xref: /sqlite-3.40.0/src/vdbeapi.c (revision e8f2c9dc)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 /*
57 ** The following routine destroys a virtual machine that is created by
58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
59 ** success/failure code that describes the result of executing the virtual
60 ** machine.
61 **
62 ** This routine sets the error code and string returned by
63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
64 */
65 int sqlite3_finalize(sqlite3_stmt *pStmt){
66   int rc;
67   if( pStmt==0 ){
68     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
69     ** pointer is a harmless no-op. */
70     rc = SQLITE_OK;
71   }else{
72     Vdbe *v = (Vdbe*)pStmt;
73     sqlite3 *db = v->db;
74     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
75     sqlite3_mutex_enter(db->mutex);
76     rc = sqlite3VdbeFinalize(v);
77     rc = sqlite3ApiExit(db, rc);
78     sqlite3LeaveMutexAndCloseZombie(db);
79   }
80   return rc;
81 }
82 
83 /*
84 ** Terminate the current execution of an SQL statement and reset it
85 ** back to its starting state so that it can be reused. A success code from
86 ** the prior execution is returned.
87 **
88 ** This routine sets the error code and string returned by
89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
90 */
91 int sqlite3_reset(sqlite3_stmt *pStmt){
92   int rc;
93   if( pStmt==0 ){
94     rc = SQLITE_OK;
95   }else{
96     Vdbe *v = (Vdbe*)pStmt;
97     sqlite3_mutex_enter(v->db->mutex);
98     rc = sqlite3VdbeReset(v);
99     sqlite3VdbeRewind(v);
100     assert( (rc & (v->db->errMask))==rc );
101     rc = sqlite3ApiExit(v->db, rc);
102     sqlite3_mutex_leave(v->db->mutex);
103   }
104   return rc;
105 }
106 
107 /*
108 ** Set all the parameters in the compiled SQL statement to NULL.
109 */
110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
111   int i;
112   int rc = SQLITE_OK;
113   Vdbe *p = (Vdbe*)pStmt;
114 #if SQLITE_THREADSAFE
115   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
116 #endif
117   sqlite3_mutex_enter(mutex);
118   for(i=0; i<p->nVar; i++){
119     sqlite3VdbeMemRelease(&p->aVar[i]);
120     p->aVar[i].flags = MEM_Null;
121   }
122   if( p->isPrepareV2 && p->expmask ){
123     p->expired = 1;
124   }
125   sqlite3_mutex_leave(mutex);
126   return rc;
127 }
128 
129 
130 /**************************** sqlite3_value_  *******************************
131 ** The following routines extract information from a Mem or sqlite3_value
132 ** structure.
133 */
134 const void *sqlite3_value_blob(sqlite3_value *pVal){
135   Mem *p = (Mem*)pVal;
136   if( p->flags & (MEM_Blob|MEM_Str) ){
137     sqlite3VdbeMemExpandBlob(p);
138     p->flags |= MEM_Blob;
139     return p->n ? p->z : 0;
140   }else{
141     return sqlite3_value_text(pVal);
142   }
143 }
144 int sqlite3_value_bytes(sqlite3_value *pVal){
145   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
146 }
147 int sqlite3_value_bytes16(sqlite3_value *pVal){
148   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
149 }
150 double sqlite3_value_double(sqlite3_value *pVal){
151   return sqlite3VdbeRealValue((Mem*)pVal);
152 }
153 int sqlite3_value_int(sqlite3_value *pVal){
154   return (int)sqlite3VdbeIntValue((Mem*)pVal);
155 }
156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
157   return sqlite3VdbeIntValue((Mem*)pVal);
158 }
159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
160   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
161 }
162 #ifndef SQLITE_OMIT_UTF16
163 const void *sqlite3_value_text16(sqlite3_value* pVal){
164   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
165 }
166 const void *sqlite3_value_text16be(sqlite3_value *pVal){
167   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
168 }
169 const void *sqlite3_value_text16le(sqlite3_value *pVal){
170   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
171 }
172 #endif /* SQLITE_OMIT_UTF16 */
173 int sqlite3_value_type(sqlite3_value* pVal){
174   static const u8 aType[] = {
175      SQLITE_BLOB,     /* 0x00 */
176      SQLITE_NULL,     /* 0x01 */
177      SQLITE_TEXT,     /* 0x02 */
178      SQLITE_NULL,     /* 0x03 */
179      SQLITE_INTEGER,  /* 0x04 */
180      SQLITE_NULL,     /* 0x05 */
181      SQLITE_INTEGER,  /* 0x06 */
182      SQLITE_NULL,     /* 0x07 */
183      SQLITE_FLOAT,    /* 0x08 */
184      SQLITE_NULL,     /* 0x09 */
185      SQLITE_FLOAT,    /* 0x0a */
186      SQLITE_NULL,     /* 0x0b */
187      SQLITE_INTEGER,  /* 0x0c */
188      SQLITE_NULL,     /* 0x0d */
189      SQLITE_INTEGER,  /* 0x0e */
190      SQLITE_NULL,     /* 0x0f */
191      SQLITE_BLOB,     /* 0x10 */
192      SQLITE_NULL,     /* 0x11 */
193      SQLITE_TEXT,     /* 0x12 */
194      SQLITE_NULL,     /* 0x13 */
195      SQLITE_INTEGER,  /* 0x14 */
196      SQLITE_NULL,     /* 0x15 */
197      SQLITE_INTEGER,  /* 0x16 */
198      SQLITE_NULL,     /* 0x17 */
199      SQLITE_FLOAT,    /* 0x18 */
200      SQLITE_NULL,     /* 0x19 */
201      SQLITE_FLOAT,    /* 0x1a */
202      SQLITE_NULL,     /* 0x1b */
203      SQLITE_INTEGER,  /* 0x1c */
204      SQLITE_NULL,     /* 0x1d */
205      SQLITE_INTEGER,  /* 0x1e */
206      SQLITE_NULL,     /* 0x1f */
207   };
208   return aType[pVal->flags&MEM_AffMask];
209 }
210 
211 /**************************** sqlite3_result_  *******************************
212 ** The following routines are used by user-defined functions to specify
213 ** the function result.
