xref: /sqlite-3.40.0/src/vdbeapi.c (revision fb32c44e)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70   if( db->xProfile ){
71     db->xProfile(db->pProfileArg, p->zSql, iElapse);
72   }
73   if( db->mTrace & SQLITE_TRACE_PROFILE ){
74     db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
75   }
76   p->startTime = 0;
77 }
78 /*
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
81 */
82 # define checkProfileCallback(DB,P) \
83    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P)  /*no-op*/
86 #endif
87 
88 /*
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
93 **
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
96 */
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98   int rc;
99   if( pStmt==0 ){
100     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101     ** pointer is a harmless no-op. */
102     rc = SQLITE_OK;
103   }else{
104     Vdbe *v = (Vdbe*)pStmt;
105     sqlite3 *db = v->db;
106     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107     sqlite3_mutex_enter(db->mutex);
108     checkProfileCallback(db, v);
109     rc = sqlite3VdbeFinalize(v);
110     rc = sqlite3ApiExit(db, rc);
111     sqlite3LeaveMutexAndCloseZombie(db);
112   }
113   return rc;
114 }
115 
116 /*
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
120 **
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
123 */
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125   int rc;
126   if( pStmt==0 ){
127     rc = SQLITE_OK;
128   }else{
129     Vdbe *v = (Vdbe*)pStmt;
130     sqlite3 *db = v->db;
131     sqlite3_mutex_enter(db->mutex);
132     checkProfileCallback(db, v);
133     rc = sqlite3VdbeReset(v);
134     sqlite3VdbeRewind(v);
135     assert( (rc & (db->errMask))==rc );
136     rc = sqlite3ApiExit(db, rc);
137     sqlite3_mutex_leave(db->mutex);
138   }
139   return rc;
140 }
141 
142 /*
143 ** Set all the parameters in the compiled SQL statement to NULL.
144 */
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146   int i;
147   int rc = SQLITE_OK;
148   Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152   sqlite3_mutex_enter(mutex);
153   for(i=0; i<p->nVar; i++){
154     sqlite3VdbeMemRelease(&p->aVar[i]);
155     p->aVar[i].flags = MEM_Null;
156   }
157   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
158   if( p->expmask ){
159     p->expired = 1;
160   }
161   sqlite3_mutex_leave(mutex);
162   return rc;
163 }
164 
165 
166 /**************************** sqlite3_value_  *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
168 ** structure.
169 */
170 const void *sqlite3_value_blob(sqlite3_value *pVal){
171   Mem *p = (Mem*)pVal;
172   if( p->flags & (MEM_Blob|MEM_Str) ){
173     if( ExpandBlob(p)!=SQLITE_OK ){
174       assert( p->flags==MEM_Null && p->z==0 );
175       return 0;
176     }
177     p->flags |= MEM_Blob;
178     return p->n ? p->z : 0;
179   }else{
180     return sqlite3_value_text(pVal);
181   }
182 }
183 int sqlite3_value_bytes(sqlite3_value *pVal){
184   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
185 }
186 int sqlite3_value_bytes16(sqlite3_value *pVal){
187   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
188 }
189 double sqlite3_value_double(sqlite3_value *pVal){
190   return sqlite3VdbeRealValue((Mem*)pVal);
191 }
192 int sqlite3_value_int(sqlite3_value *pVal){
193   return (int)sqlite3VdbeIntValue((Mem*)pVal);
194 }
195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
196   return sqlite3VdbeIntValue((Mem*)pVal);
197 }
198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
199   Mem *pMem = (Mem*)pVal;
200   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
201 }
202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
203   Mem *p = (Mem*)pVal;
204   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
205                  (MEM_Null|MEM_Term|MEM_Subtype)
206    && zPType!=0
207    && p->eSubtype=='p'
208    && strcmp(p->u.zPType, zPType)==0
209   ){
210     return (void*)p->z;
211   }else{
212     return 0;
213   }
214 }
215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
216   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
217 }
218 #ifndef SQLITE_OMIT_UTF16
219 const void *sqlite3_value_text16(sqlite3_value* pVal){
220   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
221 }
222 const void *sqlite3_value_text16be(sqlite3_value *pVal){
223   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
224 }
225 const void *sqlite3_value_text16le(sqlite3_value *pVal){
226   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
227 }
228 #endif /* SQLITE_OMIT_UTF16 */
229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
231 ** point number string BLOB NULL
232 */
233 int sqlite3_value_type(sqlite3_value* pVal){
234   static const u8 aType[] = {
235      SQLITE_BLOB,     /* 0x00 */
236      SQLITE_NULL,     /* 0x01 */
237      SQLITE_TEXT,     /* 0x02 */
238      SQLITE_NULL,     /* 0x03 */
239      SQLITE_INTEGER,  /* 0x04 */
240      SQLITE_NULL,     /* 0x05 */
241      SQLITE_INTEGER,  /* 0x06 */
242      SQLITE_NULL,     /* 0x07 */
243      SQLITE_FLOAT,    /* 0x08 */
244      SQLITE_NULL,     /* 0x09 */
245      SQLITE_FLOAT,    /* 0x0a */
246      SQLITE_NULL,     /* 0x0b */
247      SQLITE_INTEGER,  /* 0x0c */
248      SQLITE_NULL,     /* 0x0d */
249      SQLITE_INTEGER,  /* 0x0e */
250      SQLITE_NULL,     /* 0x0f */
251      SQLITE_BLOB,     /* 0x10 */
252      SQLITE_NULL,     /* 0x11 */
253      SQLITE_TEXT,     /* 0x12 */
254      SQLITE_NULL,     /* 0x13 */
255      SQLITE_INTEGER,  /* 0x14 */
256      SQLITE_NULL,     /* 0x15 */
257      SQLITE_INTEGER,  /* 0x16 */
258      SQLITE_NULL,     /* 0x17 */
259      SQLITE_FLOAT,    /* 0x18 */
260      SQLITE_NULL,     /* 0x19 */
261      SQLITE_FLOAT,    /* 0x1a */
262      SQLITE_NULL,     /* 0x1b */
263      SQLITE_INTEGER,  /* 0x1c */
264      SQLITE_NULL,     /* 0x1d */
265      SQLITE_INTEGER,  /* 0x1e */
266      SQLITE_NULL,     /* 0x1f */
267   };
268   return aType[pVal->flags&MEM_AffMask];
269 }
270 
271 /* Return true if a parameter to xUpdate represents an unchanged column */
272 int sqlite3_value_nochange(sqlite3_value *pVal){
273   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
274 }
275 
276 /* Make a copy of an sqlite3_value object
277 */
278 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
279   sqlite3_value *pNew;
280   if( pOrig==0 ) return 0;
281   pNew = sqlite3_malloc( sizeof(*pNew) );
282   if( pNew==0 ) return 0;
283   memset(pNew, 0, sizeof(*pNew));
284   memcpy(pNew, pOrig, MEMCELLSIZE);
285   pNew->flags &= ~MEM_Dyn;
286   pNew->db = 0;
287   if( pNew->flags&(MEM_Str|MEM_Blob) ){
288     pNew->flags &= ~(MEM_Static|MEM_Dyn);
289     pNew->flags |= MEM_Ephem;
290     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
291       sqlite3ValueFree(pNew);
292       pNew = 0;
293     }
294   }
295   return pNew;
296 }
297 
298 /* Destroy an sqlite3_value object previously obtained from
299 ** sqlite3_value_dup().
300 */
301 void sqlite3_value_free(sqlite3_value *pOld){
302   sqlite3ValueFree(pOld);
303 }
304 
305 
306 /**************************** sqlite3_result_  *******************************
307 ** The following routines are used by user-defined functions to specify
308 ** the function result.
