1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 } 349 return pNew; 350 } 351 352 /* Destroy an sqlite3_value object previously obtained from 353 ** sqlite3_value_dup(). 354 */ 355 void sqlite3_value_free(sqlite3_value *pOld){ 356 sqlite3ValueFree(pOld); 357 } 358 359 360 /**************************** sqlite3_result_ ******************************* 361 ** The following routines are used by user-defined functions to specify 362 ** the function result. 363 ** 364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 365 ** result as a string or blob but if the string or blob is too large, it 366 ** then sets the error code to SQLITE_TOOBIG 367 ** 368 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 369 ** on value P is not going to be used and need to be destroyed. 370 */ 371 static void setResultStrOrError( 372 sqlite3_context *pCtx, /* Function context */ 373 const char *z, /* String pointer */ 374 int n, /* Bytes in string, or negative */ 375 u8 enc, /* Encoding of z. 0 for BLOBs */ 376 void (*xDel)(void*) /* Destructor function */ 377 ){ 378 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 379 sqlite3_result_error_toobig(pCtx); 380 } 381 } 382 static int invokeValueDestructor( 383 const void *p, /* Value to destroy */ 384 void (*xDel)(void*), /* The destructor */ 385 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 386 ){ 387 assert( xDel!=SQLITE_DYNAMIC ); 388 if( xDel==0 ){ 389 /* noop */ 390 }else if( xDel==SQLITE_TRANSIENT ){ 391 /* noop */ 392 }else{ 393 xDel((void*)p); 394 } 395 if( pCtx ) sqlite3_result_error_toobig(pCtx); 396 return SQLITE_TOOBIG; 397 } 398 void sqlite3_result_blob( 399 sqlite3_context *pCtx, 400 const void *z, 401 int n, 402 void (*xDel)(void *) 403 ){ 404 assert( n>=0 ); 405 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 406 setResultStrOrError(pCtx, z, n, 0, xDel); 407 } 408 void sqlite3_result_blob64( 409 sqlite3_context *pCtx, 410 const void *z, 411 sqlite3_uint64 n, 412 void (*xDel)(void *) 413 ){ 414 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 415 assert( xDel!=SQLITE_DYNAMIC ); 416 if( n>0x7fffffff ){ 417 (void)invokeValueDestructor(z, xDel, pCtx); 418 }else{ 419 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 420 } 421 } 422 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 423 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 424 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 425 } 426 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 428 pCtx->isError = SQLITE_ERROR; 429 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 430 } 431 #ifndef SQLITE_OMIT_UTF16 432 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 433 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 434 pCtx->isError = SQLITE_ERROR; 435 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 436 } 437 #endif 438 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 439 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 440 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 441 } 442 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 443 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 444 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 445 } 446 void sqlite3_result_null(sqlite3_context *pCtx){ 447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 448 sqlite3VdbeMemSetNull(pCtx->pOut); 449 } 450 void sqlite3_result_pointer( 451 sqlite3_context *pCtx, 452 void *pPtr, 453 const char *zPType, 454 void (*xDestructor)(void*) 455 ){ 456 Mem *pOut = pCtx->pOut; 457 assert( sqlite3_mutex_held(pOut->db->mutex) ); 458 sqlite3VdbeMemRelease(pOut); 459 pOut->flags = MEM_Null; 460 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 461 } 462 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 463 Mem *pOut = pCtx->pOut; 464 assert( sqlite3_mutex_held(pOut->db->mutex) ); 465 pOut->eSubtype = eSubtype & 0xff; 466 pOut->flags |= MEM_Subtype; 467 } 468 void sqlite3_result_text( 469 sqlite3_context *pCtx, 470 const char *z, 471 int n, 472 void (*xDel)(void *) 473 ){ 474 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 475 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 476 } 477 void sqlite3_result_text64( 478 sqlite3_context *pCtx, 479 const char *z, 480 sqlite3_uint64 n, 481 void (*xDel)(void *), 482 unsigned char enc 483 ){ 484 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 485 assert( xDel!=SQLITE_DYNAMIC ); 486 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 487 if( n>0x7fffffff ){ 488 (void)invokeValueDestructor(z, xDel, pCtx); 489 }else{ 490 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 491 } 492 } 493 #ifndef SQLITE_OMIT_UTF16 494 void sqlite3_result_text16( 495 sqlite3_context *pCtx, 496 const void *z, 497 int n, 498 void (*xDel)(void *) 499 ){ 500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 501 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 502 } 503 void sqlite3_result_text16be( 504 sqlite3_context *pCtx, 505 const void *z, 506 int n, 507 void (*xDel)(void *) 508 ){ 509 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 510 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 511 } 512 void sqlite3_result_text16le( 513 sqlite3_context *pCtx, 514 const void *z, 515 int n, 516 void (*xDel)(void *) 517 ){ 518 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 519 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 520 } 521 #endif /* SQLITE_OMIT_UTF16 */ 522 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 523 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 524 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 525 } 526 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 527 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 528 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 529 } 530 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 531 Mem *pOut = pCtx->pOut; 532 assert( sqlite3_mutex_held(pOut->db->mutex) ); 533 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 534 return SQLITE_TOOBIG; 535 } 536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 537 return SQLITE_OK; 538 } 539 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 540 pCtx->isError = errCode ? errCode : -1; 541 #ifdef SQLITE_DEBUG 542 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 543 #endif 544 if( pCtx->pOut->flags & MEM_Null ){ 545 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 546 SQLITE_UTF8, SQLITE_STATIC); 547 } 548 } 549 550 /* Force an SQLITE_TOOBIG error. */ 551 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 552 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 553 pCtx->isError = SQLITE_TOOBIG; 554 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 555 SQLITE_UTF8, SQLITE_STATIC); 556 } 557 558 /* An SQLITE_NOMEM error. */ 559 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 560 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 561 sqlite3VdbeMemSetNull(pCtx->pOut); 562 pCtx->isError = SQLITE_NOMEM_BKPT; 563 sqlite3OomFault(pCtx->pOut->db); 564 } 565 566 #ifndef SQLITE_UNTESTABLE 567 /* Force the INT64 value currently stored as the result to be 568 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 569 ** test-control. 