214 **
215 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
216 ** result as a string or blob but if the string or blob is too large, it
217 ** then sets the error code to SQLITE_TOOBIG
218 */
219 static void setResultStrOrError(
220   sqlite3_context *pCtx,  /* Function context */
221   const char *z,          /* String pointer */
222   int n,                  /* Bytes in string, or negative */
223   u8 enc,                 /* Encoding of z.  0 for BLOBs */
224   void (*xDel)(void*)     /* Destructor function */
225 ){
226   if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
227     sqlite3_result_error_toobig(pCtx);
228   }
229 }
230 void sqlite3_result_blob(
231   sqlite3_context *pCtx,
232   const void *z,
233   int n,
234   void (*xDel)(void *)
235 ){
236   assert( n>=0 );
237   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
238   setResultStrOrError(pCtx, z, n, 0, xDel);
239 }
240 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
241   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
242   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
243 }
244 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
245   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
246   pCtx->isError = SQLITE_ERROR;
247   pCtx->fErrorOrAux = 1;
248   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
249 }
250 #ifndef SQLITE_OMIT_UTF16
251 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
252   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
253   pCtx->isError = SQLITE_ERROR;
254   pCtx->fErrorOrAux = 1;
255   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
256 }
257 #endif
258 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
259   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
260   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
261 }
262 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
263   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
264   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
265 }
266 void sqlite3_result_null(sqlite3_context *pCtx){
267   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
268   sqlite3VdbeMemSetNull(&pCtx->s);
269 }
270 void sqlite3_result_text(
271   sqlite3_context *pCtx,
272   const char *z,
273   int n,
274   void (*xDel)(void *)
275 ){
276   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
277   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
278 }
279 #ifndef SQLITE_OMIT_UTF16
280 void sqlite3_result_text16(
281   sqlite3_context *pCtx,
282   const void *z,
283   int n,
284   void (*xDel)(void *)
285 ){
286   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
287   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
288 }
289 void sqlite3_result_text16be(
290   sqlite3_context *pCtx,
291   const void *z,
292   int n,
293   void (*xDel)(void *)
294 ){
295   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
296   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
297 }
298 void sqlite3_result_text16le(
299   sqlite3_context *pCtx,
300   const void *z,
301   int n,
302   void (*xDel)(void *)
303 ){
304   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
305   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
306 }
307 #endif /* SQLITE_OMIT_UTF16 */
308 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
309   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
310   sqlite3VdbeMemCopy(&pCtx->s, pValue);
311 }
312 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
313   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
314   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
315 }
316 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
317   pCtx->isError = errCode;
318   pCtx->fErrorOrAux = 1;
319   if( pCtx->s.flags & MEM_Null ){
320     sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
321                          SQLITE_UTF8, SQLITE_STATIC);
322   }
323 }
324 
325 /* Force an SQLITE_TOOBIG error. */
326 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
327   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
328   pCtx->isError = SQLITE_TOOBIG;
329   pCtx->fErrorOrAux = 1;
330   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
331                        SQLITE_UTF8, SQLITE_STATIC);
332 }
333 
334 /* An SQLITE_NOMEM error. */
335 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
336   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
337   sqlite3VdbeMemSetNull(&pCtx->s);
338   pCtx->isError = SQLITE_NOMEM;
339   pCtx->fErrorOrAux = 1;
340   pCtx->s.db->mallocFailed = 1;
341 }
342 
343 /*
344 ** This function is called after a transaction has been committed. It
345 ** invokes callbacks registered with sqlite3_wal_hook() as required.
346 */
347 static int doWalCallbacks(sqlite3 *db){
348   int rc = SQLITE_OK;
349 #ifndef SQLITE_OMIT_WAL
350   int i;
351   for(i=0; i<db->nDb; i++){
352     Btree *pBt = db->aDb[i].pBt;
353     if( pBt ){
354       int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
355       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
356         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
357       }
358     }
359   }
360 #endif
361   return rc;
362 }
363 
364 /*
365 ** Execute the statement pStmt, either until a row of data is ready, the
366 ** statement is completely executed or an error occurs.
367 **
368 ** This routine implements the bulk of the logic behind the sqlite_step()
369 ** API.  The only thing omitted is the automatic recompile if a
370 ** schema change has occurred.  That detail is handled by the
371 ** outer sqlite3_step() wrapper procedure.