309 **
310 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
311 ** result as a string or blob but if the string or blob is too large, it
312 ** then sets the error code to SQLITE_TOOBIG
313 **
314 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
315 ** on value P is not going to be used and need to be destroyed.
316 */
317 static void setResultStrOrError(
318   sqlite3_context *pCtx,  /* Function context */
319   const char *z,          /* String pointer */
320   int n,                  /* Bytes in string, or negative */
321   u8 enc,                 /* Encoding of z.  0 for BLOBs */
322   void (*xDel)(void*)     /* Destructor function */
323 ){
324   if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
325     sqlite3_result_error_toobig(pCtx);
326   }
327 }
328 static int invokeValueDestructor(
329   const void *p,             /* Value to destroy */
330   void (*xDel)(void*),       /* The destructor */
331   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
332 ){
333   assert( xDel!=SQLITE_DYNAMIC );
334   if( xDel==0 ){
335     /* noop */
336   }else if( xDel==SQLITE_TRANSIENT ){
337     /* noop */
338   }else{
339     xDel((void*)p);
340   }
341   if( pCtx ) sqlite3_result_error_toobig(pCtx);
342   return SQLITE_TOOBIG;
343 }
344 void sqlite3_result_blob(
345   sqlite3_context *pCtx,
346   const void *z,
347   int n,
348   void (*xDel)(void *)
349 ){
350   assert( n>=0 );
351   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
352   setResultStrOrError(pCtx, z, n, 0, xDel);
353 }
354 void sqlite3_result_blob64(
355   sqlite3_context *pCtx,
356   const void *z,
357   sqlite3_uint64 n,
358   void (*xDel)(void *)
359 ){
360   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
361   assert( xDel!=SQLITE_DYNAMIC );
362   if( n>0x7fffffff ){
363     (void)invokeValueDestructor(z, xDel, pCtx);
364   }else{
365     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
366   }
367 }
368 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
369   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
370   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
371 }
372 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
373   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
374   pCtx->isError = SQLITE_ERROR;
375   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
376 }
377 #ifndef SQLITE_OMIT_UTF16
378 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
379   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
380   pCtx->isError = SQLITE_ERROR;
381   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
382 }
383 #endif
384 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
385   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
386   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
387 }
388 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
389   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
390   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
391 }
392 void sqlite3_result_null(sqlite3_context *pCtx){
393   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
394   sqlite3VdbeMemSetNull(pCtx->pOut);
395 }
396 void sqlite3_result_pointer(
397   sqlite3_context *pCtx,
398   void *pPtr,
399   const char *zPType,
400   void (*xDestructor)(void*)
401 ){
402   Mem *pOut = pCtx->pOut;
403   assert( sqlite3_mutex_held(pOut->db->mutex) );
404   sqlite3VdbeMemRelease(pOut);
405   pOut->flags = MEM_Null;
406   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
407 }
408 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
409   Mem *pOut = pCtx->pOut;
410   assert( sqlite3_mutex_held(pOut->db->mutex) );
411   pOut->eSubtype = eSubtype & 0xff;
412   pOut->flags |= MEM_Subtype;
413 }
414 void sqlite3_result_text(
415   sqlite3_context *pCtx,
416   const char *z,
417   int n,
418   void (*xDel)(void *)
419 ){
420   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
421   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
422 }
423 void sqlite3_result_text64(
424   sqlite3_context *pCtx,
425   const char *z,
426   sqlite3_uint64 n,
427   void (*xDel)(void *),
428   unsigned char enc
429 ){
430   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
431   assert( xDel!=SQLITE_DYNAMIC );
432   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
433   if( n>0x7fffffff ){
434     (void)invokeValueDestructor(z, xDel, pCtx);
435   }else{
436     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
437   }
438 }
439 #ifndef SQLITE_OMIT_UTF16
440 void sqlite3_result_text16(
441   sqlite3_context *pCtx,
442   const void *z,
443   int n,
444   void (*xDel)(void *)
445 ){
446   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
447   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
448 }
449 void sqlite3_result_text16be(
450   sqlite3_context *pCtx,
451   const void *z,
452   int n,
453   void (*xDel)(void *)
454 ){
455   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
456   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
457 }
458 void sqlite3_result_text16le(
459   sqlite3_context *pCtx,
460   const void *z,
461   int n,
462   void (*xDel)(void *)
463 ){
464   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
465   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
466 }
467 #endif /* SQLITE_OMIT_UTF16 */
468 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
469   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
470   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
471 }
472 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
473   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
474   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
475 }
476 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
477   Mem *pOut = pCtx->pOut;
478   assert( sqlite3_mutex_held(pOut->db->mutex) );
479   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
480     return SQLITE_TOOBIG;
481   }
482   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
483   return SQLITE_OK;
484 }
485 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
486   pCtx->isError = errCode ? errCode : -1;
487 #ifdef SQLITE_DEBUG
488   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
489 #endif
490   if( pCtx->pOut->flags & MEM_Null ){
491     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
492                          SQLITE_UTF8, SQLITE_STATIC);
493   }
494 }
495 
496 /* Force an SQLITE_TOOBIG error. */
497 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
498   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
499   pCtx->isError = SQLITE_TOOBIG;
500   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
501                        SQLITE_UTF8, SQLITE_STATIC);
502 }
503 
504 /* An SQLITE_NOMEM error. */
505 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
506   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
507   sqlite3VdbeMemSetNull(pCtx->pOut);
508   pCtx->isError = SQLITE_NOMEM_BKPT;
509   sqlite3OomFault(pCtx->pOut->db);
510 }
511 
512 /*
513 ** This function is called after a transaction has been committed. It
514 ** invokes callbacks registered with sqlite3_wal_hook() as required.
515 */
516 static int doWalCallbacks(sqlite3 *db){
517   int rc = SQLITE_OK;
518 #ifndef SQLITE_OMIT_WAL
519   int i;
520   for(i=0; i<db->nDb; i++){
521     Btree *pBt = db->aDb[i].pBt;
522     if( pBt ){
523       int nEntry;
524       sqlite3BtreeEnter(pBt);
525       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
526       sqlite3BtreeLeave(pBt);
527       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
528         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
529       }
530     }
531   }
532 #endif
533   return rc;
534 }
535 
536 
537 /*
538 ** Execute the statement pStmt, either until a row of data is ready, the
539 ** statement is completely executed or an error occurs.
540 **
541 ** This routine implements the bulk of the logic behind the sqlite_step()
542 ** API.  The only thing omitted is the automatic recompile if a
543 ** schema change has occurred.  That detail is handled by the
544 ** outer sqlite3_step() wrapper procedure.
545 */
546 static int sqlite3Step(Vdbe *p){
547   sqlite3 *db;
548   int rc;
549 
550   assert(p);
551   if( p->magic!=VDBE_MAGIC_RUN ){
552     /* We used to require that sqlite3_reset() be called before retrying
553     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
554     ** with version 3.7.0, we changed this so that sqlite3_reset() would
555     ** be called automatically instead of throwing the SQLITE_MISUSE error.
556     ** This "automatic-reset" change is not technically an incompatibility,
557     ** since any application that receives an SQLITE_MISUSE is broken by
558     ** definition.
559     **
560     ** Nevertheless, some published applications that were originally written
561     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
562     ** returns, and those were broken by the automatic-reset change.  As a
563     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
564     ** legacy behavior of returning SQLITE_MISUSE for cases where the
565     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
566     ** or SQLITE_BUSY error.
