 706 if( p->explain ){ 707 rc = sqlite3VdbeList(p); 708 }else 709 #endif /* SQLITE_OMIT_EXPLAIN */ 710 { 711 db->nVdbeExec++; 712 rc = sqlite3VdbeExec(p); 713 db->nVdbeExec--; 714 } 715 716 if( rc!=SQLITE_ROW ){ 717 #ifndef SQLITE_OMIT_TRACE 718 /* If the statement completed successfully, invoke the profile callback */ 719 checkProfileCallback(db, p); 720 #endif 721 722 if( rc==SQLITE_DONE && db->autoCommit ){ 723 assert( p->rc==SQLITE_OK ); 724 p->rc = doWalCallbacks(db); 725 if( p->rc!=SQLITE_OK ){ 726 rc = SQLITE_ERROR; 727 } 728 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 729 /* If this statement was prepared using saved SQL and an 730 ** error has occurred, then return the error code in p->rc to the 731 ** caller. Set the error code in the database handle to the same value. 732 */ 733 rc = sqlite3VdbeTransferError(p); 734 } 735 } 736 737 db->errCode = rc; 738 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 739 p->rc = SQLITE_NOMEM_BKPT; 740 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 741 } 742 end_of_step: 743 /* There are only a limited number of result codes allowed from the 744 ** statements prepared using the legacy sqlite3_prepare() interface */ 745 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 746 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 747 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 748 ); 749 return (rc&db->errMask); 750 } 751 752 /* 753 ** This is the top-level implementation of sqlite3_step(). Call 754 ** sqlite3Step() to do most of the work. If a schema error occurs, 755 ** call sqlite3Reprepare() and try again. 756 */ 757 int sqlite3_step(sqlite3_stmt *pStmt){ 758 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 759 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 760 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 761 sqlite3 *db; /* The database connection */ 762 763 if( vdbeSafetyNotNull(v) ){ 764 return SQLITE_MISUSE_BKPT; 765 } 766 db = v->db; 767 sqlite3_mutex_enter(db->mutex); 768 v->doingRerun = 0; 769 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 770 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 771 int savedPc = v->pc; 772 rc = sqlite3Reprepare(v); 773 if( rc!=SQLITE_OK ){ 774 /* This case occurs after failing to recompile an sql statement. 775 ** The error message from the SQL compiler has already been loaded 776 ** into the database handle. This block copies the error message 777 ** from the database handle into the statement and sets the statement 778 ** program counter to 0 to ensure that when the statement is 779 ** finalized or reset the parser error message is available via 780 ** sqlite3_errmsg() and sqlite3_errcode(). 781 */ 782 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 783 sqlite3DbFree(db, v->zErrMsg); 784 if( !db->mallocFailed ){ 785 v->zErrMsg = sqlite3DbStrDup(db, zErr); 786 v->rc = rc = sqlite3ApiExit(db, rc); 787 } else { 788 v->zErrMsg = 0; 789 v->rc = rc = SQLITE_NOMEM_BKPT; 790 } 791 break; 792 } 793 sqlite3_reset(pStmt); 794 if( savedPc>=0 ) v->doingRerun = 1; 795 assert( v->expired==0 ); 796 } 797 sqlite3_mutex_leave(db->mutex); 798 return rc; 799 } 800 801 802 /* 803 ** Extract the user data from a sqlite3_context structure and return a 804 ** pointer to it. 805 */ 806 void *sqlite3_user_data(sqlite3_context *p){ 807 assert( p && p->pFunc ); 808 return p->pFunc->pUserData; 809 } 810 811 /* 812 ** Extract the user data from a sqlite3_context structure and return a 813 ** pointer to it. 814 ** 815 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 816 ** returns a copy of the pointer to the database connection (the 1st 817 ** parameter) of the sqlite3_create_function() and 818 ** sqlite3_create_function16() routines that originally registered the 819 ** application defined function. 820 */ 821 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 822 assert( p && p->pOut ); 823 return p->pOut->db; 824 } 825 826 /* 827 ** If this routine is invoked from within an xColumn method of a virtual 828 ** table, then it returns true if and only if the the call is during an 829 ** UPDATE operation and the value of the column will not be modified 830 ** by the UPDATE. 831 ** 832 ** If this routine is called from any context other than within the 833 ** xColumn method of a virtual table, then the return value is meaningless 834 ** and arbitrary. 835 ** 836 ** Virtual table implements might use this routine to optimize their 837 ** performance by substituting a NULL result, or some other light-weight 838 ** value, as a signal to the xUpdate routine that the column is unchanged. 839 */ 840 int sqlite3_vtab_nochange(sqlite3_context *p){ 841 assert( p ); 842 return sqlite3_value_nochange(p->pOut); 843 } 844 845 /* 846 ** Return the current time for a statement. If the current time 847 ** is requested more than once within the same run of a single prepared 848 ** statement, the exact same time is returned for each invocation regardless 849 ** of the amount of time that elapses between invocations. In other words, 850 ** the time returned is always the time of the first call. 851 */ 852 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 853 int rc; 854 #ifndef SQLITE_ENABLE_STAT4 855 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 856 assert( p->pVdbe!