372 */
373 static int sqlite3Step(Vdbe *p){
374   sqlite3 *db;
375   int rc;
376 
377   assert(p);
378   if( p->magic!=VDBE_MAGIC_RUN ){
379     /* We used to require that sqlite3_reset() be called before retrying
380     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
381     ** with version 3.7.0, we changed this so that sqlite3_reset() would
382     ** be called automatically instead of throwing the SQLITE_MISUSE error.
383     ** This "automatic-reset" change is not technically an incompatibility,
384     ** since any application that receives an SQLITE_MISUSE is broken by
385     ** definition.
386     **
387     ** Nevertheless, some published applications that were originally written
388     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
389     ** returns, and those were broken by the automatic-reset change.  As a
390     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
391     ** legacy behavior of returning SQLITE_MISUSE for cases where the
392     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
393     ** or SQLITE_BUSY error.
394     */
395 #ifdef SQLITE_OMIT_AUTORESET
396     if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){
397       sqlite3_reset((sqlite3_stmt*)p);
398     }else{
399       return SQLITE_MISUSE_BKPT;
400     }
401 #else
402     sqlite3_reset((sqlite3_stmt*)p);
403 #endif
404   }
405 
406   /* Check that malloc() has not failed. If it has, return early. */
407   db = p->db;
408   if( db->mallocFailed ){
409     p->rc = SQLITE_NOMEM;
410     return SQLITE_NOMEM;
411   }
412 
413   if( p->pc<=0 && p->expired ){
414     p->rc = SQLITE_SCHEMA;
415     rc = SQLITE_ERROR;
416     goto end_of_step;
417   }
418   if( p->pc<0 ){
419     /* If there are no other statements currently running, then
420     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
421     ** from interrupting a statement that has not yet started.
422     */
423     if( db->nVdbeActive==0 ){
424       db->u1.isInterrupted = 0;
425     }
426 
427     assert( db->nVdbeWrite>0 || db->autoCommit==0
428         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
429     );
430 
431 #ifndef SQLITE_OMIT_TRACE
432     if( db->xProfile && !db->init.busy ){
433       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
434     }
435 #endif
436 
437     db->nVdbeActive++;
438     if( p->readOnly==0 ) db->nVdbeWrite++;
439     if( p->bIsReader ) db->nVdbeRead++;
440     p->pc = 0;
441   }
442 #ifndef SQLITE_OMIT_EXPLAIN
443   if( p->explain ){
444     rc = sqlite3VdbeList(p);
445   }else
446 #endif /* SQLITE_OMIT_EXPLAIN */
447   {
448     db->nVdbeExec++;
449     rc = sqlite3VdbeExec(p);
450     db->nVdbeExec--;
451   }
452 
453 #ifndef SQLITE_OMIT_TRACE
454   /* Invoke the profile callback if there is one
455   */
456   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
457     sqlite3_int64 iNow;
458     sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
459     db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
460   }
461 #endif
462 
463   if( rc==SQLITE_DONE ){
464     assert( p->rc==SQLITE_OK );
465     p->rc = doWalCallbacks(db);
466     if( p->rc!=SQLITE_OK ){
467       rc = SQLITE_ERROR;
468     }
469   }
470 
471   db->errCode = rc;
472   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
473     p->rc = SQLITE_NOMEM;
474   }
475 end_of_step:
476   /* At this point local variable rc holds the value that should be
477   ** returned if this statement was compiled using the legacy
478   ** sqlite3_prepare() interface. According to the docs, this can only
479   ** be one of the values in the first assert() below. Variable p->rc
480   ** contains the value that would be returned if sqlite3_finalize()
481   ** were called on statement p.
482   */
483   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
484        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
485   );
486   assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
487   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
488     /* If this statement was prepared using sqlite3_prepare_v2(), and an
489     ** error has occurred, then return the error code in p->rc to the
490     ** caller. Set the error code in the database handle to the same value.
491     */
492     rc = sqlite3VdbeTransferError(p);
493   }
494   return (rc&db->errMask);
495 }
496 
497 /*
498 ** This is the top-level implementation of sqlite3_step().  Call
499 ** sqlite3Step() to do most of the work.  If a schema error occurs,
500 ** call sqlite3Reprepare() and try again.
501 */
502 int sqlite3_step(sqlite3_stmt *pStmt){
503   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
504   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
505   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
506   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
507   sqlite3 *db;             /* The database connection */
508 
509   if( vdbeSafetyNotNull(v) ){
510     return SQLITE_MISUSE_BKPT;
511   }
512   db = v->db;
513   sqlite3_mutex_enter(db->mutex);
514   v->doingRerun = 0;
515   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
516          && cnt++ < SQLITE_MAX_SCHEMA_RETRY
517          && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
518     sqlite3_reset(pStmt);
519     v->doingRerun = 1;
520     assert( v->expired==0 );
521   }
522   if( rc2!=SQLITE_OK ){
523     /* This case occurs after failing to recompile an sql statement.
524     ** The error message from the SQL compiler has already been loaded
525     ** into the database handle. This block copies the error message
526     ** from the database handle into the statement and sets the statement
527     ** program counter to 0 to ensure that when the statement is
528     ** finalized or reset the parser error message is available via
529     ** sqlite3_errmsg() and sqlite3_errcode().