567     */
568 #ifdef SQLITE_OMIT_AUTORESET
569     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
570       sqlite3_reset((sqlite3_stmt*)p);
571     }else{
572       return SQLITE_MISUSE_BKPT;
573     }
574 #else
575     sqlite3_reset((sqlite3_stmt*)p);
576 #endif
577   }
578 
579   /* Check that malloc() has not failed. If it has, return early. */
580   db = p->db;
581   if( db->mallocFailed ){
582     p->rc = SQLITE_NOMEM;
583     return SQLITE_NOMEM_BKPT;
584   }
585 
586   if( p->pc<=0 && p->expired ){
587     p->rc = SQLITE_SCHEMA;
588     rc = SQLITE_ERROR;
589     goto end_of_step;
590   }
591   if( p->pc<0 ){
592     /* If there are no other statements currently running, then
593     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
594     ** from interrupting a statement that has not yet started.
595     */
596     if( db->nVdbeActive==0 ){
597       db->u1.isInterrupted = 0;
598     }
599 
600     assert( db->nVdbeWrite>0 || db->autoCommit==0
601         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
602     );
603 
604 #ifndef SQLITE_OMIT_TRACE
605     if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
606         && !db->init.busy && p->zSql ){
607       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
608     }else{
609       assert( p->startTime==0 );
610     }
611 #endif
612 
613     db->nVdbeActive++;
614     if( p->readOnly==0 ) db->nVdbeWrite++;
615     if( p->bIsReader ) db->nVdbeRead++;
616     p->pc = 0;
617   }
618 #ifdef SQLITE_DEBUG
619   p->rcApp = SQLITE_OK;
620 #endif
621 #ifndef SQLITE_OMIT_EXPLAIN
622   if( p->explain ){
623     rc = sqlite3VdbeList(p);
624   }else
625 #endif /* SQLITE_OMIT_EXPLAIN */
626   {
627     db->nVdbeExec++;
628     rc = sqlite3VdbeExec(p);
629     db->nVdbeExec--;
630   }
631 
632 #ifndef SQLITE_OMIT_TRACE
633   /* If the statement completed successfully, invoke the profile callback */
634   if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
635 #endif
636 
637   if( rc==SQLITE_DONE && db->autoCommit ){
638     assert( p->rc==SQLITE_OK );
639     p->rc = doWalCallbacks(db);
640     if( p->rc!=SQLITE_OK ){
641       rc = SQLITE_ERROR;
642     }
643   }
644 
645   db->errCode = rc;
646   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
647     p->rc = SQLITE_NOMEM_BKPT;
648   }
649 end_of_step:
650   /* At this point local variable rc holds the value that should be
651   ** returned if this statement was compiled using the legacy
652   ** sqlite3_prepare() interface. According to the docs, this can only
653   ** be one of the values in the first assert() below. Variable p->rc
654   ** contains the value that would be returned if sqlite3_finalize()
655   ** were called on statement p.
656   */
657   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
658        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
659   );
660   assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
661   if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
662    && rc!=SQLITE_ROW
663    && rc!=SQLITE_DONE
664   ){
665     /* If this statement was prepared using saved SQL and an
666     ** error has occurred, then return the error code in p->rc to the
667     ** caller. Set the error code in the database handle to the same value.
668     */
669     rc = sqlite3VdbeTransferError(p);
670   }
671   return (rc&db->errMask);
672 }
673 
674 /*
675 ** This is the top-level implementation of sqlite3_step().  Call
676 ** sqlite3Step() to do most of the work.  If a schema error occurs,
677 ** call sqlite3Reprepare() and try again.
678 */
679 int sqlite3_step(sqlite3_stmt *pStmt){
680   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
681   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
682   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
683   sqlite3 *db;             /* The database connection */
684 
685   if( vdbeSafetyNotNull(v) ){
686     return SQLITE_MISUSE_BKPT;
687   }
688   db = v->db;
689   sqlite3_mutex_enter(db->mutex);
690   v->doingRerun = 0;
691   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
692          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
693     int savedPc = v->pc;
694     rc = sqlite3Reprepare(v);
695     if( rc!=SQLITE_OK ){
696       /* This case occurs after failing to recompile an sql statement.
697       ** The error message from the SQL compiler has already been loaded
698       ** into the database handle. This block copies the error message
699       ** from the database handle into the statement and sets the statement
700       ** program counter to 0 to ensure that when the statement is
701       ** finalized or reset the parser error message is available via
702       ** sqlite3_errmsg() and sqlite3_errcode().
703       */
704       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
705       sqlite3DbFree(db, v->zErrMsg);
706       if( !db->mallocFailed ){
707         v->zErrMsg = sqlite3DbStrDup(db, zErr);
708         v->rc = rc = sqlite3ApiExit(db, rc);
709       } else {
710         v->zErrMsg = 0;
711         v->rc = rc = SQLITE_NOMEM_BKPT;
712       }
713       break;
714     }
715     sqlite3_reset(pStmt);
716     if( savedPc>=0 ) v->doingRerun = 1;
717     assert( v->expired==0 );
718   }
719   sqlite3_mutex_leave(db->mutex);
720   return rc;
721 }
722 
723 
724 /*
725 ** Extract the user data from a sqlite3_context structure and return a
726 ** pointer to it.
727 */
728 void *sqlite3_user_data(sqlite3_context *p){
729   assert( p && p->pFunc );
730   return p->pFunc->pUserData;
731 }
732 
733 /*
734 ** Extract the user data from a sqlite3_context structure and return a
735 ** pointer to it.
736 **
737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
738 ** returns a copy of the pointer to the database connection (the 1st
739 ** parameter) of the sqlite3_create_function() and
740 ** sqlite3_create_function16() routines that originally registered the
741 ** application defined function.
742 */
743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
744   assert( p && p->pOut );
745   return p->pOut->db;
746 }
747 
748 /*
749 ** If this routine is invoked from within an xColumn method of a virtual
750 ** table, then it returns true if and only if the the call is during an
751 ** UPDATE operation and the value of the column will not be modified
752 ** by the UPDATE.
753 **
754 ** If this routine is called from any context other than within the
755 ** xColumn method of a virtual table, then the return value is meaningless
756 ** and arbitrary.
757 **
758 ** Virtual table implements might use this routine to optimize their
759 ** performance by substituting a NULL result, or some other light-weight
760 ** value, as a signal to the xUpdate routine that the column is unchanged.
761 */
762 int sqlite3_vtab_nochange(sqlite3_context *p){
763   assert( p );
764   return sqlite3_value_nochange(p->pOut);
765 }
766 
767 /*
768 ** Return the current time for a statement.  If the current time
769 ** is requested more than once within the same run of a single prepared
770 ** statement, the exact same time is returned for each invocation regardless
771 ** of the amount of time that elapses between invocations.  In other words,
772 ** the time returned is always the time of the first call.
773 */
774 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
775   int rc;
776 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
777   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
778   assert( p->pVdbe!=0 );
779 #else
780   sqlite3_int64 iTime = 0;
781   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
782 #endif
783   if( *piTime==0 ){
784     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
785     if( rc ) *piTime = 0;
786   }
787   return *piTime;
788 }
789 
790 /*
791 ** The following is the implementation of an SQL function that always
792 ** fails with an error message stating that the function is used in the
793 ** wrong context.  The sqlite3_overload_function() API might construct
794 ** SQL function that use this routine so that the functions will exist
795 ** for name resolution but are actually overloaded by the xFindFunction
796 ** method of virtual tables.
