1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 } 349 return pNew; 350 } 351 352 /* Destroy an sqlite3_value object previously obtained from 353 ** sqlite3_value_dup(). 354 */ 355 void sqlite3_value_free(sqlite3_value *pOld){ 356 sqlite3ValueFree(pOld); 357 } 358 359 360 /**************************** sqlite3_result_ ******************************* 361 ** The following routines are used by user-defined functions to specify 362 ** the function result. 363 ** 364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 365 ** result as a string or blob. Appropriate errors are set if the string/blob 366 ** is too big or if an OOM occurs. 367 ** 368 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 369 ** on value P is not going to be used and need to be destroyed. 370 */ 371 static void setResultStrOrError( 372 sqlite3_context *pCtx, /* Function context */ 373 const char *z, /* String pointer */ 374 int n, /* Bytes in string, or negative */ 375 u8 enc, /* Encoding of z. 0 for BLOBs */ 376 void (*xDel)(void*) /* Destructor function */ 377 ){ 378 int rc = sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel); 379 if( rc ){ 380 if( rc==SQLITE_TOOBIG ){ 381 sqlite3_result_error_toobig(pCtx); 382 }else{ 383 /* The only errors possible from sqlite3VdbeMemSetStr are 384 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 385 assert( rc==SQLITE_NOMEM ); 386 sqlite3_result_error_nomem(pCtx); 387 } 388 } 389 } 390 static int invokeValueDestructor( 391 const void *p, /* Value to destroy */ 392 void (*xDel)(void*), /* The destructor */ 393 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 394 ){ 395 assert( xDel!=SQLITE_DYNAMIC ); 396 if( xDel==0 ){ 397 /* noop */ 398 }else if( xDel==SQLITE_TRANSIENT ){ 399 /* noop */ 400 }else{ 401 xDel((void*)p); 402 } 403 sqlite3_result_error_toobig(pCtx); 404 return SQLITE_TOOBIG; 405 } 406 void sqlite3_result_blob( 407 sqlite3_context *pCtx, 408 const void *z, 409 int n, 410 void (*xDel)(void *) 411 ){ 412 assert( n>=0 ); 413 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 414 setResultStrOrError(pCtx, z, n, 0, xDel); 415 } 416 void sqlite3_result_blob64( 417 sqlite3_context *pCtx, 418 const void *z, 419 sqlite3_uint64 n, 420 void (*xDel)(void *) 421 ){ 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 assert( xDel!=SQLITE_DYNAMIC ); 424 if( n>0x7fffffff ){ 425 (void)invokeValueDestructor(z, xDel, pCtx); 426 }else{ 427 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 428 } 429 } 430 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 433 } 434 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 435 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 436 pCtx->isError = SQLITE_ERROR; 437 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 438 } 439 #ifndef SQLITE_OMIT_UTF16 440 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 441 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 442 pCtx->isError = SQLITE_ERROR; 443 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 444 } 445 #endif 446 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 448 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 449 } 450 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 451 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 452 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 453 } 454 void sqlite3_result_null(sqlite3_context *pCtx){ 455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 456 sqlite3VdbeMemSetNull(pCtx->pOut); 457 } 458 void sqlite3_result_pointer( 459 sqlite3_context *pCtx, 460 void *pPtr, 461 const char *zPType, 462 void (*xDestructor)(void*) 463 ){ 464 Mem *pOut = pCtx->pOut; 465 assert( sqlite3_mutex_held(pOut->db->mutex) ); 466 sqlite3VdbeMemRelease(pOut); 467 pOut->flags = MEM_Null; 468 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 469 } 470 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 471 Mem *pOut = pCtx->pOut; 472 assert( sqlite3_mutex_held(pOut->db->mutex) ); 473 pOut->eSubtype = eSubtype & 0xff; 474 pOut->flags |= MEM_Subtype; 475 } 476 void sqlite3_result_text( 477 sqlite3_context *pCtx, 478 const char *z, 479 int n, 480 void (*xDel)(void *) 481 ){ 482 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 483 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 484 } 485 void sqlite3_result_text64( 486 sqlite3_context *pCtx, 487 const char *z, 488 sqlite3_uint64 n, 489 void (*xDel)(void *), 490 unsigned char enc 491 ){ 492 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 493 assert( xDel!=SQLITE_DYNAMIC ); 494 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 495 if( n>0x7fffffff ){ 496 (void)invokeValueDestructor(z, xDel, pCtx); 497 }else{ 498 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 499 } 500 } 501 #ifndef SQLITE_OMIT_UTF16 502 void sqlite3_result_text16( 503 sqlite3_context *pCtx, 504 const void *z, 505 int n, 506 void (*xDel)(void *) 507 ){ 508 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 509 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 510 } 511 void sqlite3_result_text16be( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 519 } 520 void sqlite3_result_text16le( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 528 } 529 #endif /* SQLITE_OMIT_UTF16 */ 530 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 531 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 532 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 533 } 534 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 537 } 538 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 539 Mem *pOut = pCtx->pOut; 540 assert( sqlite3_mutex_held(pOut->db->mutex) ); 541 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 542 return SQLITE_TOOBIG; 543 } 544 #ifndef SQLITE_OMIT_INCRBLOB 545 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 546 return SQLITE_OK; 547 #else 548 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 549 #endif 550 } 551 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 552 pCtx->isError = errCode ? errCode : -1; 553 #ifdef SQLITE_DEBUG 554 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 555 #endif 556 if( pCtx->pOut->flags & MEM_Null ){ 557 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 558 SQLITE_UTF8, SQLITE_STATIC); 559 } 560 } 561 562 /* Force an SQLITE_TOOBIG error. */ 563 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 564 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 565 pCtx->isError = SQLITE_TOOBIG; 566 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 567 SQLITE_UTF8, SQLITE_STATIC); 568 } 569 570 /* An SQLITE_NOMEM error. */ 571 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 572 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 573 sqlite3VdbeMemSetNull(pCtx->pOut); 574 pCtx->isError = SQLITE_NOMEM_BKPT; 575 sqlite3OomFault(pCtx->pOut->db); 576 } 577 578 #ifndef SQLITE_UNTESTABLE 579 /* Force the INT64 value currently stored as the result to be 580 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 581 ** test-control. 