1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 if( db->xProfile ){ 71 db->xProfile(db->pProfileArg, p->zSql, iElapse); 72 } 73 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 75 } 76 p->startTime = 0; 77 } 78 /* 79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 80 ** is needed, and it invokes the callback if it is needed. 81 */ 82 # define checkProfileCallback(DB,P) \ 83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 84 #else 85 # define checkProfileCallback(DB,P) /*no-op*/ 86 #endif 87 88 /* 89 ** The following routine destroys a virtual machine that is created by 90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 91 ** success/failure code that describes the result of executing the virtual 92 ** machine. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_finalize(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 101 ** pointer is a harmless no-op. */ 102 rc = SQLITE_OK; 103 }else{ 104 Vdbe *v = (Vdbe*)pStmt; 105 sqlite3 *db = v->db; 106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 107 sqlite3_mutex_enter(db->mutex); 108 checkProfileCallback(db, v); 109 rc = sqlite3VdbeFinalize(v); 110 rc = sqlite3ApiExit(db, rc); 111 sqlite3LeaveMutexAndCloseZombie(db); 112 } 113 return rc; 114 } 115 116 /* 117 ** Terminate the current execution of an SQL statement and reset it 118 ** back to its starting state so that it can be reused. A success code from 119 ** the prior execution is returned. 120 ** 121 ** This routine sets the error code and string returned by 122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 123 */ 124 int sqlite3_reset(sqlite3_stmt *pStmt){ 125 int rc; 126 if( pStmt==0 ){ 127 rc = SQLITE_OK; 128 }else{ 129 Vdbe *v = (Vdbe*)pStmt; 130 sqlite3 *db = v->db; 131 sqlite3_mutex_enter(db->mutex); 132 checkProfileCallback(db, v); 133 rc = sqlite3VdbeReset(v); 134 sqlite3VdbeRewind(v); 135 assert( (rc & (db->errMask))==rc ); 136 rc = sqlite3ApiExit(db, rc); 137 sqlite3_mutex_leave(db->mutex); 138 } 139 return rc; 140 } 141 142 /* 143 ** Set all the parameters in the compiled SQL statement to NULL. 144 */ 145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 146 int i; 147 int rc = SQLITE_OK; 148 Vdbe *p = (Vdbe*)pStmt; 149 #if SQLITE_THREADSAFE 150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 151 #endif 152 sqlite3_mutex_enter(mutex); 153 for(i=0; i<p->nVar; i++){ 154 sqlite3VdbeMemRelease(&p->aVar[i]); 155 p->aVar[i].flags = MEM_Null; 156 } 157 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 158 if( p->expmask ){ 159 p->expired = 1; 160 } 161 sqlite3_mutex_leave(mutex); 162 return rc; 163 } 164 165 166 /**************************** sqlite3_value_ ******************************* 167 ** The following routines extract information from a Mem or sqlite3_value 168 ** structure. 169 */ 170 const void *sqlite3_value_blob(sqlite3_value *pVal){ 171 Mem *p = (Mem*)pVal; 172 if( p->flags & (MEM_Blob|MEM_Str) ){ 173 if( ExpandBlob(p)!=SQLITE_OK ){ 174 assert( p->flags==MEM_Null && p->z==0 ); 175 return 0; 176 } 177 p->flags |= MEM_Blob; 178 return p->n ? p->z : 0; 179 }else{ 180 return sqlite3_value_text(pVal); 181 } 182 } 183 int sqlite3_value_bytes(sqlite3_value *pVal){ 184 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 185 } 186 int sqlite3_value_bytes16(sqlite3_value *pVal){ 187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 188 } 189 double sqlite3_value_double(sqlite3_value *pVal){ 190 return sqlite3VdbeRealValue((Mem*)pVal); 191 } 192 int sqlite3_value_int(sqlite3_value *pVal){ 193 return (int)sqlite3VdbeIntValue((Mem*)pVal); 194 } 195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 196 return sqlite3VdbeIntValue((Mem*)pVal); 197 } 198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 199 Mem *pMem = (Mem*)pVal; 200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 201 } 202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 203 Mem *p = (Mem*)pVal; 204 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 205 (MEM_Null|MEM_Term|MEM_Subtype) 206 && zPType!=0 207 && p->eSubtype=='p' 208 && strcmp(p->u.zPType, zPType)==0 209 ){ 210 return (void*)p->z; 211 }else{ 212 return 0; 213 } 214 } 215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 216 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 217 } 218 #ifndef SQLITE_OMIT_UTF16 219 const void *sqlite3_value_text16(sqlite3_value* pVal){ 220 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 221 } 222 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 223 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 224 } 225 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 226 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 227 } 228 #endif /* SQLITE_OMIT_UTF16 */ 229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 231 ** point number string BLOB NULL 232 */ 233 int sqlite3_value_type(sqlite3_value* pVal){ 234 static const u8 aType[] = { 235 SQLITE_BLOB, /* 0x00 */ 236 SQLITE_NULL, /* 0x01 */ 237 SQLITE_TEXT, /* 0x02 */ 238 SQLITE_NULL, /* 0x03 */ 239 SQLITE_INTEGER, /* 0x04 */ 240 SQLITE_NULL, /* 0x05 */ 241 SQLITE_INTEGER, /* 0x06 */ 242 SQLITE_NULL, /* 0x07 */ 243 SQLITE_FLOAT, /* 0x08 */ 244 SQLITE_NULL, /* 0x09 */ 245 SQLITE_FLOAT, /* 0x0a */ 246 SQLITE_NULL, /* 0x0b */ 247 SQLITE_INTEGER, /* 0x0c */ 248 SQLITE_NULL, /* 0x0d */ 249 SQLITE_INTEGER, /* 0x0e */ 250 SQLITE_NULL, /* 0x0f */ 251 SQLITE_BLOB, /* 0x10 */ 252 SQLITE_NULL, /* 0x11 */ 253 SQLITE_TEXT, /* 0x12 */ 254 SQLITE_NULL, /* 0x13 */ 255 SQLITE_INTEGER, /* 0x14 */ 256 SQLITE_NULL, /* 0x15 */ 257 SQLITE_INTEGER, /* 0x16 */ 258 SQLITE_NULL, /* 0x17 */ 259 SQLITE_FLOAT, /* 0x18 */ 260 SQLITE_NULL, /* 0x19 */ 261 SQLITE_FLOAT, /* 0x1a */ 262 SQLITE_NULL, /* 0x1b */ 263 SQLITE_INTEGER, /* 0x1c */ 264 SQLITE_NULL, /* 0x1d */ 265 SQLITE_INTEGER, /* 0x1e */ 266 SQLITE_NULL, /* 0x1f */ 267 }; 268 return aType[pVal->flags&MEM_AffMask]; 269 } 270 271 /* Return true if a parameter to xUpdate represents an unchanged column */ 272 int sqlite3_value_nochange(sqlite3_value *pVal){ 273 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 274 } 275 276 /* Make a copy of an sqlite3_value object 277 */ 278 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 279 sqlite3_value *pNew; 280 if( pOrig==0 ) return 0; 281 pNew = sqlite3_malloc( sizeof(*pNew) ); 282 if( pNew==0 ) return 0; 283 memset(pNew, 0, sizeof(*pNew)); 284 memcpy(pNew, pOrig, MEMCELLSIZE); 285 pNew->flags &= ~MEM_Dyn; 286 pNew->db = 0; 287 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 288 pNew->flags &= ~(MEM_Static|MEM_Dyn); 289 pNew->flags |= MEM_Ephem; 290 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 291 sqlite3ValueFree(pNew); 292 pNew = 0; 293 } 294 } 295 return pNew; 296 } 297 298 /* Destroy an sqlite3_value object previously obtained from 299 ** sqlite3_value_dup(). 300 */ 301 void sqlite3_value_free(sqlite3_value *pOld){ 302 sqlite3ValueFree(pOld); 303 } 304 305 306 /**************************** sqlite3_result_ ******************************* 307 ** The following routines are used by user-defined functions to specify 308 ** the function result. 309 ** 310 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 311 ** result as a string or blob but if the string or blob is too large, it 312 ** then sets the error code to SQLITE_TOOBIG 313 ** 314 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 315 ** on value P is not going to be used and need to be destroyed. 