797 */
798 void sqlite3InvalidFunction(
799   sqlite3_context *context,  /* The function calling context */
800   int NotUsed,               /* Number of arguments to the function */
801   sqlite3_value **NotUsed2   /* Value of each argument */
802 ){
803   const char *zName = context->pFunc->zName;
804   char *zErr;
805   UNUSED_PARAMETER2(NotUsed, NotUsed2);
806   zErr = sqlite3_mprintf(
807       "unable to use function %s in the requested context", zName);
808   sqlite3_result_error(context, zErr, -1);
809   sqlite3_free(zErr);
810 }
811 
812 /*
813 ** Create a new aggregate context for p and return a pointer to
814 ** its pMem->z element.
815 */
816 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
817   Mem *pMem = p->pMem;
818   assert( (pMem->flags & MEM_Agg)==0 );
819   if( nByte<=0 ){
820     sqlite3VdbeMemSetNull(pMem);
821     pMem->z = 0;
822   }else{
823     sqlite3VdbeMemClearAndResize(pMem, nByte);
824     pMem->flags = MEM_Agg;
825     pMem->u.pDef = p->pFunc;
826     if( pMem->z ){
827       memset(pMem->z, 0, nByte);
828     }
829   }
830   return (void*)pMem->z;
831 }
832 
833 /*
834 ** Allocate or return the aggregate context for a user function.  A new
835 ** context is allocated on the first call.  Subsequent calls return the
836 ** same context that was returned on prior calls.
837 */
838 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
839   assert( p && p->pFunc && p->pFunc->xFinalize );
840   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
841   testcase( nByte<0 );
842   if( (p->pMem->flags & MEM_Agg)==0 ){
843     return createAggContext(p, nByte);
844   }else{
845     return (void*)p->pMem->z;
846   }
847 }
848 
849 /*
850 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
851 ** the user-function defined by pCtx.
852 **
853 ** The left-most argument is 0.
854 **
855 ** Undocumented behavior:  If iArg is negative then access a cache of
856 ** auxiliary data pointers that is available to all functions within a
857 ** single prepared statement.  The iArg values must match.
858 */
859 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
860   AuxData *pAuxData;
861 
862   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
863 #if SQLITE_ENABLE_STAT3_OR_STAT4
864   if( pCtx->pVdbe==0 ) return 0;
865 #else
866   assert( pCtx->pVdbe!=0 );
867 #endif
868   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
869     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
870       return pAuxData->pAux;
871     }
872   }
873   return 0;
874 }
875 
876 /*
877 ** Set the auxiliary data pointer and delete function, for the iArg'th
878 ** argument to the user-function defined by pCtx. Any previous value is
879 ** deleted by calling the delete function specified when it was set.
880 **
881 ** The left-most argument is 0.
882 **
883 ** Undocumented behavior:  If iArg is negative then make the data available
884 ** to all functions within the current prepared statement using iArg as an
885 ** access code.
886 */
887 void sqlite3_set_auxdata(
888   sqlite3_context *pCtx,
889   int iArg,
890   void *pAux,
891   void (*xDelete)(void*)
892 ){
893   AuxData *pAuxData;
894   Vdbe *pVdbe = pCtx->pVdbe;
895 
896   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
897 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
898   if( pVdbe==0 ) goto failed;
899 #else
900   assert( pVdbe!=0 );
901 #endif
902 
903   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
904     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
905       break;
906     }
907   }
908   if( pAuxData==0 ){
909     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
910     if( !pAuxData ) goto failed;
911     pAuxData->iAuxOp = pCtx->iOp;
912     pAuxData->iAuxArg = iArg;
913     pAuxData->pNextAux = pVdbe->pAuxData;
914     pVdbe->pAuxData = pAuxData;
915     if( pCtx->isError==0 ) pCtx->isError = -1;
916   }else if( pAuxData->xDeleteAux ){
917     pAuxData->xDeleteAux(pAuxData->pAux);
918   }
919 
920   pAuxData->pAux = pAux;
921   pAuxData->xDeleteAux = xDelete;
922   return;
923 
924 failed:
925   if( xDelete ){
926     xDelete(pAux);
927   }
928 }
929 
930 #ifndef SQLITE_OMIT_DEPRECATED
931 /*
932 ** Return the number of times the Step function of an aggregate has been
933 ** called.
934 **
935 ** This function is deprecated.  Do not use it for new code.  It is
936 ** provide only to avoid breaking legacy code.  New aggregate function
937 ** implementations should keep their own counts within their aggregate
938 ** context.
939 */
940 int sqlite3_aggregate_count(sqlite3_context *p){
941   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
942   return p->pMem->n;
943 }
944 #endif
945 
946 /*
947 ** Return the number of columns in the result set for the statement pStmt.
948 */
949 int sqlite3_column_count(sqlite3_stmt *pStmt){
950   Vdbe *pVm = (Vdbe *)pStmt;
951   return pVm ? pVm->nResColumn : 0;
952 }
953 
954 /*
955 ** Return the number of values available from the current row of the
956 ** currently executing statement pStmt.
957 */
958 int sqlite3_data_count(sqlite3_stmt *pStmt){
959   Vdbe *pVm = (Vdbe *)pStmt;
960   if( pVm==0 || pVm->pResultSet==0 ) return 0;
961   return pVm->nResColumn;
962 }
963 
964 /*
965 ** Return a pointer to static memory containing an SQL NULL value.
966 */
967 static const Mem *columnNullValue(void){
968   /* Even though the Mem structure contains an element
969   ** of type i64, on certain architectures (x86) with certain compiler
970   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
971   ** instead of an 8-byte one. This all works fine, except that when
972   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
973   ** that a Mem structure is located on an 8-byte boundary. To prevent
974   ** these assert()s from failing, when building with SQLITE_DEBUG defined
975   ** using gcc, we force nullMem to be 8-byte aligned using the magical
976   ** __attribute__((aligned(8))) macro.  */
977   static const Mem nullMem
978 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
979     __attribute__((aligned(8)))
980 #endif
981     = {
982         /* .u          = */ {0},
983         /* .flags      = */ (u16)MEM_Null,
984         /* .enc        = */ (u8)0,
985         /* .eSubtype   = */ (u8)0,
986         /* .n          = */ (int)0,
987         /* .z          = */ (char*)0,
988         /* .zMalloc    = */ (char*)0,
989         /* .szMalloc   = */ (int)0,
990         /* .uTemp      = */ (u32)0,
991         /* .db         = */ (sqlite3*)0,
992         /* .xDel       = */ (void(*)(void*))0,
993 #ifdef SQLITE_DEBUG
994         /* .pScopyFrom = */ (Mem*)0,
995         /* .pFiller    = */ (void*)0,
996 #endif
997       };
998   return &nullMem;
999 }
1000 
1001 /*
1002 ** Check to see if column iCol of the given statement is valid.  If
1003 ** it is, return a pointer to the Mem for the value of that column.
1004 ** If iCol is not valid, return a pointer to a Mem which has a value
1005 ** of NULL.
1006 */
1007 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1008   Vdbe *pVm;
1009   Mem *pOut;
1010 
1011   pVm = (Vdbe *)pStmt;
1012   if( pVm==0 ) return (Mem*)columnNullValue();
1013   assert( pVm->db );
1014   sqlite3_mutex_enter(pVm->db->mutex);
1015   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1016     pOut = &pVm->pResultSet[i];
1017   }else{
1018     sqlite3Error(pVm->db, SQLITE_RANGE);
1019     pOut = (Mem*)columnNullValue();
1020   }
1021   return pOut;
1022 }
1023 
1024 /*
1025 ** This function is called after invoking an sqlite3_value_XXX function on a
1026 ** column value (i.e. a value returned by evaluating an SQL expression in the
1027 ** select list of a SELECT statement) that may cause a malloc() failure. If
1028 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1029 ** code of statement pStmt set to SQLITE_NOMEM.