582 */ 583 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 584 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 585 if( pCtx->pOut->flags & MEM_Int ){ 586 pCtx->pOut->flags &= ~MEM_Int; 587 pCtx->pOut->flags |= MEM_IntReal; 588 } 589 } 590 #endif 591 592 593 /* 594 ** This function is called after a transaction has been committed. It 595 ** invokes callbacks registered with sqlite3_wal_hook() as required. 596 */ 597 static int doWalCallbacks(sqlite3 *db){ 598 int rc = SQLITE_OK; 599 #ifndef SQLITE_OMIT_WAL 600 int i; 601 for(i=0; i<db->nDb; i++){ 602 Btree *pBt = db->aDb[i].pBt; 603 if( pBt ){ 604 int nEntry; 605 sqlite3BtreeEnter(pBt); 606 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 607 sqlite3BtreeLeave(pBt); 608 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 609 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 610 } 611 } 612 } 613 #endif 614 return rc; 615 } 616 617 618 /* 619 ** Execute the statement pStmt, either until a row of data is ready, the 620 ** statement is completely executed or an error occurs. 621 ** 622 ** This routine implements the bulk of the logic behind the sqlite_step() 623 ** API. The only thing omitted is the automatic recompile if a 624 ** schema change has occurred. That detail is handled by the 625 ** outer sqlite3_step() wrapper procedure. 626 */ 627 static int sqlite3Step(Vdbe *p){ 628 sqlite3 *db; 629 int rc; 630 631 assert(p); 632 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 633 /* We used to require that sqlite3_reset() be called before retrying 634 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 635 ** with version 3.7.0, we changed this so that sqlite3_reset() would 636 ** be called automatically instead of throwing the SQLITE_MISUSE error. 637 ** This "automatic-reset" change is not technically an incompatibility, 638 ** since any application that receives an SQLITE_MISUSE is broken by 639 ** definition. 640 ** 641 ** Nevertheless, some published applications that were originally written 642 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 643 ** returns, and those were broken by the automatic-reset change. As a 644 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 645 ** legacy behavior of returning SQLITE_MISUSE for cases where the 646 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 647 ** or SQLITE_BUSY error. 648 */ 649 #ifdef SQLITE_OMIT_AUTORESET 650 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 651 sqlite3_reset((sqlite3_stmt*)p); 652 }else{ 653 return SQLITE_MISUSE_BKPT; 654 } 655 #else 656 sqlite3_reset((sqlite3_stmt*)p); 657 #endif 658 } 659 660 /* Check that malloc() has not failed. If it has, return early. */ 661 db = p->db; 662 if( db->mallocFailed ){ 663 p->rc = SQLITE_NOMEM; 664 return SQLITE_NOMEM_BKPT; 665 } 666 667 if( p->pc<0 && p->expired ){ 668 p->rc = SQLITE_SCHEMA; 669 rc = SQLITE_ERROR; 670 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 671 /* If this statement was prepared using saved SQL and an 672 ** error has occurred, then return the error code in p->rc to the 673 ** caller. Set the error code in the database handle to the same value. 674 */ 675 rc = sqlite3VdbeTransferError(p); 676 } 677 goto end_of_step; 678 } 679 if( p->pc<0 ){ 680 /* If there are no other statements currently running, then 681 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 682 ** from interrupting a statement that has not yet started. 683 */ 684 if( db->nVdbeActive==0 ){ 685 AtomicStore(&db->u1.isInterrupted, 0); 686 } 687 688 assert( db->nVdbeWrite>0 || db->autoCommit==0 689 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 690 ); 691 692 #ifndef SQLITE_OMIT_TRACE 693 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 694 && !db->init.busy && p->zSql ){ 695 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 696 }else{ 697 assert( p->startTime==0 ); 698 } 699 #endif 700 701 db->nVdbeActive++; 702 if( p->readOnly==0 ) db->nVdbeWrite++; 703 if( p->bIsReader ) db->nVdbeRead++; 704 p->pc = 0; 705 } 706 #ifdef SQLITE_DEBUG 707 p->rcApp = SQLITE_OK; 708 #endif 709 #ifndef SQLITE_OMIT_EXPLAIN 710 if( p->explain ){ 711 rc = sqlite3VdbeList(p); 712 }else 713 #endif /* SQLITE_OMIT_EXPLAIN */ 714 { 715 db->nVdbeExec++; 716 rc = sqlite3VdbeExec(p); 717 db->nVdbeExec--; 718 } 719 720 if( rc!=SQLITE_ROW ){ 721 #ifndef SQLITE_OMIT_TRACE 722 /* If the statement completed successfully, invoke the profile callback */ 723 checkProfileCallback(db, p); 724 #endif 725 726 if( rc==SQLITE_DONE && db->autoCommit ){ 727 assert( p->rc==SQLITE_OK ); 728 p->rc = doWalCallbacks(db); 729 if( p->rc!=SQLITE_OK ){ 730 rc = SQLITE_ERROR; 731 } 732 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 733 /* If this statement was prepared using saved SQL and an 734 ** error has occurred, then return the error code in p->rc to the 735 ** caller. Set the error code in the database handle to the same value. 736 */ 737 rc = sqlite3VdbeTransferError(p); 738 } 739 } 740 741 db->errCode = rc; 742 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 743 p->rc = SQLITE_NOMEM_BKPT; 744 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 745 } 746 end_of_step: 747 /* There are only a limited number of result codes allowed from the 748 ** statements prepared using the legacy sqlite3_prepare() interface */ 749 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 750 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 751 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 752 ); 753 return (rc&db->errMask); 754 } 755 756 /* 757 ** This is the top-level implementation of sqlite3_step(). Call 758 ** sqlite3Step() to do most of the work. If a schema error occurs, 759 ** call sqlite3Reprepare() and try again. 760 */ 761 int sqlite3_step(sqlite3_stmt *pStmt){ 762 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 763 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 764 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 765 sqlite3 *db; /* The database connection */ 766 767 if( vdbeSafetyNotNull(v) ){ 768 return SQLITE_MISUSE_BKPT; 769 } 770 db = v->db; 771 sqlite3_mutex_enter(db->mutex); 772 v->doingRerun = 0; 773 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 774 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 775 int savedPc = v->pc; 776 rc = sqlite3Reprepare(v); 777 if( rc!=SQLITE_OK ){ 778 /* This case occurs after failing to recompile an sql statement. 779 ** The error message from the SQL compiler has already been loaded 780 ** into the database handle. This block copies the error message 781 ** from the database handle into the statement and sets the statement 782 ** program counter to 0 to ensure that when the statement is 783 ** finalized or reset the parser error message is available via 784 ** sqlite3_errmsg() and sqlite3_errcode(). 