1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 if( db->xProfile ){ 71 db->xProfile(db->pProfileArg, p->zSql, iElapse); 72 } 73 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 75 } 76 p->startTime = 0; 77 } 78 /* 79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 80 ** is needed, and it invokes the callback if it is needed. 81 */ 82 # define checkProfileCallback(DB,P) \ 83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 84 #else 85 # define checkProfileCallback(DB,P) /*no-op*/ 86 #endif 87 88 /* 89 ** The following routine destroys a virtual machine that is created by 90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 91 ** success/failure code that describes the result of executing the virtual 92 ** machine. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_finalize(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 101 ** pointer is a harmless no-op. */ 102 rc = SQLITE_OK; 103 }else{ 104 Vdbe *v = (Vdbe*)pStmt; 105 sqlite3 *db = v->db; 106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 107 sqlite3_mutex_enter(db->mutex); 108 checkProfileCallback(db, v); 109 rc = sqlite3VdbeFinalize(v); 110 rc = sqlite3ApiExit(db, rc); 111 sqlite3LeaveMutexAndCloseZombie(db); 112 } 113 return rc; 114 } 115 116 /* 117 ** Terminate the current execution of an SQL statement and reset it 118 ** back to its starting state so that it can be reused. A success code from 119 ** the prior execution is returned. 120 ** 121 ** This routine sets the error code and string returned by 122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 123 */ 124 int sqlite3_reset(sqlite3_stmt *pStmt){ 125 int rc; 126 if( pStmt==0 ){ 127 rc = SQLITE_OK; 128 }else{ 129 Vdbe *v = (Vdbe*)pStmt; 130 sqlite3 *db = v->db; 131 sqlite3_mutex_enter(db->mutex); 132 checkProfileCallback(db, v); 133 rc = sqlite3VdbeReset(v); 134 sqlite3VdbeRewind(v); 135 assert( (rc & (db->errMask))==rc ); 136 rc = sqlite3ApiExit(db, rc); 137 sqlite3_mutex_leave(db->mutex); 138 } 139 return rc; 140 } 141 142 /* 143 ** Set all the parameters in the compiled SQL statement to NULL. 144 */ 145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 146 int i; 147 int rc = SQLITE_OK; 148 Vdbe *p = (Vdbe*)pStmt; 149 #if SQLITE_THREADSAFE 150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 151 #endif 152 sqlite3_mutex_enter(mutex); 153 for(i=0; i<p->nVar; i++){ 154 sqlite3VdbeMemRelease(&p->aVar[i]); 155 p->aVar[i].flags = MEM_Null; 156 } 157 if( p->isPrepareV2 && p->expmask ){ 158 p->expired = 1; 159 } 160 sqlite3_mutex_leave(mutex); 161 return rc; 162 } 163 164 165 /**************************** sqlite3_value_ ******************************* 166 ** The following routines extract information from a Mem or sqlite3_value 167 ** structure. 168 */ 169 const void *sqlite3_value_blob(sqlite3_value *pVal){ 170 Mem *p = (Mem*)pVal; 171 if( p->flags & (MEM_Blob|MEM_Str) ){ 172 if( ExpandBlob(p)!=SQLITE_OK ){ 173 assert( p->flags==MEM_Null && p->z==0 ); 174 return 0; 175 } 176 p->flags |= MEM_Blob; 177 return p->n ? p->z : 0; 178 }else{ 179 return sqlite3_value_text(pVal); 180 } 181 } 182 int sqlite3_value_bytes(sqlite3_value *pVal){ 183 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 184 } 185 int sqlite3_value_bytes16(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 187 } 188 double sqlite3_value_double(sqlite3_value *pVal){ 189 return sqlite3VdbeRealValue((Mem*)pVal); 190 } 191 int sqlite3_value_int(sqlite3_value *pVal){ 192 return (int)sqlite3VdbeIntValue((Mem*)pVal); 193 } 194 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 195 return sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 198 Mem *pMem = (Mem*)pVal; 199 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 200 } 201 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 202 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 203 } 204 #ifndef SQLITE_OMIT_UTF16 205 const void *sqlite3_value_text16(sqlite3_value* pVal){ 206 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 207 } 208 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 209 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 210 } 211 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 212 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 213 } 214 #endif /* SQLITE_OMIT_UTF16 */ 215 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 216 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 217 ** point number string BLOB NULL 218 */ 219 int sqlite3_value_type(sqlite3_value* pVal){ 220 static const u8 aType[] = { 221 SQLITE_BLOB, /* 0x00 */ 222 SQLITE_NULL, /* 0x01 */ 223 SQLITE_TEXT, /* 0x02 */ 224 SQLITE_NULL, /* 0x03 */ 225 SQLITE_INTEGER, /* 0x04 */ 226 SQLITE_NULL, /* 0x05 */ 227 SQLITE_INTEGER, /* 0x06 */ 228 SQLITE_NULL, /* 0x07 */ 229 SQLITE_FLOAT, /* 0x08 */ 230 SQLITE_NULL, /* 0x09 */ 231 SQLITE_FLOAT, /* 0x0a */ 232 SQLITE_NULL, /* 0x0b */ 233 SQLITE_INTEGER, /* 0x0c */ 234 SQLITE_NULL, /* 0x0d */ 235 SQLITE_INTEGER, /* 0x0e */ 236 SQLITE_NULL, /* 0x0f */ 237 SQLITE_BLOB, /* 0x10 */ 238 SQLITE_NULL, /* 0x11 */ 239 SQLITE_TEXT, /* 0x12 */ 240 SQLITE_NULL, /* 0x13 */ 241 SQLITE_INTEGER, /* 0x14 */ 242 SQLITE_NULL, /* 0x15 */ 243 SQLITE_INTEGER, /* 0x16 */ 244 SQLITE_NULL, /* 0x17 */ 245 SQLITE_FLOAT, /* 0x18 */ 246 SQLITE_NULL, /* 0x19 */ 247 SQLITE_FLOAT, /* 0x1a */ 248 SQLITE_NULL, /* 0x1b */ 249 SQLITE_INTEGER, /* 0x1c */ 250 SQLITE_NULL, /* 0x1d */ 251 SQLITE_INTEGER, /* 0x1e */ 252 SQLITE_NULL, /* 0x1f */ 253 }; 254 return aType[pVal->flags&MEM_AffMask]; 255 } 256 257 /* Make a copy of an sqlite3_value object 258 */ 259 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 260 sqlite3_value *pNew; 261 if( pOrig==0 ) return 0; 262 pNew = sqlite3_malloc( sizeof(*pNew) ); 263 if( pNew==0 ) return 0; 264 memset(pNew, 0, sizeof(*pNew)); 265 memcpy(pNew, pOrig, MEMCELLSIZE); 266 pNew->flags &= ~MEM_Dyn; 267 pNew->db = 0; 268 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 269 pNew->flags &= ~(MEM_Static|MEM_Dyn); 270 pNew->flags |= MEM_Ephem; 271 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 272 sqlite3ValueFree(pNew); 273 pNew = 0; 274 } 275 } 276 return pNew; 277 } 278 279 /* Destroy an sqlite3_value object previously obtained from 280 ** sqlite3_value_dup(). 281 */ 282 void sqlite3_value_free(sqlite3_value *pOld){ 283 sqlite3ValueFree(pOld); 284 } 285 286 287 /**************************** sqlite3_result_ ******************************* 288 ** The following routines are used by user-defined functions to specify 289 ** the function result. 290 ** 291 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 292 ** result as a string or blob but if the string or blob is too large, it 293 ** then sets the error code to SQLITE_TOOBIG 294 ** 295 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 296 ** on value P is not going to be used and need to be destroyed. 297 */ 298 static void setResultStrOrError( 299 sqlite3_context *pCtx, /* Function context */ 300 const char *z, /* String pointer */ 301 int n, /* Bytes in string, or negative */ 302 u8 enc, /* Encoding of z. 0 for BLOBs */ 303 void (*xDel)(void*) /* Destructor function */ 304 ){ 305 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 306 sqlite3_result_error_toobig(pCtx); 307 } 308 } 309 static int invokeValueDestructor( 310 const void *p, /* Value to destroy */ 311 void (*xDel)(void*), /* The destructor */ 312 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 313 ){ 314 assert( xDel!