570 */ 571 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 572 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 573 if( pCtx->pOut->flags & MEM_Int ){ 574 pCtx->pOut->flags &= ~MEM_Int; 575 pCtx->pOut->flags |= MEM_IntReal; 576 } 577 } 578 #endif 579 580 581 /* 582 ** This function is called after a transaction has been committed. It 583 ** invokes callbacks registered with sqlite3_wal_hook() as required. 584 */ 585 static int doWalCallbacks(sqlite3 *db){ 586 int rc = SQLITE_OK; 587 #ifndef SQLITE_OMIT_WAL 588 int i; 589 for(i=0; i<db->nDb; i++){ 590 Btree *pBt = db->aDb[i].pBt; 591 if( pBt ){ 592 int nEntry; 593 sqlite3BtreeEnter(pBt); 594 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 595 sqlite3BtreeLeave(pBt); 596 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 597 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 598 } 599 } 600 } 601 #endif 602 return rc; 603 } 604 605 606 /* 607 ** Execute the statement pStmt, either until a row of data is ready, the 608 ** statement is completely executed or an error occurs. 609 ** 610 ** This routine implements the bulk of the logic behind the sqlite_step() 611 ** API. The only thing omitted is the automatic recompile if a 612 ** schema change has occurred. That detail is handled by the 613 ** outer sqlite3_step() wrapper procedure. 614 */ 615 static int sqlite3Step(Vdbe *p){ 616 sqlite3 *db; 617 int rc; 618 619 assert(p); 620 if( p->magic!=VDBE_MAGIC_RUN ){ 621 /* We used to require that sqlite3_reset() be called before retrying 622 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 623 ** with version 3.7.0, we changed this so that sqlite3_reset() would 624 ** be called automatically instead of throwing the SQLITE_MISUSE error. 625 ** This "automatic-reset" change is not technically an incompatibility, 626 ** since any application that receives an SQLITE_MISUSE is broken by 627 ** definition. 628 ** 629 ** Nevertheless, some published applications that were originally written 630 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 631 ** returns, and those were broken by the automatic-reset change. As a 632 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 633 ** legacy behavior of returning SQLITE_MISUSE for cases where the 634 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 635 ** or SQLITE_BUSY error. 636 */ 637 #ifdef SQLITE_OMIT_AUTORESET 638 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 639 sqlite3_reset((sqlite3_stmt*)p); 640 }else{ 641 return SQLITE_MISUSE_BKPT; 642 } 643 #else 644 sqlite3_reset((sqlite3_stmt*)p); 645 #endif 646 } 647 648 /* Check that malloc() has not failed. If it has, return early. */ 649 db = p->db; 650 if( db->mallocFailed ){ 651 p->rc = SQLITE_NOMEM; 652 return SQLITE_NOMEM_BKPT; 653 } 654 655 if( p->pc<0 && p->expired ){ 656 p->rc = SQLITE_SCHEMA; 657 rc = SQLITE_ERROR; 658 goto end_of_step; 659 } 660 if( p->pc<0 ){ 661 /* If there are no other statements currently running, then 662 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 663 ** from interrupting a statement that has not yet started. 664 */ 665 if( db->nVdbeActive==0 ){ 666 db->u1.isInterrupted = 0; 667 } 668 669 assert( db->nVdbeWrite>0 || db->autoCommit==0 670 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 671 ); 672 673 #ifndef SQLITE_OMIT_TRACE 674 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 675 && !db->init.busy && p->zSql ){ 676 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 677 }else{ 678 assert( p->startTime==0 ); 679 } 680 #endif 681 682 db->nVdbeActive++; 683 if( p->readOnly==0 ) db->nVdbeWrite++; 684 if( p->bIsReader ) db->nVdbeRead++; 685 p->pc = 0; 686 } 687 #ifdef SQLITE_DEBUG 688 p->rcApp = SQLITE_OK; 689 #endif 690 #ifndef SQLITE_OMIT_EXPLAIN 691 if( p->explain ){ 692 rc = sqlite3VdbeList(p); 693 }else 694 #endif /* SQLITE_OMIT_EXPLAIN */ 695 { 696 db->nVdbeExec++; 697 rc = sqlite3VdbeExec(p); 698 db->nVdbeExec--; 699 } 700 701 if( rc!=SQLITE_ROW ){ 702 #ifndef SQLITE_OMIT_TRACE 703 /* If the statement completed successfully, invoke the profile callback */ 704 checkProfileCallback(db, p); 705 #endif 706 707 if( rc==SQLITE_DONE && db->autoCommit ){ 708 assert( p->rc==SQLITE_OK ); 709 p->rc = doWalCallbacks(db); 710 if( p->rc!=SQLITE_OK ){ 711 rc = SQLITE_ERROR; 712 } 713 } 714 } 715 716 db->errCode = rc; 717 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 718 p->rc = SQLITE_NOMEM_BKPT; 719 } 720 end_of_step: 721 /* At this point local variable rc holds the value that should be 722 ** returned if this statement was compiled using the legacy 723 ** sqlite3_prepare() interface. According to the docs, this can only 724 ** be one of the values in the first assert() below. Variable p->rc 725 ** contains the value that would be returned if sqlite3_finalize() 726 ** were called on statement p. 727 */ 728 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 729 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 730 ); 731 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 732 if( rc!=SQLITE_ROW 733 && rc!=SQLITE_DONE 734 && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 735 ){ 736 /* If this statement was prepared using saved SQL and an 737 ** error has occurred, then return the error code in p->rc to the 738 ** caller. Set the error code in the database handle to the same value. 739 */ 740 rc = sqlite3VdbeTransferError(p); 741 } 742 return (rc&db->errMask); 743 } 744 745 /* 746 ** This is the top-level implementation of sqlite3_step(). Call 747 ** sqlite3Step() to do most of the work. If a schema error occurs, 748 ** call sqlite3Reprepare() and try again. 749 */ 750 int sqlite3_step(sqlite3_stmt *pStmt){ 751 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 752 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 753 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 754 sqlite3 *db; /* The database connection */ 755 756 if( vdbeSafetyNotNull(v) ){ 757 return SQLITE_MISUSE_BKPT; 758 } 759 db = v->db; 760 sqlite3_mutex_enter(db->mutex); 761 v->doingRerun = 0; 762 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 763 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 764 int savedPc = v->pc; 765 rc = sqlite3Reprepare(v); 766 if( rc!=SQLITE_OK ){ 767 /* This case occurs after failing to recompile an sql statement. 