=0 ); 857 #else 858 sqlite3_int64 iTime = 0; 859 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 860 #endif 861 if( *piTime==0 ){ 862 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 863 if( rc ) *piTime = 0; 864 } 865 return *piTime; 866 } 867 868 /* 869 ** Create a new aggregate context for p and return a pointer to 870 ** its pMem->z element. 871 */ 872 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 873 Mem *pMem = p->pMem; 874 assert( (pMem->flags & MEM_Agg)==0 ); 875 if( nByte<=0 ){ 876 sqlite3VdbeMemSetNull(pMem); 877 pMem->z = 0; 878 }else{ 879 sqlite3VdbeMemClearAndResize(pMem, nByte); 880 pMem->flags = MEM_Agg; 881 pMem->u.pDef = p->pFunc; 882 if( pMem->z ){ 883 memset(pMem->z, 0, nByte); 884 } 885 } 886 return (void*)pMem->z; 887 } 888 889 /* 890 ** Allocate or return the aggregate context for a user function. A new 891 ** context is allocated on the first call. Subsequent calls return the 892 ** same context that was returned on prior calls. 893 */ 894 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 895 assert( p && p->pFunc && p->pFunc->xFinalize ); 896 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 897 testcase( nByte<0 ); 898 if( (p->pMem->flags & MEM_Agg)==0 ){ 899 return createAggContext(p, nByte); 900 }else{ 901 return (void*)p->pMem->z; 902 } 903 } 904 905 /* 906 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 907 ** the user-function defined by pCtx. 908 ** 909 ** The left-most argument is 0. 910 ** 911 ** Undocumented behavior: If iArg is negative then access a cache of 912 ** auxiliary data pointers that is available to all functions within a 913 ** single prepared statement. The iArg values must match. 914 */ 915 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 916 AuxData *pAuxData; 917 918 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 919 #if SQLITE_ENABLE_STAT4 920 if( pCtx->pVdbe==0 ) return 0; 921 #else 922 assert( pCtx->pVdbe!=0 ); 923 #endif 924 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 925 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 926 return pAuxData->pAux; 927 } 928 } 929 return 0; 930 } 931 932 /* 933 ** Set the auxiliary data pointer and delete function, for the iArg'th 934 ** argument to the user-function defined by pCtx. Any previous value is 935 ** deleted by calling the delete function specified when it was set. 936 ** 937 ** The left-most argument is 0. 938 ** 939 ** Undocumented behavior: If iArg is negative then make the data available 940 ** to all functions within the current prepared statement using iArg as an 941 ** access code. 942 */ 943 void sqlite3_set_auxdata( 944 sqlite3_context *pCtx, 945 int iArg, 946 void *pAux, 947 void (*xDelete)(void*) 948 ){ 949 AuxData *pAuxData; 950 Vdbe *pVdbe = pCtx->pVdbe; 951 952 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 953 #ifdef SQLITE_ENABLE_STAT4 954 if( pVdbe==0 ) goto failed; 955 #else 956 assert( pVdbe!=0 ); 957 #endif 958 959 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 960 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 961 break; 962 } 963 } 964 if( pAuxData==0 ){ 965 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 966 if( !pAuxData ) goto failed; 967 pAuxData->iAuxOp = pCtx->iOp; 968 pAuxData->iAuxArg = iArg; 969 pAuxData->pNextAux = pVdbe->pAuxData; 970 pVdbe->pAuxData = pAuxData; 971 if( pCtx->isError==0 ) pCtx->isError = -1; 972 }else if( pAuxData->xDeleteAux ){ 973 pAuxData->xDeleteAux(pAuxData->pAux); 974 } 975 976 pAuxData->pAux = pAux; 977 pAuxData->xDeleteAux = xDelete; 978 return; 979 980 failed: 981 if( xDelete ){ 982 xDelete(pAux); 983 } 984 } 985 986 #ifndef SQLITE_OMIT_DEPRECATED 987 /* 988 ** Return the number of times the Step function of an aggregate has been 989 ** called. 990 ** 991 ** This function is deprecated. Do not use it for new code. It is 992 ** provide only to avoid breaking legacy code. New aggregate function 993 ** implementations should keep their own counts within their aggregate 994 ** context. 995 */ 996 int sqlite3_aggregate_count(sqlite3_context *p){ 997 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 998 return p->pMem->n; 999 } 1000 #endif 1001 1002 /* 1003 ** Return the number of columns in the result set for the statement pStmt. 1004 */ 1005 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1006 Vdbe *pVm = (Vdbe *)pStmt; 1007 return pVm ? pVm->nResColumn : 0; 1008 } 1009 1010 /* 1011 ** Return the number of values available from the current row of the 1012 ** currently executing statement pStmt. 1013 */ 1014 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1015 Vdbe *pVm = (Vdbe *)pStmt; 1016 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1017 return pVm->nResColumn; 1018 } 1019 1020 /* 1021 ** Return a pointer to static memory containing an SQL NULL value. 1022 */ 1023 static const Mem *columnNullValue(void){ 1024 /* Even though the Mem structure contains an element 1025 ** of type i64, on certain architectures (x86) with certain compiler 1026 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1027 ** instead of an 8-byte one. This all works fine, except that when 1028 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1029 ** that a Mem structure is located on an 8-byte boundary. To prevent 1030 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1031 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1032 ** __attribute__((aligned(8))) macro. */ 1033 static const Mem nullMem 1034 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1035 __attribute__((aligned(8))) 1036 #endif 1037 = { 1038 /* .u = */ {0}, 1039 /* .flags = */ (u16)MEM_Null, 1040 /* .enc = */ (u8)0, 1041 /* .eSubtype = */ (u8)0, 1042 /* .n = */ (int)0, 1043 /* .z = */ (char*)0, 1044 /* .zMalloc = */ (char*)0, 1045 /* .szMalloc = */ (int)0, 1046 /* .uTemp = */ (u32)0, 1047 /* .db = */ (sqlite3*)0, 1048 /* .xDel = */ (void(*)(void*))0, 1049 #ifdef SQLITE_DEBUG 1050 /* .pScopyFrom = */ (Mem*)0, 1051 /* .mScopyFlags= */ 0, 1052 #endif 1053 }; 1054 return &nullMem; 1055 } 1056 1057 /* 1058 ** Check to see if column iCol of the given statement is valid. If 1059 ** it is, return a pointer to the Mem for the value of that column. 