=SQLITE_DYNAMIC ); 315 if( xDel==0 ){ 316 /* noop */ 317 }else if( xDel==SQLITE_TRANSIENT ){ 318 /* noop */ 319 }else{ 320 xDel((void*)p); 321 } 322 if( pCtx ) sqlite3_result_error_toobig(pCtx); 323 return SQLITE_TOOBIG; 324 } 325 void sqlite3_result_blob( 326 sqlite3_context *pCtx, 327 const void *z, 328 int n, 329 void (*xDel)(void *) 330 ){ 331 assert( n>=0 ); 332 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 333 setResultStrOrError(pCtx, z, n, 0, xDel); 334 } 335 void sqlite3_result_blob64( 336 sqlite3_context *pCtx, 337 const void *z, 338 sqlite3_uint64 n, 339 void (*xDel)(void *) 340 ){ 341 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 342 assert( xDel!=SQLITE_DYNAMIC ); 343 if( n>0x7fffffff ){ 344 (void)invokeValueDestructor(z, xDel, pCtx); 345 }else{ 346 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 347 } 348 } 349 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 350 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 351 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 352 } 353 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 354 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 355 pCtx->isError = SQLITE_ERROR; 356 pCtx->fErrorOrAux = 1; 357 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 358 } 359 #ifndef SQLITE_OMIT_UTF16 360 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 361 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 362 pCtx->isError = SQLITE_ERROR; 363 pCtx->fErrorOrAux = 1; 364 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 365 } 366 #endif 367 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 369 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 370 } 371 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 372 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 373 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 374 } 375 void sqlite3_result_null(sqlite3_context *pCtx){ 376 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 377 sqlite3VdbeMemSetNull(pCtx->pOut); 378 } 379 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 380 Mem *pOut = pCtx->pOut; 381 assert( sqlite3_mutex_held(pOut->db->mutex) ); 382 pOut->eSubtype = eSubtype & 0xff; 383 pOut->flags |= MEM_Subtype; 384 } 385 void sqlite3_result_text( 386 sqlite3_context *pCtx, 387 const char *z, 388 int n, 389 void (*xDel)(void *) 390 ){ 391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 392 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 393 } 394 void sqlite3_result_text64( 395 sqlite3_context *pCtx, 396 const char *z, 397 sqlite3_uint64 n, 398 void (*xDel)(void *), 399 unsigned char enc 400 ){ 401 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 402 assert( xDel!=SQLITE_DYNAMIC ); 403 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 404 if( n>0x7fffffff ){ 405 (void)invokeValueDestructor(z, xDel, pCtx); 406 }else{ 407 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 408 } 409 } 410 #ifndef SQLITE_OMIT_UTF16 411 void sqlite3_result_text16( 412 sqlite3_context *pCtx, 413 const void *z, 414 int n, 415 void (*xDel)(void *) 416 ){ 417 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 418 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 419 } 420 void sqlite3_result_text16be( 421 sqlite3_context *pCtx, 422 const void *z, 423 int n, 424 void (*xDel)(void *) 425 ){ 426 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 427 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 428 } 429 void sqlite3_result_text16le( 430 sqlite3_context *pCtx, 431 const void *z, 432 int n, 433 void (*xDel)(void *) 434 ){ 435 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 436 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 437 } 438 #endif /* SQLITE_OMIT_UTF16 */ 439 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 441 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 442 } 443 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 445 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 446 } 447 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 448 Mem *pOut = pCtx->pOut; 449 assert( sqlite3_mutex_held(pOut->db->mutex) ); 450 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 451 return SQLITE_TOOBIG; 452 } 453 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 454 return SQLITE_OK; 455 } 456 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 457 pCtx->isError = errCode; 458 pCtx->fErrorOrAux = 1; 459 #ifdef SQLITE_DEBUG 460 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 461 #endif 462 if( pCtx->pOut->flags & MEM_Null ){ 463 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 464 SQLITE_UTF8, SQLITE_STATIC); 465 } 466 } 467 468 /* Force an SQLITE_TOOBIG error. */ 469 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 470 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 471 pCtx->isError = SQLITE_TOOBIG; 472 pCtx->fErrorOrAux = 1; 473 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 474 SQLITE_UTF8, SQLITE_STATIC); 475 } 476 477 /* An SQLITE_NOMEM error. */ 478 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 479 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 480 sqlite3VdbeMemSetNull(pCtx->pOut); 481 pCtx->isError = SQLITE_NOMEM_BKPT; 482 pCtx->fErrorOrAux = 1; 483 sqlite3OomFault(pCtx->pOut->db); 484 } 485 486 /* 487 ** This function is called after a transaction has been committed. It 488 ** invokes callbacks registered with sqlite3_wal_hook() as required. 489 */ 490 static int doWalCallbacks(sqlite3 *db){ 491 int rc = SQLITE_OK; 492 #ifndef SQLITE_OMIT_WAL 493 int i; 494 for(i=0; i<db->nDb; i++){ 495 Btree *pBt = db->aDb[i].pBt; 496 if( pBt ){ 497 int nEntry; 498 sqlite3BtreeEnter(pBt); 499 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 500 sqlite3BtreeLeave(pBt); 501 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 502 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 503 } 504 } 505 } 506 #endif 507 return rc; 508 } 509 510 511 /* 512 ** Execute the statement pStmt, either until a row of data is ready, the 513 ** statement is completely executed or an error occurs. 514 ** 515 ** This routine implements the bulk of the logic behind the sqlite_step() 516 ** API. The only thing omitted is the automatic recompile if a 517 ** schema change has occurred. That detail is handled by the 518 ** outer sqlite3_step() wrapper procedure. 519 */ 520 static int sqlite3Step(Vdbe *p){ 521 sqlite3 *db; 522 int rc; 523 524 assert(p); 525 if( p->magic!=VDBE_MAGIC_RUN ){ 526 /* We used to require that sqlite3_reset() be called before retrying 527 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 528 ** with version 3.7.0, we changed this so that sqlite3_reset() would 529 ** be called automatically instead of throwing the SQLITE_MISUSE error. 530 ** This "automatic-reset" change is not technically an incompatibility, 531 ** since any application that receives an SQLITE_MISUSE is broken by 532 ** definition. 