768 ** The error message from the SQL compiler has already been loaded 769 ** into the database handle. This block copies the error message 770 ** from the database handle into the statement and sets the statement 771 ** program counter to 0 to ensure that when the statement is 772 ** finalized or reset the parser error message is available via 773 ** sqlite3_errmsg() and sqlite3_errcode(). 774 */ 775 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 776 sqlite3DbFree(db, v->zErrMsg); 777 if( !db->mallocFailed ){ 778 v->zErrMsg = sqlite3DbStrDup(db, zErr); 779 v->rc = rc = sqlite3ApiExit(db, rc); 780 } else { 781 v->zErrMsg = 0; 782 v->rc = rc = SQLITE_NOMEM_BKPT; 783 } 784 break; 785 } 786 sqlite3_reset(pStmt); 787 if( savedPc>=0 ) v->doingRerun = 1; 788 assert( v->expired==0 ); 789 } 790 sqlite3_mutex_leave(db->mutex); 791 return rc; 792 } 793 794 795 /* 796 ** Extract the user data from a sqlite3_context structure and return a 797 ** pointer to it. 798 */ 799 void *sqlite3_user_data(sqlite3_context *p){ 800 assert( p && p->pFunc ); 801 return p->pFunc->pUserData; 802 } 803 804 /* 805 ** Extract the user data from a sqlite3_context structure and return a 806 ** pointer to it. 807 ** 808 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 809 ** returns a copy of the pointer to the database connection (the 1st 810 ** parameter) of the sqlite3_create_function() and 811 ** sqlite3_create_function16() routines that originally registered the 812 ** application defined function. 813 */ 814 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 815 assert( p && p->pOut ); 816 return p->pOut->db; 817 } 818 819 /* 820 ** If this routine is invoked from within an xColumn method of a virtual 821 ** table, then it returns true if and only if the the call is during an 822 ** UPDATE operation and the value of the column will not be modified 823 ** by the UPDATE. 824 ** 825 ** If this routine is called from any context other than within the 826 ** xColumn method of a virtual table, then the return value is meaningless 827 ** and arbitrary. 828 ** 829 ** Virtual table implements might use this routine to optimize their 830 ** performance by substituting a NULL result, or some other light-weight 831 ** value, as a signal to the xUpdate routine that the column is unchanged. 832 */ 833 int sqlite3_vtab_nochange(sqlite3_context *p){ 834 assert( p ); 835 return sqlite3_value_nochange(p->pOut); 836 } 837 838 /* 839 ** Return the current time for a statement. If the current time 840 ** is requested more than once within the same run of a single prepared 841 ** statement, the exact same time is returned for each invocation regardless 842 ** of the amount of time that elapses between invocations. In other words, 843 ** the time returned is always the time of the first call. 844 */ 845 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 846 int rc; 847 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 848 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 849 assert( p->pVdbe!=0 ); 850 #else 851 sqlite3_int64 iTime = 0; 852 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 853 #endif 854 if( *piTime==0 ){ 855 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 856 if( rc ) *piTime = 0; 857 } 858 return *piTime; 859 } 860 861 /* 862 ** Create a new aggregate context for p and return a pointer to 863 ** its pMem->z element. 864 */ 865 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 866 Mem *pMem = p->pMem; 867 assert( (pMem->flags & MEM_Agg)==0 ); 868 if( nByte<=0 ){ 869 sqlite3VdbeMemSetNull(pMem); 870 pMem->z = 0; 871 }else{ 872 sqlite3VdbeMemClearAndResize(pMem, nByte); 873 pMem->flags = MEM_Agg; 874 pMem->u.pDef = p->pFunc; 875 if( pMem->z ){ 876 memset(pMem->z, 0, nByte); 877 } 878 } 879 return (void*)pMem->z; 880 } 881 882 /* 883 ** Allocate or return the aggregate context for a user function. A new 884 ** context is allocated on the first call. Subsequent calls return the 885 ** same context that was returned on prior calls. 886 */ 887 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 888 assert( p && p->pFunc && p->pFunc->xFinalize ); 889 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 890 testcase( nByte<0 ); 891 if( (p->pMem->flags & MEM_Agg)==0 ){ 892 return createAggContext(p, nByte); 893 }else{ 894 return (void*)p->pMem->z; 895 } 896 } 897 898 /* 899 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 900 ** the user-function defined by pCtx. 901 ** 902 ** The left-most argument is 0. 903 ** 904 ** Undocumented behavior: If iArg is negative then access a cache of 905 ** auxiliary data pointers that is available to all functions within a 906 ** single prepared statement. The iArg values must match. 907 */ 908 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 909 AuxData *pAuxData; 910 911 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 912 #if SQLITE_ENABLE_STAT3_OR_STAT4 913 if( pCtx->pVdbe==0 ) return 0; 914 #else 915 assert( pCtx->pVdbe!=0 ); 916 #endif 917 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 918 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 919 return pAuxData->pAux; 920 } 921 } 922 return 0; 923 } 924 925 /* 926 ** Set the auxiliary data pointer and delete function, for the iArg'th 927 ** argument to the user-function defined by pCtx. Any previous value is 928 ** deleted by calling the delete function specified when it was set. 929 ** 930 ** The left-most argument is 0. 931 ** 932 ** Undocumented behavior: If iArg is negative then make the data available 933 ** to all functions within the current prepared statement using iArg as an 934 ** access code. 935 */ 936 void sqlite3_set_auxdata( 937 sqlite3_context *pCtx, 938 int iArg, 939 void *pAux, 940 void (*xDelete)(void*) 941 ){ 942 AuxData *pAuxData; 943 Vdbe *pVdbe = pCtx->pVdbe; 944 945 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 946 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 947 if( pVdbe==0 ) goto failed; 948 #else 949 assert( pVdbe!=0 ); 950 #endif 951 952 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 953 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 954 break; 955 } 956 } 957 if( pAuxData==0 ){ 958 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 959 if( !pAuxData ) goto failed; 960 pAuxData->iAuxOp = pCtx->iOp; 961 pAuxData->iAuxArg = iArg; 962 pAuxData->pNextAux = pVdbe->pAuxData; 963 pVdbe->pAuxData = pAuxData; 964 if( pCtx->isError==0 ) pCtx->isError = -1; 965 }else if( pAuxData->xDeleteAux ){ 966 pAuxData->xDeleteAux(pAuxData->pAux); 967 } 968 969 pAuxData->pAux = pAux; 970 pAuxData->xDeleteAux = xDelete; 971 return; 972 973 failed: 974 if( xDelete ){ 975 xDelete(pAux); 976 } 977 } 978 979 #ifndef SQLITE_OMIT_DEPRECATED 980 /* 981 ** Return the number of times the Step function of an aggregate has been 982 ** called. 