785 */ 786 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 787 sqlite3DbFree(db, v->zErrMsg); 788 if( !db->mallocFailed ){ 789 v->zErrMsg = sqlite3DbStrDup(db, zErr); 790 v->rc = rc = sqlite3ApiExit(db, rc); 791 } else { 792 v->zErrMsg = 0; 793 v->rc = rc = SQLITE_NOMEM_BKPT; 794 } 795 break; 796 } 797 sqlite3_reset(pStmt); 798 if( savedPc>=0 ) v->doingRerun = 1; 799 assert( v->expired==0 ); 800 } 801 sqlite3_mutex_leave(db->mutex); 802 return rc; 803 } 804 805 806 /* 807 ** Extract the user data from a sqlite3_context structure and return a 808 ** pointer to it. 809 */ 810 void *sqlite3_user_data(sqlite3_context *p){ 811 assert( p && p->pFunc ); 812 return p->pFunc->pUserData; 813 } 814 815 /* 816 ** Extract the user data from a sqlite3_context structure and return a 817 ** pointer to it. 818 ** 819 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 820 ** returns a copy of the pointer to the database connection (the 1st 821 ** parameter) of the sqlite3_create_function() and 822 ** sqlite3_create_function16() routines that originally registered the 823 ** application defined function. 824 */ 825 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 826 assert( p && p->pOut ); 827 return p->pOut->db; 828 } 829 830 /* 831 ** If this routine is invoked from within an xColumn method of a virtual 832 ** table, then it returns true if and only if the the call is during an 833 ** UPDATE operation and the value of the column will not be modified 834 ** by the UPDATE. 835 ** 836 ** If this routine is called from any context other than within the 837 ** xColumn method of a virtual table, then the return value is meaningless 838 ** and arbitrary. 839 ** 840 ** Virtual table implements might use this routine to optimize their 841 ** performance by substituting a NULL result, or some other light-weight 842 ** value, as a signal to the xUpdate routine that the column is unchanged. 843 */ 844 int sqlite3_vtab_nochange(sqlite3_context *p){ 845 assert( p ); 846 return sqlite3_value_nochange(p->pOut); 847 } 848 849 /* 850 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 851 ** sqlite3_vtab_in_next() (if bNext!=0). 852 */ 853 static int valueFromValueList( 854 sqlite3_value *pVal, /* Pointer to the ValueList object */ 855 sqlite3_value **ppOut, /* Store the next value from the list here */ 856 int bNext /* 1 for _next(). 0 for _first() */ 857 ){ 858 int rc; 859 ValueList *pRhs; 860 861 *ppOut = 0; 862 if( pVal==0 ) return SQLITE_MISUSE; 863 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList"); 864 if( pRhs==0 ) return SQLITE_MISUSE; 865 if( bNext ){ 866 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 867 }else{ 868 int dummy = 0; 869 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 870 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 871 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 872 } 873 if( rc==SQLITE_OK ){ 874 u32 sz; /* Size of current row in bytes */ 875 Mem sMem; /* Raw content of current row */ 876 memset(&sMem, 0, sizeof(sMem)); 877 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 878 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 879 if( rc==SQLITE_OK ){ 880 u8 *zBuf = (u8*)sMem.z; 881 u32 iSerial; 882 sqlite3_value *pOut = pRhs->pOut; 883 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 884 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 885 pOut->enc = ENC(pOut->db); 886 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 887 rc = SQLITE_NOMEM; 888 }else{ 889 *ppOut = pOut; 890 } 891 } 892 sqlite3VdbeMemRelease(&sMem); 893 } 894 return rc; 895 } 896 897 /* 898 ** Set the iterator value pVal to point to the first value in the set. 899 ** Set (*ppOut) to point to this value before returning. 900 */ 901 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 902 return valueFromValueList(pVal, ppOut, 0); 903 } 904 905 /* 906 ** Set the iterator value pVal to point to the next value in the set. 907 ** Set (*ppOut) to point to this value before returning. 908 */ 909 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 910 return valueFromValueList(pVal, ppOut, 1); 911 } 912 913 /* 914 ** Return the current time for a statement. If the current time 915 ** is requested more than once within the same run of a single prepared 916 ** statement, the exact same time is returned for each invocation regardless 917 ** of the amount of time that elapses between invocations. In other words, 918 ** the time returned is always the time of the first call. 919 */ 920 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 921 int rc; 922 #ifndef SQLITE_ENABLE_STAT4 923 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 924 assert( p->pVdbe!=0 ); 925 #else 926 sqlite3_int64 iTime = 0; 927 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 928 #endif 929 if( *piTime==0 ){ 930 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 931 if( rc ) *piTime = 0; 932 } 933 return *piTime; 934 } 935 936 /* 937 ** Create a new aggregate context for p and return a pointer to 938 ** its pMem->z element. 939 */ 940 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 941 Mem *pMem = p->pMem; 942 assert( (pMem->flags & MEM_Agg)==0 ); 943 if( nByte<=0 ){ 944 sqlite3VdbeMemSetNull(pMem); 945 pMem->z = 0; 946 }else{ 947 sqlite3VdbeMemClearAndResize(pMem, nByte); 948 pMem->flags = MEM_Agg; 949 pMem->u.pDef = p->pFunc; 950 if( pMem->z ){ 951 memset(pMem->z, 0, nByte); 952 } 953 } 954 return (void*)pMem->z; 955 } 956 957 /* 958 ** Allocate or return the aggregate context for a user function. A new 959 ** context is allocated on the first call. Subsequent calls return the 960 ** same context that was returned on prior calls. 961 */ 962 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 963 assert( p && p->pFunc && p->pFunc->xFinalize ); 964 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 965 testcase( nByte<0 ); 966 if( (p->pMem->flags & MEM_Agg)==0 ){ 967 return createAggContext(p, nByte); 968 }else{ 969 return (void*)p->pMem->z; 970 } 971 } 972 973 /* 974 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 975 ** the user-function defined by pCtx. 976 ** 977 ** The left-most argument is 0. 978 ** 979 ** Undocumented behavior: If iArg is negative then access a cache of 980 ** auxiliary data pointers that is available to all functions within a 981 ** single prepared statement. The iArg values must match. 982 */ 983 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 984 AuxData *pAuxData; 985 986 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 987 #if SQLITE_ENABLE_STAT4 988 if( pCtx->pVdbe==0 ) return 0; 989 #else 990 assert( pCtx->pVdbe!=0 ); 991 #endif 992 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 993 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 994 return pAuxData->pAux; 995 } 996 } 997 return 0; 998 } 999 1000 /* 1001 ** Set the auxiliary data pointer and delete function, for the iArg'th 1002 ** argument to the user-function defined by pCtx. Any previous value is 1003 ** deleted by calling the delete function specified when it was set. 1004 ** 1005 ** The left-most argument is 0. 1006 ** 1007 ** Undocumented behavior: If iArg is negative then make the data available 1008 ** to all functions within the current prepared statement using iArg as an 1009 ** access code. 1010 */ 1011 void sqlite3_set_auxdata( 1012 sqlite3_context *pCtx, 1013 int iArg, 1014 void *pAux, 1015 void (*xDelete)(void*) 1016 ){ 1017 AuxData *pAuxData; 1018 Vdbe *pVdbe = pCtx->pVdbe; 1019 1020 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1021 #ifdef SQLITE_ENABLE_STAT4 1022 if( pVdbe==0 ) goto failed; 1023 #else 1024 assert( pVdbe!