1060 ** If iCol is not valid, return a pointer to a Mem which has a value 1061 ** of NULL. 1062 */ 1063 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1064 Vdbe *pVm; 1065 Mem *pOut; 1066 1067 pVm = (Vdbe *)pStmt; 1068 if( pVm==0 ) return (Mem*)columnNullValue(); 1069 assert( pVm->db ); 1070 sqlite3_mutex_enter(pVm->db->mutex); 1071 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1072 pOut = &pVm->pResultSet[i]; 1073 }else{ 1074 sqlite3Error(pVm->db, SQLITE_RANGE); 1075 pOut = (Mem*)columnNullValue(); 1076 } 1077 return pOut; 1078 } 1079 1080 /* 1081 ** This function is called after invoking an sqlite3_value_XXX function on a 1082 ** column value (i.e. a value returned by evaluating an SQL expression in the 1083 ** select list of a SELECT statement) that may cause a malloc() failure. If 1084 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1085 ** code of statement pStmt set to SQLITE_NOMEM. 1086 ** 1087 ** Specifically, this is called from within: 1088 ** 1089 ** sqlite3_column_int() 1090 ** sqlite3_column_int64() 1091 ** sqlite3_column_text() 1092 ** sqlite3_column_text16() 1093 ** sqlite3_column_real() 1094 ** sqlite3_column_bytes() 1095 ** sqlite3_column_bytes16() 1096 ** sqiite3_column_blob() 1097 */ 1098 static void columnMallocFailure(sqlite3_stmt *pStmt) 1099 { 1100 /* If malloc() failed during an encoding conversion within an 1101 ** sqlite3_column_XXX API, then set the return code of the statement to 1102 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1103 ** and _finalize() will return NOMEM. 1104 */ 1105 Vdbe *p = (Vdbe *)pStmt; 1106 if( p ){ 1107 assert( p->db!=0 ); 1108 assert( sqlite3_mutex_held(p->db->mutex) ); 1109 p->rc = sqlite3ApiExit(p->db, p->rc); 1110 sqlite3_mutex_leave(p->db->mutex); 1111 } 1112 } 1113 1114 /**************************** sqlite3_column_ ******************************* 1115 ** The following routines are used to access elements of the current row 1116 ** in the result set. 1117 */ 1118 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1119 const void *val; 1120 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1121 /* Even though there is no encoding conversion, value_blob() might 1122 ** need to call malloc() to expand the result of a zeroblob() 1123 ** expression. 1124 */ 1125 columnMallocFailure(pStmt); 1126 return val; 1127 } 1128 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1129 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1130 columnMallocFailure(pStmt); 1131 return val; 1132 } 1133 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1134 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1135 columnMallocFailure(pStmt); 1136 return val; 1137 } 1138 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1139 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1140 columnMallocFailure(pStmt); 1141 return val; 1142 } 1143 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1144 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1145 columnMallocFailure(pStmt); 1146 return val; 1147 } 1148 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1149 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1150 columnMallocFailure(pStmt); 1151 return val; 1152 } 1153 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1154 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1155 columnMallocFailure(pStmt); 1156 return val; 1157 } 1158 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1159 Mem *pOut = columnMem(pStmt, i); 1160 if( pOut->flags&MEM_Static ){ 1161 pOut->flags &= ~MEM_Static; 1162 pOut->flags |= MEM_Ephem; 1163 } 1164 columnMallocFailure(pStmt); 1165 return (sqlite3_value *)pOut; 1166 } 1167 #ifndef SQLITE_OMIT_UTF16 1168 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1169 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1170 columnMallocFailure(pStmt); 1171 return val; 1172 } 1173 #endif /* SQLITE_OMIT_UTF16 */ 1174 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1175 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1176 columnMallocFailure(pStmt); 1177 return iType; 1178 } 1179 1180 /* 1181 ** Convert the N-th element of pStmt->pColName[] into a string using 1182 ** xFunc() then return that string. If N is out of range, return 0. 