983 ** 984 ** This function is deprecated. Do not use it for new code. It is 985 ** provide only to avoid breaking legacy code. New aggregate function 986 ** implementations should keep their own counts within their aggregate 987 ** context. 988 */ 989 int sqlite3_aggregate_count(sqlite3_context *p){ 990 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 991 return p->pMem->n; 992 } 993 #endif 994 995 /* 996 ** Return the number of columns in the result set for the statement pStmt. 997 */ 998 int sqlite3_column_count(sqlite3_stmt *pStmt){ 999 Vdbe *pVm = (Vdbe *)pStmt; 1000 return pVm ? pVm->nResColumn : 0; 1001 } 1002 1003 /* 1004 ** Return the number of values available from the current row of the 1005 ** currently executing statement pStmt. 1006 */ 1007 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1008 Vdbe *pVm = (Vdbe *)pStmt; 1009 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1010 return pVm->nResColumn; 1011 } 1012 1013 /* 1014 ** Return a pointer to static memory containing an SQL NULL value. 1015 */ 1016 static const Mem *columnNullValue(void){ 1017 /* Even though the Mem structure contains an element 1018 ** of type i64, on certain architectures (x86) with certain compiler 1019 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1020 ** instead of an 8-byte one. This all works fine, except that when 1021 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1022 ** that a Mem structure is located on an 8-byte boundary. To prevent 1023 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1024 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1025 ** __attribute__((aligned(8))) macro. */ 1026 static const Mem nullMem 1027 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1028 __attribute__((aligned(8))) 1029 #endif 1030 = { 1031 /* .u = */ {0}, 1032 /* .flags = */ (u16)MEM_Null, 1033 /* .enc = */ (u8)0, 1034 /* .eSubtype = */ (u8)0, 1035 /* .n = */ (int)0, 1036 /* .z = */ (char*)0, 1037 /* .zMalloc = */ (char*)0, 1038 /* .szMalloc = */ (int)0, 1039 /* .uTemp = */ (u32)0, 1040 /* .db = */ (sqlite3*)0, 1041 /* .xDel = */ (void(*)(void*))0, 1042 #ifdef SQLITE_DEBUG 1043 /* .pScopyFrom = */ (Mem*)0, 1044 /* .mScopyFlags= */ 0, 1045 #endif 1046 }; 1047 return &nullMem; 1048 } 1049 1050 /* 1051 ** Check to see if column iCol of the given statement is valid. If 1052 ** it is, return a pointer to the Mem for the value of that column. 1053 ** If iCol is not valid, return a pointer to a Mem which has a value 1054 ** of NULL. 1055 */ 1056 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1057 Vdbe *pVm; 1058 Mem *pOut; 1059 1060 pVm = (Vdbe *)pStmt; 1061 if( pVm==0 ) return (Mem*)columnNullValue(); 1062 assert( pVm->db ); 1063 sqlite3_mutex_enter(pVm->db->mutex); 1064 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1065 pOut = &pVm->pResultSet[i]; 1066 }else{ 1067 sqlite3Error(pVm->db, SQLITE_RANGE); 1068 pOut = (Mem*)columnNullValue(); 1069 } 1070 return pOut; 1071 } 1072 1073 /* 1074 ** This function is called after invoking an sqlite3_value_XXX function on a 1075 ** column value (i.e. a value returned by evaluating an SQL expression in the 1076 ** select list of a SELECT statement) that may cause a malloc() failure. If 1077 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1078 ** code of statement pStmt set to SQLITE_NOMEM. 1079 ** 1080 ** Specifically, this is called from within: 1081 ** 1082 ** sqlite3_column_int() 1083 ** sqlite3_column_int64() 1084 ** sqlite3_column_text() 1085 ** sqlite3_column_text16() 1086 ** sqlite3_column_real() 1087 ** sqlite3_column_bytes() 1088 ** sqlite3_column_bytes16() 1089 ** sqiite3_column_blob() 1090 */ 1091 static void columnMallocFailure(sqlite3_stmt *pStmt) 1092 { 1093 /* If malloc() failed during an encoding conversion within an 1094 ** sqlite3_column_XXX API, then set the return code of the statement to 1095 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1096 ** and _finalize() will return NOMEM. 1097 */ 1098 Vdbe *p = (Vdbe *)pStmt; 1099 if( p ){ 1100 assert( p->db!=0 ); 1101 assert( sqlite3_mutex_held(p->db->mutex) ); 1102 p->rc = sqlite3ApiExit(p->db, p->rc); 1103 sqlite3_mutex_leave(p->db->mutex); 1104 } 1105 } 1106 1107 /**************************** sqlite3_column_ ******************************* 1108 ** The following routines are used to access elements of the current row 1109 ** in the result set. 1110 */ 1111 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1112 const void *val; 1113 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1114 /* Even though there is no encoding conversion, value_blob() might 1115 ** need to call malloc() to expand the result of a zeroblob() 1116 ** expression. 1117 */ 1118 columnMallocFailure(pStmt); 1119 return val; 1120 } 1121 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1122 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1123 columnMallocFailure(pStmt); 1124 return val; 1125 } 1126 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1127 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1128 columnMallocFailure(pStmt); 1129 return val; 1130 } 1131 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1132 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1133 columnMallocFailure(pStmt); 1134 return val; 1135 } 1136 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1137 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1138 columnMallocFailure(pStmt); 1139 return val; 1140 } 1141 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1142 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1143 columnMallocFailure(pStmt); 1144 return val; 1145 } 1146 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1147 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1148 columnMallocFailure(pStmt); 1149 return val; 1150 } 1151 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1152 Mem *pOut = columnMem(pStmt, i); 1153 if( pOut->flags&MEM_Static ){ 1154 pOut->flags &= ~MEM_Static; 1155 pOut->flags |= MEM_Ephem; 1156 } 1157 columnMallocFailure(pStmt); 1158 return (sqlite3_value *)pOut; 1159 } 1160 #ifndef SQLITE_OMIT_UTF16 1161 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1162 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1163 columnMallocFailure(pStmt); 1164 return val; 1165 } 1166 #endif /* SQLITE_OMIT_UTF16 */ 1167 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1168 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1169 columnMallocFailure(pStmt); 1170 return iType; 1171 } 1172 1173 /* 1174 ** Convert the N-th element of pStmt->pColName[] into a string using 1175 ** xFunc() then return that string. If N is out of range, return 0. 