1030 **
1031 ** Specifically, this is called from within:
1032 **
1033 **     sqlite3_column_int()
1034 **     sqlite3_column_int64()
1035 **     sqlite3_column_text()
1036 **     sqlite3_column_text16()
1037 **     sqlite3_column_real()
1038 **     sqlite3_column_bytes()
1039 **     sqlite3_column_bytes16()
1040 **     sqiite3_column_blob()
1041 */
1042 static void columnMallocFailure(sqlite3_stmt *pStmt)
1043 {
1044   /* If malloc() failed during an encoding conversion within an
1045   ** sqlite3_column_XXX API, then set the return code of the statement to
1046   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1047   ** and _finalize() will return NOMEM.
1048   */
1049   Vdbe *p = (Vdbe *)pStmt;
1050   if( p ){
1051     assert( p->db!=0 );
1052     assert( sqlite3_mutex_held(p->db->mutex) );
1053     p->rc = sqlite3ApiExit(p->db, p->rc);
1054     sqlite3_mutex_leave(p->db->mutex);
1055   }
1056 }
1057 
1058 /**************************** sqlite3_column_  *******************************
1059 ** The following routines are used to access elements of the current row
1060 ** in the result set.
1061 */
1062 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1063   const void *val;
1064   val = sqlite3_value_blob( columnMem(pStmt,i) );
1065   /* Even though there is no encoding conversion, value_blob() might
1066   ** need to call malloc() to expand the result of a zeroblob()
1067   ** expression.
1068   */
1069   columnMallocFailure(pStmt);
1070   return val;
1071 }
1072 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1073   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1074   columnMallocFailure(pStmt);
1075   return val;
1076 }
1077 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1078   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1079   columnMallocFailure(pStmt);
1080   return val;
1081 }
1082 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1083   double val = sqlite3_value_double( columnMem(pStmt,i) );
1084   columnMallocFailure(pStmt);
1085   return val;
1086 }
1087 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1088   int val = sqlite3_value_int( columnMem(pStmt,i) );
1089   columnMallocFailure(pStmt);
1090   return val;
1091 }
1092 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1093   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1094   columnMallocFailure(pStmt);
1095   return val;
1096 }
1097 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1098   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1099   columnMallocFailure(pStmt);
1100   return val;
1101 }
1102 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1103   Mem *pOut = columnMem(pStmt, i);
1104   if( pOut->flags&MEM_Static ){
1105     pOut->flags &= ~MEM_Static;
1106     pOut->flags |= MEM_Ephem;
1107   }
1108   columnMallocFailure(pStmt);
1109   return (sqlite3_value *)pOut;
1110 }
1111 #ifndef SQLITE_OMIT_UTF16
1112 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1113   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1114   columnMallocFailure(pStmt);
1115   return val;
1116 }
1117 #endif /* SQLITE_OMIT_UTF16 */
1118 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1119   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1120   columnMallocFailure(pStmt);
1121   return iType;
1122 }
1123 
1124 /*
1125 ** Convert the N-th element of pStmt->pColName[] into a string using
1126 ** xFunc() then return that string.  If N is out of range, return 0.
1127 **
1128 ** There are up to 5 names for each column.  useType determines which
1129 ** name is returned.  Here are the names:
1130 **
1131 **    0      The column name as it should be displayed for output
1132 **    1      The datatype name for the column
1133 **    2      The name of the database that the column derives from
1134 **    3      The name of the table that the column derives from
1135 **    4      The name of the table column that the result column derives from
1136 **
1137 ** If the result is not a simple column reference (if it is an expression
1138 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1139 */
1140 static const void *columnName(
1141   sqlite3_stmt *pStmt,
1142   int N,
1143   const void *(*xFunc)(Mem*),
1144   int useType
1145 ){
1146   const void *ret;
1147   Vdbe *p;
1148   int n;
1149   sqlite3 *db;
1150 #ifdef SQLITE_ENABLE_API_ARMOR
1151   if( pStmt==0 ){
1152     (void)SQLITE_MISUSE_BKPT;
1153     return 0;
1154   }
1155 #endif
1156   ret = 0;
1157   p = (Vdbe *)pStmt;
1158   db = p->db;
1159   assert( db!=0 );
1160   n = sqlite3_column_count(pStmt);
1161   if( N<n && N>=0 ){
1162     N += useType*n;
1163     sqlite3_mutex_enter(db->mutex);
1164     assert( db->mallocFailed==0 );
1165     ret = xFunc(&p->aColName[N]);
1166      /* A malloc may have failed inside of the xFunc() call. If this
1167     ** is the case, clear the mallocFailed flag and return NULL.
1168     */
1169     if( db->mallocFailed ){
1170       sqlite3OomClear(db);
1171       ret = 0;
1172     }
1173     sqlite3_mutex_leave(db->mutex);
1174   }
1175   return ret;
1176 }
1177 
1178 /*
1179 ** Return the name of the Nth column of the result set returned by SQL
1180 ** statement pStmt.
1181 */
1182 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1183   return columnName(
1184       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1185 }
1186 #ifndef SQLITE_OMIT_UTF16
1187 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1188   return columnName(
1189       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1190 }
1191 #endif
1192 
1193 /*
1194 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1195 ** not define OMIT_DECLTYPE.
1196 */
1197 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1198 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1199          and SQLITE_ENABLE_COLUMN_METADATA"
1200 #endif
1201 
1202 #ifndef SQLITE_OMIT_DECLTYPE
1203 /*
1204 ** Return the column declaration type (if applicable) of the 'i'th column
1205 ** of the result set of SQL statement pStmt.
1206 */
1207 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1208   return columnName(
1209       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1210 }
1211 #ifndef SQLITE_OMIT_UTF16
1212 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1213   return columnName(
1214       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1215 }
1216 #endif /* SQLITE_OMIT_UTF16 */
1217 #endif /* SQLITE_OMIT_DECLTYPE */
1218 
1219 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1220 /*
1221 ** Return the name of the database from which a result column derives.
1222 ** NULL is returned if the result column is an expression or constant or
1223 ** anything else which is not an unambiguous reference to a database column.
1224 */
1225 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1226   return columnName(
1227       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1228 }
1229 #ifndef SQLITE_OMIT_UTF16
1230 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1231   return columnName(
1232       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1233 }
1234 #endif /* SQLITE_OMIT_UTF16 */
1235 
1236 /*
1237 ** Return the name of the table from which a result column derives.
1238 ** NULL is returned if the result column is an expression or constant or
1239 ** anything else which is not an unambiguous reference to a database column.
1240 */
1241 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1242   return columnName(
1243       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1244 }
1245 #ifndef SQLITE_OMIT_UTF16
1246 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1247   return columnName(
1248       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1249 }
1250 #endif /* SQLITE_OMIT_UTF16 */
1251 
1252 /*
1253 ** Return the name of the table column from which a result column derives.
1254 ** NULL is returned if the result column is an expression or constant or
1255 ** anything else which is not an unambiguous reference to a database column.
1256 */
1257 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1258   return columnName(
1259       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1260 }
1261 #ifndef SQLITE_OMIT_UTF16
1262 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1263   return columnName(
1264       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1265 }
1266 #endif /* SQLITE_OMIT_UTF16 */
1267 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1268 
1269 
1270 /******************************* sqlite3_bind_  ***************************
1271 **
1272 ** Routines used to attach values to wildcards in a compiled SQL statement.