530     */
531     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
532     assert( zErr!=0 || db->mallocFailed );
533     sqlite3DbFree(db, v->zErrMsg);
534     if( !db->mallocFailed ){
535       v->zErrMsg = sqlite3DbStrDup(db, zErr);
536       v->rc = rc2;
537     } else {
538       v->zErrMsg = 0;
539       v->rc = rc = SQLITE_NOMEM;
540     }
541   }
542   rc = sqlite3ApiExit(db, rc);
543   sqlite3_mutex_leave(db->mutex);
544   return rc;
545 }
546 
547 
548 /*
549 ** Extract the user data from a sqlite3_context structure and return a
550 ** pointer to it.
551 */
552 void *sqlite3_user_data(sqlite3_context *p){
553   assert( p && p->pFunc );
554   return p->pFunc->pUserData;
555 }
556 
557 /*
558 ** Extract the user data from a sqlite3_context structure and return a
559 ** pointer to it.
560 **
561 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
562 ** returns a copy of the pointer to the database connection (the 1st
563 ** parameter) of the sqlite3_create_function() and
564 ** sqlite3_create_function16() routines that originally registered the
565 ** application defined function.
566 */
567 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
568   assert( p && p->pFunc );
569   return p->s.db;
570 }
571 
572 /*
573 ** Return the current time for a statement
574 */
575 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
576   Vdbe *v = p->pVdbe;
577   int rc;
578   if( v->iCurrentTime==0 ){
579     rc = sqlite3OsCurrentTimeInt64(p->s.db->pVfs, &v->iCurrentTime);
580     if( rc ) v->iCurrentTime = 0;
581   }
582   return v->iCurrentTime;
583 }
584 
585 /*
586 ** The following is the implementation of an SQL function that always
587 ** fails with an error message stating that the function is used in the
588 ** wrong context.  The sqlite3_overload_function() API might construct
589 ** SQL function that use this routine so that the functions will exist
590 ** for name resolution but are actually overloaded by the xFindFunction
591 ** method of virtual tables.
592 */
593 void sqlite3InvalidFunction(
594   sqlite3_context *context,  /* The function calling context */
595   int NotUsed,               /* Number of arguments to the function */
596   sqlite3_value **NotUsed2   /* Value of each argument */
597 ){
598   const char *zName = context->pFunc->zName;
599   char *zErr;
600   UNUSED_PARAMETER2(NotUsed, NotUsed2);
601   zErr = sqlite3_mprintf(
602       "unable to use function %s in the requested context", zName);
603   sqlite3_result_error(context, zErr, -1);
604   sqlite3_free(zErr);
605 }
606 
607 /*
608 ** Allocate or return the aggregate context for a user function.  A new
609 ** context is allocated on the first call.  Subsequent calls return the
610 ** same context that was returned on prior calls.
611 */
612 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
613   Mem *pMem;
614   assert( p && p->pFunc && p->pFunc->xStep );
615   assert( sqlite3_mutex_held(p->s.db->mutex) );
616   pMem = p->pMem;
617   testcase( nByte<0 );
618   if( (pMem->flags & MEM_Agg)==0 ){
619     if( nByte<=0 ){
620       sqlite3VdbeMemReleaseExternal(pMem);
621       pMem->flags = MEM_Null;
622       pMem->z = 0;
623     }else{
624       sqlite3VdbeMemGrow(pMem, nByte, 0);
625       pMem->flags = MEM_Agg;
626       pMem->u.pDef = p->pFunc;
627       if( pMem->z ){
628         memset(pMem->z, 0, nByte);
629       }
630     }
631   }
632   return (void*)pMem->z;
633 }
634 
635 /*
636 ** Return the auxilary data pointer, if any, for the iArg'th argument to
637 ** the user-function defined by pCtx.
638 */
639 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
640   AuxData *pAuxData;
641 
642   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
643   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
644     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
645   }
646 
647   return (pAuxData ? pAuxData->pAux : 0);
648 }
649 
650 /*
651 ** Set the auxilary data pointer and delete function, for the iArg'th
652 ** argument to the user-function defined by pCtx. Any previous value is
653 ** deleted by calling the delete function specified when it was set.
654 */
655 void sqlite3_set_auxdata(
656   sqlite3_context *pCtx,
657   int iArg,
658   void *pAux,
659   void (*xDelete)(void*)
660 ){
661   AuxData *pAuxData;
662   Vdbe *pVdbe = pCtx->pVdbe;
663 
664   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
665   if( iArg<0 ) goto failed;
666 
667   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
668     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
669   }
670   if( pAuxData==0 ){
671     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
672     if( !pAuxData ) goto failed;
673     pAuxData->iOp = pCtx->iOp;
674     pAuxData->iArg = iArg;
675     pAuxData->pNext = pVdbe->pAuxData;
676     pVdbe->pAuxData = pAuxData;
677     if( pCtx->fErrorOrAux==0 ){
678       pCtx->isError = 0;
679       pCtx->fErrorOrAux = 1;
680     }
681   }else if( pAuxData->xDelete ){
682     pAuxData->xDelete(pAuxData->pAux);
683   }
684 
685   pAuxData->pAux = pAux;
686   pAuxData->xDelete = xDelete;
687   return;
688 
689 failed:
690   if( xDelete ){
691     xDelete(pAux);
692   }
693 }
694 
695 #ifndef SQLITE_OMIT_DEPRECATED
696 /*
697 ** Return the number of times the Step function of a aggregate has been
698 ** called.