1183 ** 1184 ** There are up to 5 names for each column. useType determines which 1185 ** name is returned. Here are the names: 1186 ** 1187 ** 0 The column name as it should be displayed for output 1188 ** 1 The datatype name for the column 1189 ** 2 The name of the database that the column derives from 1190 ** 3 The name of the table that the column derives from 1191 ** 4 The name of the table column that the result column derives from 1192 ** 1193 ** If the result is not a simple column reference (if it is an expression 1194 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1195 */ 1196 static const void *columnName( 1197 sqlite3_stmt *pStmt, /* The statement */ 1198 int N, /* Which column to get the name for */ 1199 int useUtf16, /* True to return the name as UTF16 */ 1200 int useType /* What type of name */ 1201 ){ 1202 const void *ret; 1203 Vdbe *p; 1204 int n; 1205 sqlite3 *db; 1206 #ifdef SQLITE_ENABLE_API_ARMOR 1207 if( pStmt==0 ){ 1208 (void)SQLITE_MISUSE_BKPT; 1209 return 0; 1210 } 1211 #endif 1212 ret = 0; 1213 p = (Vdbe *)pStmt; 1214 db = p->db; 1215 assert( db!=0 ); 1216 n = sqlite3_column_count(pStmt); 1217 if( N<n && N>=0 ){ 1218 N += useType*n; 1219 sqlite3_mutex_enter(db->mutex); 1220 assert( db->mallocFailed==0 ); 1221 #ifndef SQLITE_OMIT_UTF16 1222 if( useUtf16 ){ 1223 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1224 }else 1225 #endif 1226 { 1227 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1228 } 1229 /* A malloc may have failed inside of the _text() call. If this 1230 ** is the case, clear the mallocFailed flag and return NULL. 1231 */ 1232 if( db->mallocFailed ){ 1233 sqlite3OomClear(db); 1234 ret = 0; 1235 } 1236 sqlite3_mutex_leave(db->mutex); 1237 } 1238 return ret; 1239 } 1240 1241 /* 1242 ** Return the name of the Nth column of the result set returned by SQL 1243 ** statement pStmt. 1244 */ 1245 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1246 return columnName(pStmt, N, 0, COLNAME_NAME); 1247 } 1248 #ifndef SQLITE_OMIT_UTF16 1249 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1250 return columnName(pStmt, N, 1, COLNAME_NAME); 1251 } 1252 #endif 1253 1254 /* 1255 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1256 ** not define OMIT_DECLTYPE. 1257 */ 1258 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1259 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1260 and SQLITE_ENABLE_COLUMN_METADATA" 1261 #endif 1262 1263 #ifndef SQLITE_OMIT_DECLTYPE 1264 /* 1265 ** Return the column declaration type (if applicable) of the 'i'th column 1266 ** of the result set of SQL statement pStmt. 1267 */ 1268 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1269 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1270 } 1271 #ifndef SQLITE_OMIT_UTF16 1272 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1273 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1274 } 1275 #endif /* SQLITE_OMIT_UTF16 */ 1276 #endif /* SQLITE_OMIT_DECLTYPE */ 1277 1278 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1279 /* 1280 ** Return the name of the database from which a result column derives. 1281 ** NULL is returned if the result column is an expression or constant or 1282 ** anything else which is not an unambiguous reference to a database column. 1283 */ 1284 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1285 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1286 } 1287 #ifndef SQLITE_OMIT_UTF16 1288 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1289 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1290 } 1291 #endif /* SQLITE_OMIT_UTF16 */ 1292 1293 /* 1294 ** Return the name of the table from which a result column derives. 1295 ** NULL is returned if the result column is an expression or constant or 1296 ** anything else which is not an unambiguous reference to a database column. 1297 */ 1298 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1299 return columnName(pStmt, N, 0, COLNAME_TABLE); 1300 } 1301 #ifndef SQLITE_OMIT_UTF16 1302 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1303 return columnName(pStmt, N, 1, COLNAME_TABLE); 1304 } 1305 #endif /* SQLITE_OMIT_UTF16 */ 1306 1307 /* 1308 ** Return the name of the table column from which a result column derives. 1309 ** NULL is returned if the result column is an expression or constant or 1310 ** anything else which is not an unambiguous reference to a database column. 1311 */ 1312 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1313 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1314 } 1315 #ifndef SQLITE_OMIT_UTF16 1316 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1317 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1318 } 1319 #endif /* SQLITE_OMIT_UTF16 */ 1320 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1321 1322 1323 /******************************* sqlite3_bind_ *************************** 1324 ** 1325 ** Routines used to attach values to wildcards in a compiled SQL statement. 1326 */ 1327 /* 1328 ** Unbind the value bound to variable i in virtual machine p. This is the 1329 ** the same as binding a NULL value to the column. If the "i" parameter is 1330 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1331 ** 1332 ** A successful evaluation of this routine acquires the mutex on p. 1333 ** the mutex is released if any kind of error occurs. 