=0 ); 1025 #endif 1026 1027 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1028 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1029 break; 1030 } 1031 } 1032 if( pAuxData==0 ){ 1033 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 1034 if( !pAuxData ) goto failed; 1035 pAuxData->iAuxOp = pCtx->iOp; 1036 pAuxData->iAuxArg = iArg; 1037 pAuxData->pNextAux = pVdbe->pAuxData; 1038 pVdbe->pAuxData = pAuxData; 1039 if( pCtx->isError==0 ) pCtx->isError = -1; 1040 }else if( pAuxData->xDeleteAux ){ 1041 pAuxData->xDeleteAux(pAuxData->pAux); 1042 } 1043 1044 pAuxData->pAux = pAux; 1045 pAuxData->xDeleteAux = xDelete; 1046 return; 1047 1048 failed: 1049 if( xDelete ){ 1050 xDelete(pAux); 1051 } 1052 } 1053 1054 #ifndef SQLITE_OMIT_DEPRECATED 1055 /* 1056 ** Return the number of times the Step function of an aggregate has been 1057 ** called. 1058 ** 1059 ** This function is deprecated. Do not use it for new code. It is 1060 ** provide only to avoid breaking legacy code. New aggregate function 1061 ** implementations should keep their own counts within their aggregate 1062 ** context. 1063 */ 1064 int sqlite3_aggregate_count(sqlite3_context *p){ 1065 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1066 return p->pMem->n; 1067 } 1068 #endif 1069 1070 /* 1071 ** Return the number of columns in the result set for the statement pStmt. 1072 */ 1073 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1074 Vdbe *pVm = (Vdbe *)pStmt; 1075 return pVm ? pVm->nResColumn : 0; 1076 } 1077 1078 /* 1079 ** Return the number of values available from the current row of the 1080 ** currently executing statement pStmt. 1081 */ 1082 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1083 Vdbe *pVm = (Vdbe *)pStmt; 1084 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1085 return pVm->nResColumn; 1086 } 1087 1088 /* 1089 ** Return a pointer to static memory containing an SQL NULL value. 1090 */ 1091 static const Mem *columnNullValue(void){ 1092 /* Even though the Mem structure contains an element 1093 ** of type i64, on certain architectures (x86) with certain compiler 1094 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1095 ** instead of an 8-byte one. This all works fine, except that when 1096 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1097 ** that a Mem structure is located on an 8-byte boundary. To prevent 1098 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1099 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1100 ** __attribute__((aligned(8))) macro. */ 1101 static const Mem nullMem 1102 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1103 __attribute__((aligned(8))) 1104 #endif 1105 = { 1106 /* .u = */ {0}, 1107 /* .flags = */ (u16)MEM_Null, 1108 /* .enc = */ (u8)0, 1109 /* .eSubtype = */ (u8)0, 1110 /* .n = */ (int)0, 1111 /* .z = */ (char*)0, 1112 /* .zMalloc = */ (char*)0, 1113 /* .szMalloc = */ (int)0, 1114 /* .uTemp = */ (u32)0, 1115 /* .db = */ (sqlite3*)0, 1116 /* .xDel = */ (void(*)(void*))0, 1117 #ifdef SQLITE_DEBUG 1118 /* .pScopyFrom = */ (Mem*)0, 1119 /* .mScopyFlags= */ 0, 1120 #endif 1121 }; 1122 return &nullMem; 1123 } 1124 1125 /* 1126 ** Check to see if column iCol of the given statement is valid. If 1127 ** it is, return a pointer to the Mem for the value of that column. 1128 ** If iCol is not valid, return a pointer to a Mem which has a value 1129 ** of NULL. 1130 */ 1131 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1132 Vdbe *pVm; 1133 Mem *pOut; 1134 1135 pVm = (Vdbe *)pStmt; 1136 if( pVm==0 ) return (Mem*)columnNullValue(); 1137 assert( pVm->db ); 1138 sqlite3_mutex_enter(pVm->db->mutex); 1139 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1140 pOut = &pVm->pResultSet[i]; 1141 }else{ 1142 sqlite3Error(pVm->db, SQLITE_RANGE); 1143 pOut = (Mem*)columnNullValue(); 1144 } 1145 return pOut; 1146 } 1147 1148 /* 1149 ** This function is called after invoking an sqlite3_value_XXX function on a 1150 ** column value (i.e. a value returned by evaluating an SQL expression in the 1151 ** select list of a SELECT statement) that may cause a malloc() failure. If 1152 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1153 ** code of statement pStmt set to SQLITE_NOMEM. 1154 ** 1155 ** Specifically, this is called from within: 1156 ** 1157 ** sqlite3_column_int() 1158 ** sqlite3_column_int64() 1159 ** sqlite3_column_text() 1160 ** sqlite3_column_text16() 1161 ** sqlite3_column_real() 1162 ** sqlite3_column_bytes() 1163 ** sqlite3_column_bytes16() 1164 ** sqiite3_column_blob() 1165 */ 1166 static void columnMallocFailure(sqlite3_stmt *pStmt) 1167 { 1168 /* If malloc() failed during an encoding conversion within an 1169 ** sqlite3_column_XXX API, then set the return code of the statement to 1170 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1171 ** and _finalize() will return NOMEM. 1172 */ 1173 Vdbe *p = (Vdbe *)pStmt; 1174 if( p ){ 1175 assert( p->db!=0 ); 1176 assert( sqlite3_mutex_held(p->db->mutex) ); 1177 p->rc = sqlite3ApiExit(p->db, p->rc); 1178 sqlite3_mutex_leave(p->db->mutex); 1179 } 1180 } 1181 1182 /**************************** sqlite3_column_ ******************************* 1183 ** The following routines are used to access elements of the current row 1184 ** in the result set. 1185 */ 1186 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1187 const void *val; 1188 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1189 /* Even though there is no encoding conversion, value_blob() might 1190 ** need to call malloc() to expand the result of a zeroblob() 1191 ** expression. 1192 */ 1193 columnMallocFailure(pStmt); 1194 return val; 1195 } 1196 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1197 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1198 columnMallocFailure(pStmt); 1199 return val; 1200 } 1201 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1202 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1203 columnMallocFailure(pStmt); 1204 return val; 1205 } 1206 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1207 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1208 columnMallocFailure(pStmt); 1209 return val; 1210 } 1211 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1212 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1213 columnMallocFailure(pStmt); 1214 return val; 1215 } 1216 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1217 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1218 columnMallocFailure(pStmt); 1219 return val; 1220 } 1221 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1222 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1223 columnMallocFailure(pStmt); 1224 return val; 1225 } 1226 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1227 Mem *pOut = columnMem(pStmt, i); 1228 if( pOut->flags&MEM_Static ){ 1229 pOut->flags &= ~MEM_Static; 1230 pOut->flags |= MEM_Ephem; 1231 } 1232 columnMallocFailure(pStmt); 1233 return (sqlite3_value *)pOut; 1234 } 1235 #ifndef SQLITE_OMIT_UTF16 1236 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1237 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1238 columnMallocFailure(pStmt); 1239 return val; 1240 } 1241 #endif /* SQLITE_OMIT_UTF16 */ 1242 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1243 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1244 columnMallocFailure(pStmt); 1245 return iType; 1246 } 1247 1248 /* 1249 ** Convert the N-th element of pStmt->pColName[] into a string using 1250 ** xFunc() then return that string. If N is out of range, return 0. 