699 **
700 ** This function is deprecated.  Do not use it for new code.  It is
701 ** provide only to avoid breaking legacy code.  New aggregate function
702 ** implementations should keep their own counts within their aggregate
703 ** context.
704 */
705 int sqlite3_aggregate_count(sqlite3_context *p){
706   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
707   return p->pMem->n;
708 }
709 #endif
710 
711 /*
712 ** Return the number of columns in the result set for the statement pStmt.
713 */
714 int sqlite3_column_count(sqlite3_stmt *pStmt){
715   Vdbe *pVm = (Vdbe *)pStmt;
716   return pVm ? pVm->nResColumn : 0;
717 }
718 
719 /*
720 ** Return the number of values available from the current row of the
721 ** currently executing statement pStmt.
722 */
723 int sqlite3_data_count(sqlite3_stmt *pStmt){
724   Vdbe *pVm = (Vdbe *)pStmt;
725   if( pVm==0 || pVm->pResultSet==0 ) return 0;
726   return pVm->nResColumn;
727 }
728 
729 /*
730 ** Return a pointer to static memory containing an SQL NULL value.
731 */
732 static const Mem *columnNullValue(void){
733   /* Even though the Mem structure contains an element
734   ** of type i64, on certain architectures (x86) with certain compiler
735   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
736   ** instead of an 8-byte one. This all works fine, except that when
737   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
738   ** that a Mem structure is located on an 8-byte boundary. To prevent
739   ** these assert()s from failing, when building with SQLITE_DEBUG defined
740   ** using gcc, we force nullMem to be 8-byte aligned using the magical
741   ** __attribute__((aligned(8))) macro.  */
742   static const Mem nullMem
743 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
744     __attribute__((aligned(8)))
745 #endif
746     = {0, "", (double)0, {0}, 0, MEM_Null, 0,
747 #ifdef SQLITE_DEBUG
748        0, 0,  /* pScopyFrom, pFiller */
749 #endif
750        0, 0 };
751   return &nullMem;
752 }
753 
754 /*
755 ** Check to see if column iCol of the given statement is valid.  If
756 ** it is, return a pointer to the Mem for the value of that column.
757 ** If iCol is not valid, return a pointer to a Mem which has a value
758 ** of NULL.
759 */
760 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
761   Vdbe *pVm;
762   Mem *pOut;
763 
764   pVm = (Vdbe *)pStmt;
765   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
766     sqlite3_mutex_enter(pVm->db->mutex);
767     pOut = &pVm->pResultSet[i];
768   }else{
769     if( pVm && ALWAYS(pVm->db) ){
770       sqlite3_mutex_enter(pVm->db->mutex);
771       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
772     }
773     pOut = (Mem*)columnNullValue();
774   }
775   return pOut;
776 }
777 
778 /*
779 ** This function is called after invoking an sqlite3_value_XXX function on a
780 ** column value (i.e. a value returned by evaluating an SQL expression in the
781 ** select list of a SELECT statement) that may cause a malloc() failure. If
782 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
783 ** code of statement pStmt set to SQLITE_NOMEM.
784 **
785 ** Specifically, this is called from within:
786 **
787 **     sqlite3_column_int()
788 **     sqlite3_column_int64()
789 **     sqlite3_column_text()
790 **     sqlite3_column_text16()
791 **     sqlite3_column_real()
792 **     sqlite3_column_bytes()
793 **     sqlite3_column_bytes16()
794 **     sqiite3_column_blob()
795 */
796 static void columnMallocFailure(sqlite3_stmt *pStmt)
797 {
798   /* If malloc() failed during an encoding conversion within an
799   ** sqlite3_column_XXX API, then set the return code of the statement to
800   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
801   ** and _finalize() will return NOMEM.
802   */
803   Vdbe *p = (Vdbe *)pStmt;
804   if( p ){
805     p->rc = sqlite3ApiExit(p->db, p->rc);
806     sqlite3_mutex_leave(p->db->mutex);
807   }
808 }
809 
810 /**************************** sqlite3_column_  *******************************
811 ** The following routines are used to access elements of the current row
812 ** in the result set.
813 */
814 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
815   const void *val;
816   val = sqlite3_value_blob( columnMem(pStmt,i) );
817   /* Even though there is no encoding conversion, value_blob() might
818   ** need to call malloc() to expand the result of a zeroblob()
819   ** expression.