316 */ 317 static void setResultStrOrError( 318 sqlite3_context *pCtx, /* Function context */ 319 const char *z, /* String pointer */ 320 int n, /* Bytes in string, or negative */ 321 u8 enc, /* Encoding of z. 0 for BLOBs */ 322 void (*xDel)(void*) /* Destructor function */ 323 ){ 324 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 325 sqlite3_result_error_toobig(pCtx); 326 } 327 } 328 static int invokeValueDestructor( 329 const void *p, /* Value to destroy */ 330 void (*xDel)(void*), /* The destructor */ 331 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 332 ){ 333 assert( xDel!=SQLITE_DYNAMIC ); 334 if( xDel==0 ){ 335 /* noop */ 336 }else if( xDel==SQLITE_TRANSIENT ){ 337 /* noop */ 338 }else{ 339 xDel((void*)p); 340 } 341 if( pCtx ) sqlite3_result_error_toobig(pCtx); 342 return SQLITE_TOOBIG; 343 } 344 void sqlite3_result_blob( 345 sqlite3_context *pCtx, 346 const void *z, 347 int n, 348 void (*xDel)(void *) 349 ){ 350 assert( n>=0 ); 351 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 352 setResultStrOrError(pCtx, z, n, 0, xDel); 353 } 354 void sqlite3_result_blob64( 355 sqlite3_context *pCtx, 356 const void *z, 357 sqlite3_uint64 n, 358 void (*xDel)(void *) 359 ){ 360 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 361 assert( xDel!=SQLITE_DYNAMIC ); 362 if( n>0x7fffffff ){ 363 (void)invokeValueDestructor(z, xDel, pCtx); 364 }else{ 365 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 366 } 367 } 368 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 369 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 370 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 371 } 372 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 373 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 374 pCtx->isError = SQLITE_ERROR; 375 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 376 } 377 #ifndef SQLITE_OMIT_UTF16 378 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 379 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 380 pCtx->isError = SQLITE_ERROR; 381 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 382 } 383 #endif 384 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 385 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 386 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 387 } 388 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 389 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 390 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 391 } 392 void sqlite3_result_null(sqlite3_context *pCtx){ 393 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 394 sqlite3VdbeMemSetNull(pCtx->pOut); 395 } 396 void sqlite3_result_pointer( 397 sqlite3_context *pCtx, 398 void *pPtr, 399 const char *zPType, 400 void (*xDestructor)(void*) 401 ){ 402 Mem *pOut = pCtx->pOut; 403 assert( sqlite3_mutex_held(pOut->db->mutex) ); 404 sqlite3VdbeMemRelease(pOut); 405 pOut->flags = MEM_Null; 406 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 407 } 408 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 409 Mem *pOut = pCtx->pOut; 410 assert( sqlite3_mutex_held(pOut->db->mutex) ); 411 pOut->eSubtype = eSubtype & 0xff; 412 pOut->flags |= MEM_Subtype; 413 } 414 void sqlite3_result_text( 415 sqlite3_context *pCtx, 416 const char *z, 417 int n, 418 void (*xDel)(void *) 419 ){ 420 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 421 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 422 } 423 void sqlite3_result_text64( 424 sqlite3_context *pCtx, 425 const char *z, 426 sqlite3_uint64 n, 427 void (*xDel)(void *), 428 unsigned char enc 429 ){ 430 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 431 assert( xDel!=SQLITE_DYNAMIC ); 432 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 433 if( n>0x7fffffff ){ 434 (void)invokeValueDestructor(z, xDel, pCtx); 435 }else{ 436 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 437 } 438 } 439 #ifndef SQLITE_OMIT_UTF16 440 void sqlite3_result_text16( 441 sqlite3_context *pCtx, 442 const void *z, 443 int n, 444 void (*xDel)(void *) 445 ){ 446 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 447 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 448 } 449 void sqlite3_result_text16be( 450 sqlite3_context *pCtx, 451 const void *z, 452 int n, 453 void (*xDel)(void *) 454 ){ 455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 456 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 457 } 458 void sqlite3_result_text16le( 459 sqlite3_context *pCtx, 460 const void *z, 461 int n, 462 void (*xDel)(void *) 463 ){ 464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 465 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 466 } 467 #endif /* SQLITE_OMIT_UTF16 */ 468 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 469 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 470 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 471 } 472 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 473 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 474 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 475 } 476 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 477 Mem *pOut = pCtx->pOut; 478 assert( sqlite3_mutex_held(pOut->db->mutex) ); 479 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 480 return SQLITE_TOOBIG; 481 } 482 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 483 return SQLITE_OK; 484 } 485 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 486 pCtx->isError = errCode ? errCode : -1; 487 #ifdef SQLITE_DEBUG 488 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 489 #endif 490 if( pCtx->pOut->flags & MEM_Null ){ 491 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 492 SQLITE_UTF8, SQLITE_STATIC); 493 } 494 } 495 496 /* Force an SQLITE_TOOBIG error. */ 497 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 498 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 499 pCtx->isError = SQLITE_TOOBIG; 500 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 501 SQLITE_UTF8, SQLITE_STATIC); 502 } 503 504 /* An SQLITE_NOMEM error. */ 505 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 506 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 507 sqlite3VdbeMemSetNull(pCtx->pOut); 508 pCtx->isError = SQLITE_NOMEM_BKPT; 509 sqlite3OomFault(pCtx->pOut->db); 510 } 511 512 /* 513 ** This function is called after a transaction has been committed. It 514 ** invokes callbacks registered with sqlite3_wal_hook() as required. 515 */ 516 static int doWalCallbacks(sqlite3 *db){ 517 int rc = SQLITE_OK; 518 #ifndef SQLITE_OMIT_WAL 519 int i; 520 for(i=0; i<db->nDb; i++){ 521 Btree *pBt = db->aDb[i].pBt; 522 if( pBt ){ 523 int nEntry; 524 sqlite3BtreeEnter(pBt); 525 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 526 sqlite3BtreeLeave(pBt); 527 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 528 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 529 } 530 } 531 } 532 #endif 533 return rc; 534 } 535 536 537 /* 538 ** Execute the statement pStmt, either until a row of data is ready, the 539 ** statement is completely executed or an error occurs. 540 ** 541 ** This routine implements the bulk of the logic behind the sqlite_step() 542 ** API. The only thing omitted is the automatic recompile if a 543 ** schema change has occurred. That detail is handled by the 544 ** outer sqlite3_step() wrapper procedure. 545 */ 546 static int sqlite3Step(Vdbe *p){ 547 sqlite3 *db; 548 int rc; 549 550 assert(p); 551 if( p->magic!=VDBE_MAGIC_RUN ){ 552 /* We used to require that sqlite3_reset() be called before retrying 553 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 554 ** with version 3.7.0, we changed this so that sqlite3_reset() would 555 ** be called automatically instead of throwing the SQLITE_MISUSE error. 