1251 ** 1252 ** There are up to 5 names for each column. useType determines which 1253 ** name is returned. Here are the names: 1254 ** 1255 ** 0 The column name as it should be displayed for output 1256 ** 1 The datatype name for the column 1257 ** 2 The name of the database that the column derives from 1258 ** 3 The name of the table that the column derives from 1259 ** 4 The name of the table column that the result column derives from 1260 ** 1261 ** If the result is not a simple column reference (if it is an expression 1262 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1263 */ 1264 static const void *columnName( 1265 sqlite3_stmt *pStmt, /* The statement */ 1266 int N, /* Which column to get the name for */ 1267 int useUtf16, /* True to return the name as UTF16 */ 1268 int useType /* What type of name */ 1269 ){ 1270 const void *ret; 1271 Vdbe *p; 1272 int n; 1273 sqlite3 *db; 1274 #ifdef SQLITE_ENABLE_API_ARMOR 1275 if( pStmt==0 ){ 1276 (void)SQLITE_MISUSE_BKPT; 1277 return 0; 1278 } 1279 #endif 1280 ret = 0; 1281 p = (Vdbe *)pStmt; 1282 db = p->db; 1283 assert( db!=0 ); 1284 n = sqlite3_column_count(pStmt); 1285 if( N<n && N>=0 ){ 1286 N += useType*n; 1287 sqlite3_mutex_enter(db->mutex); 1288 assert( db->mallocFailed==0 ); 1289 #ifndef SQLITE_OMIT_UTF16 1290 if( useUtf16 ){ 1291 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1292 }else 1293 #endif 1294 { 1295 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1296 } 1297 /* A malloc may have failed inside of the _text() call. If this 1298 ** is the case, clear the mallocFailed flag and return NULL. 1299 */ 1300 if( db->mallocFailed ){ 1301 sqlite3OomClear(db); 1302 ret = 0; 1303 } 1304 sqlite3_mutex_leave(db->mutex); 1305 } 1306 return ret; 1307 } 1308 1309 /* 1310 ** Return the name of the Nth column of the result set returned by SQL 1311 ** statement pStmt. 1312 */ 1313 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1314 return columnName(pStmt, N, 0, COLNAME_NAME); 1315 } 1316 #ifndef SQLITE_OMIT_UTF16 1317 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1318 return columnName(pStmt, N, 1, COLNAME_NAME); 1319 } 1320 #endif 1321 1322 /* 1323 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1324 ** not define OMIT_DECLTYPE. 1325 */ 1326 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1327 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1328 and SQLITE_ENABLE_COLUMN_METADATA" 1329 #endif 1330 1331 #ifndef SQLITE_OMIT_DECLTYPE 1332 /* 1333 ** Return the column declaration type (if applicable) of the 'i'th column 1334 ** of the result set of SQL statement pStmt. 1335 */ 1336 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1337 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1338 } 1339 #ifndef SQLITE_OMIT_UTF16 1340 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1341 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1342 } 1343 #endif /* SQLITE_OMIT_UTF16 */ 1344 #endif /* SQLITE_OMIT_DECLTYPE */ 1345 1346 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1347 /* 1348 ** Return the name of the database from which a result column derives. 1349 ** NULL is returned if the result column is an expression or constant or 1350 ** anything else which is not an unambiguous reference to a database column. 1351 */ 1352 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1353 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1354 } 1355 #ifndef SQLITE_OMIT_UTF16 1356 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1357 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1358 } 1359 #endif /* SQLITE_OMIT_UTF16 */ 1360 1361 /* 1362 ** Return the name of the table from which a result column derives. 1363 ** NULL is returned if the result column is an expression or constant or 1364 ** anything else which is not an unambiguous reference to a database column. 1365 */ 1366 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1367 return columnName(pStmt, N, 0, COLNAME_TABLE); 1368 } 1369 #ifndef SQLITE_OMIT_UTF16 1370 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1371 return columnName(pStmt, N, 1, COLNAME_TABLE); 1372 } 1373 #endif /* SQLITE_OMIT_UTF16 */ 1374 1375 /* 1376 ** Return the name of the table column from which a result column derives. 1377 ** NULL is returned if the result column is an expression or constant or 1378 ** anything else which is not an unambiguous reference to a database column. 1379 */ 1380 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1381 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1382 } 1383 #ifndef SQLITE_OMIT_UTF16 1384 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1385 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1386 } 1387 #endif /* SQLITE_OMIT_UTF16 */ 1388 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1389 1390 1391 /******************************* sqlite3_bind_ *************************** 1392 ** 1393 ** Routines used to attach values to wildcards in a compiled SQL statement. 1394 */ 1395 /* 1396 ** Unbind the value bound to variable i in virtual machine p. This is the 1397 ** the same as binding a NULL value to the column. If the "i" parameter is 1398 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1399 ** 1400 ** A successful evaluation of this routine acquires the mutex on p. 1401 ** the mutex is released if any kind of error occurs. 1402 ** 1403 ** The error code stored in database p->db is overwritten with the return 1404 ** value in any case. 1405 */ 1406 static int vdbeUnbind(Vdbe *p, int i){ 1407 Mem *pVar; 1408 if( vdbeSafetyNotNull(p) ){ 1409 return SQLITE_MISUSE_BKPT; 1410 } 1411 sqlite3_mutex_enter(p->db->mutex); 1412 if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1413 sqlite3Error(p->db, SQLITE_MISUSE); 1414 sqlite3_mutex_leave(p->db->mutex); 1415 sqlite3_log(SQLITE_MISUSE, 1416 "bind on a busy prepared statement: [%s]", p->zSql); 1417 return SQLITE_MISUSE_BKPT; 1418 } 1419 if( i<1 || i>p->nVar ){ 1420 sqlite3Error(p->db, SQLITE_RANGE); 1421 sqlite3_mutex_leave(p->db->mutex); 1422 return SQLITE_RANGE; 1423 } 1424 i--; 1425 pVar = &p->aVar[i]; 1426 sqlite3VdbeMemRelease(pVar); 1427 pVar->flags = MEM_Null; 1428 p->db->errCode = SQLITE_OK; 1429 1430 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1431 ** binding a new value to this variable invalidates the current query plan. 1432 ** 1433 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1434 ** parameter in the WHERE clause might influence the choice of query plan 1435 ** for a statement, then the statement will be automatically recompiled, 1436 ** as if there had been a schema change, on the first sqlite3_step() call 1437 ** following any change to the bindings of that parameter. 