1334 ** 1335 ** The error code stored in database p->db is overwritten with the return 1336 ** value in any case. 1337 */ 1338 static int vdbeUnbind(Vdbe *p, int i){ 1339 Mem *pVar; 1340 if( vdbeSafetyNotNull(p) ){ 1341 return SQLITE_MISUSE_BKPT; 1342 } 1343 sqlite3_mutex_enter(p->db->mutex); 1344 if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1345 sqlite3Error(p->db, SQLITE_MISUSE); 1346 sqlite3_mutex_leave(p->db->mutex); 1347 sqlite3_log(SQLITE_MISUSE, 1348 "bind on a busy prepared statement: [%s]", p->zSql); 1349 return SQLITE_MISUSE_BKPT; 1350 } 1351 if( i<1 || i>p->nVar ){ 1352 sqlite3Error(p->db, SQLITE_RANGE); 1353 sqlite3_mutex_leave(p->db->mutex); 1354 return SQLITE_RANGE; 1355 } 1356 i--; 1357 pVar = &p->aVar[i]; 1358 sqlite3VdbeMemRelease(pVar); 1359 pVar->flags = MEM_Null; 1360 p->db->errCode = SQLITE_OK; 1361 1362 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1363 ** binding a new value to this variable invalidates the current query plan. 1364 ** 1365 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1366 ** parameter in the WHERE clause might influence the choice of query plan 1367 ** for a statement, then the statement will be automatically recompiled, 1368 ** as if there had been a schema change, on the first sqlite3_step() call 1369 ** following any change to the bindings of that parameter. 1370 */ 1371 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1372 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1373 p->expired = 1; 1374 } 1375 return SQLITE_OK; 1376 } 1377 1378 /* 1379 ** Bind a text or BLOB value. 1380 */ 1381 static int bindText( 1382 sqlite3_stmt *pStmt, /* The statement to bind against */ 1383 int i, /* Index of the parameter to bind */ 1384 const void *zData, /* Pointer to the data to be bound */ 1385 i64 nData, /* Number of bytes of data to be bound */ 1386 void (*xDel)(void*), /* Destructor for the data */ 1387 u8 encoding /* Encoding for the data */ 1388 ){ 1389 Vdbe *p = (Vdbe *)pStmt; 1390 Mem *pVar; 1391 int rc; 1392 1393 rc = vdbeUnbind(p, i); 1394 if( rc==SQLITE_OK ){ 1395 if( zData!=0 ){ 1396 pVar = &p->aVar[i-1]; 1397 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1398 if( rc==SQLITE_OK && encoding!=0 ){ 1399 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1400 } 1401 if( rc ){ 1402 sqlite3Error(p->db, rc); 1403 rc = sqlite3ApiExit(p->db, rc); 1404 } 1405 } 1406 sqlite3_mutex_leave(p->db->mutex); 1407 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1408 xDel((void*)zData); 1409 } 1410 return rc; 1411 } 1412 1413 1414 /* 1415 ** Bind a blob value to an SQL statement variable. 1416 */ 1417 int sqlite3_bind_blob( 1418 sqlite3_stmt *pStmt, 1419 int i, 1420 const void *zData, 1421 int nData, 1422 void (*xDel)(void*) 1423 ){ 1424 #ifdef SQLITE_ENABLE_API_ARMOR 1425 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1426 #endif 1427 return bindText(pStmt, i, zData, nData, xDel, 0); 1428 } 1429 int sqlite3_bind_blob64( 1430 sqlite3_stmt *pStmt, 1431 int i, 1432 const void *zData, 1433 sqlite3_uint64 nData, 1434 void (*xDel)(void*) 1435 ){ 1436 assert( xDel!=SQLITE_DYNAMIC ); 1437 return bindText(pStmt, i, zData, nData, xDel, 0); 1438 } 1439 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1440 int rc; 1441 Vdbe *p = (Vdbe *)pStmt; 1442 rc = vdbeUnbind(p, i); 1443 if( rc==SQLITE_OK ){ 1444 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1445 sqlite3_mutex_leave(p->db->mutex); 1446 } 1447 return rc; 1448 } 1449 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1450 return sqlite3_bind_int64(p, i, (i64)iValue); 1451 } 1452 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1453 int rc; 1454 Vdbe *p = (Vdbe *)pStmt; 1455 rc = vdbeUnbind(p, i); 1456 if( rc==SQLITE_OK ){ 1457 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1458 sqlite3_mutex_leave(p->db->mutex); 1459 } 1460 return rc; 1461 } 1462 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1463 int rc; 1464 Vdbe *p = (Vdbe*)pStmt; 1465 rc = vdbeUnbind(p, i); 1466 if( rc==SQLITE_OK ){ 1467 sqlite3_mutex_leave(p->db->mutex); 1468 } 1469 return rc; 1470 } 1471 int sqlite3_bind_pointer( 1472 sqlite3_stmt *pStmt, 1473 int i, 1474 void *pPtr, 1475 const char *zPTtype, 1476 void (*xDestructor)(void*) 1477 ){ 1478 int rc; 1479 Vdbe *p = (Vdbe*)pStmt; 1480 rc = vdbeUnbind(p, i); 1481 if( rc==SQLITE_OK ){ 1482 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1483 sqlite3_mutex_leave(p->db->mutex); 1484 }else if( xDestructor ){ 1485 xDestructor(pPtr); 1486 } 1487 return rc; 1488 } 1489 int sqlite3_bind_text( 1490 sqlite3_stmt *pStmt, 1491 int i, 1492 const char *zData, 1493 int nData, 1494 void (*xDel)(void*) 1495 ){ 1496 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1497 } 1498 int sqlite3_bind_text64( 1499 sqlite3_stmt *pStmt, 1500 int i, 1501 const char *zData, 1502 sqlite3_uint64 nData, 1503 void (*xDel)(void*), 1504 unsigned char enc 1505 ){ 1506 assert( xDel!=SQLITE_DYNAMIC ); 1507 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1508 return bindText(pStmt, i, zData, nData, xDel, enc); 1509 } 1510 #ifndef SQLITE_OMIT_UTF16 1511 int sqlite3_bind_text16( 1512 sqlite3_stmt *pStmt, 1513 int i, 1514 const void *zData, 1515 int nData, 1516 void (*xDel)(void*) 1517 ){ 1518 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1519 } 1520 #endif /* SQLITE_OMIT_UTF16 */ 1521 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1522 int rc; 1523 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1524 case SQLITE_INTEGER: { 1525 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1526 break; 1527 } 1528 case SQLITE_FLOAT: { 1529 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1530 break; 1531 } 1532 case SQLITE_BLOB: { 1533 if( pValue->flags & MEM_Zero ){ 1534 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1535 }else{ 1536 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1537 } 1538 break; 1539 } 1540 case SQLITE_TEXT: { 1541 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1542 pValue->enc); 1543 break; 1544 } 1545 