533 ** 534 ** Nevertheless, some published applications that were originally written 535 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 536 ** returns, and those were broken by the automatic-reset change. As a 537 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 538 ** legacy behavior of returning SQLITE_MISUSE for cases where the 539 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 540 ** or SQLITE_BUSY error. 541 */ 542 #ifdef SQLITE_OMIT_AUTORESET 543 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 544 sqlite3_reset((sqlite3_stmt*)p); 545 }else{ 546 return SQLITE_MISUSE_BKPT; 547 } 548 #else 549 sqlite3_reset((sqlite3_stmt*)p); 550 #endif 551 } 552 553 /* Check that malloc() has not failed. If it has, return early. */ 554 db = p->db; 555 if( db->mallocFailed ){ 556 p->rc = SQLITE_NOMEM; 557 return SQLITE_NOMEM_BKPT; 558 } 559 560 if( p->pc<=0 && p->expired ){ 561 p->rc = SQLITE_SCHEMA; 562 rc = SQLITE_ERROR; 563 goto end_of_step; 564 } 565 if( p->pc<0 ){ 566 /* If there are no other statements currently running, then 567 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 568 ** from interrupting a statement that has not yet started. 569 */ 570 if( db->nVdbeActive==0 ){ 571 db->u1.isInterrupted = 0; 572 } 573 574 assert( db->nVdbeWrite>0 || db->autoCommit==0 575 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 576 ); 577 578 #ifndef SQLITE_OMIT_TRACE 579 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0) 580 && !db->init.busy && p->zSql ){ 581 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 582 }else{ 583 assert( p->startTime==0 ); 584 } 585 #endif 586 587 db->nVdbeActive++; 588 if( p->readOnly==0 ) db->nVdbeWrite++; 589 if( p->bIsReader ) db->nVdbeRead++; 590 p->pc = 0; 591 } 592 #ifdef SQLITE_DEBUG 593 p->rcApp = SQLITE_OK; 594 #endif 595 #ifndef SQLITE_OMIT_EXPLAIN 596 if( p->explain ){ 597 rc = sqlite3VdbeList(p); 598 }else 599 #endif /* SQLITE_OMIT_EXPLAIN */ 600 { 601 db->nVdbeExec++; 602 rc = sqlite3VdbeExec(p); 603 db->nVdbeExec--; 604 } 605 606 #ifndef SQLITE_OMIT_TRACE 607 /* If the statement completed successfully, invoke the profile callback */ 608 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 609 #endif 610 611 if( rc==SQLITE_DONE ){ 612 assert( p->rc==SQLITE_OK ); 613 p->rc = doWalCallbacks(db); 614 if( p->rc!=SQLITE_OK ){ 615 rc = SQLITE_ERROR; 616 } 617 } 618 619 db->errCode = rc; 620 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 621 p->rc = SQLITE_NOMEM_BKPT; 622 } 623 end_of_step: 624 /* At this point local variable rc holds the value that should be 625 ** returned if this statement was compiled using the legacy 626 ** sqlite3_prepare() interface. According to the docs, this can only 627 ** be one of the values in the first assert() below. Variable p->rc 628 ** contains the value that would be returned if sqlite3_finalize() 629 ** were called on statement p. 630 */ 631 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 632 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 633 ); 634 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 635 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 636 /* If this statement was prepared using sqlite3_prepare_v2(), and an 637 ** error has occurred, then return the error code in p->rc to the 638 ** caller. Set the error code in the database handle to the same value. 639 */ 640 rc = sqlite3VdbeTransferError(p); 641 } 642 return (rc&db->errMask); 643 } 644 645 /* 646 ** This is the top-level implementation of sqlite3_step(). Call 647 ** sqlite3Step() to do most of the work. If a schema error occurs, 648 ** call sqlite3Reprepare() and try again. 649 */ 650 int sqlite3_step(sqlite3_stmt *pStmt){ 651 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 652 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 653 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 654 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 655 sqlite3 *db; /* The database connection */ 656 657 if( vdbeSafetyNotNull(v) ){ 658 return SQLITE_MISUSE_BKPT; 659 } 660 db = v->db; 661 sqlite3_mutex_enter(db->mutex); 662 v->doingRerun = 0; 663 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 664 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 665 int savedPc = v->pc; 666 rc2 = rc = sqlite3Reprepare(v); 667 if( rc!=SQLITE_OK) break; 668 sqlite3_reset(pStmt); 669 if( savedPc>=0 ) v->doingRerun = 1; 670 assert( v->expired==0 ); 671 } 672 if( rc2!=SQLITE_OK ){ 673 /* This case occurs after failing to recompile an sql statement. 674 ** The error message from the SQL compiler has already been loaded 675 ** into the database handle. This block copies the error message 676 ** from the database handle into the statement and sets the statement 677 ** program counter to 0 to ensure that when the statement is 678 ** finalized or reset the parser error message is available via 679 ** sqlite3_errmsg() and sqlite3_errcode(). 680 */ 681 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 682 sqlite3DbFree(db, v->zErrMsg); 683 if( !db->mallocFailed ){ 684 v->zErrMsg = sqlite3DbStrDup(db, zErr); 685 v->rc = rc2; 686 } else { 687 v->zErrMsg = 0; 688 v->rc = rc = SQLITE_NOMEM_BKPT; 689 } 690 } 691 rc = sqlite3ApiExit(db, rc); 692 sqlite3_mutex_leave(db->mutex); 693 return rc; 694 } 695 696 697 /* 698 ** Extract the user data from a sqlite3_context structure and return a 699 ** pointer to it. 700 */ 701 void *sqlite3_user_data(sqlite3_context *p){ 702 assert( p && p->pFunc ); 703 return p->pFunc->pUserData; 704 } 705 706 /* 707 ** Extract the user data from a sqlite3_context structure and return a 708 ** pointer to it. 709 ** 710 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 711 ** returns a copy of the pointer to the database connection (the 1st 712 ** parameter) of the sqlite3_create_function() and 713 ** sqlite3_create_function16() routines that originally registered the 714 ** application defined function. 715 */ 716 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 717 assert( p && p->pOut ); 718 return p->pOut->db; 719 } 720 721 /* 722 ** Return the current time for a statement. If the current time 723 ** is requested more than once within the same run of a single prepared 724 ** statement, the exact same time is returned for each invocation regardless 725 ** of the amount of time that elapses between invocations. In other words, 726 ** the time returned is always the time of the first call. 727 */ 728 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 729 int rc; 730 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 731 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 732 assert( p->pVdbe!=0 ); 733 #else 734 sqlite3_int64 iTime = 0; 735 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 736 #endif 737 if( *piTime==0 ){ 738 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 739 if( rc ) *piTime = 0; 740 } 741 return *piTime; 742 } 743 744 /* 745 ** The following is the implementation of an SQL function that always 746 ** fails with an error message stating that the function is used in the 747 ** wrong context. The sqlite3_overload_function() API might construct 748 ** SQL function that use this routine so that the functions will exist 749 ** for name resolution but are actually overloaded by the xFindFunction 750 ** method of virtual tables. 