1176 ** 1177 ** There are up to 5 names for each column. useType determines which 1178 ** name is returned. Here are the names: 1179 ** 1180 ** 0 The column name as it should be displayed for output 1181 ** 1 The datatype name for the column 1182 ** 2 The name of the database that the column derives from 1183 ** 3 The name of the table that the column derives from 1184 ** 4 The name of the table column that the result column derives from 1185 ** 1186 ** If the result is not a simple column reference (if it is an expression 1187 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1188 */ 1189 static const void *columnName( 1190 sqlite3_stmt *pStmt, /* The statement */ 1191 int N, /* Which column to get the name for */ 1192 int useUtf16, /* True to return the name as UTF16 */ 1193 int useType /* What type of name */ 1194 ){ 1195 const void *ret; 1196 Vdbe *p; 1197 int n; 1198 sqlite3 *db; 1199 #ifdef SQLITE_ENABLE_API_ARMOR 1200 if( pStmt==0 ){ 1201 (void)SQLITE_MISUSE_BKPT; 1202 return 0; 1203 } 1204 #endif 1205 ret = 0; 1206 p = (Vdbe *)pStmt; 1207 db = p->db; 1208 assert( db!=0 ); 1209 n = sqlite3_column_count(pStmt); 1210 if( N<n && N>=0 ){ 1211 N += useType*n; 1212 sqlite3_mutex_enter(db->mutex); 1213 assert( db->mallocFailed==0 ); 1214 #ifndef SQLITE_OMIT_UTF16 1215 if( useUtf16 ){ 1216 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1217 }else 1218 #endif 1219 { 1220 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1221 } 1222 /* A malloc may have failed inside of the _text() call. If this 1223 ** is the case, clear the mallocFailed flag and return NULL. 1224 */ 1225 if( db->mallocFailed ){ 1226 sqlite3OomClear(db); 1227 ret = 0; 1228 } 1229 sqlite3_mutex_leave(db->mutex); 1230 } 1231 return ret; 1232 } 1233 1234 /* 1235 ** Return the name of the Nth column of the result set returned by SQL 1236 ** statement pStmt. 1237 */ 1238 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1239 return columnName(pStmt, N, 0, COLNAME_NAME); 1240 } 1241 #ifndef SQLITE_OMIT_UTF16 1242 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1243 return columnName(pStmt, N, 1, COLNAME_NAME); 1244 } 1245 #endif 1246 1247 /* 1248 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1249 ** not define OMIT_DECLTYPE. 1250 */ 1251 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1252 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1253 and SQLITE_ENABLE_COLUMN_METADATA" 1254 #endif 1255 1256 #ifndef SQLITE_OMIT_DECLTYPE 1257 /* 1258 ** Return the column declaration type (if applicable) of the 'i'th column 1259 ** of the result set of SQL statement pStmt. 1260 */ 1261 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1262 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1263 } 1264 #ifndef SQLITE_OMIT_UTF16 1265 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1266 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1267 } 1268 #endif /* SQLITE_OMIT_UTF16 */ 1269 #endif /* SQLITE_OMIT_DECLTYPE */ 1270 1271 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1272 /* 1273 ** Return the name of the database from which a result column derives. 1274 ** NULL is returned if the result column is an expression or constant or 1275 ** anything else which is not an unambiguous reference to a database column. 1276 */ 1277 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1278 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1279 } 1280 #ifndef SQLITE_OMIT_UTF16 1281 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1282 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1283 } 1284 #endif /* SQLITE_OMIT_UTF16 */ 1285 1286 /* 1287 ** Return the name of the table from which a result column derives. 1288 ** NULL is returned if the result column is an expression or constant or 1289 ** anything else which is not an unambiguous reference to a database column. 1290 */ 1291 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1292 return columnName(pStmt, N, 0, COLNAME_TABLE); 1293 } 1294 #ifndef SQLITE_OMIT_UTF16 1295 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1296 return columnName(pStmt, N, 1, COLNAME_TABLE); 1297 } 1298 #endif /* SQLITE_OMIT_UTF16 */ 1299 1300 /* 1301 ** Return the name of the table column from which a result column derives. 1302 ** NULL is returned if the result column is an expression or constant or 1303 ** anything else which is not an unambiguous reference to a database column. 1304 */ 1305 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1306 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1307 } 1308 #ifndef SQLITE_OMIT_UTF16 1309 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1310 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1311 } 1312 #endif /* SQLITE_OMIT_UTF16 */ 1313 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1314 1315 1316 /******************************* sqlite3_bind_ *************************** 1317 ** 1318 ** Routines used to attach values to wildcards in a compiled SQL statement. 1319 */ 1320 /* 1321 ** Unbind the value bound to variable i in virtual machine p. This is the 1322 ** the same as binding a NULL value to the column. If the "i" parameter is 1323 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1324 ** 1325 ** A successful evaluation of this routine acquires the mutex on p. 1326 ** the mutex is released if any kind of error occurs. 1327 ** 1328 ** The error code stored in database p->db is overwritten with the return 1329 ** value in any case. 1330 */ 1331 static int vdbeUnbind(Vdbe *p, int i){ 1332 Mem *pVar; 1333 if( vdbeSafetyNotNull(p) ){ 1334 return SQLITE_MISUSE_BKPT; 1335 } 1336 sqlite3_mutex_enter(p->db->mutex); 1337 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1338 sqlite3Error(p->db, SQLITE_MISUSE); 1339 sqlite3_mutex_leave(p->db->mutex); 1340 sqlite3_log(SQLITE_MISUSE, 1341 "bind on a busy prepared statement: [%s]", p->zSql); 1342 return SQLITE_MISUSE_BKPT; 1343 } 1344 if( i<1 || i>p->nVar ){ 1345 sqlite3Error(p->db, SQLITE_RANGE); 1346 sqlite3_mutex_leave(p->db->mutex); 1347 return SQLITE_RANGE; 1348 } 1349 i--; 1350 pVar = &p->aVar[i]; 1351 sqlite3VdbeMemRelease(pVar); 1352 pVar->flags = MEM_Null; 1353 p->db->errCode = SQLITE_OK; 1354 1355 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1356 ** binding a new value to this variable invalidates the current query plan. 1357 ** 1358 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1359 ** parameter in the WHERE clause might influence the choice of query plan 1360 ** for a statement, then the statement will be automatically recompiled, 1361 ** as if there had been a schema change, on the first sqlite3_step() call 1362 ** following any change to the bindings of that parameter. 1363 */ 1364 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1365 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1366 p->expired = 1; 1367 } 1368 return SQLITE_OK; 1369 } 1370 1371 /* 1372 ** Bind a text or BLOB value. 