556 ** This "automatic-reset" change is not technically an incompatibility, 557 ** since any application that receives an SQLITE_MISUSE is broken by 558 ** definition. 559 ** 560 ** Nevertheless, some published applications that were originally written 561 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 562 ** returns, and those were broken by the automatic-reset change. As a 563 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 564 ** legacy behavior of returning SQLITE_MISUSE for cases where the 565 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 566 ** or SQLITE_BUSY error. 567 */ 568 #ifdef SQLITE_OMIT_AUTORESET 569 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 570 sqlite3_reset((sqlite3_stmt*)p); 571 }else{ 572 return SQLITE_MISUSE_BKPT; 573 } 574 #else 575 sqlite3_reset((sqlite3_stmt*)p); 576 #endif 577 } 578 579 /* Check that malloc() has not failed. If it has, return early. */ 580 db = p->db; 581 if( db->mallocFailed ){ 582 p->rc = SQLITE_NOMEM; 583 return SQLITE_NOMEM_BKPT; 584 } 585 586 if( p->pc<=0 && p->expired ){ 587 p->rc = SQLITE_SCHEMA; 588 rc = SQLITE_ERROR; 589 goto end_of_step; 590 } 591 if( p->pc<0 ){ 592 /* If there are no other statements currently running, then 593 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 594 ** from interrupting a statement that has not yet started. 595 */ 596 if( db->nVdbeActive==0 ){ 597 db->u1.isInterrupted = 0; 598 } 599 600 assert( db->nVdbeWrite>0 || db->autoCommit==0 601 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 602 ); 603 604 #ifndef SQLITE_OMIT_TRACE 605 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0) 606 && !db->init.busy && p->zSql ){ 607 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 608 }else{ 609 assert( p->startTime==0 ); 610 } 611 #endif 612 613 db->nVdbeActive++; 614 if( p->readOnly==0 ) db->nVdbeWrite++; 615 if( p->bIsReader ) db->nVdbeRead++; 616 p->pc = 0; 617 } 618 #ifdef SQLITE_DEBUG 619 p->rcApp = SQLITE_OK; 620 #endif 621 #ifndef SQLITE_OMIT_EXPLAIN 622 if( p->explain ){ 623 rc = sqlite3VdbeList(p); 624 }else 625 #endif /* SQLITE_OMIT_EXPLAIN */ 626 { 627 db->nVdbeExec++; 628 rc = sqlite3VdbeExec(p); 629 db->nVdbeExec--; 630 } 631 632 #ifndef SQLITE_OMIT_TRACE 633 /* If the statement completed successfully, invoke the profile callback */ 634 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 635 #endif 636 637 if( rc==SQLITE_DONE && db->autoCommit ){ 638 assert( p->rc==SQLITE_OK ); 639 p->rc = doWalCallbacks(db); 640 if( p->rc!=SQLITE_OK ){ 641 rc = SQLITE_ERROR; 642 } 643 } 644 645 db->errCode = rc; 646 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 647 p->rc = SQLITE_NOMEM_BKPT; 648 } 649 end_of_step: 650 /* At this point local variable rc holds the value that should be 651 ** returned if this statement was compiled using the legacy 652 ** sqlite3_prepare() interface. According to the docs, this can only 653 ** be one of the values in the first assert() below. Variable p->rc 654 ** contains the value that would be returned if sqlite3_finalize() 655 ** were called on statement p. 656 */ 657 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 658 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 659 ); 660 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 661 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 662 && rc!=SQLITE_ROW 663 && rc!=SQLITE_DONE 664 ){ 665 /* If this statement was prepared using saved SQL and an 666 ** error has occurred, then return the error code in p->rc to the 667 ** caller. Set the error code in the database handle to the same value. 668 */ 669 rc = sqlite3VdbeTransferError(p); 670 } 671 return (rc&db->errMask); 672 } 673 674 /* 675 ** This is the top-level implementation of sqlite3_step(). Call 676 ** sqlite3Step() to do most of the work. If a schema error occurs, 677 ** call sqlite3Reprepare() and try again. 678 */ 679 int sqlite3_step(sqlite3_stmt *pStmt){ 680 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 681 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 682 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 683 sqlite3 *db; /* The database connection */ 684 685 if( vdbeSafetyNotNull(v) ){ 686 return SQLITE_MISUSE_BKPT; 687 } 688 db = v->db; 689 sqlite3_mutex_enter(db->mutex); 690 v->doingRerun = 0; 691 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 692 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 693 int savedPc = v->pc; 694 rc = sqlite3Reprepare(v); 695 if( rc!=SQLITE_OK ){ 696 /* This case occurs after failing to recompile an sql statement. 697 ** The error message from the SQL compiler has already been loaded 698 ** into the database handle. This block copies the error message 699 ** from the database handle into the statement and sets the statement 700 ** program counter to 0 to ensure that when the statement is 701 ** finalized or reset the parser error message is available via 702 ** sqlite3_errmsg() and sqlite3_errcode(). 703 */ 704 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 705 sqlite3DbFree(db, v->zErrMsg); 706 if( !db->mallocFailed ){ 707 v->zErrMsg = sqlite3DbStrDup(db, zErr); 708 v->rc = rc = sqlite3ApiExit(db, rc); 709 } else { 710 v->zErrMsg = 0; 711 v->rc = rc = SQLITE_NOMEM_BKPT; 712 } 713 break; 714 } 715 sqlite3_reset(pStmt); 716 if( savedPc>=0 ) v->doingRerun = 1; 717 assert( v->expired==0 ); 718 } 719 sqlite3_mutex_leave(db->mutex); 720 return rc; 721 } 722 723 724 /* 725 ** Extract the user data from a sqlite3_context structure and return a 726 ** pointer to it. 727 */ 728 void *sqlite3_user_data(sqlite3_context *p){ 729 assert( p && p->pFunc ); 730 return p->pFunc->pUserData; 731 } 732 733 /* 734 ** Extract the user data from a sqlite3_context structure and return a 735 ** pointer to it. 736 ** 737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 738 ** returns a copy of the pointer to the database connection (the 1st 739 ** parameter) of the sqlite3_create_function() and 740 ** sqlite3_create_function16() routines that originally registered the 741 ** application defined function. 742 */ 743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 744 assert( p && p->pOut ); 745 return p->pOut->db; 746 } 747 748 /* 749 ** If this routine is invoked from within an xColumn method of a virtual 750 ** table, then it returns true if and only if the the call is during an 751 ** UPDATE operation and the value of the column will not be modified 752 ** by the UPDATE. 753 ** 754 ** If this routine is called from any context other than within the 755 ** xColumn method of a virtual table, then the return value is meaningless 756 ** and arbitrary. 757 ** 758 ** Virtual table implements might use this routine to optimize their 759 ** performance by substituting a NULL result, or some other light-weight 760 ** value, as a signal to the xUpdate routine that the column is unchanged. 761 */ 762 int sqlite3_vtab_nochange(sqlite3_context *p){ 763 assert( p ); 764 return sqlite3_value_nochange(p->pOut); 765 } 766 767 /* 768 ** Return the current time for a statement. If the current time 769 ** is requested more than once within the same run of a single prepared 770 ** statement, the exact same time is returned for each invocation regardless 771 ** of the amount of time that elapses between invocations. In other words, 772 ** the time returned is always the time of the first call. 773 */ 774 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 775 int rc; 776 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 777 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 778 assert( p->pVdbe!