1438 */ 1439 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1440 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1441 p->expired = 1; 1442 } 1443 return SQLITE_OK; 1444 } 1445 1446 /* 1447 ** Bind a text or BLOB value. 1448 */ 1449 static int bindText( 1450 sqlite3_stmt *pStmt, /* The statement to bind against */ 1451 int i, /* Index of the parameter to bind */ 1452 const void *zData, /* Pointer to the data to be bound */ 1453 i64 nData, /* Number of bytes of data to be bound */ 1454 void (*xDel)(void*), /* Destructor for the data */ 1455 u8 encoding /* Encoding for the data */ 1456 ){ 1457 Vdbe *p = (Vdbe *)pStmt; 1458 Mem *pVar; 1459 int rc; 1460 1461 rc = vdbeUnbind(p, i); 1462 if( rc==SQLITE_OK ){ 1463 if( zData!=0 ){ 1464 pVar = &p->aVar[i-1]; 1465 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1466 if( rc==SQLITE_OK && encoding!=0 ){ 1467 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1468 } 1469 if( rc ){ 1470 sqlite3Error(p->db, rc); 1471 rc = sqlite3ApiExit(p->db, rc); 1472 } 1473 } 1474 sqlite3_mutex_leave(p->db->mutex); 1475 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1476 xDel((void*)zData); 1477 } 1478 return rc; 1479 } 1480 1481 1482 /* 1483 ** Bind a blob value to an SQL statement variable. 1484 */ 1485 int sqlite3_bind_blob( 1486 sqlite3_stmt *pStmt, 1487 int i, 1488 const void *zData, 1489 int nData, 1490 void (*xDel)(void*) 1491 ){ 1492 #ifdef SQLITE_ENABLE_API_ARMOR 1493 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1494 #endif 1495 return bindText(pStmt, i, zData, nData, xDel, 0); 1496 } 1497 int sqlite3_bind_blob64( 1498 sqlite3_stmt *pStmt, 1499 int i, 1500 const void *zData, 1501 sqlite3_uint64 nData, 1502 void (*xDel)(void*) 1503 ){ 1504 assert( xDel!=SQLITE_DYNAMIC ); 1505 return bindText(pStmt, i, zData, nData, xDel, 0); 1506 } 1507 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1508 int rc; 1509 Vdbe *p = (Vdbe *)pStmt; 1510 rc = vdbeUnbind(p, i); 1511 if( rc==SQLITE_OK ){ 1512 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1513 sqlite3_mutex_leave(p->db->mutex); 1514 } 1515 return rc; 1516 } 1517 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1518 return sqlite3_bind_int64(p, i, (i64)iValue); 1519 } 1520 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1521 int rc; 1522 Vdbe *p = (Vdbe *)pStmt; 1523 rc = vdbeUnbind(p, i); 1524 if( rc==SQLITE_OK ){ 1525 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1526 sqlite3_mutex_leave(p->db->mutex); 1527 } 1528 return rc; 1529 } 1530 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1531 int rc; 1532 Vdbe *p = (Vdbe*)pStmt; 1533 rc = vdbeUnbind(p, i); 1534 if( rc==SQLITE_OK ){ 1535 sqlite3_mutex_leave(p->db->mutex); 1536 } 1537 return rc; 1538 } 1539 int sqlite3_bind_pointer( 1540 sqlite3_stmt *pStmt, 1541 int i, 1542 void *pPtr, 1543 const char *zPTtype, 1544 void (*xDestructor)(void*) 1545 ){ 1546 int rc; 1547 Vdbe *p = (Vdbe*)pStmt; 1548 rc = vdbeUnbind(p, i); 1549 if( rc==SQLITE_OK ){ 1550 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1551 sqlite3_mutex_leave(p->db->mutex); 1552 }else if( xDestructor ){ 1553 xDestructor(pPtr); 1554 } 1555 return rc; 1556 } 1557 int sqlite3_bind_text( 1558 sqlite3_stmt *pStmt, 1559 int i, 1560 const char *zData, 1561 int nData, 1562 void (*xDel)(void*) 1563 ){ 1564 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1565 } 1566 int sqlite3_bind_text64( 1567 sqlite3_stmt *pStmt, 1568 int i, 1569 const char *zData, 1570 sqlite3_uint64 nData, 1571 void (*xDel)(void*), 1572 unsigned char enc 1573 ){ 1574 assert( xDel!=SQLITE_DYNAMIC ); 1575 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1576 return bindText(pStmt, i, zData, nData, xDel, enc); 1577 } 1578 #ifndef SQLITE_OMIT_UTF16 1579 int sqlite3_bind_text16( 1580 sqlite3_stmt *pStmt, 1581 int i, 1582 const void *zData, 1583 int nData, 1584 void (*xDel)(void*) 1585 ){ 1586 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1587 } 1588 #endif /* SQLITE_OMIT_UTF16 */ 1589 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1590 int rc; 1591 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1592 case SQLITE_INTEGER: { 1593 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1594 break; 1595 } 1596 case SQLITE_FLOAT: { 1597 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 1598 rc = sqlite3_bind_double(pStmt, i, 1599 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 1600 ); 1601 break; 1602 } 1603 case SQLITE_BLOB: { 1604 if( pValue->flags & MEM_Zero ){ 1605 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1606 }else{ 1607 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1608 } 1609 break; 1610 } 1611 case SQLITE_TEXT: { 1612 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1613 pValue->enc); 1614 break; 1615 } 1616 default: { 1617 rc = sqlite3_bind_null(pStmt, i); 1618 break; 1619 } 1620 } 1621 return rc; 1622 } 1623 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1624 int rc; 1625 Vdbe *p = (Vdbe *)pStmt; 1626 rc = vdbeUnbind(p, i); 1627 if( rc==SQLITE_OK ){ 1628 #ifndef SQLITE_OMIT_INCRBLOB 1629 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1630 #else 1631 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1632 #endif 1633 sqlite3_mutex_leave(p->db->mutex); 1634 } 1635 return rc; 1636 } 1637 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1638 int rc; 1639 Vdbe *p = (Vdbe *)pStmt; 1640 sqlite3_mutex_enter(p->db->mutex); 1641 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1642 rc = SQLITE_TOOBIG; 1643 }else{ 1644 assert( (n & 0x7FFFFFFF)==n ); 1645 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1646 } 1647 rc = sqlite3ApiExit(p->db, rc); 1648 sqlite3_mutex_leave(p->db->mutex); 1649 return rc; 1650 } 1651 1652 /* 1653 ** Return the number of wildcards that can be potentially bound to. 1654 ** This routine is added to support DBD::SQLite. 1655 */ 1656 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1657 Vdbe *p = (Vdbe*)pStmt; 1658 return p ? p->nVar : 0; 1659 } 1660 1661 /* 1662 ** Return the name of a wildcard parameter. Return NULL if the index 1663 ** is out of range or if the wildcard is unnamed. 1664 ** 1665 ** The result is always UTF-8. 1666 */ 1667 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1668 Vdbe *p = (Vdbe*)pStmt; 1669 if( p==0 ) return 0; 1670 return sqlite3VListNumToName(p->pVList, i); 1671 } 1672 1673 /* 1674 ** Given a wildcard parameter name, return the index of the variable 1675 ** with that name. If there is no variable with the given name, 1676 ** return 0. 1677 */ 1678 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1679 if( p==0 || zName==0 ) return 0; 1680 return sqlite3VListNameToNum(p->pVList, zName, nName); 1681 } 1682 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1683 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1684 } 1685 1686 /* 1687 ** Transfer all bindings from the first statement over to the second. 