1373 */ 1374 static int bindText( 1375 sqlite3_stmt *pStmt, /* The statement to bind against */ 1376 int i, /* Index of the parameter to bind */ 1377 const void *zData, /* Pointer to the data to be bound */ 1378 int nData, /* Number of bytes of data to be bound */ 1379 void (*xDel)(void*), /* Destructor for the data */ 1380 u8 encoding /* Encoding for the data */ 1381 ){ 1382 Vdbe *p = (Vdbe *)pStmt; 1383 Mem *pVar; 1384 int rc; 1385 1386 rc = vdbeUnbind(p, i); 1387 if( rc==SQLITE_OK ){ 1388 if( zData!=0 ){ 1389 pVar = &p->aVar[i-1]; 1390 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1391 if( rc==SQLITE_OK && encoding!=0 ){ 1392 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1393 } 1394 if( rc ){ 1395 sqlite3Error(p->db, rc); 1396 rc = sqlite3ApiExit(p->db, rc); 1397 } 1398 } 1399 sqlite3_mutex_leave(p->db->mutex); 1400 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1401 xDel((void*)zData); 1402 } 1403 return rc; 1404 } 1405 1406 1407 /* 1408 ** Bind a blob value to an SQL statement variable. 1409 */ 1410 int sqlite3_bind_blob( 1411 sqlite3_stmt *pStmt, 1412 int i, 1413 const void *zData, 1414 int nData, 1415 void (*xDel)(void*) 1416 ){ 1417 #ifdef SQLITE_ENABLE_API_ARMOR 1418 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1419 #endif 1420 return bindText(pStmt, i, zData, nData, xDel, 0); 1421 } 1422 int sqlite3_bind_blob64( 1423 sqlite3_stmt *pStmt, 1424 int i, 1425 const void *zData, 1426 sqlite3_uint64 nData, 1427 void (*xDel)(void*) 1428 ){ 1429 assert( xDel!=SQLITE_DYNAMIC ); 1430 if( nData>0x7fffffff ){ 1431 return invokeValueDestructor(zData, xDel, 0); 1432 }else{ 1433 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1434 } 1435 } 1436 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1437 int rc; 1438 Vdbe *p = (Vdbe *)pStmt; 1439 rc = vdbeUnbind(p, i); 1440 if( rc==SQLITE_OK ){ 1441 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1442 sqlite3_mutex_leave(p->db->mutex); 1443 } 1444 return rc; 1445 } 1446 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1447 return sqlite3_bind_int64(p, i, (i64)iValue); 1448 } 1449 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1450 int rc; 1451 Vdbe *p = (Vdbe *)pStmt; 1452 rc = vdbeUnbind(p, i); 1453 if( rc==SQLITE_OK ){ 1454 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1455 sqlite3_mutex_leave(p->db->mutex); 1456 } 1457 return rc; 1458 } 1459 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1460 int rc; 1461 Vdbe *p = (Vdbe*)pStmt; 1462 rc = vdbeUnbind(p, i); 1463 if( rc==SQLITE_OK ){ 1464 sqlite3_mutex_leave(p->db->mutex); 1465 } 1466 return rc; 1467 } 1468 int sqlite3_bind_pointer( 1469 sqlite3_stmt *pStmt, 1470 int i, 1471 void *pPtr, 1472 const char *zPTtype, 1473 void (*xDestructor)(void*) 1474 ){ 1475 int rc; 1476 Vdbe *p = (Vdbe*)pStmt; 1477 rc = vdbeUnbind(p, i); 1478 if( rc==SQLITE_OK ){ 1479 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1480 sqlite3_mutex_leave(p->db->mutex); 1481 }else if( xDestructor ){ 1482 xDestructor(pPtr); 1483 } 1484 return rc; 1485 } 1486 int sqlite3_bind_text( 1487 sqlite3_stmt *pStmt, 1488 int i, 1489 const char *zData, 1490 int nData, 1491 void (*xDel)(void*) 1492 ){ 1493 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1494 } 1495 int sqlite3_bind_text64( 1496 sqlite3_stmt *pStmt, 1497 int i, 1498 const char *zData, 1499 sqlite3_uint64 nData, 1500 void (*xDel)(void*), 1501 unsigned char enc 1502 ){ 1503 assert( xDel!=SQLITE_DYNAMIC ); 1504 if( nData>0x7fffffff ){ 1505 return invokeValueDestructor(zData, xDel, 0); 1506 }else{ 1507 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1508 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1509 } 1510 } 1511 #ifndef SQLITE_OMIT_UTF16 1512 int sqlite3_bind_text16( 1513 sqlite3_stmt *pStmt, 1514 int i, 1515 const void *zData, 1516 int nData, 1517 void (*xDel)(void*) 1518 ){ 1519 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1520 } 1521 #endif /* SQLITE_OMIT_UTF16 */ 1522 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1523 int rc; 1524 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1525 case SQLITE_INTEGER: { 1526 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1527 break; 1528 } 1529 case SQLITE_FLOAT: { 1530 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1531 break; 1532 } 1533 case SQLITE_BLOB: { 1534 if( pValue->flags & MEM_Zero ){ 1535 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1536 }else{ 1537 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1538 } 1539 break; 1540 } 1541 case SQLITE_TEXT: { 1542 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1543 pValue->enc); 1544 break; 1545 } 1546 default: { 1547 rc = sqlite3_bind_null(pStmt, i); 1548 break; 1549 } 1550 } 1551 return rc; 1552 } 1553 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1554 int rc; 1555 Vdbe *p = (Vdbe *)pStmt; 1556 rc = vdbeUnbind(p, i); 1557 if( rc==SQLITE_OK ){ 1558 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1559 sqlite3_mutex_leave(p->db->mutex); 1560 } 1561 return rc; 1562 } 1563 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1564 int rc; 1565 Vdbe *p = (Vdbe *)pStmt; 1566 sqlite3_mutex_enter(p->db->mutex); 1567 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1568 rc = SQLITE_TOOBIG; 1569 }else{ 1570 assert( (n & 0x7FFFFFFF)==n ); 1571 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1572 } 1573 rc = sqlite3ApiExit(p->db, rc); 1574 sqlite3_mutex_leave(p->db->mutex); 1575 return rc; 1576 } 1577 1578 /* 1579 ** Return the number of wildcards that can be potentially bound to. 1580 ** This routine is added to support DBD::SQLite. 1581 */ 1582 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1583 Vdbe *p = (Vdbe*)pStmt; 1584 return p ? p->nVar : 0; 1585 } 1586 1587 /* 1588 ** Return the name of a wildcard parameter. Return NULL if the index 1589 ** is out of range or if the wildcard is unnamed. 1590 ** 1591 ** The result is always UTF-8. 1592 */ 1593 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1594 Vdbe *p = (Vdbe*)pStmt; 1595 if( p==0 ) return 0; 1596 return sqlite3VListNumToName(p->pVList, i); 1597 } 1598 1599 /* 1600 ** Given a wildcard parameter name, return the index of the variable 1601 ** with that name. If there is no variable with the given name, 1602 ** return 0. 1603 */ 1604 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1605 if( p==0 || zName==0 ) return 0; 1606 return sqlite3VListNameToNum(p->pVList, zName, nName); 1607 } 1608 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1609 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1610 } 1611 1612 /* 1613 ** Transfer all bindings from the first statement over to the second. 