1273 */
1274 /*
1275 ** Unbind the value bound to variable i in virtual machine p. This is the
1276 ** the same as binding a NULL value to the column. If the "i" parameter is
1277 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1278 **
1279 ** A successful evaluation of this routine acquires the mutex on p.
1280 ** the mutex is released if any kind of error occurs.
1281 **
1282 ** The error code stored in database p->db is overwritten with the return
1283 ** value in any case.
1284 */
1285 static int vdbeUnbind(Vdbe *p, int i){
1286   Mem *pVar;
1287   if( vdbeSafetyNotNull(p) ){
1288     return SQLITE_MISUSE_BKPT;
1289   }
1290   sqlite3_mutex_enter(p->db->mutex);
1291   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1292     sqlite3Error(p->db, SQLITE_MISUSE);
1293     sqlite3_mutex_leave(p->db->mutex);
1294     sqlite3_log(SQLITE_MISUSE,
1295         "bind on a busy prepared statement: [%s]", p->zSql);
1296     return SQLITE_MISUSE_BKPT;
1297   }
1298   if( i<1 || i>p->nVar ){
1299     sqlite3Error(p->db, SQLITE_RANGE);
1300     sqlite3_mutex_leave(p->db->mutex);
1301     return SQLITE_RANGE;
1302   }
1303   i--;
1304   pVar = &p->aVar[i];
1305   sqlite3VdbeMemRelease(pVar);
1306   pVar->flags = MEM_Null;
1307   sqlite3Error(p->db, SQLITE_OK);
1308 
1309   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1310   ** binding a new value to this variable invalidates the current query plan.
1311   **
1312   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1313   ** parameter in the WHERE clause might influence the choice of query plan
1314   ** for a statement, then the statement will be automatically recompiled,
1315   ** as if there had been a schema change, on the first sqlite3_step() call
1316   ** following any change to the bindings of that parameter.
1317   */
1318   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1319   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1320     p->expired = 1;
1321   }
1322   return SQLITE_OK;
1323 }
1324 
1325 /*
1326 ** Bind a text or BLOB value.
1327 */
1328 static int bindText(
1329   sqlite3_stmt *pStmt,   /* The statement to bind against */
1330   int i,                 /* Index of the parameter to bind */
1331   const void *zData,     /* Pointer to the data to be bound */
1332   int nData,             /* Number of bytes of data to be bound */
1333   void (*xDel)(void*),   /* Destructor for the data */
1334   u8 encoding            /* Encoding for the data */
1335 ){
1336   Vdbe *p = (Vdbe *)pStmt;
1337   Mem *pVar;
1338   int rc;
1339 
1340   rc = vdbeUnbind(p, i);
1341   if( rc==SQLITE_OK ){
1342     if( zData!=0 ){
1343       pVar = &p->aVar[i-1];
1344       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1345       if( rc==SQLITE_OK && encoding!=0 ){
1346         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1347       }
1348       if( rc ){
1349         sqlite3Error(p->db, rc);
1350         rc = sqlite3ApiExit(p->db, rc);
1351       }
1352     }
1353     sqlite3_mutex_leave(p->db->mutex);
1354   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1355     xDel((void*)zData);
1356   }
1357   return rc;
1358 }
1359 
1360 
1361 /*
1362 ** Bind a blob value to an SQL statement variable.
1363 */
1364 int sqlite3_bind_blob(
1365   sqlite3_stmt *pStmt,
1366   int i,
1367   const void *zData,
1368   int nData,
1369   void (*xDel)(void*)
1370 ){
1371 #ifdef SQLITE_ENABLE_API_ARMOR
1372   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1373 #endif
1374   return bindText(pStmt, i, zData, nData, xDel, 0);
1375 }
1376 int sqlite3_bind_blob64(
1377   sqlite3_stmt *pStmt,
1378   int i,
1379   const void *zData,
1380   sqlite3_uint64 nData,
1381   void (*xDel)(void*)
1382 ){
1383   assert( xDel!=SQLITE_DYNAMIC );
1384   if( nData>0x7fffffff ){
1385     return invokeValueDestructor(zData, xDel, 0);
1386   }else{
1387     return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1388   }
1389 }
1390 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1391   int rc;
1392   Vdbe *p = (Vdbe *)pStmt;
1393   rc = vdbeUnbind(p, i);
1394   if( rc==SQLITE_OK ){
1395     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1396     sqlite3_mutex_leave(p->db->mutex);
1397   }
1398   return rc;
1399 }
1400 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1401   return sqlite3_bind_int64(p, i, (i64)iValue);
1402 }
1403 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1404   int rc;
1405   Vdbe *p = (Vdbe *)pStmt;
1406   rc = vdbeUnbind(p, i);
1407   if( rc==SQLITE_OK ){
1408     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1409     sqlite3_mutex_leave(p->db->mutex);
1410   }
1411   return rc;
1412 }
1413 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1414   int rc;
1415   Vdbe *p = (Vdbe*)pStmt;
1416   rc = vdbeUnbind(p, i);
1417   if( rc==SQLITE_OK ){
1418     sqlite3_mutex_leave(p->db->mutex);
1419   }
1420   return rc;
1421 }
1422 int sqlite3_bind_pointer(
1423   sqlite3_stmt *pStmt,
1424   int i,
1425   void *pPtr,
1426   const char *zPTtype,
1427   void (*xDestructor)(void*)
1428 ){
1429   int rc;
1430   Vdbe *p = (Vdbe*)pStmt;
1431   rc = vdbeUnbind(p, i);
1432   if( rc==SQLITE_OK ){
1433     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1434     sqlite3_mutex_leave(p->db->mutex);
1435   }else if( xDestructor ){
1436     xDestructor(pPtr);
1437   }
1438   return rc;
1439 }
1440 int sqlite3_bind_text(
1441   sqlite3_stmt *pStmt,
1442   int i,
1443   const char *zData,
1444   int nData,
1445   void (*xDel)(void*)
1446 ){
1447   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1448 }
1449 int sqlite3_bind_text64(
1450   sqlite3_stmt *pStmt,
1451   int i,
1452   const char *zData,
1453   sqlite3_uint64 nData,
1454   void (*xDel)(void*),
1455   unsigned char enc
1456 ){
1457   assert( xDel!=SQLITE_DYNAMIC );
1458   if( nData>0x7fffffff ){
1459     return invokeValueDestructor(zData, xDel, 0);
1460   }else{
1461     if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1462     return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1463   }
1464 }
1465 #ifndef SQLITE_OMIT_UTF16
1466 int sqlite3_bind_text16(
1467   sqlite3_stmt *pStmt,
1468   int i,
1469   const void *zData,
1470   int nData,
1471   void (*xDel)(void*)
1472 ){
1473   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1474 }
1475 #endif /* SQLITE_OMIT_UTF16 */
1476 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1477   int rc;
1478   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1479     case SQLITE_INTEGER: {
1480       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1481       break;
1482     }
1483     case SQLITE_FLOAT: {
1484       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1485       break;
1486     }
1487     case SQLITE_BLOB: {
1488       if( pValue->flags & MEM_Zero ){
1489         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1490       }else{
1491         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1492       }
1493       break;
1494     }
1495     case SQLITE_TEXT: {
1496       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1497                               pValue->enc);
1498       break;
1499     }
1500     default: {
1501       rc = sqlite3_bind_null(pStmt, i);
1502       break;
1503     }
1504   }
1505   return rc;
1506 }
1507 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1508   int rc;
1509   Vdbe *p = (Vdbe *)pStmt;
1510   rc = vdbeUnbind(p, i);
1511   if( rc==SQLITE_OK ){
1512     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1513     sqlite3_mutex_leave(p->db->mutex);
1514   }
1515   return rc;
1516 }
1517 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1518   int rc;
1519   Vdbe *p = (Vdbe *)pStmt;
1520   sqlite3_mutex_enter(p->db->mutex);
1521   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1522     rc = SQLITE_TOOBIG;
1523   }else{
1524     assert( (n & 0x7FFFFFFF)==n );
1525     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1526   }
1527   rc = sqlite3ApiExit(p->db, rc);
1528   sqlite3_mutex_leave(p->db->mutex);
1529   return rc;
1530 }
1531 
1532 /*
1533 ** Return the number of wildcards that can be potentially bound to.
