1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags &= ~MEM_Str; 139 p->flags |= MEM_Blob; 140 return p->n ? p->z : 0; 141 }else{ 142 return sqlite3_value_text(pVal); 143 } 144 } 145 int sqlite3_value_bytes(sqlite3_value *pVal){ 146 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 147 } 148 int sqlite3_value_bytes16(sqlite3_value *pVal){ 149 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 150 } 151 double sqlite3_value_double(sqlite3_value *pVal){ 152 return sqlite3VdbeRealValue((Mem*)pVal); 153 } 154 int sqlite3_value_int(sqlite3_value *pVal){ 155 return (int)sqlite3VdbeIntValue((Mem*)pVal); 156 } 157 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 158 return sqlite3VdbeIntValue((Mem*)pVal); 159 } 160 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 161 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 162 } 163 #ifndef SQLITE_OMIT_UTF16 164 const void *sqlite3_value_text16(sqlite3_value* pVal){ 165 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 166 } 167 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 168 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 169 } 170 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 171 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 172 } 173 #endif /* SQLITE_OMIT_UTF16 */ 174 int sqlite3_value_type(sqlite3_value* pVal){ 175 return pVal->type; 176 } 177 178 /**************************** sqlite3_result_ ******************************* 179 ** The following routines are used by user-defined functions to specify 180 ** the function result. 181 ** 182 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 183 ** result as a string or blob but if the string or blob is too large, it 184 ** then sets the error code to SQLITE_TOOBIG 185 */ 186 static void setResultStrOrError( 187 sqlite3_context *pCtx, /* Function context */ 188 const char *z, /* String pointer */ 189 int n, /* Bytes in string, or negative */ 190 u8 enc, /* Encoding of z. 0 for BLOBs */ 191 void (*xDel)(void*) /* Destructor function */ 192 ){ 193 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 194 sqlite3_result_error_toobig(pCtx); 195 } 196 } 197 void sqlite3_result_blob( 198 sqlite3_context *pCtx, 199 const void *z, 200 int n, 201 void (*xDel)(void *) 202 ){ 203 assert( n>=0 ); 204 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 205 setResultStrOrError(pCtx, z, n, 0, xDel); 206 } 207 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 208 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 209 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 210 } 211 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 212 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 213 pCtx->isError = SQLITE_ERROR; 214 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 215 } 216 #ifndef SQLITE_OMIT_UTF16 217 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 pCtx->isError = SQLITE_ERROR; 220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 221 } 222 #endif 223 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 225 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 226 } 227 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 228 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 229 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 230 } 231 void sqlite3_result_null(sqlite3_context *pCtx){ 232 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 233 sqlite3VdbeMemSetNull(&pCtx->s); 234 } 235 void sqlite3_result_text( 236 sqlite3_context *pCtx, 237 const char *z, 238 int n, 239 void (*xDel)(void *) 240 ){ 241 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 242 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 243 } 244 #ifndef SQLITE_OMIT_UTF16 245 void sqlite3_result_text16( 246 sqlite3_context *pCtx, 247 const void *z, 248 int n, 249 void (*xDel)(void *) 250 ){ 251 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 252 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 253 } 254 void sqlite3_result_text16be( 255 sqlite3_context *pCtx, 256 const void *z, 257 int n, 258 void (*xDel)(void *) 259 ){ 260 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 261 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 262 } 263 void sqlite3_result_text16le( 264 sqlite3_context *pCtx, 265 const void *z, 266 int n, 267 void (*xDel)(void *) 268 ){ 269 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 270 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 271 } 272 #endif /* SQLITE_OMIT_UTF16 */ 273 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 274 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 275 sqlite3VdbeMemCopy(&pCtx->s, pValue); 276 } 277 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 