default: { 1546 rc = sqlite3_bind_null(pStmt, i); 1547 break; 1548 } 1549 } 1550 return rc; 1551 } 1552 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1553 int rc; 1554 Vdbe *p = (Vdbe *)pStmt; 1555 rc = vdbeUnbind(p, i); 1556 if( rc==SQLITE_OK ){ 1557 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1558 sqlite3_mutex_leave(p->db->mutex); 1559 } 1560 return rc; 1561 } 1562 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1563 int rc; 1564 Vdbe *p = (Vdbe *)pStmt; 1565 sqlite3_mutex_enter(p->db->mutex); 1566 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1567 rc = SQLITE_TOOBIG; 1568 }else{ 1569 assert( (n & 0x7FFFFFFF)==n ); 1570 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1571 } 1572 rc = sqlite3ApiExit(p->db, rc); 1573 sqlite3_mutex_leave(p->db->mutex); 1574 return rc; 1575 } 1576 1577 /* 1578 ** Return the number of wildcards that can be potentially bound to. 1579 ** This routine is added to support DBD::SQLite. 1580 */ 1581 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1582 Vdbe *p = (Vdbe*)pStmt; 1583 return p ? p->nVar : 0; 1584 } 1585 1586 /* 1587 ** Return the name of a wildcard parameter. Return NULL if the index 1588 ** is out of range or if the wildcard is unnamed. 1589 ** 1590 ** The result is always UTF-8. 1591 */ 1592 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1593 Vdbe *p = (Vdbe*)pStmt; 1594 if( p==0 ) return 0; 1595 return sqlite3VListNumToName(p->pVList, i); 1596 } 1597 1598 /* 1599 ** Given a wildcard parameter name, return the index of the variable 1600 ** with that name. If there is no variable with the given name, 1601 ** return 0. 1602 */ 1603 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1604 if( p==0 || zName==0 ) return 0; 1605 return sqlite3VListNameToNum(p->pVList, zName, nName); 1606 } 1607 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1608 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1609 } 1610 1611 /* 1612 ** Transfer all bindings from the first statement over to the second. 1613 */ 1614 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1615 Vdbe *pFrom = (Vdbe*)pFromStmt; 1616 Vdbe *pTo = (Vdbe*)pToStmt; 1617 int i; 1618 assert( pTo->db==pFrom->db ); 1619 assert( pTo->nVar==pFrom->nVar ); 1620 sqlite3_mutex_enter(pTo->db->mutex); 1621 for(i=0; i<pFrom->nVar; i++){ 1622 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1623 } 1624 sqlite3_mutex_leave(pTo->db->mutex); 1625 return SQLITE_OK; 1626 } 1627 1628 #ifndef SQLITE_OMIT_DEPRECATED 1629 /* 1630 ** Deprecated external interface. Internal/core SQLite code 1631 ** should call sqlite3TransferBindings. 1632 ** 1633 ** It is misuse to call this routine with statements from different 1634 ** database connections. But as this is a deprecated interface, we 1635 ** will not bother to check for that condition. 1636 ** 1637 ** If the two statements contain a different number of bindings, then 1638 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1639 ** SQLITE_OK is returned. 1640 */ 1641 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1642 Vdbe *pFrom = (Vdbe*)pFromStmt; 1643 Vdbe *pTo = (Vdbe*)pToStmt; 1644 if( pFrom->nVar!=pTo->nVar ){ 1645 return SQLITE_ERROR; 1646 } 1647 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1648 if( pTo->expmask ){ 1649 pTo->expired = 1; 1650 } 1651 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1652 if( pFrom->expmask ){ 1653 pFrom->expired = 1; 1654 } 1655 return sqlite3TransferBindings(pFromStmt, pToStmt); 1656 } 1657 #endif 1658 1659 /* 1660 ** Return the sqlite3* database handle to which the prepared statement given 1661 ** in the argument belongs. This is the same database handle that was 1662 ** the first argument to the sqlite3_prepare() that was used to create 1663 ** the statement in the first place. 1664 */ 1665 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1666 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1667 } 1668 1669 /* 1670 ** Return true if the prepared statement is guaranteed to not modify the 1671 ** database. 1672 */ 1673 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1674 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1675 } 1676 1677 /* 1678 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1679 ** statement is an EXPLAIN QUERY PLAN 1680 */ 1681 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1682 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1683 } 1684 1685 /* 1686 ** Return true if the prepared statement is in need of being reset. 1687 */ 1688 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1689 Vdbe *v = (Vdbe*)pStmt; 1690 return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0; 1691 } 1692 1693 /* 1694 ** Return a pointer to the next prepared statement after pStmt associated 1695 ** with database connection pDb. If pStmt is NULL, return the first 1696 ** prepared statement for the database connection. Return NULL if there 1697 ** are no more. 1698 */ 1699 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1700 sqlite3_stmt *pNext; 1701 #ifdef SQLITE_ENABLE_API_ARMOR 1702 if( !sqlite3SafetyCheckOk(pDb) ){ 1703 (void)SQLITE_MISUSE_BKPT; 1704 return 0; 1705 } 1706 #endif 1707 sqlite3_mutex_enter(pDb->mutex); 1708 if( pStmt==0 ){ 1709 pNext = (sqlite3_stmt*)pDb->pVdbe; 1710 }else{ 1711 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1712 } 1713 sqlite3_mutex_leave(pDb->mutex); 1714 return pNext; 1715 } 1716 1717 /* 1718 ** Return the value of a status counter for a prepared statement 1719 */ 1720 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1721 Vdbe *pVdbe = (Vdbe*)pStmt; 1722 u32 v; 1723 #ifdef SQLITE_ENABLE_API_ARMOR 1724 if( !pStmt 1725 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1726 ){ 1727 (void)SQLITE_MISUSE_BKPT; 1728 return 0; 1729 } 1730 #endif 1731 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1732 sqlite3 *db = pVdbe->db; 1733 sqlite3_mutex_enter(db->mutex); 1734 v = 0; 1735 db->pnBytesFreed = (int*)&v; 1736 sqlite3VdbeClearObject(db, pVdbe); 1737 sqlite3DbFree(db, pVdbe); 1738 db->pnBytesFreed = 0; 1739 sqlite3_mutex_leave(db->mutex); 1740 }else{ 1741 v = pVdbe->aCounter[op]; 1742 if( resetFlag ) pVdbe->aCounter[op] = 0; 1743 } 1744 return (int)v; 1745 } 1746 1747 /* 1748 ** Return the SQL associated with a prepared statement 1749 */ 1750 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1751 Vdbe *p = (Vdbe *)pStmt; 1752 return p ? p->zSql : 0; 1753 } 1754 1755 /* 1756 ** Return the SQL associated with a prepared statement with 1757 ** bound parameters expanded. Space to hold the returned string is 1758 ** obtained from sqlite3_malloc(). The caller is responsible for 1759 ** freeing the returned string by passing it to sqlite3_free(). 1760 ** 1761 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1762 ** expanded bound parameters. 1763 */ 1764 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1765 #ifdef SQLITE_OMIT_TRACE 1766 return 0; 1767 #else 1768 char *z = 0; 1769 const char *zSql = sqlite3_sql(pStmt); 1770 if( zSql ){ 1771 Vdbe *p = (Vdbe *)pStmt; 1772 sqlite3_mutex_enter(p->db->mutex); 1773 z = sqlite3VdbeExpandSql(p, zSql); 1774 sqlite3_mutex_leave(p->db->mutex); 1775 } 1776 return z; 1777 #endif 1778 } 1779 1780 #ifdef SQLITE_ENABLE_NORMALIZE 1781 /* 1782 ** Return the normalized SQL associated with a prepared statement. 1783 */ 1784 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1785 Vdbe *p = (Vdbe *)pStmt; 1786 if( p==0 ) return 0; 1787 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1788 sqlite3_mutex_enter(p->db->mutex); 1789 p->zNormSql = sqlite3Normalize(p, p->zSql); 1790 sqlite3_mutex_leave(p->db->mutex); 1791 } 1792 return p->zNormSql; 1793 } 1794 #endif /* SQLITE_ENABLE_NORMALIZE */ 1795 1796 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1797 /* 1798 ** Allocate and populate an UnpackedRecord structure based on the serialized 1799 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1800 ** if successful, or a NULL pointer if an OOM error is encountered. 1801 */ 1802 static UnpackedRecord *vdbeUnpackRecord( 1803 KeyInfo *pKeyInfo, 1804 int nKey, 1805 const void *pKey 1806 ){ 1807 UnpackedRecord *pRet; /* Return value */ 1808 1809 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1810 if( pRet ){ 1811 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1812 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1813 } 1814 return pRet; 1815 } 1816 1817 /* 1818 ** This function is called from within a pre-update callback to retrieve 1819 ** a field of the row currently being updated or deleted. 1820 */ 1821 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1822 PreUpdate *p = db->pPreUpdate; 1823 Mem *pMem; 1824 int rc = SQLITE_OK; 1825 1826 /* Test that this call is being made from within an SQLITE_DELETE or 1827 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1828 if( !p || p->op==SQLITE_INSERT ){ 1829 rc = SQLITE_MISUSE_BKPT; 1830 goto preupdate_old_out; 1831 } 1832 if( p->pPk ){ 1833 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1834 } 1835 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1836 rc = SQLITE_RANGE; 1837 goto preupdate_old_out; 1838 } 1839 1840 /* If the old.* record has not yet been loaded into memory, do so now. */ 1841 if( p->pUnpacked==0 ){ 1842 u32 nRec; 1843 u8 *aRec; 1844 1845 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1846 aRec = sqlite3DbMallocRaw(db, nRec); 1847 if( !aRec ) goto preupdate_old_out; 1848 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1849 if( rc==SQLITE_OK ){ 1850 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1851 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1852 } 1853 if( rc!=SQLITE_OK ){ 1854 sqlite3DbFree(db, aRec); 1855 goto preupdate_old_out; 1856 } 1857 p->aRecord = aRec; 1858 } 1859 1860 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1861 if( iIdx==p->pTab->iPKey ){ 1862 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1863 }else if( iIdx>=p->pUnpacked->nField ){ 1864 *ppValue = (sqlite3_value *)columnNullValue(); 1865 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1866 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1867 testcase( pMem->flags & MEM_Int ); 1868 testcase( pMem->flags & MEM_IntReal ); 1869 sqlite3VdbeMemRealify(pMem); 1870 } 1871 } 1872 1873 preupdate_old_out: 1874 sqlite3Error(db, rc); 1875 return sqlite3ApiExit(db, rc); 1876 } 1877 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1878 1879 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1880 /* 1881 ** This function is called from within a pre-update callback to retrieve 1882 ** the number of columns in the row being updated, deleted or inserted. 