820   */
821   columnMallocFailure(pStmt);
822   return val;
823 }
824 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
825   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
826   columnMallocFailure(pStmt);
827   return val;
828 }
829 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
830   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
831   columnMallocFailure(pStmt);
832   return val;
833 }
834 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
835   double val = sqlite3_value_double( columnMem(pStmt,i) );
836   columnMallocFailure(pStmt);
837   return val;
838 }
839 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
840   int val = sqlite3_value_int( columnMem(pStmt,i) );
841   columnMallocFailure(pStmt);
842   return val;
843 }
844 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
845   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
846   columnMallocFailure(pStmt);
847   return val;
848 }
849 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
850   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
851   columnMallocFailure(pStmt);
852   return val;
853 }
854 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
855   Mem *pOut = columnMem(pStmt, i);
856   if( pOut->flags&MEM_Static ){
857     pOut->flags &= ~MEM_Static;
858     pOut->flags |= MEM_Ephem;
859   }
860   columnMallocFailure(pStmt);
861   return (sqlite3_value *)pOut;
862 }
863 #ifndef SQLITE_OMIT_UTF16
864 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
865   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
866   columnMallocFailure(pStmt);
867   return val;
868 }
869 #endif /* SQLITE_OMIT_UTF16 */
870 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
871   int iType = sqlite3_value_type( columnMem(pStmt,i) );
872   columnMallocFailure(pStmt);
873   return iType;
874 }
875 
876 /*
877 ** Convert the N-th element of pStmt->pColName[] into a string using
878 ** xFunc() then return that string.  If N is out of range, return 0.
879 **
880 ** There are up to 5 names for each column.  useType determines which
881 ** name is returned.  Here are the names:
882 **
883 **    0      The column name as it should be displayed for output
884 **    1      The datatype name for the column
885 **    2      The name of the database that the column derives from
886 **    3      The name of the table that the column derives from
887 **    4      The name of the table column that the result column derives from
888 **
889 ** If the result is not a simple column reference (if it is an expression
890 ** or a constant) then useTypes 2, 3, and 4 return NULL.
891 */
892 static const void *columnName(
893   sqlite3_stmt *pStmt,
894   int N,
895   const void *(*xFunc)(Mem*),
896   int useType
897 ){
898   const void *ret = 0;
899   Vdbe *p = (Vdbe *)pStmt;
900   int n;
901   sqlite3 *db = p->db;
902 
903   assert( db!=0 );
904   n = sqlite3_column_count(pStmt);
905   if( N<n && N>=0 ){
906     N += useType*n;
907     sqlite3_mutex_enter(db->mutex);
908     assert( db->mallocFailed==0 );
909     ret = xFunc(&p->aColName[N]);
910      /* A malloc may have failed inside of the xFunc() call. If this
911     ** is the case, clear the mallocFailed flag and return NULL.
912     */
913     if( db->mallocFailed ){
914       db->mallocFailed = 0;
915       ret = 0;
916     }
917     sqlite3_mutex_leave(db->mutex);
918   }
919   return ret;
920 }
921 
922 /*
923 ** Return the name of the Nth column of the result set returned by SQL
924 ** statement pStmt.
925 */
926 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
927   return columnName(
928       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
929 }
930 #ifndef SQLITE_OMIT_UTF16
931 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
932   return columnName(
933       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
934 }
935 #endif
936 
937 /*
938 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
939 ** not define OMIT_DECLTYPE.
940 */
941 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
942 # error "Must not define both SQLITE_OMIT_DECLTYPE \
943          and SQLITE_ENABLE_COLUMN_METADATA"
944 #endif
945 
946 #ifndef SQLITE_OMIT_DECLTYPE
947 /*
948 ** Return the column declaration type (if applicable) of the 'i'th column
949 ** of the result set of SQL statement pStmt.
950 */
951 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
952   return columnName(
953       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
954 }
955 #ifndef SQLITE_OMIT_UTF16
956 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
957   return columnName(
958       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
959 }
960 #endif /* SQLITE_OMIT_UTF16 */
961 #endif /* SQLITE_OMIT_DECLTYPE */
962 
963 #ifdef SQLITE_ENABLE_COLUMN_METADATA
964 /*
965 ** Return the name of the database from which a result column derives.
966 ** NULL is returned if the result column is an expression or constant or
967 ** anything else which is not an unabiguous reference to a database column.
968 */
969 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
970   return columnName(
971       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
972 }
973 #ifndef SQLITE_OMIT_UTF16
974 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
975   return columnName(
976       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
977 }
978 #endif /* SQLITE_OMIT_UTF16 */
979 
980 /*
981 ** Return the name of the table from which a result column derives.
982 ** NULL is returned if the result column is an expression or constant or
983 ** anything else which is not an unabiguous reference to a database column.
984 */
985 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
986   return columnName(
987       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
988 }
989 #ifndef SQLITE_OMIT_UTF16
990 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
991   return columnName(
992       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
993 }
994 #endif /* SQLITE_OMIT_UTF16 */
995 
996 /*
997 ** Return the name of the table column from which a result column derives.
998 ** NULL is returned if the result column is an expression or constant or
999 ** anything else which is not an unabiguous reference to a database column.
1000 */
1001 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1002   return columnName(
1003       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1004 }
1005 #ifndef SQLITE_OMIT_UTF16
1006 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1007   return columnName(
1008       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1009 }
1010 #endif /* SQLITE_OMIT_UTF16 */
1011 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1012 
1013 
1014 /******************************* sqlite3_bind_  ***************************
1015 **
1016 ** Routines used to attach values to wildcards in a compiled SQL statement.
1017 */
1018 /*
1019 ** Unbind the value bound to variable i in virtual machine p. This is the
1020 ** the same as binding a NULL value to the column. If the "i" parameter is
1021 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1022 **
1023 ** A successful evaluation of this routine acquires the mutex on p.
1024 ** the mutex is released if any kind of error occurs.
1025 **
1026 ** The error code stored in database p->db is overwritten with the return
1027 ** value in any case.