278 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 279 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 280 } 281 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 282 pCtx->isError = errCode; 283 if( pCtx->s.flags & MEM_Null ){ 284 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 285 SQLITE_UTF8, SQLITE_STATIC); 286 } 287 } 288 289 /* Force an SQLITE_TOOBIG error. */ 290 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 291 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 292 pCtx->isError = SQLITE_TOOBIG; 293 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 294 SQLITE_UTF8, SQLITE_STATIC); 295 } 296 297 /* An SQLITE_NOMEM error. */ 298 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 299 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 300 sqlite3VdbeMemSetNull(&pCtx->s); 301 pCtx->isError = SQLITE_NOMEM; 302 pCtx->s.db->mallocFailed = 1; 303 } 304 305 /* 306 ** This function is called after a transaction has been committed. It 307 ** invokes callbacks registered with sqlite3_wal_hook() as required. 308 */ 309 static int doWalCallbacks(sqlite3 *db){ 310 int rc = SQLITE_OK; 311 #ifndef SQLITE_OMIT_WAL 312 int i; 313 for(i=0; i<db->nDb; i++){ 314 Btree *pBt = db->aDb[i].pBt; 315 if( pBt ){ 316 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 317 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 318 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 319 } 320 } 321 } 322 #endif 323 return rc; 324 } 325 326 /* 327 ** Execute the statement pStmt, either until a row of data is ready, the 328 ** statement is completely executed or an error occurs. 329 ** 330 ** This routine implements the bulk of the logic behind the sqlite_step() 331 ** API. The only thing omitted is the automatic recompile if a 332 ** schema change has occurred. That detail is handled by the 333 ** outer sqlite3_step() wrapper procedure. 334 */ 335 static int sqlite3Step(Vdbe *p){ 336 sqlite3 *db; 337 int rc; 338 339 assert(p); 340 if( p->magic!=VDBE_MAGIC_RUN ){ 341 /* We used to require that sqlite3_reset() be called before retrying 342 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 343 ** with version 3.7.0, we changed this so that sqlite3_reset() would 344 ** be called automatically instead of throwing the SQLITE_MISUSE error. 345 ** This "automatic-reset" change is not technically an incompatibility, 346 ** since any application that receives an SQLITE_MISUSE is broken by 347 ** definition. 348 ** 349 ** Nevertheless, some published applications that were originally written 350 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 351 ** returns, and those were broken by the automatic-reset change. As a 352 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 353 ** legacy behavior of returning SQLITE_MISUSE for cases where the 354 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 355 ** or SQLITE_BUSY error. 356 */ 357 #ifdef SQLITE_OMIT_AUTORESET 358 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 359 sqlite3_reset((sqlite3_stmt*)p); 360 }else{ 361 return SQLITE_MISUSE_BKPT; 362 } 363 #else 364 sqlite3_reset((sqlite3_stmt*)p); 365 #endif 366 } 367 368 /* Check that malloc() has not failed. If it has, return early. */ 369 db = p->db; 370 if( db->mallocFailed ){ 371 p->rc = SQLITE_NOMEM; 372 return SQLITE_NOMEM; 373 } 374 375 if( p->pc<=0 && p->expired ){ 376 p->rc = SQLITE_SCHEMA; 377 rc = SQLITE_ERROR; 378 goto end_of_step; 379 } 380 if( p->pc<0 ){ 381 /* If there are no other statements currently running, then 382 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 383 ** from interrupting a statement that has not yet started. 384 */ 385 if( db->activeVdbeCnt==0 ){ 386 db->u1.isInterrupted = 0; 387 } 388 389 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); 390 391 #ifndef SQLITE_OMIT_TRACE 392 if( db->xProfile && !db->init.busy ){ 393 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 394 } 395 #endif 396 397 db->activeVdbeCnt++; 398 if( p->readOnly==0 ) db->writeVdbeCnt++; 399 p->pc = 0; 400 } 401 #ifndef SQLITE_OMIT_EXPLAIN 402 if( p->explain ){ 403 rc = sqlite3VdbeList(p); 404 }else 405 #endif /* SQLITE_OMIT_EXPLAIN */ 406 { 407 db->vdbeExecCnt++; 408 rc = sqlite3VdbeExec(p); 409 db->vdbeExecCnt--; 410 } 411 412 #ifndef SQLITE_OMIT_TRACE 413 /* Invoke the profile callback if there is one 414 */ 415 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 416 sqlite3_int64 iNow; 417 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 418 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 419 } 420 #endif 421 422 if( rc==SQLITE_DONE ){ 423 assert( p->rc==SQLITE_OK ); 424 p->rc = doWalCallbacks(db); 425 if( p->rc!