1614 */ 1615 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1616 Vdbe *pFrom = (Vdbe*)pFromStmt; 1617 Vdbe *pTo = (Vdbe*)pToStmt; 1618 int i; 1619 assert( pTo->db==pFrom->db ); 1620 assert( pTo->nVar==pFrom->nVar ); 1621 sqlite3_mutex_enter(pTo->db->mutex); 1622 for(i=0; i<pFrom->nVar; i++){ 1623 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1624 } 1625 sqlite3_mutex_leave(pTo->db->mutex); 1626 return SQLITE_OK; 1627 } 1628 1629 #ifndef SQLITE_OMIT_DEPRECATED 1630 /* 1631 ** Deprecated external interface. Internal/core SQLite code 1632 ** should call sqlite3TransferBindings. 1633 ** 1634 ** It is misuse to call this routine with statements from different 1635 ** database connections. But as this is a deprecated interface, we 1636 ** will not bother to check for that condition. 1637 ** 1638 ** If the two statements contain a different number of bindings, then 1639 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1640 ** SQLITE_OK is returned. 1641 */ 1642 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1643 Vdbe *pFrom = (Vdbe*)pFromStmt; 1644 Vdbe *pTo = (Vdbe*)pToStmt; 1645 if( pFrom->nVar!=pTo->nVar ){ 1646 return SQLITE_ERROR; 1647 } 1648 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1649 if( pTo->expmask ){ 1650 pTo->expired = 1; 1651 } 1652 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1653 if( pFrom->expmask ){ 1654 pFrom->expired = 1; 1655 } 1656 return sqlite3TransferBindings(pFromStmt, pToStmt); 1657 } 1658 #endif 1659 1660 /* 1661 ** Return the sqlite3* database handle to which the prepared statement given 1662 ** in the argument belongs. This is the same database handle that was 1663 ** the first argument to the sqlite3_prepare() that was used to create 1664 ** the statement in the first place. 1665 */ 1666 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1667 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1668 } 1669 1670 /* 1671 ** Return true if the prepared statement is guaranteed to not modify the 1672 ** database. 1673 */ 1674 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1675 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1676 } 1677 1678 /* 1679 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1680 ** statement is an EXPLAIN QUERY PLAN 1681 */ 1682 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1683 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1684 } 1685 1686 /* 1687 ** Return true if the prepared statement is in need of being reset. 1688 */ 1689 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1690 Vdbe *v = (Vdbe*)pStmt; 1691 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1692 } 1693 1694 /* 1695 ** Return a pointer to the next prepared statement after pStmt associated 1696 ** with database connection pDb. If pStmt is NULL, return the first 1697 ** prepared statement for the database connection. Return NULL if there 1698 ** are no more. 1699 */ 1700 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1701 sqlite3_stmt *pNext; 1702 #ifdef SQLITE_ENABLE_API_ARMOR 1703 if( !sqlite3SafetyCheckOk(pDb) ){ 1704 (void)SQLITE_MISUSE_BKPT; 1705 return 0; 1706 } 1707 #endif 1708 sqlite3_mutex_enter(pDb->mutex); 1709 if( pStmt==0 ){ 1710 pNext = (sqlite3_stmt*)pDb->pVdbe; 1711 }else{ 1712 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1713 } 1714 sqlite3_mutex_leave(pDb->mutex); 1715 return pNext; 1716 } 1717 1718 /* 1719 ** Return the value of a status counter for a prepared statement 1720 */ 1721 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1722 Vdbe *pVdbe = (Vdbe*)pStmt; 1723 u32 v; 1724 #ifdef SQLITE_ENABLE_API_ARMOR 1725 if( !pStmt 1726 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1727 ){ 1728 (void)SQLITE_MISUSE_BKPT; 1729 return 0; 1730 } 1731 #endif 1732 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1733 sqlite3 *db = pVdbe->db; 1734 sqlite3_mutex_enter(db->mutex); 1735 v = 0; 1736 db->pnBytesFreed = (int*)&v; 1737 sqlite3VdbeClearObject(db, pVdbe); 1738 sqlite3DbFree(db, pVdbe); 1739 db->pnBytesFreed = 0; 1740 sqlite3_mutex_leave(db->mutex); 1741 }else{ 1742 v = pVdbe->aCounter[op]; 1743 if( resetFlag ) pVdbe->aCounter[op] = 0; 1744 } 1745 return (int)v; 1746 } 1747 1748 /* 1749 ** Return the SQL associated with a prepared statement 1750 */ 1751 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1752 Vdbe *p = (Vdbe *)pStmt; 1753 return p ? p->zSql : 0; 1754 } 1755 1756 /* 1757 ** Return the SQL associated with a prepared statement with 1758 ** bound parameters expanded. Space to hold the returned string is 1759 ** obtained from sqlite3_malloc(). The caller is responsible for 1760 ** freeing the returned string by passing it to sqlite3_free(). 1761 ** 1762 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1763 ** expanded bound parameters. 1764 */ 1765 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1766 #ifdef SQLITE_OMIT_TRACE 1767 return 0; 1768 #else 1769 char *z = 0; 1770 const char *zSql = sqlite3_sql(pStmt); 1771 if( zSql ){ 1772 Vdbe *p = (Vdbe *)pStmt; 1773 sqlite3_mutex_enter(p->db->mutex); 1774 z = sqlite3VdbeExpandSql(p, zSql); 1775 sqlite3_mutex_leave(p->db->mutex); 1776 } 1777 return z; 1778 #endif 1779 } 1780 1781 #ifdef SQLITE_ENABLE_NORMALIZE 1782 /* 1783 ** Return the normalized SQL associated with a prepared statement. 1784 */ 1785 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1786 Vdbe *p = (Vdbe *)pStmt; 1787 if( p==0 ) return 0; 1788 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1789 sqlite3_mutex_enter(p->db->mutex); 1790 p->zNormSql = sqlite3Normalize(p, p->zSql); 1791 sqlite3_mutex_leave(p->db->mutex); 1792 } 1793 return p->zNormSql; 1794 } 1795 #endif /* SQLITE_ENABLE_NORMALIZE */ 1796 1797 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1798 /* 1799 ** Allocate and populate an UnpackedRecord structure based on the serialized 1800 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1801 ** if successful, or a NULL pointer if an OOM error is encountered. 1802 */ 1803 static UnpackedRecord *vdbeUnpackRecord( 1804 KeyInfo *pKeyInfo, 1805 int nKey, 1806 const void *pKey 1807 ){ 1808 UnpackedRecord *pRet; /* Return value */ 1809 1810 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1811 if( pRet ){ 1812 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1813 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1814 } 1815 return pRet; 1816 } 1817 1818 /* 1819 ** This function is called from within a pre-update callback to retrieve 1820 ** a field of the row currently being updated or deleted. 1821 */ 1822 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1823 PreUpdate *p = db->pPreUpdate; 1824 Mem *pMem; 1825 int rc = SQLITE_OK; 1826 1827 /* Test that this call is being made from within an SQLITE_DELETE or 1828 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1829 if( !p || p->op==SQLITE_INSERT ){ 1830 rc = SQLITE_MISUSE_BKPT; 1831 goto preupdate_old_out; 1832 } 1833 if( p->pPk ){ 1834 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1835 } 1836 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1837 rc = SQLITE_RANGE; 1838 goto preupdate_old_out; 1839 } 1840 1841 /* If the old.