751 */ 752 void sqlite3InvalidFunction( 753 sqlite3_context *context, /* The function calling context */ 754 int NotUsed, /* Number of arguments to the function */ 755 sqlite3_value **NotUsed2 /* Value of each argument */ 756 ){ 757 const char *zName = context->pFunc->zName; 758 char *zErr; 759 UNUSED_PARAMETER2(NotUsed, NotUsed2); 760 zErr = sqlite3_mprintf( 761 "unable to use function %s in the requested context", zName); 762 sqlite3_result_error(context, zErr, -1); 763 sqlite3_free(zErr); 764 } 765 766 /* 767 ** Create a new aggregate context for p and return a pointer to 768 ** its pMem->z element. 769 */ 770 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 771 Mem *pMem = p->pMem; 772 assert( (pMem->flags & MEM_Agg)==0 ); 773 if( nByte<=0 ){ 774 sqlite3VdbeMemSetNull(pMem); 775 pMem->z = 0; 776 }else{ 777 sqlite3VdbeMemClearAndResize(pMem, nByte); 778 pMem->flags = MEM_Agg; 779 pMem->u.pDef = p->pFunc; 780 if( pMem->z ){ 781 memset(pMem->z, 0, nByte); 782 } 783 } 784 return (void*)pMem->z; 785 } 786 787 /* 788 ** Allocate or return the aggregate context for a user function. A new 789 ** context is allocated on the first call. Subsequent calls return the 790 ** same context that was returned on prior calls. 791 */ 792 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 793 assert( p && p->pFunc && p->pFunc->xFinalize ); 794 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 795 testcase( nByte<0 ); 796 if( (p->pMem->flags & MEM_Agg)==0 ){ 797 return createAggContext(p, nByte); 798 }else{ 799 return (void*)p->pMem->z; 800 } 801 } 802 803 /* 804 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 805 ** the user-function defined by pCtx. 806 */ 807 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 808 AuxData *pAuxData; 809 810 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 811 #if SQLITE_ENABLE_STAT3_OR_STAT4 812 if( pCtx->pVdbe==0 ) return 0; 813 #else 814 assert( pCtx->pVdbe!=0 ); 815 #endif 816 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 817 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 818 } 819 820 return (pAuxData ? pAuxData->pAux : 0); 821 } 822 823 /* 824 ** Set the auxiliary data pointer and delete function, for the iArg'th 825 ** argument to the user-function defined by pCtx. Any previous value is 826 ** deleted by calling the delete function specified when it was set. 827 */ 828 void sqlite3_set_auxdata( 829 sqlite3_context *pCtx, 830 int iArg, 831 void *pAux, 832 void (*xDelete)(void*) 833 ){ 834 AuxData *pAuxData; 835 Vdbe *pVdbe = pCtx->pVdbe; 836 837 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 838 if( iArg<0 ) goto failed; 839 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 840 if( pVdbe==0 ) goto failed; 841 #else 842 assert( pVdbe!=0 ); 843 #endif 844 845 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 846 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 847 } 848 if( pAuxData==0 ){ 849 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 850 if( !pAuxData ) goto failed; 851 pAuxData->iOp = pCtx->iOp; 852 pAuxData->iArg = iArg; 853 pAuxData->pNext = pVdbe->pAuxData; 854 pVdbe->pAuxData = pAuxData; 855 if( pCtx->fErrorOrAux==0 ){ 856 pCtx->isError = 0; 857 pCtx->fErrorOrAux = 1; 858 } 859 }else if( pAuxData->xDelete ){ 860 pAuxData->xDelete(pAuxData->pAux); 861 } 862 863 pAuxData->pAux = pAux; 864 pAuxData->xDelete = xDelete; 865 return; 866 867 failed: 868 if( xDelete ){ 869 xDelete(pAux); 870 } 871 } 872 873 #ifndef SQLITE_OMIT_DEPRECATED 874 /* 875 ** Return the number of times the Step function of an aggregate has been 876 ** called. 877 ** 878 ** This function is deprecated. Do not use it for new code. It is 879 ** provide only to avoid breaking legacy code. New aggregate function 880 ** implementations should keep their own counts within their aggregate 881 ** context. 882 */ 883 int sqlite3_aggregate_count(sqlite3_context *p){ 884 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 885 return p->pMem->n; 886 } 887 #endif 888 889 /* 890 ** Return the number of columns in the result set for the statement pStmt. 891 */ 892 int sqlite3_column_count(sqlite3_stmt *pStmt){ 893 Vdbe *pVm = (Vdbe *)pStmt; 894 return pVm ? pVm->nResColumn : 0; 895 } 896 897 /* 898 ** Return the number of values available from the current row of the 899 ** currently executing statement pStmt. 900 */ 901 int sqlite3_data_count(sqlite3_stmt *pStmt){ 902 Vdbe *pVm = (Vdbe *)pStmt; 903 if( pVm==0 || pVm->pResultSet==0 ) return 0; 904 return pVm->nResColumn; 905 } 906 907 /* 908 ** Return a pointer to static memory containing an SQL NULL value. 909 */ 910 static const Mem *columnNullValue(void){ 911 /* Even though the Mem structure contains an element 912 ** of type i64, on certain architectures (x86) with certain compiler 913 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 914 ** instead of an 8-byte one. This all works fine, except that when 915 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 916 ** that a Mem structure is located on an 8-byte boundary. To prevent 917 ** these assert()s from failing, when building with SQLITE_DEBUG defined 918 ** using gcc, we force nullMem to be 8-byte aligned using the magical 919 ** __attribute__((aligned(8))) macro. */ 920 static const Mem nullMem 921 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 922 __attribute__((aligned(8))) 923 #endif 924 = { 925 /* .u = */ {0}, 926 /* .flags = */ (u16)MEM_Null, 927 /* .enc = */ (u8)0, 928 /* .eSubtype = */ (u8)0, 929 /* .n = */ (int)0, 930 /* .z = */ (char*)0, 931 /* .zMalloc = */ (char*)0, 932 /* .szMalloc = */ (int)0, 933 /* .uTemp = */ (u32)0, 934 /* .db = */ (sqlite3*)0, 935 /* .xDel = */ (void(*)(void*))0, 936 #ifdef SQLITE_DEBUG 937 /* .pScopyFrom = */ (Mem*)0, 938 /* .pFiller = */ (void*)0, 939 #endif 940 }; 941 return &nullMem; 942 } 943 944 /* 945 ** Check to see if column iCol of the given statement is valid. If 946 ** it is, return a pointer to the Mem for the value of that column. 947 ** If iCol is not valid, return a pointer to a Mem which has a value 948 ** of NULL. 949 */ 950 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 951 Vdbe *pVm; 952 Mem *pOut; 953 954 pVm = (Vdbe *)pStmt; 955 if( pVm==0 ) return (Mem*)columnNullValue(); 956 assert( pVm->db ); 957 sqlite3_mutex_enter(pVm->db->mutex); 958 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 959 pOut = &pVm->pResultSet[i]; 960 }else{ 961 sqlite3Error(pVm->db, SQLITE_RANGE); 962 pOut = (Mem*)columnNullValue(); 963 } 964 return pOut; 965 } 966 967 /* 968 ** This function is called after invoking an sqlite3_value_XXX function on a 969 ** column value (i.e. a value returned by evaluating an SQL expression in the 970 ** select list of a SELECT statement) that may cause a malloc() failure. If 971 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 972 ** code of statement pStmt set to SQLITE_NOMEM. 