=SQLITE_OK ){ 426 rc = SQLITE_ERROR; 427 } 428 } 429 430 db->errCode = rc; 431 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 432 p->rc = SQLITE_NOMEM; 433 } 434 end_of_step: 435 /* At this point local variable rc holds the value that should be 436 ** returned if this statement was compiled using the legacy 437 ** sqlite3_prepare() interface. According to the docs, this can only 438 ** be one of the values in the first assert() below. Variable p->rc 439 ** contains the value that would be returned if sqlite3_finalize() 440 ** were called on statement p. 441 */ 442 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 443 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 444 ); 445 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 446 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 447 /* If this statement was prepared using sqlite3_prepare_v2(), and an 448 ** error has occurred, then return the error code in p->rc to the 449 ** caller. Set the error code in the database handle to the same value. 450 */ 451 rc = sqlite3VdbeTransferError(p); 452 } 453 return (rc&db->errMask); 454 } 455 456 /* 457 ** This is the top-level implementation of sqlite3_step(). Call 458 ** sqlite3Step() to do most of the work. If a schema error occurs, 459 ** call sqlite3Reprepare() and try again. 460 */ 461 int sqlite3_step(sqlite3_stmt *pStmt){ 462 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 463 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 464 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 465 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 466 sqlite3 *db; /* The database connection */ 467 468 if( vdbeSafetyNotNull(v) ){ 469 return SQLITE_MISUSE_BKPT; 470 } 471 db = v->db; 472 sqlite3_mutex_enter(db->mutex); 473 v->doingRerun = 0; 474 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 475 && cnt++ < SQLITE_MAX_SCHEMA_RETRY 476 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 477 sqlite3_reset(pStmt); 478 v->doingRerun = 1; 479 assert( v->expired==0 ); 480 } 481 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 482 /* This case occurs after failing to recompile an sql statement. 483 ** The error message from the SQL compiler has already been loaded 484 ** into the database handle. This block copies the error message 485 ** from the database handle into the statement and sets the statement 486 ** program counter to 0 to ensure that when the statement is 487 ** finalized or reset the parser error message is available via 488 ** sqlite3_errmsg() and sqlite3_errcode(). 489 */ 490 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 491 sqlite3DbFree(db, v->zErrMsg); 492 if( !db->mallocFailed ){ 493 v->zErrMsg = sqlite3DbStrDup(db, zErr); 494 v->rc = rc2; 495 } else { 496 v->zErrMsg = 0; 497 v->rc = rc = SQLITE_NOMEM; 498 } 499 } 500 rc = sqlite3ApiExit(db, rc); 501 sqlite3_mutex_leave(db->mutex); 502 return rc; 503 } 504 505 /* 506 ** Extract the user data from a sqlite3_context structure and return a 507 ** pointer to it. 508 */ 509 void *sqlite3_user_data(sqlite3_context *p){ 510 assert( p && p->pFunc ); 511 return p->pFunc->pUserData; 512 } 513 514 /* 515 ** Extract the user data from a sqlite3_context structure and return a 516 ** pointer to it. 517 ** 518 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 519 ** returns a copy of the pointer to the database connection (the 1st 520 ** parameter) of the sqlite3_create_function() and 521 ** sqlite3_create_function16() routines that originally registered the 522 ** application defined function. 523 */ 524 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 525 assert( p && p->pFunc ); 526 return p->s.db; 527 } 528 529 /* 530 ** The following is the implementation of an SQL function that always 531 ** fails with an error message stating that the function is used in the 532 ** wrong context. The sqlite3_overload_function() API might construct 533 ** SQL function that use this routine so that the functions will exist 534 ** for name resolution but are actually overloaded by the xFindFunction 535 ** method of virtual tables. 536 */ 537 void sqlite3InvalidFunction( 538 sqlite3_context *context, /* The function calling context */ 539 int NotUsed, /* Number of arguments to the function */ 540 sqlite3_value **NotUsed2 /* Value of each argument */ 541 ){ 542 const char *zName = context->pFunc->zName; 543 char *zErr; 544 UNUSED_PARAMETER2(NotUsed, NotUsed2); 545 zErr = sqlite3_mprintf( 546 "unable to use function %s in the requested context", zName); 547 sqlite3_result_error(context, zErr, -1); 548 sqlite3_free(zErr); 549 } 550 551 /* 552 ** Allocate or return the aggregate context for a user function. A new 553 ** context is allocated on the first call. Subsequent calls return the 554 ** same context that was returned on prior calls. 