=0 ); 779 #else 780 sqlite3_int64 iTime = 0; 781 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 782 #endif 783 if( *piTime==0 ){ 784 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 785 if( rc ) *piTime = 0; 786 } 787 return *piTime; 788 } 789 790 /* 791 ** The following is the implementation of an SQL function that always 792 ** fails with an error message stating that the function is used in the 793 ** wrong context. The sqlite3_overload_function() API might construct 794 ** SQL function that use this routine so that the functions will exist 795 ** for name resolution but are actually overloaded by the xFindFunction 796 ** method of virtual tables. 797 */ 798 void sqlite3InvalidFunction( 799 sqlite3_context *context, /* The function calling context */ 800 int NotUsed, /* Number of arguments to the function */ 801 sqlite3_value **NotUsed2 /* Value of each argument */ 802 ){ 803 const char *zName = context->pFunc->zName; 804 char *zErr; 805 UNUSED_PARAMETER2(NotUsed, NotUsed2); 806 zErr = sqlite3_mprintf( 807 "unable to use function %s in the requested context", zName); 808 sqlite3_result_error(context, zErr, -1); 809 sqlite3_free(zErr); 810 } 811 812 /* 813 ** Create a new aggregate context for p and return a pointer to 814 ** its pMem->z element. 815 */ 816 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 817 Mem *pMem = p->pMem; 818 assert( (pMem->flags & MEM_Agg)==0 ); 819 if( nByte<=0 ){ 820 sqlite3VdbeMemSetNull(pMem); 821 pMem->z = 0; 822 }else{ 823 sqlite3VdbeMemClearAndResize(pMem, nByte); 824 pMem->flags = MEM_Agg; 825 pMem->u.pDef = p->pFunc; 826 if( pMem->z ){ 827 memset(pMem->z, 0, nByte); 828 } 829 } 830 return (void*)pMem->z; 831 } 832 833 /* 834 ** Allocate or return the aggregate context for a user function. A new 835 ** context is allocated on the first call. Subsequent calls return the 836 ** same context that was returned on prior calls. 837 */ 838 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 839 assert( p && p->pFunc && p->pFunc->xFinalize ); 840 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 841 testcase( nByte<0 ); 842 if( (p->pMem->flags & MEM_Agg)==0 ){ 843 return createAggContext(p, nByte); 844 }else{ 845 return (void*)p->pMem->z; 846 } 847 } 848 849 /* 850 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 851 ** the user-function defined by pCtx. 852 ** 853 ** The left-most argument is 0. 854 ** 855 ** Undocumented behavior: If iArg is negative then access a cache of 856 ** auxiliary data pointers that is available to all functions within a 857 ** single prepared statement. The iArg values must match. 858 */ 859 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 860 AuxData *pAuxData; 861 862 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 863 #if SQLITE_ENABLE_STAT3_OR_STAT4 864 if( pCtx->pVdbe==0 ) return 0; 865 #else 866 assert( pCtx->pVdbe!=0 ); 867 #endif 868 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 869 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 870 return pAuxData->pAux; 871 } 872 } 873 return 0; 874 } 875 876 /* 877 ** Set the auxiliary data pointer and delete function, for the iArg'th 878 ** argument to the user-function defined by pCtx. Any previous value is 879 ** deleted by calling the delete function specified when it was set. 880 ** 881 ** The left-most argument is 0. 882 ** 883 ** Undocumented behavior: If iArg is negative then make the data available 884 ** to all functions within the current prepared statement using iArg as an 885 ** access code. 886 */ 887 void sqlite3_set_auxdata( 888 sqlite3_context *pCtx, 889 int iArg, 890 void *pAux, 891 void (*xDelete)(void*) 892 ){ 893 AuxData *pAuxData; 894 Vdbe *pVdbe = pCtx->pVdbe; 895 896 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 897 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 898 if( pVdbe==0 ) goto failed; 899 #else 900 assert( pVdbe!=0 ); 901 #endif 902 903 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 904 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 905 break; 906 } 907 } 908 if( pAuxData==0 ){ 909 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 910 if( !pAuxData ) goto failed; 911 pAuxData->iAuxOp = pCtx->iOp; 912 pAuxData->iAuxArg = iArg; 913 pAuxData->pNextAux = pVdbe->pAuxData; 914 pVdbe->pAuxData = pAuxData; 915 if( pCtx->isError==0 ) pCtx->isError = -1; 916 }else if( pAuxData->xDeleteAux ){ 917 pAuxData->xDeleteAux(pAuxData->pAux); 918 } 919 920 pAuxData->pAux = pAux; 921 pAuxData->xDeleteAux = xDelete; 922 return; 923 924 failed: 925 if( xDelete ){ 926 xDelete(pAux); 927 } 928 } 929 930 #ifndef SQLITE_OMIT_DEPRECATED 931 /* 932 ** Return the number of times the Step function of an aggregate has been 933 ** called. 934 ** 935 ** This function is deprecated. Do not use it for new code. It is 936 ** provide only to avoid breaking legacy code. New aggregate function 937 ** implementations should keep their own counts within their aggregate 938 ** context. 939 */ 940 int sqlite3_aggregate_count(sqlite3_context *p){ 941 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 942 return p->pMem->n; 943 } 944 #endif 945 946 /* 947 ** Return the number of columns in the result set for the statement pStmt. 948 */ 949 int sqlite3_column_count(sqlite3_stmt *pStmt){ 950 Vdbe *pVm = (Vdbe *)pStmt; 951 return pVm ? pVm->nResColumn : 0; 952 } 953 954 /* 955 ** Return the number of values available from the current row of the 956 ** currently executing statement pStmt. 957 */ 958 int sqlite3_data_count(sqlite3_stmt *pStmt){ 959 Vdbe *pVm = (Vdbe *)pStmt; 960 if( pVm==0 || pVm->pResultSet==0 ) return 0; 961 return pVm->nResColumn; 962 } 963 964 /* 965 ** Return a pointer to static memory containing an SQL NULL value. 966 */ 967 static const Mem *columnNullValue(void){ 968 /* Even though the Mem structure contains an element 969 ** of type i64, on certain architectures (x86) with certain compiler 970 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 971 ** instead of an 8-byte one. This all works fine, except that when 972 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 973 ** that a Mem structure is located on an 8-byte boundary. To prevent 974 ** these assert()s from failing, when building with SQLITE_DEBUG defined 975 ** using gcc, we force nullMem to be 8-byte aligned using the magical 976 ** __attribute__((aligned(8))) macro. */ 977 static const Mem nullMem 978 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 979 __attribute__((aligned(8))) 980 #endif 981 = { 982 /* .u = */ {0}, 983 /* .flags = */ (u16)MEM_Null, 984 /* .enc = */ (u8)0, 985 /* .eSubtype = */ (u8)0, 986 /* .n = */ (int)0, 987 /* .z = */ (char*)0, 988 /* .zMalloc = */ (char*)0, 989 /* .szMalloc = */ (int)0, 990 /* .uTemp = */ (u32)0, 991 /* .db = */ (sqlite3*)0, 992 /* .xDel = */ (void(*)(void*))0, 993 #ifdef SQLITE_DEBUG 994 /* .pScopyFrom = */ (Mem*)0, 995 /* .pFiller = */ (void*)0, 996 #endif 997 }; 998 return &nullMem; 999 } 1000 1001 /* 1002 ** Check to see if column iCol of the given statement is valid. If 1003 ** it is, return a pointer to the Mem for the value of that column. 1004 ** If iCol is not valid, return a pointer to a Mem which has a value 1005 ** of NULL. 1006 */ 1007 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1008 Vdbe *pVm; 1009 Mem *pOut; 1010 1011 pVm = (Vdbe *)pStmt; 1012 if( pVm==0 ) return (Mem*)columnNullValue(); 1013 assert( pVm->db ); 1014 sqlite3_mutex_enter(pVm->db->mutex); 1015 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1016 pOut = &pVm->pResultSet[i]; 1017 }else{ 1018 sqlite3Error(pVm->db, SQLITE_RANGE); 1019 pOut = (Mem*)columnNullValue(); 1020 } 1021 return pOut; 1022 } 1023 1024 /* 1025 ** This function is called after invoking an sqlite3_value_XXX function on a 1026 ** column value (i.e. a value returned by evaluating an SQL expression in the 1027 ** select list of a SELECT statement) that may cause a malloc() failure. If 1028 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1029 ** code of statement pStmt set to SQLITE_NOMEM. 