1688 */ 1689 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1690 Vdbe *pFrom = (Vdbe*)pFromStmt; 1691 Vdbe *pTo = (Vdbe*)pToStmt; 1692 int i; 1693 assert( pTo->db==pFrom->db ); 1694 assert( pTo->nVar==pFrom->nVar ); 1695 sqlite3_mutex_enter(pTo->db->mutex); 1696 for(i=0; i<pFrom->nVar; i++){ 1697 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1698 } 1699 sqlite3_mutex_leave(pTo->db->mutex); 1700 return SQLITE_OK; 1701 } 1702 1703 #ifndef SQLITE_OMIT_DEPRECATED 1704 /* 1705 ** Deprecated external interface. Internal/core SQLite code 1706 ** should call sqlite3TransferBindings. 1707 ** 1708 ** It is misuse to call this routine with statements from different 1709 ** database connections. But as this is a deprecated interface, we 1710 ** will not bother to check for that condition. 1711 ** 1712 ** If the two statements contain a different number of bindings, then 1713 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1714 ** SQLITE_OK is returned. 1715 */ 1716 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1717 Vdbe *pFrom = (Vdbe*)pFromStmt; 1718 Vdbe *pTo = (Vdbe*)pToStmt; 1719 if( pFrom->nVar!=pTo->nVar ){ 1720 return SQLITE_ERROR; 1721 } 1722 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1723 if( pTo->expmask ){ 1724 pTo->expired = 1; 1725 } 1726 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1727 if( pFrom->expmask ){ 1728 pFrom->expired = 1; 1729 } 1730 return sqlite3TransferBindings(pFromStmt, pToStmt); 1731 } 1732 #endif 1733 1734 /* 1735 ** Return the sqlite3* database handle to which the prepared statement given 1736 ** in the argument belongs. This is the same database handle that was 1737 ** the first argument to the sqlite3_prepare() that was used to create 1738 ** the statement in the first place. 1739 */ 1740 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1741 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1742 } 1743 1744 /* 1745 ** Return true if the prepared statement is guaranteed to not modify the 1746 ** database. 1747 */ 1748 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1749 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1750 } 1751 1752 /* 1753 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1754 ** statement is an EXPLAIN QUERY PLAN 1755 */ 1756 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1757 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1758 } 1759 1760 /* 1761 ** Return true if the prepared statement is in need of being reset. 1762 */ 1763 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1764 Vdbe *v = (Vdbe*)pStmt; 1765 return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0; 1766 } 1767 1768 /* 1769 ** Return a pointer to the next prepared statement after pStmt associated 1770 ** with database connection pDb. If pStmt is NULL, return the first 1771 ** prepared statement for the database connection. Return NULL if there 1772 ** are no more. 1773 */ 1774 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1775 sqlite3_stmt *pNext; 1776 #ifdef SQLITE_ENABLE_API_ARMOR 1777 if( !sqlite3SafetyCheckOk(pDb) ){ 1778 (void)SQLITE_MISUSE_BKPT; 1779 return 0; 1780 } 1781 #endif 1782 sqlite3_mutex_enter(pDb->mutex); 1783 if( pStmt==0 ){ 1784 pNext = (sqlite3_stmt*)pDb->pVdbe; 1785 }else{ 1786 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1787 } 1788 sqlite3_mutex_leave(pDb->mutex); 1789 return pNext; 1790 } 1791 1792 /* 1793 ** Return the value of a status counter for a prepared statement 1794 */ 1795 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1796 Vdbe *pVdbe = (Vdbe*)pStmt; 1797 u32 v; 1798 #ifdef SQLITE_ENABLE_API_ARMOR 1799 if( !pStmt 1800 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1801 ){ 1802 (void)SQLITE_MISUSE_BKPT; 1803 return 0; 1804 } 1805 #endif 1806 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1807 sqlite3 *db = pVdbe->db; 1808 sqlite3_mutex_enter(db->mutex); 1809 v = 0; 1810 db->pnBytesFreed = (int*)&v; 1811 sqlite3VdbeClearObject(db, pVdbe); 1812 sqlite3DbFree(db, pVdbe); 1813 db->pnBytesFreed = 0; 1814 sqlite3_mutex_leave(db->mutex); 1815 }else{ 1816 v = pVdbe->aCounter[op]; 1817 if( resetFlag ) pVdbe->aCounter[op] = 0; 1818 } 1819 return (int)v; 1820 } 1821 1822 /* 1823 ** Return the SQL associated with a prepared statement 1824 */ 1825 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1826 Vdbe *p = (Vdbe *)pStmt; 1827 return p ? p->zSql : 0; 1828 } 1829 1830 /* 1831 ** Return the SQL associated with a prepared statement with 1832 ** bound parameters expanded. Space to hold the returned string is 1833 ** obtained from sqlite3_malloc(). The caller is responsible for 1834 ** freeing the returned string by passing it to sqlite3_free(). 1835 ** 1836 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1837 ** expanded bound parameters. 1838 */ 1839 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1840 #ifdef SQLITE_OMIT_TRACE 1841 return 0; 1842 #else 1843 char *z = 0; 1844 const char *zSql = sqlite3_sql(pStmt); 1845 if( zSql ){ 1846 Vdbe *p = (Vdbe *)pStmt; 1847 sqlite3_mutex_enter(p->db->mutex); 1848 z = sqlite3VdbeExpandSql(p, zSql); 1849 sqlite3_mutex_leave(p->db->mutex); 1850 } 1851 return z; 1852 #endif 1853 } 1854 1855 #ifdef SQLITE_ENABLE_NORMALIZE 1856 /* 1857 ** Return the normalized SQL associated with a prepared statement. 1858 */ 1859 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1860 Vdbe *p = (Vdbe *)pStmt; 1861 if( p==0 ) return 0; 1862 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1863 sqlite3_mutex_enter(p->db->mutex); 1864 p->zNormSql = sqlite3Normalize(p, p->zSql); 1865 sqlite3_mutex_leave(p->db->mutex); 1866 } 1867 return p->zNormSql; 1868 } 1869 #endif /* SQLITE_ENABLE_NORMALIZE */ 1870 1871 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1872 /* 1873 ** Allocate and populate an UnpackedRecord structure based on the serialized 1874 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1875 ** if successful, or a NULL pointer if an OOM error is encountered. 1876 */ 1877 static UnpackedRecord *vdbeUnpackRecord( 1878 KeyInfo *pKeyInfo, 1879 int nKey, 1880 const void *pKey 1881 ){ 1882 UnpackedRecord *pRet; /* Return value */ 1883 1884 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1885 if( pRet ){ 1886 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1887 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1888 } 1889 return pRet; 1890 } 1891 1892 /* 1893 ** This function is called from within a pre-update callback to retrieve 1894 ** a field of the row currently being updated or deleted. 1895 */ 1896 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1897 PreUpdate *p = db->pPreUpdate; 1898 Mem *pMem; 1899 int rc = SQLITE_OK; 1900 1901 /* Test that this call is being made from within an SQLITE_DELETE or 1902 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1903 if( !p || p->op==SQLITE_INSERT ){ 1904 rc = SQLITE_MISUSE_BKPT; 1905 goto preupdate_old_out; 1906 } 1907 if( p->pPk ){ 1908 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1909 } 1910 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1911 rc = SQLITE_RANGE; 1912 goto preupdate_old_out; 1913 } 1914 1915 /* If the old.