555 */ 556 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 557 Mem *pMem; 558 assert( p && p->pFunc && p->pFunc->xStep ); 559 assert( sqlite3_mutex_held(p->s.db->mutex) ); 560 pMem = p->pMem; 561 testcase( nByte<0 ); 562 if( (pMem->flags & MEM_Agg)==0 ){ 563 if( nByte<=0 ){ 564 sqlite3VdbeMemReleaseExternal(pMem); 565 pMem->flags = MEM_Null; 566 pMem->z = 0; 567 }else{ 568 sqlite3VdbeMemGrow(pMem, nByte, 0); 569 pMem->flags = MEM_Agg; 570 pMem->u.pDef = p->pFunc; 571 if( pMem->z ){ 572 memset(pMem->z, 0, nByte); 573 } 574 } 575 } 576 return (void*)pMem->z; 577 } 578 579 /* 580 ** Return the auxilary data pointer, if any, for the iArg'th argument to 581 ** the user-function defined by pCtx. 582 */ 583 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 584 VdbeFunc *pVdbeFunc; 585 586 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 587 pVdbeFunc = pCtx->pVdbeFunc; 588 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 589 return 0; 590 } 591 return pVdbeFunc->apAux[iArg].pAux; 592 } 593 594 /* 595 ** Set the auxilary data pointer and delete function, for the iArg'th 596 ** argument to the user-function defined by pCtx. Any previous value is 597 ** deleted by calling the delete function specified when it was set. 598 */ 599 void sqlite3_set_auxdata( 600 sqlite3_context *pCtx, 601 int iArg, 602 void *pAux, 603 void (*xDelete)(void*) 604 ){ 605 struct AuxData *pAuxData; 606 VdbeFunc *pVdbeFunc; 607 if( iArg<0 ) goto failed; 608 609 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 610 pVdbeFunc = pCtx->pVdbeFunc; 611 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 612 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 613 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 614 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 615 if( !pVdbeFunc ){ 616 goto failed; 617 } 618 pCtx->pVdbeFunc = pVdbeFunc; 619 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 620 pVdbeFunc->nAux = iArg+1; 621 pVdbeFunc->pFunc = pCtx->pFunc; 622 } 623 624 pAuxData = &pVdbeFunc->apAux[iArg]; 625 if( pAuxData->pAux && pAuxData->xDelete ){ 626 pAuxData->xDelete(pAuxData->pAux); 627 } 628 pAuxData->pAux = pAux; 629 pAuxData->xDelete = xDelete; 630 return; 631 632 failed: 633 if( xDelete ){ 634 xDelete(pAux); 635 } 636 } 637 638 #ifndef SQLITE_OMIT_DEPRECATED 639 /* 640 ** Return the number of times the Step function of a aggregate has been 641 ** called. 642 ** 643 ** This function is deprecated. Do not use it for new code. It is 644 ** provide only to avoid breaking legacy code. New aggregate function 645 ** implementations should keep their own counts within their aggregate 646 ** context. 647 */ 648 int sqlite3_aggregate_count(sqlite3_context *p){ 649 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 650 return p->pMem->n; 651 } 652 #endif 653 654 /* 655 ** Return the number of columns in the result set for the statement pStmt. 656 */ 657 int sqlite3_column_count(sqlite3_stmt *pStmt){ 658 Vdbe *pVm = (Vdbe *)pStmt; 659 return pVm ? pVm->nResColumn : 0; 660 } 661 662 /* 663 ** Return the number of values available from the current row of the 664 ** currently executing statement pStmt. 665 */ 666 int sqlite3_data_count(sqlite3_stmt *pStmt){ 667 Vdbe *pVm = (Vdbe *)pStmt; 668 if( pVm==0 || pVm->pResultSet==0 ) return 0; 669 return pVm->nResColumn; 670 } 671 672 673 /* 674 ** Check to see if column iCol of the given statement is valid. If 675 ** it is, return a pointer to the Mem for the value of that column. 676 ** If iCol is not valid, return a pointer to a Mem which has a value 677 ** of NULL. 678 */ 679 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 680 Vdbe *pVm; 681 Mem *pOut; 682 683 pVm = (Vdbe *)pStmt; 684 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 685 sqlite3_mutex_enter(pVm->db->mutex); 686 pOut = &pVm->pResultSet[i]; 687 }else{ 688 /* If the value passed as the second argument is out of range, return 689 ** a pointer to the following static Mem object which contains the 690 ** value SQL NULL. Even though the Mem structure contains an element 691 ** of type i64, on certain architectures (x86) with certain compiler 692 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 693 ** instead of an 8-byte one. This all works fine, except that when 694 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 695 ** that a Mem structure is located on an 8-byte boundary. To prevent 696 ** these assert()s from failing, when building with SQLITE_DEBUG defined 697 ** using gcc, we force nullMem to be 8-byte aligned using the magical 698 ** __attribute__((aligned(8))) macro. */ 699 static