1030 ** 1031 ** Specifically, this is called from within: 1032 ** 1033 ** sqlite3_column_int() 1034 ** sqlite3_column_int64() 1035 ** sqlite3_column_text() 1036 ** sqlite3_column_text16() 1037 ** sqlite3_column_real() 1038 ** sqlite3_column_bytes() 1039 ** sqlite3_column_bytes16() 1040 ** sqiite3_column_blob() 1041 */ 1042 static void columnMallocFailure(sqlite3_stmt *pStmt) 1043 { 1044 /* If malloc() failed during an encoding conversion within an 1045 ** sqlite3_column_XXX API, then set the return code of the statement to 1046 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1047 ** and _finalize() will return NOMEM. 1048 */ 1049 Vdbe *p = (Vdbe *)pStmt; 1050 if( p ){ 1051 assert( p->db!=0 ); 1052 assert( sqlite3_mutex_held(p->db->mutex) ); 1053 p->rc = sqlite3ApiExit(p->db, p->rc); 1054 sqlite3_mutex_leave(p->db->mutex); 1055 } 1056 } 1057 1058 /**************************** sqlite3_column_ ******************************* 1059 ** The following routines are used to access elements of the current row 1060 ** in the result set. 1061 */ 1062 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1063 const void *val; 1064 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1065 /* Even though there is no encoding conversion, value_blob() might 1066 ** need to call malloc() to expand the result of a zeroblob() 1067 ** expression. 1068 */ 1069 columnMallocFailure(pStmt); 1070 return val; 1071 } 1072 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1073 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1074 columnMallocFailure(pStmt); 1075 return val; 1076 } 1077 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1078 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1079 columnMallocFailure(pStmt); 1080 return val; 1081 } 1082 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1083 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1084 columnMallocFailure(pStmt); 1085 return val; 1086 } 1087 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1088 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1089 columnMallocFailure(pStmt); 1090 return val; 1091 } 1092 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1093 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1094 columnMallocFailure(pStmt); 1095 return val; 1096 } 1097 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1098 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1099 columnMallocFailure(pStmt); 1100 return val; 1101 } 1102 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1103 Mem *pOut = columnMem(pStmt, i); 1104 if( pOut->flags&MEM_Static ){ 1105 pOut->flags &= ~MEM_Static; 1106 pOut->flags |= MEM_Ephem; 1107 } 1108 columnMallocFailure(pStmt); 1109 return (sqlite3_value *)pOut; 1110 } 1111 #ifndef SQLITE_OMIT_UTF16 1112 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1113 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1114 columnMallocFailure(pStmt); 1115 return val; 1116 } 1117 #endif /* SQLITE_OMIT_UTF16 */ 1118 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1119 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1120 columnMallocFailure(pStmt); 1121 return iType; 1122 } 1123 1124 /* 1125 ** Convert the N-th element of pStmt->pColName[] into a string using 1126 ** xFunc() then return that string. If N is out of range, return 0. 1127 ** 1128 ** There are up to 5 names for each column. useType determines which 1129 ** name is returned. Here are the names: 1130 ** 1131 ** 0 The column name as it should be displayed for output 1132 ** 1 The datatype name for the column 1133 ** 2 The name of the database that the column derives from 1134 ** 3 The name of the table that the column derives from 1135 ** 4 The name of the table column that the result column derives from 1136 ** 1137 ** If the result is not a simple column reference (if it is an expression 1138 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1139 */ 1140 static const void *columnName( 1141 sqlite3_stmt *pStmt, 1142 int N, 1143 const void *(*xFunc)(Mem*), 1144 int useType 1145 ){ 1146 const void *ret; 1147 Vdbe *p; 1148 int n; 1149 sqlite3 *db; 1150 #ifdef SQLITE_ENABLE_API_ARMOR 1151 if( pStmt==0 ){ 1152 (void)SQLITE_MISUSE_BKPT; 1153 return 0; 1154 } 1155 #endif 1156 ret = 0; 1157 p = (Vdbe *)pStmt; 1158 db = p->db; 1159 assert( db!=0 ); 1160 n = sqlite3_column_count(pStmt); 1161 if( N<n && N>=0 ){ 1162 N += useType*n; 1163 sqlite3_mutex_enter(db->mutex); 1164 assert( db->mallocFailed==0 ); 1165 ret = xFunc(&p->aColName[N]); 1166 /* A malloc may have failed inside of the xFunc() call. If this 1167 ** is the case, clear the mallocFailed flag and return NULL. 1168 */ 1169 if( db->mallocFailed ){ 1170 sqlite3OomClear(db); 1171 ret = 0; 1172 } 1173 sqlite3_mutex_leave(db->mutex); 1174 } 1175 return ret; 1176 } 1177 1178 /* 1179 ** Return the name of the Nth column of the result set returned by SQL 1180 ** statement pStmt. 1181 */ 1182 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1183 return columnName( 1184 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1185 } 1186 #ifndef SQLITE_OMIT_UTF16 1187 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1188 return columnName( 1189 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1190 } 1191 #endif 1192 1193 /* 1194 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1195 ** not define OMIT_DECLTYPE. 1196 */ 1197 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1198 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1199 and SQLITE_ENABLE_COLUMN_METADATA" 1200 #endif 1201 1202 #ifndef SQLITE_OMIT_DECLTYPE 1203 /* 1204 ** Return the column declaration type (if applicable) of the 'i'th column 1205 ** of the result set of SQL statement pStmt. 1206 */ 1207 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1208 return columnName( 1209 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1210 } 1211 #ifndef SQLITE_OMIT_UTF16 1212 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1213 return columnName( 1214 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1215 } 1216 #endif /* SQLITE_OMIT_UTF16 */ 1217 #endif /* SQLITE_OMIT_DECLTYPE */ 1218 1219 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1220 /* 1221 ** Return the name of the database from which a result column derives. 1222 ** NULL is returned if the result column is an expression or constant or 1223 ** anything else which is not an unambiguous reference to a database column. 1224 */ 1225 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1226 return columnName( 1227 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1228 } 1229 #ifndef SQLITE_OMIT_UTF16 1230 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1231 return columnName( 1232 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1233 } 1234 #endif /* SQLITE_OMIT_UTF16 */ 1235 1236 /* 1237 ** Return the name of the table from which a result column derives. 1238 ** NULL is returned if the result column is an expression or constant or 1239 ** anything else which is not an unambiguous reference to a database column. 