973 ** 974 ** Specifically, this is called from within: 975 ** 976 ** sqlite3_column_int() 977 ** sqlite3_column_int64() 978 ** sqlite3_column_text() 979 ** sqlite3_column_text16() 980 ** sqlite3_column_real() 981 ** sqlite3_column_bytes() 982 ** sqlite3_column_bytes16() 983 ** sqiite3_column_blob() 984 */ 985 static void columnMallocFailure(sqlite3_stmt *pStmt) 986 { 987 /* If malloc() failed during an encoding conversion within an 988 ** sqlite3_column_XXX API, then set the return code of the statement to 989 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 990 ** and _finalize() will return NOMEM. 991 */ 992 Vdbe *p = (Vdbe *)pStmt; 993 if( p ){ 994 assert( p->db!=0 ); 995 assert( sqlite3_mutex_held(p->db->mutex) ); 996 p->rc = sqlite3ApiExit(p->db, p->rc); 997 sqlite3_mutex_leave(p->db->mutex); 998 } 999 } 1000 1001 /**************************** sqlite3_column_ ******************************* 1002 ** The following routines are used to access elements of the current row 1003 ** in the result set. 1004 */ 1005 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1006 const void *val; 1007 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1008 /* Even though there is no encoding conversion, value_blob() might 1009 ** need to call malloc() to expand the result of a zeroblob() 1010 ** expression. 1011 */ 1012 columnMallocFailure(pStmt); 1013 return val; 1014 } 1015 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1016 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1017 columnMallocFailure(pStmt); 1018 return val; 1019 } 1020 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1021 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1022 columnMallocFailure(pStmt); 1023 return val; 1024 } 1025 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1026 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1027 columnMallocFailure(pStmt); 1028 return val; 1029 } 1030 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1031 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1032 columnMallocFailure(pStmt); 1033 return val; 1034 } 1035 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1036 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1037 columnMallocFailure(pStmt); 1038 return val; 1039 } 1040 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1041 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1042 columnMallocFailure(pStmt); 1043 return val; 1044 } 1045 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1046 Mem *pOut = columnMem(pStmt, i); 1047 if( pOut->flags&MEM_Static ){ 1048 pOut->flags &= ~MEM_Static; 1049 pOut->flags |= MEM_Ephem; 1050 } 1051 columnMallocFailure(pStmt); 1052 return (sqlite3_value *)pOut; 1053 } 1054 #ifndef SQLITE_OMIT_UTF16 1055 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1056 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1057 columnMallocFailure(pStmt); 1058 return val; 1059 } 1060 #endif /* SQLITE_OMIT_UTF16 */ 1061 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1062 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1063 columnMallocFailure(pStmt); 1064 return iType; 1065 } 1066 1067 /* 1068 ** Convert the N-th element of pStmt->pColName[] into a string using 1069 ** xFunc() then return that string. If N is out of range, return 0. 1070 ** 1071 ** There are up to 5 names for each column. useType determines which 1072 ** name is returned. Here are the names: 1073 ** 1074 ** 0 The column name as it should be displayed for output 1075 ** 1 The datatype name for the column 1076 ** 2 The name of the database that the column derives from 1077 ** 3 The name of the table that the column derives from 1078 ** 4 The name of the table column that the result column derives from 1079 ** 1080 ** If the result is not a simple column reference (if it is an expression 1081 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1082 */ 1083 static const void *columnName( 1084 sqlite3_stmt *pStmt, 1085 int N, 1086 const void *(*xFunc)(Mem*), 1087 int useType 1088 ){ 1089 const void *ret; 1090 Vdbe *p; 1091 int n; 1092 sqlite3 *db; 1093 #ifdef SQLITE_ENABLE_API_ARMOR 1094 if( pStmt==0 ){ 1095 (void)SQLITE_MISUSE_BKPT; 1096 return 0; 1097 } 1098 #endif 1099 ret = 0; 1100 p = (Vdbe *)pStmt; 1101 db = p->db; 1102 assert( db!=0 ); 1103 n = sqlite3_column_count(pStmt); 1104 if( N<n && N>=0 ){ 1105 N += useType*n; 1106 sqlite3_mutex_enter(db->mutex); 1107 assert( db->mallocFailed==0 ); 1108 ret = xFunc(&p->aColName[N]); 1109 /* A malloc may have failed inside of the xFunc() call. If this 1110 ** is the case, clear the mallocFailed flag and return NULL. 1111 */ 1112 if( db->mallocFailed ){ 1113 sqlite3OomClear(db); 1114 ret = 0; 1115 } 1116 sqlite3_mutex_leave(db->mutex); 1117 } 1118 return ret; 1119 } 1120 1121 /* 1122 ** Return the name of the Nth column of the result set returned by SQL 1123 ** statement pStmt. 1124 */ 1125 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1126 return columnName( 1127 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1128 } 1129 #ifndef SQLITE_OMIT_UTF16 1130 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1131 return columnName( 1132 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1133 } 1134 #endif 1135 1136 /* 1137 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1138 ** not define OMIT_DECLTYPE. 1139 */ 1140 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1141 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1142 and SQLITE_ENABLE_COLUMN_METADATA" 1143 #endif 1144 1145 #ifndef SQLITE_OMIT_DECLTYPE 1146 /* 1147 ** Return the column declaration type (if applicable) of the 'i'th column 1148 ** of the result set of SQL statement pStmt. 1149 */ 1150 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1151 return columnName( 1152 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1153 } 1154 #ifndef SQLITE_OMIT_UTF16 1155 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1156 return columnName( 1157 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1158 } 1159 #endif /* SQLITE_OMIT_UTF16 */ 1160 #endif /* SQLITE_OMIT_DECLTYPE */ 1161 1162 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1163 /* 1164 ** Return the name of the database from which a result column derives. 1165 ** NULL is returned if the result column is an expression or constant or 1166 ** anything else which is not an unambiguous reference to a database column. 1167 */ 1168 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1169 return columnName( 1170 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1171 } 1172 #ifndef SQLITE_OMIT_UTF16 1173 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1174 return columnName( 1175 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1176 } 1177 #endif /* SQLITE_OMIT_UTF16 */ 1178 1179 /* 1180 ** Return the name of the table from which a result column derives. 1181 ** NULL is returned if the result column is an expression or constant or 1182 ** anything else which is not an unambiguous reference to a database column. 1183 */ 1184 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1185 return columnName( 1186 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1187 } 1188 #ifndef SQLITE_OMIT_UTF16 1189 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1190 return columnName( 1191 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1192 } 1193 #endif /* SQLITE_OMIT_UTF16 */ 1194 1195 /* 1196 ** Return the name of the table column from which a result column derives. 