const Mem nullMem 700 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 701 __attribute__((aligned(8))) 702 #endif 703 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, 704 #ifdef SQLITE_DEBUG 705 0, 0, /* pScopyFrom, pFiller */ 706 #endif 707 0, 0 }; 708 709 if( pVm && ALWAYS(pVm->db) ){ 710 sqlite3_mutex_enter(pVm->db->mutex); 711 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 712 } 713 pOut = (Mem*)&nullMem; 714 } 715 return pOut; 716 } 717 718 /* 719 ** This function is called after invoking an sqlite3_value_XXX function on a 720 ** column value (i.e. a value returned by evaluating an SQL expression in the 721 ** select list of a SELECT statement) that may cause a malloc() failure. If 722 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 723 ** code of statement pStmt set to SQLITE_NOMEM. 724 ** 725 ** Specifically, this is called from within: 726 ** 727 ** sqlite3_column_int() 728 ** sqlite3_column_int64() 729 ** sqlite3_column_text() 730 ** sqlite3_column_text16() 731 ** sqlite3_column_real() 732 ** sqlite3_column_bytes() 733 ** sqlite3_column_bytes16() 734 ** sqiite3_column_blob() 735 */ 736 static void columnMallocFailure(sqlite3_stmt *pStmt) 737 { 738 /* If malloc() failed during an encoding conversion within an 739 ** sqlite3_column_XXX API, then set the return code of the statement to 740 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 741 ** and _finalize() will return NOMEM. 742 */ 743 Vdbe *p = (Vdbe *)pStmt; 744 if( p ){ 745 p->rc = sqlite3ApiExit(p->db, p->rc); 746 sqlite3_mutex_leave(p->db->mutex); 747 } 748 } 749 750 /**************************** sqlite3_column_ ******************************* 751 ** The following routines are used to access elements of the current row 752 ** in the result set. 753 */ 754 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 755 const void *val; 756 val = sqlite3_value_blob( columnMem(pStmt,i) ); 757 /* Even though there is no encoding conversion, value_blob() might 758 ** need to call malloc() to expand the result of a zeroblob() 759 ** expression. 760 */ 761 columnMallocFailure(pStmt); 762 return val; 763 } 764 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 765 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 766 columnMallocFailure(pStmt); 767 return val; 768 } 769 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 770 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 771 columnMallocFailure(pStmt); 772 return val; 773 } 774 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 775 double val = sqlite3_value_double( columnMem(pStmt,i) ); 776 columnMallocFailure(pStmt); 777 return val; 778 } 779 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 780 int val = sqlite3_value_int( columnMem(pStmt,i) ); 781 columnMallocFailure(pStmt); 782 return val; 783 } 784 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 785 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 786 columnMallocFailure(pStmt); 787 return val; 788 } 789 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 790 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 791 columnMallocFailure(pStmt); 792 return val; 793 } 794 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 795 Mem *pOut = columnMem(pStmt, i); 796 if( pOut->flags&MEM_Static ){ 797 pOut->flags &= ~MEM_Static; 798 pOut->flags |= MEM_Ephem; 799 } 800 columnMallocFailure(pStmt); 801 return (sqlite3_value *)pOut; 802 } 803 #ifndef SQLITE_OMIT_UTF16 804 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 805 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 806 columnMallocFailure(pStmt); 807 return val; 808 } 809 #endif /* SQLITE_OMIT_UTF16 */ 810 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 811 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 812 columnMallocFailure(pStmt); 813 return iType; 814 } 815 816 /* 817 ** Convert the N-th element of pStmt->pColName[] into a string using 818 ** xFunc() then return that string. If N is out of range, return 0. 819 ** 820 ** There are up to 5 names for each column. useType determines which 821 ** name is returned. Here are the names: 822 ** 823 ** 0 The column name as it should be displayed for output 824 ** 1 The datatype name for the column 825 ** 2 The name of the database that the column derives from 826 ** 3 The name of the table that the column derives from 827 ** 4 The name of the table column that the result column derives from 828 ** 829 ** If the result is not a simple column reference (if it is an expression 830 ** or a constant) then useTypes 2, 3, and 4 return NULL. 831 */ 832 static const void *columnName( 833 sqlite3_stmt *pStmt, 834 int N, 835 const void *(*xFunc)(Mem*), 836 int useType 837 ){ 838 const void *ret = 0; 839 Vdbe *p = (Vdbe *)pStmt; 840 int n; 841 sqlite3 *db = p->db; 842 843 assert( db!