1883 */ 1884 int sqlite3_preupdate_count(sqlite3 *db){ 1885 PreUpdate *p = db->pPreUpdate; 1886 return (p ? p->keyinfo.nKeyField : 0); 1887 } 1888 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1889 1890 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1891 /* 1892 ** This function is designed to be called from within a pre-update callback 1893 ** only. It returns zero if the change that caused the callback was made 1894 ** immediately by a user SQL statement. Or, if the change was made by a 1895 ** trigger program, it returns the number of trigger programs currently 1896 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1897 ** top-level trigger etc.). 1898 ** 1899 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1900 ** or SET DEFAULT action is considered a trigger. 1901 */ 1902 int sqlite3_preupdate_depth(sqlite3 *db){ 1903 PreUpdate *p = db->pPreUpdate; 1904 return (p ? p->v->nFrame : 0); 1905 } 1906 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1907 1908 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1909 /* 1910 ** This function is designed to be called from within a pre-update callback 1911 ** only. 1912 */ 1913 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 1914 PreUpdate *p = db->pPreUpdate; 1915 return (p ? p->iBlobWrite : -1); 1916 } 1917 #endif 1918 1919 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1920 /* 1921 ** This function is called from within a pre-update callback to retrieve 1922 ** a field of the row currently being updated or inserted. 1923 */ 1924 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1925 PreUpdate *p = db->pPreUpdate; 1926 int rc = SQLITE_OK; 1927 Mem *pMem; 1928 1929 if( !p || p->op==SQLITE_DELETE ){ 1930 rc = SQLITE_MISUSE_BKPT; 1931 goto preupdate_new_out; 1932 } 1933 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1934 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1935 } 1936 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1937 rc = SQLITE_RANGE; 1938 goto preupdate_new_out; 1939 } 1940 1941 if( p->op==SQLITE_INSERT ){ 1942 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1943 ** that is being inserted. Deserialize it. */ 1944 UnpackedRecord *pUnpack = p->pNewUnpacked; 1945 if( !pUnpack ){ 1946 Mem *pData = &p->v->aMem[p->iNewReg]; 1947 rc = ExpandBlob(pData); 1948 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1949 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1950 if( !pUnpack ){ 1951 rc = SQLITE_NOMEM; 1952 goto preupdate_new_out; 1953 } 1954 p->pNewUnpacked = pUnpack; 1955 } 1956 pMem = &pUnpack->aMem[iIdx]; 1957 if( iIdx==p->pTab->iPKey ){ 1958 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1959 }else if( iIdx>=pUnpack->nField ){ 1960 pMem = (sqlite3_value *)columnNullValue(); 1961 } 1962 }else{ 1963 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1964 ** value. Make a copy of the cell contents and return a pointer to it. 1965 ** It is not safe to return a pointer to the memory cell itself as the 1966 ** caller may modify the value text encoding. 1967 */ 1968 assert( p->op==SQLITE_UPDATE ); 1969 if( !p->aNew ){ 1970 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1971 if( !p->aNew ){ 1972 rc = SQLITE_NOMEM; 1973 goto preupdate_new_out; 1974 } 1975 } 1976 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1977 pMem = &p->aNew[iIdx]; 1978 if( pMem->flags==0 ){ 1979 if( iIdx==p->pTab->iPKey ){ 1980 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1981 }else{ 1982 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1983 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1984 } 1985 } 1986 } 1987 *ppValue = pMem; 1988 1989 preupdate_new_out: 1990 sqlite3Error(db, rc); 1991 return sqlite3ApiExit(db, rc); 1992 } 1993 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1994 1995 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1996 /* 1997 ** Return status data for a single loop within query pStmt. 1998 */ 1999 int sqlite3_stmt_scanstatus( 2000 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2001 int idx, /* Index of loop to report on */ 2002 int iScanStatusOp, /* Which metric to return */ 2003 void *pOut /* OUT: Write the answer here */ 2004 ){ 2005 Vdbe *p = (Vdbe*)pStmt; 2006 ScanStatus *pScan; 2007 if( idx<0 || idx>=p->nScan ) return 1; 2008 pScan = &p->aScan[idx]; 2009 switch( iScanStatusOp ){ 2010 case SQLITE_SCANSTAT_NLOOP: { 2011 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2012 break; 2013 } 2014 case SQLITE_SCANSTAT_NVISIT: { 2015 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2016 break; 2017 } 2018 case SQLITE_SCANSTAT_EST: { 2019 double r = 1.0; 2020 LogEst x = pScan->nEst; 2021 while( x<100 ){ 2022 x += 10; 2023 r *= 0.5; 2024 } 2025 *(double*)pOut = r*sqlite3LogEstToInt(x); 2026 break; 2027 } 2028 case SQLITE_SCANSTAT_NAME: { 2029 *(const char**)pOut = pScan->zName; 2030 break; 2031 } 2032 case SQLITE_SCANSTAT_EXPLAIN: { 2033 if( pScan->addrExplain ){ 2034 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2035 }else{ 2036 *(const char**)pOut = 0; 2037 } 2038 break; 2039 } 2040 case SQLITE_SCANSTAT_SELECTID: { 2041 if( pScan->addrExplain ){ 2042 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2043 }else{ 2044 *(int*)pOut = -1; 2045 } 2046 break; 2047 } 2048 default: { 2049 return 1; 2050 } 2051 } 2052 return 0; 2053 } 2054 2055 /* 2056 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2057 */ 2058 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2059 Vdbe *p = (Vdbe*)pStmt; 2060 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2061 } 2062 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2063