1028 */
1029 static int vdbeUnbind(Vdbe *p, int i){
1030   Mem *pVar;
1031   if( vdbeSafetyNotNull(p) ){
1032     return SQLITE_MISUSE_BKPT;
1033   }
1034   sqlite3_mutex_enter(p->db->mutex);
1035   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1036     sqlite3Error(p->db, SQLITE_MISUSE, 0);
1037     sqlite3_mutex_leave(p->db->mutex);
1038     sqlite3_log(SQLITE_MISUSE,
1039         "bind on a busy prepared statement: [%s]", p->zSql);
1040     return SQLITE_MISUSE_BKPT;
1041   }
1042   if( i<1 || i>p->nVar ){
1043     sqlite3Error(p->db, SQLITE_RANGE, 0);
1044     sqlite3_mutex_leave(p->db->mutex);
1045     return SQLITE_RANGE;
1046   }
1047   i--;
1048   pVar = &p->aVar[i];
1049   sqlite3VdbeMemRelease(pVar);
1050   pVar->flags = MEM_Null;
1051   sqlite3Error(p->db, SQLITE_OK, 0);
1052 
1053   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1054   ** binding a new value to this variable invalidates the current query plan.
1055   **
1056   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1057   ** parameter in the WHERE clause might influence the choice of query plan
1058   ** for a statement, then the statement will be automatically recompiled,
1059   ** as if there had been a schema change, on the first sqlite3_step() call
1060   ** following any change to the bindings of that parameter.
1061   */
1062   if( p->isPrepareV2 &&
1063      ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1064   ){
1065     p->expired = 1;
1066   }
1067   return SQLITE_OK;
1068 }
1069 
1070 /*
1071 ** Bind a text or BLOB value.
1072 */
1073 static int bindText(
1074   sqlite3_stmt *pStmt,   /* The statement to bind against */
1075   int i,                 /* Index of the parameter to bind */
1076   const void *zData,     /* Pointer to the data to be bound */
1077   int nData,             /* Number of bytes of data to be bound */
1078   void (*xDel)(void*),   /* Destructor for the data */
1079   u8 encoding            /* Encoding for the data */
1080 ){
1081   Vdbe *p = (Vdbe *)pStmt;
1082   Mem *pVar;
1083   int rc;
1084 
1085   rc = vdbeUnbind(p, i);
1086   if( rc==SQLITE_OK ){
1087     if( zData!=0 ){
1088       pVar = &p->aVar[i-1];
1089       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1090       if( rc==SQLITE_OK && encoding!=0 ){
1091         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1092       }
1093       sqlite3Error(p->db, rc, 0);
1094       rc = sqlite3ApiExit(p->db, rc);
1095     }
1096     sqlite3_mutex_leave(p->db->mutex);
1097   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1098     xDel((void*)zData);
1099   }
1100   return rc;
1101 }
1102 
1103 
1104 /*
1105 ** Bind a blob value to an SQL statement variable.
1106 */
1107 int sqlite3_bind_blob(
1108   sqlite3_stmt *pStmt,
1109   int i,
1110   const void *zData,
1111   int nData,
1112   void (*xDel)(void*)
1113 ){
1114   return bindText(pStmt, i, zData, nData, xDel, 0);
1115 }
1116 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1117   int rc;
1118   Vdbe *p = (Vdbe *)pStmt;
1119   rc = vdbeUnbind(p, i);
1120   if( rc==SQLITE_OK ){
1121     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1122     sqlite3_mutex_leave(p->db->mutex);
1123   }
1124   return rc;
1125 }
1126 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1127   return sqlite3_bind_int64(p, i, (i64)iValue);
1128 }
1129 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1130   int rc;
1131   Vdbe *p = (Vdbe *)pStmt;
1132   rc = vdbeUnbind(p, i);
1133   if( rc==SQLITE_OK ){
1134     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1135     sqlite3_mutex_leave(p->db->mutex);
1136   }
1137   return rc;
1138 }
1139 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1140   int rc;
1141   Vdbe *p = (Vdbe*)pStmt;
1142   rc = vdbeUnbind(p, i);
1143   if( rc==SQLITE_OK ){
1144     sqlite3_mutex_leave(p->db->mutex);
1145   }
1146   return rc;
1147 }
1148 int sqlite3_bind_text(
1149   sqlite3_stmt *pStmt,
1150   int i,
1151   const char *zData,
1152   int nData,
1153   void (*xDel)(void*)
1154 ){
1155   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1156 }
1157 #ifndef SQLITE_OMIT_UTF16
1158 int sqlite3_bind_text16(
1159   sqlite3_stmt *pStmt,
1160   int i,
1161   const void *zData,
1162   int nData,
1163   void (*xDel)(void*)
1164 ){
1165   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1166 }
1167 #endif /* SQLITE_OMIT_UTF16 */
1168 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1169   int rc;
1170   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1171     case SQLITE_INTEGER: {
1172       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1173       break;
1174     }
1175     case SQLITE_FLOAT: {
1176       rc = sqlite3_bind_double(pStmt, i, pValue->r);
1177       break;
1178     }
1179     case SQLITE_BLOB: {
1180       if( pValue->flags & MEM_Zero ){
1181         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1182       }else{
1183         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1184       }
1185       break;
1186     }
1187     case SQLITE_TEXT: {
1188       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1189                               pValue->enc);
1190       break;
1191     }
1192     default: {
1193       rc = sqlite3_bind_null(pStmt, i);
1194       break;
1195     }
1196   }
1197   return rc;
1198 }
1199 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1200   int rc;
1201   Vdbe *p = (Vdbe *)pStmt;
1202   rc = vdbeUnbind(p, i);
1203   if( rc==SQLITE_OK ){
1204     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1205     sqlite3_mutex_leave(p->db->mutex);
1206   }
1207   return rc;
1208 }
1209 
1210 /*
1211 ** Return the number of wildcards that can be potentially bound to.