1197 ** NULL is returned if the result column is an expression or constant or 1198 ** anything else which is not an unambiguous reference to a database column. 1199 */ 1200 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1201 return columnName( 1202 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1203 } 1204 #ifndef SQLITE_OMIT_UTF16 1205 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1206 return columnName( 1207 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1208 } 1209 #endif /* SQLITE_OMIT_UTF16 */ 1210 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1211 1212 1213 /******************************* sqlite3_bind_ *************************** 1214 ** 1215 ** Routines used to attach values to wildcards in a compiled SQL statement. 1216 */ 1217 /* 1218 ** Unbind the value bound to variable i in virtual machine p. This is the 1219 ** the same as binding a NULL value to the column. If the "i" parameter is 1220 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1221 ** 1222 ** A successful evaluation of this routine acquires the mutex on p. 1223 ** the mutex is released if any kind of error occurs. 1224 ** 1225 ** The error code stored in database p->db is overwritten with the return 1226 ** value in any case. 1227 */ 1228 static int vdbeUnbind(Vdbe *p, int i){ 1229 Mem *pVar; 1230 if( vdbeSafetyNotNull(p) ){ 1231 return SQLITE_MISUSE_BKPT; 1232 } 1233 sqlite3_mutex_enter(p->db->mutex); 1234 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1235 sqlite3Error(p->db, SQLITE_MISUSE); 1236 sqlite3_mutex_leave(p->db->mutex); 1237 sqlite3_log(SQLITE_MISUSE, 1238 "bind on a busy prepared statement: [%s]", p->zSql); 1239 return SQLITE_MISUSE_BKPT; 1240 } 1241 if( i<1 || i>p->nVar ){ 1242 sqlite3Error(p->db, SQLITE_RANGE); 1243 sqlite3_mutex_leave(p->db->mutex); 1244 return SQLITE_RANGE; 1245 } 1246 i--; 1247 pVar = &p->aVar[i]; 1248 sqlite3VdbeMemRelease(pVar); 1249 pVar->flags = MEM_Null; 1250 sqlite3Error(p->db, SQLITE_OK); 1251 1252 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1253 ** binding a new value to this variable invalidates the current query plan. 1254 ** 1255 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1256 ** parameter in the WHERE clause might influence the choice of query plan 1257 ** for a statement, then the statement will be automatically recompiled, 1258 ** as if there had been a schema change, on the first sqlite3_step() call 1259 ** following any change to the bindings of that parameter. 1260 */ 1261 if( p->isPrepareV2 && 1262 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1263 ){ 1264 p->expired = 1; 1265 } 1266 return SQLITE_OK; 1267 } 1268 1269 /* 1270 ** Bind a text or BLOB value. 1271 */ 1272 static int bindText( 1273 sqlite3_stmt *pStmt, /* The statement to bind against */ 1274 int i, /* Index of the parameter to bind */ 1275 const void *zData, /* Pointer to the data to be bound */ 1276 int nData, /* Number of bytes of data to be bound */ 1277 void (*xDel)(void*), /* Destructor for the data */ 1278 u8 encoding /* Encoding for the data */ 1279 ){ 1280 Vdbe *p = (Vdbe *)pStmt; 1281 Mem *pVar; 1282 int rc; 1283 1284 rc = vdbeUnbind(p, i); 1285 if( rc==SQLITE_OK ){ 1286 if( zData!=0 ){ 1287 pVar = &p->aVar[i-1]; 1288 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1289 if( rc==SQLITE_OK && encoding!=0 ){ 1290 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1291 } 1292 sqlite3Error(p->db, rc); 1293 rc = sqlite3ApiExit(p->db, rc); 1294 } 1295 sqlite3_mutex_leave(p->db->mutex); 1296 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1297 xDel((void*)zData); 1298 } 1299 return rc; 1300 } 1301 1302 1303 /* 1304 ** Bind a blob value to an SQL statement variable. 1305 */ 1306 int sqlite3_bind_blob( 1307 sqlite3_stmt *pStmt, 1308 int i, 1309 const void *zData, 1310 int nData, 1311 void (*xDel)(void*) 1312 ){ 1313 #ifdef SQLITE_ENABLE_API_ARMOR 1314 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1315 #endif 1316 return bindText(pStmt, i, zData, nData, xDel, 0); 1317 } 1318 int sqlite3_bind_blob64( 1319 sqlite3_stmt *pStmt, 1320 int i, 1321 const void *zData, 1322 sqlite3_uint64 nData, 1323 void (*xDel)(void*) 1324 ){ 1325 assert( xDel!=SQLITE_DYNAMIC ); 1326 if( nData>0x7fffffff ){ 1327 return invokeValueDestructor(zData, xDel, 0); 1328 }else{ 1329 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1330 } 1331 } 1332 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1333 int rc; 1334 Vdbe *p = (Vdbe *)pStmt; 1335 rc = vdbeUnbind(p, i); 1336 if( rc==SQLITE_OK ){ 1337 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1338 sqlite3_mutex_leave(p->db->mutex); 1339 } 1340 return rc; 1341 } 1342 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1343 return sqlite3_bind_int64(p, i, (i64)iValue); 1344 } 1345 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1346 int rc; 1347 Vdbe *p = (Vdbe *)pStmt; 1348 rc = vdbeUnbind(p, i); 1349 if( rc==SQLITE_OK ){ 1350 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1351 sqlite3_mutex_leave(p->db->mutex); 1352 } 1353 return rc; 1354 } 1355 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1356 int rc; 1357 Vdbe *p = (Vdbe*)pStmt; 1358 rc = vdbeUnbind(p, i); 1359 if( rc==SQLITE_OK ){ 1360 sqlite3_mutex_leave(p->db->mutex); 1361 } 1362 return rc; 1363 } 1364 int sqlite3_bind_text( 1365 sqlite3_stmt *pStmt, 1366 int i, 1367 const char *zData, 1368 int nData, 1369 void (*xDel)(void*) 1370 ){ 1371 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1372 } 1373 int sqlite3_bind_text64( 1374 sqlite3_stmt *pStmt, 1375 int i, 1376 const char *zData, 1377 sqlite3_uint64 nData, 1378 void (*xDel)(void*), 1379 unsigned char enc 1380 ){ 1381 assert( xDel!=SQLITE_DYNAMIC ); 1382 if( nData>0x7fffffff ){ 1383 return invokeValueDestructor(zData, xDel, 0); 1384 }else{ 1385 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1386 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1387 } 1388 } 1389 #ifndef SQLITE_OMIT_UTF16 1390 int sqlite3_bind_text16( 1391 sqlite3_stmt *pStmt, 1392 int i, 1393 const void *zData, 1394 int nData, 1395 void (*xDel)(void*) 1396 ){ 1397 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1398 } 1399 #endif /* SQLITE_OMIT_UTF16 */ 1400 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1401 int rc; 1402 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1403 case SQLITE_INTEGER: { 1404 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1405 break; 1406 } 1407 case SQLITE_FLOAT: { 1408 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1409 break; 1410 } 1411 case SQLITE_BLOB: { 1412 if( pValue->flags & MEM_Zero ){ 1413 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1414 }else{ 1415 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1416 } 1417 break; 1418 } 1419 case SQLITE_TEXT: { 1420 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1421 pValue->enc); 1422 break; 1423 } 1424 default: { 1425 rc = sqlite3_bind_null(pStmt, i); 1426 break; 1427 } 1428 } 1429 return rc; 1430 } 1431 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1432 int rc; 1433 Vdbe *p = (Vdbe *)pStmt; 1434 rc = vdbeUnbind(p, i); 1435 if( rc==SQLITE_OK ){ 1436 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1437 sqlite3_mutex_leave(p->db->mutex); 1438 } 1439 return rc; 1440 } 1441 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1442 int rc; 1443 Vdbe *p = (Vdbe *)pStmt; 1444 sqlite3_mutex_enter(p->db->mutex); 1445 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1446 rc = SQLITE_TOOBIG; 1447 }else{ 1448 assert( (n & 0x7FFFFFFF)==n ); 1449 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1450 } 1451 rc = sqlite3ApiExit(p->db, rc); 1452 sqlite3_mutex_leave(p->db->mutex); 1453 return rc; 1454 } 1455 1456 /* 1457 ** Return the number of wildcards that can be potentially bound to. 1458 ** This routine is added to support DBD::SQLite. 