=0 ); 844 n = sqlite3_column_count(pStmt); 845 if( N<n && N>=0 ){ 846 N += useType*n; 847 sqlite3_mutex_enter(db->mutex); 848 assert( db->mallocFailed==0 ); 849 ret = xFunc(&p->aColName[N]); 850 /* A malloc may have failed inside of the xFunc() call. If this 851 ** is the case, clear the mallocFailed flag and return NULL. 852 */ 853 if( db->mallocFailed ){ 854 db->mallocFailed = 0; 855 ret = 0; 856 } 857 sqlite3_mutex_leave(db->mutex); 858 } 859 return ret; 860 } 861 862 /* 863 ** Return the name of the Nth column of the result set returned by SQL 864 ** statement pStmt. 865 */ 866 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 867 return columnName( 868 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 869 } 870 #ifndef SQLITE_OMIT_UTF16 871 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 872 return columnName( 873 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 874 } 875 #endif 876 877 /* 878 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 879 ** not define OMIT_DECLTYPE. 880 */ 881 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 882 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 883 and SQLITE_ENABLE_COLUMN_METADATA" 884 #endif 885 886 #ifndef SQLITE_OMIT_DECLTYPE 887 /* 888 ** Return the column declaration type (if applicable) of the 'i'th column 889 ** of the result set of SQL statement pStmt. 890 */ 891 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 892 return columnName( 893 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 894 } 895 #ifndef SQLITE_OMIT_UTF16 896 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 897 return columnName( 898 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 899 } 900 #endif /* SQLITE_OMIT_UTF16 */ 901 #endif /* SQLITE_OMIT_DECLTYPE */ 902 903 #ifdef SQLITE_ENABLE_COLUMN_METADATA 904 /* 905 ** Return the name of the database from which a result column derives. 906 ** NULL is returned if the result column is an expression or constant or 907 ** anything else which is not an unabiguous reference to a database column. 908 */ 909 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 910 return columnName( 911 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 912 } 913 #ifndef SQLITE_OMIT_UTF16 914 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 915 return columnName( 916 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 917 } 918 #endif /* SQLITE_OMIT_UTF16 */ 919 920 /* 921 ** Return the name of the table from which a result column derives. 922 ** NULL is returned if the result column is an expression or constant or 923 ** anything else which is not an unabiguous reference to a database column. 924 */ 925 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 926 return columnName( 927 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 928 } 929 #ifndef SQLITE_OMIT_UTF16 930 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 931 return columnName( 932 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 933 } 934 #endif /* SQLITE_OMIT_UTF16 */ 935 936 /* 937 ** Return the name of the table column from which a result column derives. 938 ** NULL is returned if the result column is an expression or constant or 939 ** anything else which is not an unabiguous reference to a database column. 940 */ 941 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 942 return columnName( 943 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 944 } 945 #ifndef SQLITE_OMIT_UTF16 946 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 947 return columnName( 948 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 949 } 950 #endif /* SQLITE_OMIT_UTF16 */ 951 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 952 953 954 /******************************* sqlite3_bind_ *************************** 955 ** 956 ** Routines used to attach values to wildcards in a compiled SQL statement. 957 */ 958 /* 959 ** Unbind the value bound to variable i in virtual machine p. This is the 960 ** the same as binding a NULL value to the column. If the "i" parameter is 961 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 962 ** 963 ** A successful evaluation of this routine acquires the mutex on p. 964 ** the mutex is released if any kind of error occurs. 