1240 */ 1241 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1242 return columnName( 1243 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1244 } 1245 #ifndef SQLITE_OMIT_UTF16 1246 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1247 return columnName( 1248 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1249 } 1250 #endif /* SQLITE_OMIT_UTF16 */ 1251 1252 /* 1253 ** Return the name of the table column from which a result column derives. 1254 ** NULL is returned if the result column is an expression or constant or 1255 ** anything else which is not an unambiguous reference to a database column. 1256 */ 1257 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1258 return columnName( 1259 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1260 } 1261 #ifndef SQLITE_OMIT_UTF16 1262 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1263 return columnName( 1264 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1265 } 1266 #endif /* SQLITE_OMIT_UTF16 */ 1267 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1268 1269 1270 /******************************* sqlite3_bind_ *************************** 1271 ** 1272 ** Routines used to attach values to wildcards in a compiled SQL statement. 1273 */ 1274 /* 1275 ** Unbind the value bound to variable i in virtual machine p. This is the 1276 ** the same as binding a NULL value to the column. If the "i" parameter is 1277 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1278 ** 1279 ** A successful evaluation of this routine acquires the mutex on p. 1280 ** the mutex is released if any kind of error occurs. 1281 ** 1282 ** The error code stored in database p->db is overwritten with the return 1283 ** value in any case. 1284 */ 1285 static int vdbeUnbind(Vdbe *p, int i){ 1286 Mem *pVar; 1287 if( vdbeSafetyNotNull(p) ){ 1288 return SQLITE_MISUSE_BKPT; 1289 } 1290 sqlite3_mutex_enter(p->db->mutex); 1291 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1292 sqlite3Error(p->db, SQLITE_MISUSE); 1293 sqlite3_mutex_leave(p->db->mutex); 1294 sqlite3_log(SQLITE_MISUSE, 1295 "bind on a busy prepared statement: [%s]", p->zSql); 1296 return SQLITE_MISUSE_BKPT; 1297 } 1298 if( i<1 || i>p->nVar ){ 1299 sqlite3Error(p->db, SQLITE_RANGE); 1300 sqlite3_mutex_leave(p->db->mutex); 1301 return SQLITE_RANGE; 1302 } 1303 i--; 1304 pVar = &p->aVar[i]; 1305 sqlite3VdbeMemRelease(pVar); 1306 pVar->flags = MEM_Null; 1307 sqlite3Error(p->db, SQLITE_OK); 1308 1309 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1310 ** binding a new value to this variable invalidates the current query plan. 1311 ** 1312 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1313 ** parameter in the WHERE clause might influence the choice of query plan 1314 ** for a statement, then the statement will be automatically recompiled, 1315 ** as if there had been a schema change, on the first sqlite3_step() call 1316 ** following any change to the bindings of that parameter. 1317 */ 1318 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1319 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1320 p->expired = 1; 1321 } 1322 return SQLITE_OK; 1323 } 1324 1325 /* 1326 ** Bind a text or BLOB value. 1327 */ 1328 static int bindText( 1329 sqlite3_stmt *pStmt, /* The statement to bind against */ 1330 int i, /* Index of the parameter to bind */ 1331 const void *zData, /* Pointer to the data to be bound */ 1332 int nData, /* Number of bytes of data to be bound */ 1333 void (*xDel)(void*), /* Destructor for the data */ 1334 u8 encoding /* Encoding for the data */ 1335 ){ 1336 Vdbe *p = (Vdbe *)pStmt; 1337 Mem *pVar; 1338 int rc; 1339 1340 rc = vdbeUnbind(p, i); 1341 if( rc==SQLITE_OK ){ 1342 if( zData!=0 ){ 1343 pVar = &p->aVar[i-1]; 1344 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1345 if( rc==SQLITE_OK && encoding!=0 ){ 1346 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1347 } 1348 if( rc ){ 1349 sqlite3Error(p->db, rc); 1350 rc = sqlite3ApiExit(p->db, rc); 1351 } 1352 } 1353 sqlite3_mutex_leave(p->db->mutex); 1354 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1355 xDel((void*)zData); 1356 } 1357 return rc; 1358 } 1359 1360 1361 /* 1362 ** Bind a blob value to an SQL statement variable. 1363 */ 1364 int sqlite3_bind_blob( 1365 sqlite3_stmt *pStmt, 1366 int i, 1367 const void *zData, 1368 int nData, 1369 void (*xDel)(void*) 1370 ){ 1371 #ifdef SQLITE_ENABLE_API_ARMOR 1372 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1373 #endif 1374 return bindText(pStmt, i, zData, nData, xDel, 0); 1375 } 1376 int sqlite3_bind_blob64( 1377 sqlite3_stmt *pStmt, 1378 int i, 1379 const void *zData, 1380 sqlite3_uint64 nData, 1381 void (*xDel)(void*) 1382 ){ 1383 assert( xDel!=SQLITE_DYNAMIC ); 1384 if( nData>0x7fffffff ){ 1385 return invokeValueDestructor(zData, xDel, 0); 1386 }else{ 1387 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1388 } 1389 } 1390 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1391 int rc; 1392 Vdbe *p = (Vdbe *)pStmt; 1393 rc = vdbeUnbind(p, i); 1394 if( rc==SQLITE_OK ){ 1395 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1396 sqlite3_mutex_leave(p->db->mutex); 1397 } 1398 return rc; 1399 } 1400 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1401 return sqlite3_bind_int64(p, i, (i64)iValue); 1402 } 1403 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1404 int rc; 1405 Vdbe *p = (Vdbe *)pStmt; 1406 rc = vdbeUnbind(p, i); 1407 if( rc==SQLITE_OK ){ 1408 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1409 sqlite3_mutex_leave(p->db->mutex); 1410 } 1411 return rc; 1412 } 1413 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1414 int rc; 1415 Vdbe *p = (Vdbe*)pStmt; 1416 rc = vdbeUnbind(p, i); 1417 if( rc==SQLITE_OK ){ 1418 sqlite3_mutex_leave(p->db->mutex); 1419 } 1420 return rc; 1421 } 1422 int sqlite3_bind_pointer( 1423 sqlite3_stmt *pStmt, 1424 int i, 1425 void *pPtr, 1426 const char *zPTtype, 1427 void (*xDestructor)(void*) 1428 ){ 1429 int rc; 1430 Vdbe *p = (Vdbe*)pStmt; 1431 rc = vdbeUnbind(p, i); 1432 if( rc==SQLITE_OK ){ 1433 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1434 sqlite3_mutex_leave(p->db->mutex); 1435 }else if( xDestructor ){ 1436 xDestructor(pPtr); 1437 } 1438 return rc; 1439 } 1440 int sqlite3_bind_text( 1441 sqlite3_stmt *pStmt, 1442 int i, 1443 const char *zData, 1444 int nData, 1445 void (*xDel)(void*) 1446 ){ 1447 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1448 } 1449 int sqlite3_bind_text64( 1450 sqlite3_stmt *pStmt, 1451 int i, 1452 const char *zData, 1453 sqlite3_uint64 nData, 1454 void (*xDel)(void*), 1455 unsigned char enc 1456 ){ 1457 assert( xDel!