1459 */ 1460 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1461 Vdbe *p = (Vdbe*)pStmt; 1462 return p ? p->nVar : 0; 1463 } 1464 1465 /* 1466 ** Return the name of a wildcard parameter. Return NULL if the index 1467 ** is out of range or if the wildcard is unnamed. 1468 ** 1469 ** The result is always UTF-8. 1470 */ 1471 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1472 Vdbe *p = (Vdbe*)pStmt; 1473 if( p==0 || i<1 || i>p->nzVar ){ 1474 return 0; 1475 } 1476 return p->azVar[i-1]; 1477 } 1478 1479 /* 1480 ** Given a wildcard parameter name, return the index of the variable 1481 ** with that name. If there is no variable with the given name, 1482 ** return 0. 1483 */ 1484 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1485 int i; 1486 if( p==0 ){ 1487 return 0; 1488 } 1489 if( zName ){ 1490 for(i=0; i<p->nzVar; i++){ 1491 const char *z = p->azVar[i]; 1492 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1493 return i+1; 1494 } 1495 } 1496 } 1497 return 0; 1498 } 1499 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1500 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1501 } 1502 1503 /* 1504 ** Transfer all bindings from the first statement over to the second. 1505 */ 1506 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1507 Vdbe *pFrom = (Vdbe*)pFromStmt; 1508 Vdbe *pTo = (Vdbe*)pToStmt; 1509 int i; 1510 assert( pTo->db==pFrom->db ); 1511 assert( pTo->nVar==pFrom->nVar ); 1512 sqlite3_mutex_enter(pTo->db->mutex); 1513 for(i=0; i<pFrom->nVar; i++){ 1514 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1515 } 1516 sqlite3_mutex_leave(pTo->db->mutex); 1517 return SQLITE_OK; 1518 } 1519 1520 #ifndef SQLITE_OMIT_DEPRECATED 1521 /* 1522 ** Deprecated external interface. Internal/core SQLite code 1523 ** should call sqlite3TransferBindings. 1524 ** 1525 ** It is misuse to call this routine with statements from different 1526 ** database connections. But as this is a deprecated interface, we 1527 ** will not bother to check for that condition. 1528 ** 1529 ** If the two statements contain a different number of bindings, then 1530 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1531 ** SQLITE_OK is returned. 1532 */ 1533 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1534 Vdbe *pFrom = (Vdbe*)pFromStmt; 1535 Vdbe *pTo = (Vdbe*)pToStmt; 1536 if( pFrom->nVar!=pTo->nVar ){ 1537 return SQLITE_ERROR; 1538 } 1539 if( pTo->isPrepareV2 && pTo->expmask ){ 1540 pTo->expired = 1; 1541 } 1542 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1543 pFrom->expired = 1; 1544 } 1545 return sqlite3TransferBindings(pFromStmt, pToStmt); 1546 } 1547 #endif 1548 1549 /* 1550 ** Return the sqlite3* database handle to which the prepared statement given 1551 ** in the argument belongs. This is the same database handle that was 1552 ** the first argument to the sqlite3_prepare() that was used to create 1553 ** the statement in the first place. 1554 */ 1555 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1556 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1557 } 1558 1559 /* 1560 ** Return true if the prepared statement is guaranteed to not modify the 1561 ** database. 1562 */ 1563 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1564 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1565 } 1566 1567 /* 1568 ** Return true if the prepared statement is in need of being reset. 1569 */ 1570 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1571 Vdbe *v = (Vdbe*)pStmt; 1572 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1573 } 1574 1575 /* 1576 ** Return a pointer to the next prepared statement after pStmt associated 1577 ** with database connection pDb. If pStmt is NULL, return the first 1578 ** prepared statement for the database connection. Return NULL if there 1579 ** are no more. 1580 */ 1581 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1582 sqlite3_stmt *pNext; 1583 #ifdef SQLITE_ENABLE_API_ARMOR 1584 if( !sqlite3SafetyCheckOk(pDb) ){ 1585 (void)SQLITE_MISUSE_BKPT; 1586 return 0; 1587 } 1588 #endif 1589 sqlite3_mutex_enter(pDb->mutex); 1590 if( pStmt==0 ){ 1591 pNext = (sqlite3_stmt*)pDb->pVdbe; 1592 }else{ 1593 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1594 } 1595 sqlite3_mutex_leave(pDb->mutex); 1596 return pNext; 1597 } 1598 1599 /* 1600 ** Return the value of a status counter for a prepared statement 1601 */ 1602 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1603 Vdbe *pVdbe = (Vdbe*)pStmt; 1604 u32 v; 1605 #ifdef SQLITE_ENABLE_API_ARMOR 1606 if( !pStmt ){ 1607 (void)SQLITE_MISUSE_BKPT; 1608 return 0; 1609 } 1610 #endif 1611 v = pVdbe->aCounter[op]; 1612 if( resetFlag ) pVdbe->aCounter[op] = 0; 1613 return (int)v; 1614 } 1615 1616 /* 1617 ** Return the SQL associated with a prepared statement 1618 */ 1619 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1620 Vdbe *p = (Vdbe *)pStmt; 1621 return p ? p->zSql : 0; 1622 } 1623 1624 /* 1625 ** Return the SQL associated with a prepared statement with 1626 ** bound parameters expanded. Space to hold the returned string is 1627 ** obtained from sqlite3_malloc(). The caller is responsible for 1628 ** freeing the returned string by passing it to sqlite3_free(). 1629 ** 1630 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1631 ** expanded bound parameters. 1632 */ 1633 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1634 #ifdef SQLITE_OMIT_TRACE 1635 return 0; 1636 #else 1637 char *z = 0; 1638 const char *zSql = sqlite3_sql(pStmt); 1639 if( zSql ){ 1640 Vdbe *p = (Vdbe *)pStmt; 1641 sqlite3_mutex_enter(p->db->mutex); 1642 z = sqlite3VdbeExpandSql(p, zSql); 1643 sqlite3_mutex_leave(p->db->mutex); 1644 } 1645 return z; 1646 #endif 1647 } 1648 1649 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1650 /* 1651 ** Allocate and populate an UnpackedRecord structure based on the serialized 1652 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1653 ** if successful, or a NULL pointer if an OOM error is encountered. 1654 */ 1655 static UnpackedRecord *vdbeUnpackRecord( 1656 KeyInfo *pKeyInfo, 1657 int nKey, 1658 const void *pKey 1659 ){ 1660 char *dummy; /* Dummy argument for AllocUnpackedRecord() */ 1661 UnpackedRecord *pRet; /* Return value */ 1662 1663 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo, 0, 0, &dummy); 1664 if( pRet ){ 1665 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nField+1)); 1666 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1667 } 1668 return pRet; 1669 } 1670 1671 /* 1672 ** This function is called from within a pre-update callback to retrieve 1673 ** a field of the row currently being updated or deleted. 