* record has not yet been loaded into memory, do so now. */ 1842 if( p->pUnpacked==0 ){ 1843 u32 nRec; 1844 u8 *aRec; 1845 1846 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1847 aRec = sqlite3DbMallocRaw(db, nRec); 1848 if( !aRec ) goto preupdate_old_out; 1849 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1850 if( rc==SQLITE_OK ){ 1851 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1852 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1853 } 1854 if( rc!=SQLITE_OK ){ 1855 sqlite3DbFree(db, aRec); 1856 goto preupdate_old_out; 1857 } 1858 p->aRecord = aRec; 1859 } 1860 1861 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1862 if( iIdx==p->pTab->iPKey ){ 1863 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1864 }else if( iIdx>=p->pUnpacked->nField ){ 1865 *ppValue = (sqlite3_value *)columnNullValue(); 1866 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1867 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1868 testcase( pMem->flags & MEM_Int ); 1869 testcase( pMem->flags & MEM_IntReal ); 1870 sqlite3VdbeMemRealify(pMem); 1871 } 1872 } 1873 1874 preupdate_old_out: 1875 sqlite3Error(db, rc); 1876 return sqlite3ApiExit(db, rc); 1877 } 1878 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1879 1880 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1881 /* 1882 ** This function is called from within a pre-update callback to retrieve 1883 ** the number of columns in the row being updated, deleted or inserted. 1884 */ 1885 int sqlite3_preupdate_count(sqlite3 *db){ 1886 PreUpdate *p = db->pPreUpdate; 1887 return (p ? p->keyinfo.nKeyField : 0); 1888 } 1889 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1890 1891 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1892 /* 1893 ** This function is designed to be called from within a pre-update callback 1894 ** only. It returns zero if the change that caused the callback was made 1895 ** immediately by a user SQL statement. Or, if the change was made by a 1896 ** trigger program, it returns the number of trigger programs currently 1897 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1898 ** top-level trigger etc.). 1899 ** 1900 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1901 ** or SET DEFAULT action is considered a trigger. 1902 */ 1903 int sqlite3_preupdate_depth(sqlite3 *db){ 1904 PreUpdate *p = db->pPreUpdate; 1905 return (p ? p->v->nFrame : 0); 1906 } 1907 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1908 1909 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1910 /* 1911 ** This function is called from within a pre-update callback to retrieve 1912 ** a field of the row currently being updated or inserted. 1913 */ 1914 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1915 PreUpdate *p = db->pPreUpdate; 1916 int rc = SQLITE_OK; 1917 Mem *pMem; 1918 1919 if( !p || p->op==SQLITE_DELETE ){ 1920 rc = SQLITE_MISUSE_BKPT; 1921 goto preupdate_new_out; 1922 } 1923 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1924 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1925 } 1926 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1927 rc = SQLITE_RANGE; 1928 goto preupdate_new_out; 1929 } 1930 1931 if( p->op==SQLITE_INSERT ){ 1932 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1933 ** that is being inserted. Deserialize it. */ 1934 UnpackedRecord *pUnpack = p->pNewUnpacked; 1935 if( !pUnpack ){ 1936 Mem *pData = &p->v->aMem[p->iNewReg]; 1937 rc = ExpandBlob(pData); 1938 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1939 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1940 if( !pUnpack ){ 1941 rc = SQLITE_NOMEM; 1942 goto preupdate_new_out; 1943 } 1944 p->pNewUnpacked = pUnpack; 1945 } 1946 pMem = &pUnpack->aMem[iIdx]; 1947 if( iIdx==p->pTab->iPKey ){ 1948 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1949 }else if( iIdx>=pUnpack->nField ){ 1950 pMem = (sqlite3_value *)columnNullValue(); 1951 } 1952 }else{ 1953 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1954 ** value. Make a copy of the cell contents and return a pointer to it. 1955 ** It is not safe to return a pointer to the memory cell itself as the 1956 ** caller may modify the value text encoding. 1957 */ 1958 assert( p->op==SQLITE_UPDATE ); 1959 if( !p->aNew ){ 1960 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1961 if( !p->aNew ){ 1962 rc = SQLITE_NOMEM; 1963 goto preupdate_new_out; 1964 } 1965 } 1966 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1967 pMem = &p->aNew[iIdx]; 1968 if( pMem->flags==0 ){ 1969 if( iIdx==p->pTab->iPKey ){ 1970 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1971 }else{ 1972 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1973 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1974 } 1975 } 1976 } 1977 *ppValue = pMem; 1978 1979 preupdate_new_out: 1980 sqlite3Error(db, rc); 1981 return sqlite3ApiExit(db, rc); 1982 } 1983 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1984 1985 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1986 /* 1987 ** Return status data for a single loop within query pStmt. 1988 */ 1989 int sqlite3_stmt_scanstatus( 1990 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1991 int idx, /* Index of loop to report on */ 1992 int iScanStatusOp, /* Which metric to return */ 1993 void *pOut /* OUT: Write the answer here */ 1994 ){ 1995 Vdbe *p = (Vdbe*)pStmt; 1996 ScanStatus *pScan; 1997 if( idx<0 || idx>=p->nScan ) return 1; 1998 pScan = &p->aScan[idx]; 1999 switch( iScanStatusOp ){ 2000 case SQLITE_SCANSTAT_NLOOP: { 2001 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2002 break; 2003 } 2004 case SQLITE_SCANSTAT_NVISIT: { 2005 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2006 break; 2007 } 2008 case SQLITE_SCANSTAT_EST: { 2009 double r = 1.0; 2010 LogEst x = pScan->nEst; 2011 while( x<100 ){ 2012 x += 10; 2013 r *= 0.5; 2014 } 2015 *(double*)pOut = r*sqlite3LogEstToInt(x); 2016 break; 2017 } 2018 case SQLITE_SCANSTAT_NAME: { 2019 *(const char**)pOut = pScan->zName; 2020 break; 2021 } 2022 case SQLITE_SCANSTAT_EXPLAIN: { 2023 if( pScan->addrExplain ){ 2024 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2025 }else{ 2026 *(const char**)pOut = 0; 2027 } 2028 break; 2029 } 2030 case SQLITE_SCANSTAT_SELECTID: { 2031 if( pScan->addrExplain ){ 2032 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2033 }else{ 2034 *(int*)pOut = -1; 2035 } 2036 break; 2037 } 2038 default: { 2039 return 1; 2040 } 2041 } 2042 return 0; 2043 } 2044 2045 /* 2046 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2047 */ 2048 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2049 Vdbe *p = (Vdbe*)pStmt; 2050 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2051 } 2052 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2053