965 ** 966 ** The error code stored in database p->db is overwritten with the return 967 ** value in any case. 968 */ 969 static int vdbeUnbind(Vdbe *p, int i){ 970 Mem *pVar; 971 if( vdbeSafetyNotNull(p) ){ 972 return SQLITE_MISUSE_BKPT; 973 } 974 sqlite3_mutex_enter(p->db->mutex); 975 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 976 sqlite3Error(p->db, SQLITE_MISUSE, 0); 977 sqlite3_mutex_leave(p->db->mutex); 978 sqlite3_log(SQLITE_MISUSE, 979 "bind on a busy prepared statement: [%s]", p->zSql); 980 return SQLITE_MISUSE_BKPT; 981 } 982 if( i<1 || i>p->nVar ){ 983 sqlite3Error(p->db, SQLITE_RANGE, 0); 984 sqlite3_mutex_leave(p->db->mutex); 985 return SQLITE_RANGE; 986 } 987 i--; 988 pVar = &p->aVar[i]; 989 sqlite3VdbeMemRelease(pVar); 990 pVar->flags = MEM_Null; 991 sqlite3Error(p->db, SQLITE_OK, 0); 992 993 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 994 ** binding a new value to this variable invalidates the current query plan. 995 ** 996 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 997 ** parameter in the WHERE clause might influence the choice of query plan 998 ** for a statement, then the statement will be automatically recompiled, 999 ** as if there had been a schema change, on the first sqlite3_step() call 1000 ** following any change to the bindings of that parameter. 1001 */ 1002 if( p->isPrepareV2 && 1003 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1004 ){ 1005 p->expired = 1; 1006 } 1007 return SQLITE_OK; 1008 } 1009 1010 /* 1011 ** Bind a text or BLOB value. 1012 */ 1013 static int bindText( 1014 sqlite3_stmt *pStmt, /* The statement to bind against */ 1015 int i, /* Index of the parameter to bind */ 1016 const void *zData, /* Pointer to the data to be bound */ 1017 int nData, /* Number of bytes of data to be bound */ 1018 void (*xDel)(void*), /* Destructor for the data */ 1019 u8 encoding /* Encoding for the data */ 1020 ){ 1021 Vdbe *p = (Vdbe *)pStmt; 1022 Mem *pVar; 1023 int rc; 1024 1025 rc = vdbeUnbind(p, i); 1026 if( rc==SQLITE_OK ){ 1027 if( zData!=0 ){ 1028 pVar = &p->aVar[i-1]; 1029 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1030 if( rc==SQLITE_OK && encoding!=0 ){ 1031 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1032 } 1033 sqlite3Error(p->db, rc, 0); 1034 rc = sqlite3ApiExit(p->db, rc); 1035 } 1036 sqlite3_mutex_leave(p->db->mutex); 1037 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1038 xDel((void*)zData); 1039 } 1040 return rc; 1041 } 1042 1043 1044 /* 1045 ** Bind a blob value to an SQL statement variable. 1046 */ 1047 int sqlite3_bind_blob( 1048 sqlite3_stmt *pStmt, 1049 int i, 1050 const void *zData, 1051 int nData, 1052 void (*xDel)(void*) 1053 ){ 1054 return bindText(pStmt, i, zData, nData, xDel, 0); 1055 } 1056 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1057 int rc; 1058 Vdbe *p = (Vdbe *)pStmt; 1059 rc = vdbeUnbind(p, i); 1060 if( rc==SQLITE_OK ){ 1061 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1062 sqlite3_mutex_leave(p->db->mutex); 1063 } 1064 return rc; 1065 } 1066 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1067 return sqlite3_bind_int64(p, i, (i64)iValue); 1068 } 1069 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1070 int rc; 1071 Vdbe *p = (Vdbe *)pStmt; 1072 rc = vdbeUnbind(p, i); 1073 if( rc==SQLITE_OK ){ 1074 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1075 sqlite3_mutex_leave(p->db->mutex); 1076 } 1077 return rc; 1078 } 1079 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1080 int rc; 1081 Vdbe *p = (Vdbe*)pStmt; 1082 rc = vdbeUnbind(p, i); 1083 if( rc==SQLITE_OK ){ 1084 sqlite3_mutex_leave(p->db->mutex); 1085 } 1086 return rc; 1087 } 1088 int sqlite3_bind_text( 1089 sqlite3_stmt *pStmt, 1090 int i, 1091 const char *zData, 1092 int nData, 1093 void (*xDel)(void*) 1094 ){ 1095 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1096 } 1097 #ifndef SQLITE_OMIT_UTF16 1098 int sqlite3_bind_text16( 1099 sqlite3_stmt *pStmt, 1100 int i, 1101 const void *zData, 1102 int nData, 1103 void (*xDel)(void*) 1104 ){ 1105 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1106 } 1107 #endif /* SQLITE_OMIT_UTF16 */ 1108 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1109 int rc; 1110 switch( pValue->type ){ 1111 case SQLITE_INTEGER: { 1112 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1113 break; 1114 } 1115 case SQLITE_FLOAT: { 1116 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1117 break; 1118 } 1119 case SQLITE_BLOB: { 1120 if( pValue->flags & MEM_Zero ){ 1121 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1122 }else{ 1123 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1124 } 1125 break; 1126 } 1127 case SQLITE_TEXT: { 1128 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1129 pValue->enc); 1130 break; 1131 } 1132 default: { 1133 rc = sqlite3_bind_null(pStmt, i); 1134 break; 1135 } 1136 } 1137 return rc; 1138 } 1139 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1140 int rc; 1141 Vdbe *p = (Vdbe *)pStmt; 1142 rc = vdbeUnbind(p, i); 1143 if( rc==SQLITE_OK ){ 1144 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1145 sqlite3_mutex_leave(p->db->mutex); 1146 } 1147 return rc; 1148 } 1149 1150 /* 1151 ** Return the number of wildcards that can be potentially bound to. 1152 ** This routine is added to support DBD::SQLite. 