=SQLITE_DYNAMIC ); 1458 if( nData>0x7fffffff ){ 1459 return invokeValueDestructor(zData, xDel, 0); 1460 }else{ 1461 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1462 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1463 } 1464 } 1465 #ifndef SQLITE_OMIT_UTF16 1466 int sqlite3_bind_text16( 1467 sqlite3_stmt *pStmt, 1468 int i, 1469 const void *zData, 1470 int nData, 1471 void (*xDel)(void*) 1472 ){ 1473 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1474 } 1475 #endif /* SQLITE_OMIT_UTF16 */ 1476 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1477 int rc; 1478 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1479 case SQLITE_INTEGER: { 1480 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1481 break; 1482 } 1483 case SQLITE_FLOAT: { 1484 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1485 break; 1486 } 1487 case SQLITE_BLOB: { 1488 if( pValue->flags & MEM_Zero ){ 1489 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1490 }else{ 1491 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1492 } 1493 break; 1494 } 1495 case SQLITE_TEXT: { 1496 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1497 pValue->enc); 1498 break; 1499 } 1500 default: { 1501 rc = sqlite3_bind_null(pStmt, i); 1502 break; 1503 } 1504 } 1505 return rc; 1506 } 1507 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1508 int rc; 1509 Vdbe *p = (Vdbe *)pStmt; 1510 rc = vdbeUnbind(p, i); 1511 if( rc==SQLITE_OK ){ 1512 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1513 sqlite3_mutex_leave(p->db->mutex); 1514 } 1515 return rc; 1516 } 1517 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1518 int rc; 1519 Vdbe *p = (Vdbe *)pStmt; 1520 sqlite3_mutex_enter(p->db->mutex); 1521 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1522 rc = SQLITE_TOOBIG; 1523 }else{ 1524 assert( (n & 0x7FFFFFFF)==n ); 1525 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1526 } 1527 rc = sqlite3ApiExit(p->db, rc); 1528 sqlite3_mutex_leave(p->db->mutex); 1529 return rc; 1530 } 1531 1532 /* 1533 ** Return the number of wildcards that can be potentially bound to. 1534 ** This routine is added to support DBD::SQLite. 1535 */ 1536 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1537 Vdbe *p = (Vdbe*)pStmt; 1538 return p ? p->nVar : 0; 1539 } 1540 1541 /* 1542 ** Return the name of a wildcard parameter. Return NULL if the index 1543 ** is out of range or if the wildcard is unnamed. 1544 ** 1545 ** The result is always UTF-8. 1546 */ 1547 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1548 Vdbe *p = (Vdbe*)pStmt; 1549 if( p==0 ) return 0; 1550 return sqlite3VListNumToName(p->pVList, i); 1551 } 1552 1553 /* 1554 ** Given a wildcard parameter name, return the index of the variable 1555 ** with that name. If there is no variable with the given name, 1556 ** return 0. 1557 */ 1558 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1559 if( p==0 || zName==0 ) return 0; 1560 return sqlite3VListNameToNum(p->pVList, zName, nName); 1561 } 1562 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1563 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1564 } 1565 1566 /* 1567 ** Transfer all bindings from the first statement over to the second. 1568 */ 1569 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1570 Vdbe *pFrom = (Vdbe*)pFromStmt; 1571 Vdbe *pTo = (Vdbe*)pToStmt; 1572 int i; 1573 assert( pTo->db==pFrom->db ); 1574 assert( pTo->nVar==pFrom->nVar ); 1575 sqlite3_mutex_enter(pTo->db->mutex); 1576 for(i=0; i<pFrom->nVar; i++){ 1577 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1578 } 1579 sqlite3_mutex_leave(pTo->db->mutex); 1580 return SQLITE_OK; 1581 } 1582 1583 #ifndef SQLITE_OMIT_DEPRECATED 1584 /* 1585 ** Deprecated external interface. Internal/core SQLite code 1586 ** should call sqlite3TransferBindings. 1587 ** 1588 ** It is misuse to call this routine with statements from different 1589 ** database connections. But as this is a deprecated interface, we 1590 ** will not bother to check for that condition. 1591 ** 1592 ** If the two statements contain a different number of bindings, then 1593 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1594 ** SQLITE_OK is returned. 1595 */ 1596 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1597 Vdbe *pFrom = (Vdbe*)pFromStmt; 1598 Vdbe *pTo = (Vdbe*)pToStmt; 1599 if( pFrom->nVar!=pTo->nVar ){ 1600 return SQLITE_ERROR; 1601 } 1602 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1603 if( pTo->expmask ){ 1604 pTo->expired = 1; 1605 } 1606 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1607 if( pFrom->expmask ){ 1608 pFrom->expired = 1; 1609 } 1610 return sqlite3TransferBindings(pFromStmt, pToStmt); 1611 } 1612 #endif 1613 1614 /* 1615 ** Return the sqlite3* database handle to which the prepared statement given 1616 ** in the argument belongs. This is the same database handle that was 1617 ** the first argument to the sqlite3_prepare() that was used to create 1618 ** the statement in the first place. 1619 */ 1620 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1621 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1622 } 1623 1624 /* 1625 ** Return true if the prepared statement is guaranteed to not modify the 1626 ** database. 1627 */ 1628 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1629 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1630 } 1631 1632 /* 1633 ** Return true if the prepared statement is in need of being reset. 1634 */ 1635 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1636 Vdbe *v = (Vdbe*)pStmt; 1637 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1638 } 1639 1640 /* 1641 ** Return a pointer to the next prepared statement after pStmt associated 1642 ** with database connection pDb. If pStmt is NULL, return the first 1643 ** prepared statement for the database connection. Return NULL if there 1644 ** are no more. 1645 */ 1646 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1647 sqlite3_stmt *pNext; 1648 #ifdef SQLITE_ENABLE_API_ARMOR 1649 if( !sqlite3SafetyCheckOk(pDb) ){ 1650 (void)SQLITE_MISUSE_BKPT; 1651 return 0; 1652 } 1653 #endif 1654 sqlite3_mutex_enter(pDb->mutex); 1655 if( pStmt==0 ){ 1656 pNext = (sqlite3_stmt*)pDb->pVdbe; 1657 }else{ 1658 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1659 } 1660 sqlite3_mutex_leave(pDb->mutex); 1661 return pNext; 1662 } 1663 1664 /* 1665 ** Return the value of a status counter for a prepared statement 1666 */ 1667 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1668 Vdbe *pVdbe = (Vdbe*)pStmt; 1669 u32 v; 1670 #ifdef SQLITE_ENABLE_API_ARMOR 1671 if( !pStmt 1672 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1673 ){ 1674 (void)SQLITE_MISUSE_BKPT; 1675 return 0; 1676 } 1677 #endif 1678 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1679 sqlite3 *db = pVdbe->db; 1680 sqlite3_mutex_enter(db->mutex); 1681 v = 0; 1682 db->pnBytesFreed = (int*)&v; 1683 sqlite3VdbeClearObject(db, pVdbe); 1684 sqlite3DbFree(db, pVdbe); 1685 db->pnBytesFreed = 0; 1686 sqlite3_mutex_leave(db->mutex); 1687 }else{ 1688 v = pVdbe->aCounter[op]; 1689 if( resetFlag ) pVdbe->aCounter[op] = 0; 1690 } 1691 return (int)v; 1692 } 1693 1694 /* 1695 ** Return the SQL associated with a prepared statement 1696 */ 1697 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1698 Vdbe *p = (Vdbe *)pStmt; 1699 return p ? p->zSql : 0; 1700 } 1701 1702 /* 1703 ** Return the SQL associated with a prepared statement with 1704 ** bound parameters expanded. Space to hold the returned string is 1705 ** obtained from sqlite3_malloc(). The caller is responsible for 1706 ** freeing the returned string by passing it to sqlite3_free(). 1707 ** 1708 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1709 ** expanded bound parameters. 1710 */ 1711 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1712 #ifdef SQLITE_OMIT_TRACE 1713 return 0; 1714 #else 1715 char *z = 0; 1716 const char *zSql = sqlite3_sql(pStmt); 1717 if( zSql ){ 1718 Vdbe *p = (Vdbe *)pStmt; 1719 sqlite3_mutex_enter(p->db->mutex); 1720 z = sqlite3VdbeExpandSql(p, zSql); 1721 sqlite3_mutex_leave(p->db->mutex); 1722 } 1723 return z; 1724 #endif 1725 } 1726 1727 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1728 /* 1729 ** Allocate and populate an UnpackedRecord structure based on the serialized 1730 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1731 ** if successful, or a NULL pointer if an OOM error is encountered. 