1212 ** This routine is added to support DBD::SQLite.
1213 */
1214 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1215   Vdbe *p = (Vdbe*)pStmt;
1216   return p ? p->nVar : 0;
1217 }
1218 
1219 /*
1220 ** Return the name of a wildcard parameter.  Return NULL if the index
1221 ** is out of range or if the wildcard is unnamed.
1222 **
1223 ** The result is always UTF-8.
1224 */
1225 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1226   Vdbe *p = (Vdbe*)pStmt;
1227   if( p==0 || i<1 || i>p->nzVar ){
1228     return 0;
1229   }
1230   return p->azVar[i-1];
1231 }
1232 
1233 /*
1234 ** Given a wildcard parameter name, return the index of the variable
1235 ** with that name.  If there is no variable with the given name,
1236 ** return 0.
1237 */
1238 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1239   int i;
1240   if( p==0 ){
1241     return 0;
1242   }
1243   if( zName ){
1244     for(i=0; i<p->nzVar; i++){
1245       const char *z = p->azVar[i];
1246       if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
1247         return i+1;
1248       }
1249     }
1250   }
1251   return 0;
1252 }
1253 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1254   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1255 }
1256 
1257 /*
1258 ** Transfer all bindings from the first statement over to the second.
1259 */
1260 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1261   Vdbe *pFrom = (Vdbe*)pFromStmt;
1262   Vdbe *pTo = (Vdbe*)pToStmt;
1263   int i;
1264   assert( pTo->db==pFrom->db );
1265   assert( pTo->nVar==pFrom->nVar );
1266   sqlite3_mutex_enter(pTo->db->mutex);
1267   for(i=0; i<pFrom->nVar; i++){
1268     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1269   }
1270   sqlite3_mutex_leave(pTo->db->mutex);
1271   return SQLITE_OK;
1272 }
1273 
1274 #ifndef SQLITE_OMIT_DEPRECATED
1275 /*
1276 ** Deprecated external interface.  Internal/core SQLite code
1277 ** should call sqlite3TransferBindings.
1278 **
1279 ** Is is misuse to call this routine with statements from different
1280 ** database connections.  But as this is a deprecated interface, we
1281 ** will not bother to check for that condition.
1282 **
1283 ** If the two statements contain a different number of bindings, then
1284 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1285 ** SQLITE_OK is returned.
1286 */
1287 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1288   Vdbe *pFrom = (Vdbe*)pFromStmt;
1289   Vdbe *pTo = (Vdbe*)pToStmt;
1290   if( pFrom->nVar!=pTo->nVar ){
1291     return SQLITE_ERROR;
1292   }
1293   if( pTo->isPrepareV2 && pTo->expmask ){
1294     pTo->expired = 1;
1295   }
1296   if( pFrom->isPrepareV2 && pFrom->expmask ){
1297     pFrom->expired = 1;
1298   }
1299   return sqlite3TransferBindings(pFromStmt, pToStmt);
1300 }
1301 #endif
1302 
1303 /*
1304 ** Return the sqlite3* database handle to which the prepared statement given
1305 ** in the argument belongs.  This is the same database handle that was
1306 ** the first argument to the sqlite3_prepare() that was used to create
1307 ** the statement in the first place.
1308 */
1309 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1310   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1311 }
1312 
1313 /*
1314 ** Return true if the prepared statement is guaranteed to not modify the
1315 ** database.
1316 */
1317 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1318   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1319 }
1320 
1321 /*
1322 ** Return true if the prepared statement is in need of being reset.
1323 */
1324 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1325   Vdbe *v = (Vdbe*)pStmt;
1326   return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
1327 }
1328 
1329 /*
1330 ** Return a pointer to the next prepared statement after pStmt associated
1331 ** with database connection pDb.  If pStmt is NULL, return the first
1332 ** prepared statement for the database connection.  Return NULL if there
1333 ** are no more.
1334 */
1335 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1336   sqlite3_stmt *pNext;
1337   sqlite3_mutex_enter(pDb->mutex);
1338   if( pStmt==0 ){
1339     pNext = (sqlite3_stmt*)pDb->pVdbe;
1340   }else{
1341     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1342   }
1343   sqlite3_mutex_leave(pDb->mutex);
1344   return pNext;
1345 }
1346 
1347 /*
1348 ** Return the value of a status counter for a prepared statement
1349 */
1350 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1351   Vdbe *pVdbe = (Vdbe*)pStmt;
1352   u32 v = pVdbe->aCounter[op];
1353   if( resetFlag ) pVdbe->aCounter[op] = 0;
1354   return (int)v;
1355 }
1356