1534 ** This routine is added to support DBD::SQLite.
1535 */
1536 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1537   Vdbe *p = (Vdbe*)pStmt;
1538   return p ? p->nVar : 0;
1539 }
1540 
1541 /*
1542 ** Return the name of a wildcard parameter.  Return NULL if the index
1543 ** is out of range or if the wildcard is unnamed.
1544 **
1545 ** The result is always UTF-8.
1546 */
1547 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1548   Vdbe *p = (Vdbe*)pStmt;
1549   if( p==0 ) return 0;
1550   return sqlite3VListNumToName(p->pVList, i);
1551 }
1552 
1553 /*
1554 ** Given a wildcard parameter name, return the index of the variable
1555 ** with that name.  If there is no variable with the given name,
1556 ** return 0.
1557 */
1558 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1559   if( p==0 || zName==0 ) return 0;
1560   return sqlite3VListNameToNum(p->pVList, zName, nName);
1561 }
1562 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1563   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1564 }
1565 
1566 /*
1567 ** Transfer all bindings from the first statement over to the second.
1568 */
1569 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1570   Vdbe *pFrom = (Vdbe*)pFromStmt;
1571   Vdbe *pTo = (Vdbe*)pToStmt;
1572   int i;
1573   assert( pTo->db==pFrom->db );
1574   assert( pTo->nVar==pFrom->nVar );
1575   sqlite3_mutex_enter(pTo->db->mutex);
1576   for(i=0; i<pFrom->nVar; i++){
1577     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1578   }
1579   sqlite3_mutex_leave(pTo->db->mutex);
1580   return SQLITE_OK;
1581 }
1582 
1583 #ifndef SQLITE_OMIT_DEPRECATED
1584 /*
1585 ** Deprecated external interface.  Internal/core SQLite code
1586 ** should call sqlite3TransferBindings.
1587 **
1588 ** It is misuse to call this routine with statements from different
1589 ** database connections.  But as this is a deprecated interface, we
1590 ** will not bother to check for that condition.
1591 **
1592 ** If the two statements contain a different number of bindings, then
1593 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1594 ** SQLITE_OK is returned.
1595 */
1596 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1597   Vdbe *pFrom = (Vdbe*)pFromStmt;
1598   Vdbe *pTo = (Vdbe*)pToStmt;
1599   if( pFrom->nVar!=pTo->nVar ){
1600     return SQLITE_ERROR;
1601   }
1602   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1603   if( pTo->expmask ){
1604     pTo->expired = 1;
1605   }
1606   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1607   if( pFrom->expmask ){
1608     pFrom->expired = 1;
1609   }
1610   return sqlite3TransferBindings(pFromStmt, pToStmt);
1611 }
1612 #endif
1613 
1614 /*
1615 ** Return the sqlite3* database handle to which the prepared statement given
1616 ** in the argument belongs.  This is the same database handle that was
1617 ** the first argument to the sqlite3_prepare() that was used to create
1618 ** the statement in the first place.
1619 */
1620 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1621   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1622 }
1623 
1624 /*
1625 ** Return true if the prepared statement is guaranteed to not modify the
1626 ** database.
1627 */
1628 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1629   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1630 }
1631 
1632 /*
1633 ** Return true if the prepared statement is in need of being reset.
1634 */
1635 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1636   Vdbe *v = (Vdbe*)pStmt;
1637   return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1638 }
1639 
1640 /*
1641 ** Return a pointer to the next prepared statement after pStmt associated
1642 ** with database connection pDb.  If pStmt is NULL, return the first
1643 ** prepared statement for the database connection.  Return NULL if there
1644 ** are no more.
1645 */
1646 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1647   sqlite3_stmt *pNext;
1648 #ifdef SQLITE_ENABLE_API_ARMOR
1649   if( !sqlite3SafetyCheckOk(pDb) ){
1650     (void)SQLITE_MISUSE_BKPT;
1651     return 0;
1652   }
1653 #endif
1654   sqlite3_mutex_enter(pDb->mutex);
1655   if( pStmt==0 ){
1656     pNext = (sqlite3_stmt*)pDb->pVdbe;
1657   }else{
1658     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1659   }
1660   sqlite3_mutex_leave(pDb->mutex);
1661   return pNext;
1662 }
1663 
1664 /*
1665 ** Return the value of a status counter for a prepared statement
1666 */
1667 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1668   Vdbe *pVdbe = (Vdbe*)pStmt;
1669   u32 v;
1670 #ifdef SQLITE_ENABLE_API_ARMOR
1671   if( !pStmt
1672    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1673   ){
1674     (void)SQLITE_MISUSE_BKPT;
1675     return 0;
1676   }
1677 #endif
1678   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1679     sqlite3 *db = pVdbe->db;
1680     sqlite3_mutex_enter(db->mutex);
1681     v = 0;
1682     db->pnBytesFreed = (int*)&v;
1683     sqlite3VdbeClearObject(db, pVdbe);
1684     sqlite3DbFree(db, pVdbe);
1685     db->pnBytesFreed = 0;
1686     sqlite3_mutex_leave(db->mutex);
1687   }else{
1688     v = pVdbe->aCounter[op];
1689     if( resetFlag ) pVdbe->aCounter[op] = 0;
1690   }
1691   return (int)v;
1692 }
1693 
1694 /*
1695 ** Return the SQL associated with a prepared statement
1696 */
1697 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1698   Vdbe *p = (Vdbe *)pStmt;
1699   return p ? p->zSql : 0;
1700 }
1701 
1702 /*
1703 ** Return the SQL associated with a prepared statement with
1704 ** bound parameters expanded.  Space to hold the returned string is
1705 ** obtained from sqlite3_malloc().  The caller is responsible for
1706 ** freeing the returned string by passing it to sqlite3_free().
1707 **
1708 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1709 ** expanded bound parameters.
1710 */
1711 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1712 #ifdef SQLITE_OMIT_TRACE
1713   return 0;
1714 #else
1715   char *z = 0;
1716   const char *zSql = sqlite3_sql(pStmt);
1717   if( zSql ){
1718     Vdbe *p = (Vdbe *)pStmt;
1719     sqlite3_mutex_enter(p->db->mutex);
1720     z = sqlite3VdbeExpandSql(p, zSql);
1721     sqlite3_mutex_leave(p->db->mutex);
1722   }
1723   return z;
1724 #endif
1725 }
1726 
1727 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1728 /*
1729 ** Allocate and populate an UnpackedRecord structure based on the serialized
1730 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1731 ** if successful, or a NULL pointer if an OOM error is encountered.
1732 */
1733 static UnpackedRecord *vdbeUnpackRecord(
1734   KeyInfo *pKeyInfo,
1735   int nKey,
1736   const void *pKey
1737 ){
1738   UnpackedRecord *pRet;           /* Return value */
1739 
1740   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1741   if( pRet ){
1742     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1743     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1744   }
1745   return pRet;
1746 }
1747 
1748 /*
1749 ** This function is called from within a pre-update callback to retrieve
1750 ** a field of the row currently being updated or deleted.