1732 */ 1733 static UnpackedRecord *vdbeUnpackRecord( 1734 KeyInfo *pKeyInfo, 1735 int nKey, 1736 const void *pKey 1737 ){ 1738 UnpackedRecord *pRet; /* Return value */ 1739 1740 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1741 if( pRet ){ 1742 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1743 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1744 } 1745 return pRet; 1746 } 1747 1748 /* 1749 ** This function is called from within a pre-update callback to retrieve 1750 ** a field of the row currently being updated or deleted. 1751 */ 1752 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1753 PreUpdate *p = db->pPreUpdate; 1754 Mem *pMem; 1755 int rc = SQLITE_OK; 1756 1757 /* Test that this call is being made from within an SQLITE_DELETE or 1758 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1759 if( !p || p->op==SQLITE_INSERT ){ 1760 rc = SQLITE_MISUSE_BKPT; 1761 goto preupdate_old_out; 1762 } 1763 if( p->pPk ){ 1764 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1765 } 1766 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1767 rc = SQLITE_RANGE; 1768 goto preupdate_old_out; 1769 } 1770 1771 /* If the old.* record has not yet been loaded into memory, do so now. */ 1772 if( p->pUnpacked==0 ){ 1773 u32 nRec; 1774 u8 *aRec; 1775 1776 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1777 aRec = sqlite3DbMallocRaw(db, nRec); 1778 if( !aRec ) goto preupdate_old_out; 1779 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1780 if( rc==SQLITE_OK ){ 1781 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1782 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1783 } 1784 if( rc!=SQLITE_OK ){ 1785 sqlite3DbFree(db, aRec); 1786 goto preupdate_old_out; 1787 } 1788 p->aRecord = aRec; 1789 } 1790 1791 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1792 if( iIdx==p->pTab->iPKey ){ 1793 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1794 }else if( iIdx>=p->pUnpacked->nField ){ 1795 *ppValue = (sqlite3_value *)columnNullValue(); 1796 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1797 if( pMem->flags & MEM_Int ){ 1798 sqlite3VdbeMemRealify(pMem); 1799 } 1800 } 1801 1802 preupdate_old_out: 1803 sqlite3Error(db, rc); 1804 return sqlite3ApiExit(db, rc); 1805 } 1806 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1807 1808 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1809 /* 1810 ** This function is called from within a pre-update callback to retrieve 1811 ** the number of columns in the row being updated, deleted or inserted. 1812 */ 1813 int sqlite3_preupdate_count(sqlite3 *db){ 1814 PreUpdate *p = db->pPreUpdate; 1815 return (p ? p->keyinfo.nKeyField : 0); 1816 } 1817 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1818 1819 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1820 /* 1821 ** This function is designed to be called from within a pre-update callback 1822 ** only. It returns zero if the change that caused the callback was made 1823 ** immediately by a user SQL statement. Or, if the change was made by a 1824 ** trigger program, it returns the number of trigger programs currently 1825 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1826 ** top-level trigger etc.). 1827 ** 1828 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1829 ** or SET DEFAULT action is considered a trigger. 1830 */ 1831 int sqlite3_preupdate_depth(sqlite3 *db){ 1832 PreUpdate *p = db->pPreUpdate; 1833 return (p ? p->v->nFrame : 0); 1834 } 1835 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1836 1837 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1838 /* 1839 ** This function is called from within a pre-update callback to retrieve 1840 ** a field of the row currently being updated or inserted. 1841 */ 1842 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1843 PreUpdate *p = db->pPreUpdate; 1844 int rc = SQLITE_OK; 1845 Mem *pMem; 1846 1847 if( !p || p->op==SQLITE_DELETE ){ 1848 rc = SQLITE_MISUSE_BKPT; 1849 goto preupdate_new_out; 1850 } 1851 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1852 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1853 } 1854 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1855 rc = SQLITE_RANGE; 1856 goto preupdate_new_out; 1857 } 1858 1859 if( p->op==SQLITE_INSERT ){ 1860 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1861 ** that is being inserted. Deserialize it. */ 1862 UnpackedRecord *pUnpack = p->pNewUnpacked; 1863 if( !pUnpack ){ 1864 Mem *pData = &p->v->aMem[p->iNewReg]; 1865 rc = ExpandBlob(pData); 1866 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1867 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1868 if( !pUnpack ){ 1869 rc = SQLITE_NOMEM; 1870 goto preupdate_new_out; 1871 } 1872 p->pNewUnpacked = pUnpack; 1873 } 1874 pMem = &pUnpack->aMem[iIdx]; 1875 if( iIdx==p->pTab->iPKey ){ 1876 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1877 }else if( iIdx>=pUnpack->nField ){ 1878 pMem = (sqlite3_value *)columnNullValue(); 1879 } 1880 }else{ 1881 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1882 ** value. Make a copy of the cell contents and return a pointer to it. 1883 ** It is not safe to return a pointer to the memory cell itself as the 1884 ** caller may modify the value text encoding. 1885 */ 1886 assert( p->op==SQLITE_UPDATE ); 1887 if( !p->aNew ){ 1888 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1889 if( !p->aNew ){ 1890 rc = SQLITE_NOMEM; 1891 goto preupdate_new_out; 1892 } 1893 } 1894 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1895 pMem = &p->aNew[iIdx]; 1896 if( pMem->flags==0 ){ 1897 if( iIdx==p->pTab->iPKey ){ 1898 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1899 }else{ 1900 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1901 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1902 } 1903 } 1904 } 1905 *ppValue = pMem; 1906 1907 preupdate_new_out: 1908 sqlite3Error(db, rc); 1909 return sqlite3ApiExit(db, rc); 1910 } 1911 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1912 1913 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1914 /* 1915 ** Return status data for a single loop within query pStmt. 1916 */ 1917 int sqlite3_stmt_scanstatus( 1918 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1919 int idx, /* Index of loop to report on */ 1920 int iScanStatusOp, /* Which metric to return */ 1921 void *pOut /* OUT: Write the answer here */ 1922 ){ 1923 Vdbe *p = (Vdbe*)pStmt; 1924 ScanStatus *pScan; 1925 if( idx<0 || idx>=p->nScan ) return 1; 1926 pScan = &p->aScan[idx]; 1927 switch( iScanStatusOp ){ 1928 case SQLITE_SCANSTAT_NLOOP: { 1929 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1930 break; 1931 } 1932 case SQLITE_SCANSTAT_NVISIT: { 1933 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1934 break; 1935 } 1936 case SQLITE_SCANSTAT_EST: { 1937 double r = 1.0; 1938 LogEst x = pScan->nEst; 1939 while( x<100 ){ 1940 x += 10; 1941 r *= 0.5; 1942 } 1943 *(double*)pOut = r*sqlite3LogEstToInt(x); 1944 break; 1945 } 1946 case SQLITE_SCANSTAT_NAME: { 1947 *(const char**)pOut = pScan->zName; 1948 break; 1949 } 1950 case SQLITE_SCANSTAT_EXPLAIN: { 1951 if( pScan->addrExplain ){ 1952 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1953 }else{ 1954 *(const char**)pOut = 0; 1955 } 1956 break; 1957 } 1958 case SQLITE_SCANSTAT_SELECTID: { 1959 if( pScan->addrExplain ){ 1960 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1961 }else{ 1962 *(int*)pOut = -1; 1963 } 1964 break; 1965 } 1966 default: { 1967 return 1; 1968 } 1969 } 1970 return 0; 1971 } 1972 1973 /* 1974 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1975 */ 1976 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1977 Vdbe *p = (Vdbe*)pStmt; 1978 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1979 } 1980 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1981