* record has not yet been loaded into memory, do so now. */ 1916 if( p->pUnpacked==0 ){ 1917 u32 nRec; 1918 u8 *aRec; 1919 1920 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1921 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1922 aRec = sqlite3DbMallocRaw(db, nRec); 1923 if( !aRec ) goto preupdate_old_out; 1924 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1925 if( rc==SQLITE_OK ){ 1926 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1927 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1928 } 1929 if( rc!=SQLITE_OK ){ 1930 sqlite3DbFree(db, aRec); 1931 goto preupdate_old_out; 1932 } 1933 p->aRecord = aRec; 1934 } 1935 1936 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1937 if( iIdx==p->pTab->iPKey ){ 1938 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1939 }else if( iIdx>=p->pUnpacked->nField ){ 1940 *ppValue = (sqlite3_value *)columnNullValue(); 1941 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1942 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1943 testcase( pMem->flags & MEM_Int ); 1944 testcase( pMem->flags & MEM_IntReal ); 1945 sqlite3VdbeMemRealify(pMem); 1946 } 1947 } 1948 1949 preupdate_old_out: 1950 sqlite3Error(db, rc); 1951 return sqlite3ApiExit(db, rc); 1952 } 1953 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1954 1955 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1956 /* 1957 ** This function is called from within a pre-update callback to retrieve 1958 ** the number of columns in the row being updated, deleted or inserted. 1959 */ 1960 int sqlite3_preupdate_count(sqlite3 *db){ 1961 PreUpdate *p = db->pPreUpdate; 1962 return (p ? p->keyinfo.nKeyField : 0); 1963 } 1964 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1965 1966 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1967 /* 1968 ** This function is designed to be called from within a pre-update callback 1969 ** only. It returns zero if the change that caused the callback was made 1970 ** immediately by a user SQL statement. Or, if the change was made by a 1971 ** trigger program, it returns the number of trigger programs currently 1972 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1973 ** top-level trigger etc.). 1974 ** 1975 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1976 ** or SET DEFAULT action is considered a trigger. 1977 */ 1978 int sqlite3_preupdate_depth(sqlite3 *db){ 1979 PreUpdate *p = db->pPreUpdate; 1980 return (p ? p->v->nFrame : 0); 1981 } 1982 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1983 1984 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1985 /* 1986 ** This function is designed to be called from within a pre-update callback 1987 ** only. 1988 */ 1989 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 1990 PreUpdate *p = db->pPreUpdate; 1991 return (p ? p->iBlobWrite : -1); 1992 } 1993 #endif 1994 1995 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1996 /* 1997 ** This function is called from within a pre-update callback to retrieve 1998 ** a field of the row currently being updated or inserted. 1999 */ 2000 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 2001 PreUpdate *p = db->pPreUpdate; 2002 int rc = SQLITE_OK; 2003 Mem *pMem; 2004 2005 if( !p || p->op==SQLITE_DELETE ){ 2006 rc = SQLITE_MISUSE_BKPT; 2007 goto preupdate_new_out; 2008 } 2009 if( p->pPk && p->op!=SQLITE_UPDATE ){ 2010 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 2011 } 2012 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 2013 rc = SQLITE_RANGE; 2014 goto preupdate_new_out; 2015 } 2016 2017 if( p->op==SQLITE_INSERT ){ 2018 /* For an INSERT, memory cell p->iNewReg contains the serialized record 2019 ** that is being inserted. Deserialize it. */ 2020 UnpackedRecord *pUnpack = p->pNewUnpacked; 2021 if( !pUnpack ){ 2022 Mem *pData = &p->v->aMem[p->iNewReg]; 2023 rc = ExpandBlob(pData); 2024 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2025 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 2026 if( !pUnpack ){ 2027 rc = SQLITE_NOMEM; 2028 goto preupdate_new_out; 2029 } 2030 p->pNewUnpacked = pUnpack; 2031 } 2032 pMem = &pUnpack->aMem[iIdx]; 2033 if( iIdx==p->pTab->iPKey ){ 2034 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2035 }else if( iIdx>=pUnpack->nField ){ 2036 pMem = (sqlite3_value *)columnNullValue(); 2037 } 2038 }else{ 2039 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 2040 ** value. Make a copy of the cell contents and return a pointer to it. 2041 ** It is not safe to return a pointer to the memory cell itself as the 2042 ** caller may modify the value text encoding. 2043 */ 2044 assert( p->op==SQLITE_UPDATE ); 2045 if( !p->aNew ){ 2046 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 2047 if( !p->aNew ){ 2048 rc = SQLITE_NOMEM; 2049 goto preupdate_new_out; 2050 } 2051 } 2052 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 2053 pMem = &p->aNew[iIdx]; 2054 if( pMem->flags==0 ){ 2055 if( iIdx==p->pTab->iPKey ){ 2056 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2057 }else{ 2058 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 2059 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2060 } 2061 } 2062 } 2063 *ppValue = pMem; 2064 2065 preupdate_new_out: 2066 sqlite3Error(db, rc); 2067 return sqlite3ApiExit(db, rc); 2068 } 2069 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2070 2071 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2072 /* 2073 ** Return status data for a single loop within query pStmt. 2074 */ 2075 int sqlite3_stmt_scanstatus( 2076 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2077 int idx, /* Index of loop to report on */ 2078 int iScanStatusOp, /* Which metric to return */ 2079 void *pOut /* OUT: Write the answer here */ 2080 ){ 2081 Vdbe *p = (Vdbe*)pStmt; 2082 ScanStatus *pScan; 2083 if( idx<0 || idx>=p->nScan ) return 1; 2084 pScan = &p->aScan[idx]; 2085 switch( iScanStatusOp ){ 2086 case SQLITE_SCANSTAT_NLOOP: { 2087 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2088 break; 2089 } 2090 case SQLITE_SCANSTAT_NVISIT: { 2091 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2092 break; 2093 } 2094 case SQLITE_SCANSTAT_EST: { 2095 double r = 1.0; 2096 LogEst x = pScan->nEst; 2097 while( x<100 ){ 2098 x += 10; 2099 r *= 0.5; 2100 } 2101 *(double*)pOut = r*sqlite3LogEstToInt(x); 2102 break; 2103 } 2104 case SQLITE_SCANSTAT_NAME: { 2105 *(const char**)pOut = pScan->zName; 2106 break; 2107 } 2108 case SQLITE_SCANSTAT_EXPLAIN: { 2109 if( pScan->addrExplain ){ 2110 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2111 }else{ 2112 *(const char**)pOut = 0; 2113 } 2114 break; 2115 } 2116 case SQLITE_SCANSTAT_SELECTID: { 2117 if( pScan->addrExplain ){ 2118 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2119 }else{ 2120 *(int*)pOut = -1; 2121 } 2122 break; 2123 } 2124 default: { 2125 return 1; 2126 } 2127 } 2128 return 0; 2129 } 2130 2131 /* 2132 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2133 */ 2134 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2135 Vdbe *p = (Vdbe*)pStmt; 2136 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2137 } 2138 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2139