1751 */
1752 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1753   PreUpdate *p = db->pPreUpdate;
1754   Mem *pMem;
1755   int rc = SQLITE_OK;
1756 
1757   /* Test that this call is being made from within an SQLITE_DELETE or
1758   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1759   if( !p || p->op==SQLITE_INSERT ){
1760     rc = SQLITE_MISUSE_BKPT;
1761     goto preupdate_old_out;
1762   }
1763   if( p->pPk ){
1764     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1765   }
1766   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1767     rc = SQLITE_RANGE;
1768     goto preupdate_old_out;
1769   }
1770 
1771   /* If the old.* record has not yet been loaded into memory, do so now. */
1772   if( p->pUnpacked==0 ){
1773     u32 nRec;
1774     u8 *aRec;
1775 
1776     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1777     aRec = sqlite3DbMallocRaw(db, nRec);
1778     if( !aRec ) goto preupdate_old_out;
1779     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1780     if( rc==SQLITE_OK ){
1781       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1782       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1783     }
1784     if( rc!=SQLITE_OK ){
1785       sqlite3DbFree(db, aRec);
1786       goto preupdate_old_out;
1787     }
1788     p->aRecord = aRec;
1789   }
1790 
1791   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1792   if( iIdx==p->pTab->iPKey ){
1793     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1794   }else if( iIdx>=p->pUnpacked->nField ){
1795     *ppValue = (sqlite3_value *)columnNullValue();
1796   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1797     if( pMem->flags & MEM_Int ){
1798       sqlite3VdbeMemRealify(pMem);
1799     }
1800   }
1801 
1802  preupdate_old_out:
1803   sqlite3Error(db, rc);
1804   return sqlite3ApiExit(db, rc);
1805 }
1806 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1807 
1808 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1809 /*
1810 ** This function is called from within a pre-update callback to retrieve
1811 ** the number of columns in the row being updated, deleted or inserted.
1812 */
1813 int sqlite3_preupdate_count(sqlite3 *db){
1814   PreUpdate *p = db->pPreUpdate;
1815   return (p ? p->keyinfo.nKeyField : 0);
1816 }
1817 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1818 
1819 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1820 /*
1821 ** This function is designed to be called from within a pre-update callback
1822 ** only. It returns zero if the change that caused the callback was made
1823 ** immediately by a user SQL statement. Or, if the change was made by a
1824 ** trigger program, it returns the number of trigger programs currently
1825 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1826 ** top-level trigger etc.).
1827 **
1828 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1829 ** or SET DEFAULT action is considered a trigger.
1830 */
1831 int sqlite3_preupdate_depth(sqlite3 *db){
1832   PreUpdate *p = db->pPreUpdate;
1833   return (p ? p->v->nFrame : 0);
1834 }
1835 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1836 
1837 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1838 /*
1839 ** This function is called from within a pre-update callback to retrieve
1840 ** a field of the row currently being updated or inserted.
1841 */
1842 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1843   PreUpdate *p = db->pPreUpdate;
1844   int rc = SQLITE_OK;
1845   Mem *pMem;
1846 
1847   if( !p || p->op==SQLITE_DELETE ){
1848     rc = SQLITE_MISUSE_BKPT;
1849     goto preupdate_new_out;
1850   }
1851   if( p->pPk && p->op!=SQLITE_UPDATE ){
1852     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1853   }
1854   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1855     rc = SQLITE_RANGE;
1856     goto preupdate_new_out;
1857   }
1858 
1859   if( p->op==SQLITE_INSERT ){
1860     /* For an INSERT, memory cell p->iNewReg contains the serialized record
1861     ** that is being inserted. Deserialize it. */
1862     UnpackedRecord *pUnpack = p->pNewUnpacked;
1863     if( !pUnpack ){
1864       Mem *pData = &p->v->aMem[p->iNewReg];
1865       rc = ExpandBlob(pData);
1866       if( rc!=SQLITE_OK ) goto preupdate_new_out;
1867       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1868       if( !pUnpack ){
1869         rc = SQLITE_NOMEM;
1870         goto preupdate_new_out;
1871       }
1872       p->pNewUnpacked = pUnpack;
1873     }
1874     pMem = &pUnpack->aMem[iIdx];
1875     if( iIdx==p->pTab->iPKey ){
1876       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1877     }else if( iIdx>=pUnpack->nField ){
1878       pMem = (sqlite3_value *)columnNullValue();
1879     }
1880   }else{
1881     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1882     ** value. Make a copy of the cell contents and return a pointer to it.
1883     ** It is not safe to return a pointer to the memory cell itself as the
1884     ** caller may modify the value text encoding.
1885     */
1886     assert( p->op==SQLITE_UPDATE );
1887     if( !p->aNew ){
1888       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1889       if( !p->aNew ){
1890         rc = SQLITE_NOMEM;
1891         goto preupdate_new_out;
1892       }
1893     }
1894     assert( iIdx>=0 && iIdx<p->pCsr->nField );
1895     pMem = &p->aNew[iIdx];
1896     if( pMem->flags==0 ){
1897       if( iIdx==p->pTab->iPKey ){
1898         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1899       }else{
1900         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1901         if( rc!=SQLITE_OK ) goto preupdate_new_out;
1902       }
1903     }
1904   }
1905   *ppValue = pMem;
1906 
1907  preupdate_new_out:
1908   sqlite3Error(db, rc);
1909   return sqlite3ApiExit(db, rc);
1910 }
1911 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1912 
1913 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1914 /*
1915 ** Return status data for a single loop within query pStmt.
1916 */
1917 int sqlite3_stmt_scanstatus(
1918   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
1919   int idx,                        /* Index of loop to report on */
1920   int iScanStatusOp,              /* Which metric to return */
1921   void *pOut                      /* OUT: Write the answer here */
1922 ){
1923   Vdbe *p = (Vdbe*)pStmt;
1924   ScanStatus *pScan;
1925   if( idx<0 || idx>=p->nScan ) return 1;
1926   pScan = &p->aScan[idx];
1927   switch( iScanStatusOp ){
1928     case SQLITE_SCANSTAT_NLOOP: {
1929       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1930       break;
1931     }
1932     case SQLITE_SCANSTAT_NVISIT: {
1933       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1934       break;
1935     }
1936     case SQLITE_SCANSTAT_EST: {
1937       double r = 1.0;
1938       LogEst x = pScan->nEst;
1939       while( x<100 ){
1940         x += 10;
1941         r *= 0.5;
1942       }
1943       *(double*)pOut = r*sqlite3LogEstToInt(x);
1944       break;
1945     }
1946     case SQLITE_SCANSTAT_NAME: {
1947       *(const char**)pOut = pScan->zName;
1948       break;
1949     }
1950     case SQLITE_SCANSTAT_EXPLAIN: {
1951       if( pScan->addrExplain ){
1952         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1953       }else{
1954         *(const char**)pOut = 0;
1955       }
1956       break;
1957     }
1958     case SQLITE_SCANSTAT_SELECTID: {
1959       if( pScan->addrExplain ){
1960         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1961       }else{
1962         *(int*)pOut = -1;
1963       }
1964       break;
1965     }
1966     default: {
1967       return 1;
1968     }
1969   }
1970   return 0;
1971 }
1972 
1973 /*
1974 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1975 */
1976 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1977   Vdbe *p = (Vdbe*)pStmt;
1978   memset(p->anExec, 0, p->nOp * sizeof(i64));
1979 }
1980 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
1981