1153 */ 1154 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1155 Vdbe *p = (Vdbe*)pStmt; 1156 return p ? p->nVar : 0; 1157 } 1158 1159 /* 1160 ** Return the name of a wildcard parameter. Return NULL if the index 1161 ** is out of range or if the wildcard is unnamed. 1162 ** 1163 ** The result is always UTF-8. 1164 */ 1165 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1166 Vdbe *p = (Vdbe*)pStmt; 1167 if( p==0 || i<1 || i>p->nzVar ){ 1168 return 0; 1169 } 1170 return p->azVar[i-1]; 1171 } 1172 1173 /* 1174 ** Given a wildcard parameter name, return the index of the variable 1175 ** with that name. If there is no variable with the given name, 1176 ** return 0. 1177 */ 1178 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1179 int i; 1180 if( p==0 ){ 1181 return 0; 1182 } 1183 if( zName ){ 1184 for(i=0; i<p->nzVar; i++){ 1185 const char *z = p->azVar[i]; 1186 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1187 return i+1; 1188 } 1189 } 1190 } 1191 return 0; 1192 } 1193 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1194 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1195 } 1196 1197 /* 1198 ** Transfer all bindings from the first statement over to the second. 1199 */ 1200 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1201 Vdbe *pFrom = (Vdbe*)pFromStmt; 1202 Vdbe *pTo = (Vdbe*)pToStmt; 1203 int i; 1204 assert( pTo->db==pFrom->db ); 1205 assert( pTo->nVar==pFrom->nVar ); 1206 sqlite3_mutex_enter(pTo->db->mutex); 1207 for(i=0; i<pFrom->nVar; i++){ 1208 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1209 } 1210 sqlite3_mutex_leave(pTo->db->mutex); 1211 return SQLITE_OK; 1212 } 1213 1214 #ifndef SQLITE_OMIT_DEPRECATED 1215 /* 1216 ** Deprecated external interface. Internal/core SQLite code 1217 ** should call sqlite3TransferBindings. 1218 ** 1219 ** Is is misuse to call this routine with statements from different 1220 ** database connections. But as this is a deprecated interface, we 1221 ** will not bother to check for that condition. 1222 ** 1223 ** If the two statements contain a different number of bindings, then 1224 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1225 ** SQLITE_OK is returned. 1226 */ 1227 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1228 Vdbe *pFrom = (Vdbe*)pFromStmt; 1229 Vdbe *pTo = (Vdbe*)pToStmt; 1230 if( pFrom->nVar!=pTo->nVar ){ 1231 return SQLITE_ERROR; 1232 } 1233 if( pTo->isPrepareV2 && pTo->expmask ){ 1234 pTo->expired = 1; 1235 } 1236 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1237 pFrom->expired = 1; 1238 } 1239 return sqlite3TransferBindings(pFromStmt, pToStmt); 1240 } 1241 #endif 1242 1243 /* 1244 ** Return the sqlite3* database handle to which the prepared statement given 1245 ** in the argument belongs. This is the same database handle that was 1246 ** the first argument to the sqlite3_prepare() that was used to create 1247 ** the statement in the first place. 1248 */ 1249 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1250 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1251 } 1252 1253 /* 1254 ** Return true if the prepared statement is guaranteed to not modify the 1255 ** database. 1256 */ 1257 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1258 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1259 } 1260 1261 /* 1262 ** Return true if the prepared statement is in need of being reset. 1263 */ 1264 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1265 Vdbe *v = (Vdbe*)pStmt; 1266 return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN; 1267 } 1268 1269 /* 1270 ** Return a pointer to the next prepared statement after pStmt associated 1271 ** with database connection pDb. If pStmt is NULL, return the first 1272 ** prepared statement for the database connection. Return NULL if there 1273 ** are no more. 1274 */ 1275 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1276 sqlite3_stmt *pNext; 1277 sqlite3_mutex_enter(pDb->mutex); 1278 if( pStmt==0 ){ 1279 pNext = (sqlite3_stmt*)pDb->pVdbe; 1280 }else{ 1281 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1282 } 1283 sqlite3_mutex_leave(pDb->mutex); 1284 return pNext; 1285 } 1286 1287 /* 1288 ** Return the value of a status counter for a prepared statement 1289 */ 1290 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1291 Vdbe *pVdbe = (Vdbe*)pStmt; 1292 int v = pVdbe->aCounter[op-1]; 1293 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1294 return v; 1295 } 1296