1674 */ 1675 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1676 PreUpdate *p = db->pPreUpdate; 1677 int rc = SQLITE_OK; 1678 1679 /* Test that this call is being made from within an SQLITE_DELETE or 1680 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1681 if( !p || p->op==SQLITE_INSERT ){ 1682 rc = SQLITE_MISUSE_BKPT; 1683 goto preupdate_old_out; 1684 } 1685 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1686 rc = SQLITE_RANGE; 1687 goto preupdate_old_out; 1688 } 1689 1690 /* If the old.* record has not yet been loaded into memory, do so now. */ 1691 if( p->pUnpacked==0 ){ 1692 u32 nRec; 1693 u8 *aRec; 1694 1695 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1696 aRec = sqlite3DbMallocRaw(db, nRec); 1697 if( !aRec ) goto preupdate_old_out; 1698 rc = sqlite3BtreeData(p->pCsr->uc.pCursor, 0, nRec, aRec); 1699 if( rc==SQLITE_OK ){ 1700 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1701 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1702 } 1703 if( rc!=SQLITE_OK ){ 1704 sqlite3DbFree(db, aRec); 1705 goto preupdate_old_out; 1706 } 1707 p->aRecord = aRec; 1708 } 1709 1710 if( iIdx>=p->pUnpacked->nField ){ 1711 *ppValue = (sqlite3_value *)columnNullValue(); 1712 }else{ 1713 *ppValue = &p->pUnpacked->aMem[iIdx]; 1714 if( iIdx==p->iPKey ){ 1715 sqlite3VdbeMemSetInt64(*ppValue, p->iKey1); 1716 } 1717 } 1718 1719 preupdate_old_out: 1720 sqlite3Error(db, rc); 1721 return sqlite3ApiExit(db, rc); 1722 } 1723 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1724 1725 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1726 /* 1727 ** This function is called from within a pre-update callback to retrieve 1728 ** the number of columns in the row being updated, deleted or inserted. 1729 */ 1730 int sqlite3_preupdate_count(sqlite3 *db){ 1731 PreUpdate *p = db->pPreUpdate; 1732 return (p ? p->keyinfo.nField : 0); 1733 } 1734 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1735 1736 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1737 /* 1738 ** This function is designed to be called from within a pre-update callback 1739 ** only. It returns zero if the change that caused the callback was made 1740 ** immediately by a user SQL statement. Or, if the change was made by a 1741 ** trigger program, it returns the number of trigger programs currently 1742 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1743 ** top-level trigger etc.). 1744 ** 1745 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1746 ** or SET DEFAULT action is considered a trigger. 1747 */ 1748 int sqlite3_preupdate_depth(sqlite3 *db){ 1749 PreUpdate *p = db->pPreUpdate; 1750 return (p ? p->v->nFrame : 0); 1751 } 1752 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1753 1754 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1755 /* 1756 ** This function is called from within a pre-update callback to retrieve 1757 ** a field of the row currently being updated or inserted. 1758 */ 1759 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1760 PreUpdate *p = db->pPreUpdate; 1761 int rc = SQLITE_OK; 1762 Mem *pMem; 1763 1764 if( !p || p->op==SQLITE_DELETE ){ 1765 rc = SQLITE_MISUSE_BKPT; 1766 goto preupdate_new_out; 1767 } 1768 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1769 rc = SQLITE_RANGE; 1770 goto preupdate_new_out; 1771 } 1772 1773 if( p->op==SQLITE_INSERT ){ 1774 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1775 ** that is being inserted. Deserialize it. */ 1776 UnpackedRecord *pUnpack = p->pNewUnpacked; 1777 if( !pUnpack ){ 1778 Mem *pData = &p->v->aMem[p->iNewReg]; 1779 rc = ExpandBlob(pData); 1780 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1781 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1782 if( !pUnpack ){ 1783 rc = SQLITE_NOMEM; 1784 goto preupdate_new_out; 1785 } 1786 p->pNewUnpacked = pUnpack; 1787 } 1788 if( iIdx>=pUnpack->nField ){ 1789 pMem = (sqlite3_value *)columnNullValue(); 1790 }else{ 1791 pMem = &pUnpack->aMem[iIdx]; 1792 if( iIdx==p->iPKey ){ 1793 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1794 } 1795 } 1796 }else{ 1797 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1798 ** value. Make a copy of the cell contents and return a pointer to it. 1799 ** It is not safe to return a pointer to the memory cell itself as the 1800 ** caller may modify the value text encoding. 1801 */ 1802 assert( p->op==SQLITE_UPDATE ); 1803 if( !p->aNew ){ 1804 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1805 if( !p->aNew ){ 1806 rc = SQLITE_NOMEM; 1807 goto preupdate_new_out; 1808 } 1809 } 1810 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1811 pMem = &p->aNew[iIdx]; 1812 if( pMem->flags==0 ){ 1813 if( iIdx==p->iPKey ){ 1814 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1815 }else{ 1816 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1817 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1818 } 1819 } 1820 } 1821 *ppValue = pMem; 1822 1823 preupdate_new_out: 1824 sqlite3Error(db, rc); 1825 return sqlite3ApiExit(db, rc); 1826 } 1827 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1828 1829 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1830 /* 1831 ** Return status data for a single loop within query pStmt. 1832 */ 1833 int sqlite3_stmt_scanstatus( 1834 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1835 int idx, /* Index of loop to report on */ 1836 int iScanStatusOp, /* Which metric to return */ 1837 void *pOut /* OUT: Write the answer here */ 1838 ){ 1839 Vdbe *p = (Vdbe*)pStmt; 1840 ScanStatus *pScan; 1841 if( idx<0 || idx>=p->nScan ) return 1; 1842 pScan = &p->aScan[idx]; 1843 switch( iScanStatusOp ){ 1844 case SQLITE_SCANSTAT_NLOOP: { 1845 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1846 break; 1847 } 1848 case SQLITE_SCANSTAT_NVISIT: { 1849 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1850 break; 1851 } 1852 case SQLITE_SCANSTAT_EST: { 1853 double r = 1.0; 1854 LogEst x = pScan->nEst; 1855 while( x<100 ){ 1856 x += 10; 1857 r *= 0.5; 1858 } 1859 *(double*)pOut = r*sqlite3LogEstToInt(x); 1860 break; 1861 } 1862 case SQLITE_SCANSTAT_NAME: { 1863 *(const char**)pOut = pScan->zName; 1864 break; 1865 } 1866 case SQLITE_SCANSTAT_EXPLAIN: { 1867 if( pScan->addrExplain ){ 1868 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1869 }else{ 1870 *(const char**)pOut = 0; 1871 } 1872 break; 1873 } 1874 case SQLITE_SCANSTAT_SELECTID: { 1875 if( pScan->addrExplain ){ 1876 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1877 }else{ 1878 *(int*)pOut = -1; 1879 } 1880 break; 1881 } 1882 default: { 1883 return 1; 1884 } 1885 } 1886 return 0; 1887 } 1888 1889 /* 1890 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1891 */ 1892 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1893 Vdbe *p = (Vdbe*)pStmt; 1894 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1895 } 1896 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1897