xref: /sqlite-3.40.0/src/vdbeapi.c (revision dca92904)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   assert( p->startTime>0 );
64   assert( db->xProfile!=0 );
65   assert( db->init.busy==0 );
66   assert( p->zSql!=0 );
67   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
68   db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
69   p->startTime = 0;
70 }
71 /*
72 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
73 ** is needed, and it invokes the callback if it is needed.
74 */
75 # define checkProfileCallback(DB,P) \
76    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
77 #else
78 # define checkProfileCallback(DB,P)  /*no-op*/
79 #endif
80 
81 /*
82 ** The following routine destroys a virtual machine that is created by
83 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
84 ** success/failure code that describes the result of executing the virtual
85 ** machine.
86 **
87 ** This routine sets the error code and string returned by
88 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
89 */
90 int sqlite3_finalize(sqlite3_stmt *pStmt){
91   int rc;
92   if( pStmt==0 ){
93     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
94     ** pointer is a harmless no-op. */
95     rc = SQLITE_OK;
96   }else{
97     Vdbe *v = (Vdbe*)pStmt;
98     sqlite3 *db = v->db;
99     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
100     sqlite3_mutex_enter(db->mutex);
101     checkProfileCallback(db, v);
102     rc = sqlite3VdbeFinalize(v);
103     rc = sqlite3ApiExit(db, rc);
104     sqlite3LeaveMutexAndCloseZombie(db);
105   }
106   return rc;
107 }
108 
109 /*
110 ** Terminate the current execution of an SQL statement and reset it
111 ** back to its starting state so that it can be reused. A success code from
112 ** the prior execution is returned.
113 **
114 ** This routine sets the error code and string returned by
115 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
116 */
117 int sqlite3_reset(sqlite3_stmt *pStmt){
118   int rc;
119   if( pStmt==0 ){
120     rc = SQLITE_OK;
121   }else{
122     Vdbe *v = (Vdbe*)pStmt;
123     sqlite3 *db = v->db;
124     sqlite3_mutex_enter(db->mutex);
125     checkProfileCallback(db, v);
126     rc = sqlite3VdbeReset(v);
127     sqlite3VdbeRewind(v);
128     assert( (rc & (db->errMask))==rc );
129     rc = sqlite3ApiExit(db, rc);
130     sqlite3_mutex_leave(db->mutex);
131   }
132   return rc;
133 }
134 
135 /*
136 ** Set all the parameters in the compiled SQL statement to NULL.
137 */
138 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
139   int i;
140   int rc = SQLITE_OK;
141   Vdbe *p = (Vdbe*)pStmt;
142 #if SQLITE_THREADSAFE
143   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
144 #endif
145   sqlite3_mutex_enter(mutex);
146   for(i=0; i<p->nVar; i++){
147     sqlite3VdbeMemRelease(&p->aVar[i]);
148     p->aVar[i].flags = MEM_Null;
149   }
150   if( p->isPrepareV2 && p->expmask ){
151     p->expired = 1;
152   }
153   sqlite3_mutex_leave(mutex);
154   return rc;
155 }
156 
157 
158 /**************************** sqlite3_value_  *******************************
159 ** The following routines extract information from a Mem or sqlite3_value
160 ** structure.
161 */
162 const void *sqlite3_value_blob(sqlite3_value *pVal){
163   Mem *p = (Mem*)pVal;
164   if( p->flags & (MEM_Blob|MEM_Str) ){
165     if( sqlite3VdbeMemExpandBlob(p)!=SQLITE_OK ){
166       assert( p->flags==MEM_Null && p->z==0 );
167       return 0;
168     }
169     p->flags |= MEM_Blob;
170     return p->n ? p->z : 0;
171   }else{
172     return sqlite3_value_text(pVal);
173   }
174 }
175 int sqlite3_value_bytes(sqlite3_value *pVal){
176   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
177 }
178 int sqlite3_value_bytes16(sqlite3_value *pVal){
179   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
180 }
181 double sqlite3_value_double(sqlite3_value *pVal){
182   return sqlite3VdbeRealValue((Mem*)pVal);
183 }
184 int sqlite3_value_int(sqlite3_value *pVal){
185   return (int)sqlite3VdbeIntValue((Mem*)pVal);
186 }
187 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
188   return sqlite3VdbeIntValue((Mem*)pVal);
189 }
190 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
191   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
192 }
193 #ifndef SQLITE_OMIT_UTF16
194 const void *sqlite3_value_text16(sqlite3_value* pVal){
195   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
196 }
197 const void *sqlite3_value_text16be(sqlite3_value *pVal){
198   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
199 }
200 const void *sqlite3_value_text16le(sqlite3_value *pVal){
201   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
202 }
203 #endif /* SQLITE_OMIT_UTF16 */
204 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
205 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
206 ** point number string BLOB NULL
207 */
208 int sqlite3_value_type(sqlite3_value* pVal){
209   static const u8 aType[] = {
210      SQLITE_BLOB,     /* 0x00 */
211      SQLITE_NULL,     /* 0x01 */
212      SQLITE_TEXT,     /* 0x02 */
213      SQLITE_NULL,     /* 0x03 */
214      SQLITE_INTEGER,  /* 0x04 */
215      SQLITE_NULL,     /* 0x05 */
216      SQLITE_INTEGER,  /* 0x06 */
217      SQLITE_NULL,     /* 0x07 */
218      SQLITE_FLOAT,    /* 0x08 */
219      SQLITE_NULL,     /* 0x09 */
220      SQLITE_FLOAT,    /* 0x0a */
221      SQLITE_NULL,     /* 0x0b */
222      SQLITE_INTEGER,  /* 0x0c */
223      SQLITE_NULL,     /* 0x0d */
224      SQLITE_INTEGER,  /* 0x0e */
225      SQLITE_NULL,     /* 0x0f */
226      SQLITE_BLOB,     /* 0x10 */
227      SQLITE_NULL,     /* 0x11 */
228      SQLITE_TEXT,     /* 0x12 */
229      SQLITE_NULL,     /* 0x13 */
230      SQLITE_INTEGER,  /* 0x14 */
231      SQLITE_NULL,     /* 0x15 */
232      SQLITE_INTEGER,  /* 0x16 */
233      SQLITE_NULL,     /* 0x17 */
234      SQLITE_FLOAT,    /* 0x18 */
235      SQLITE_NULL,     /* 0x19 */
236      SQLITE_FLOAT,    /* 0x1a */
237      SQLITE_NULL,     /* 0x1b */
238      SQLITE_INTEGER,  /* 0x1c */
239      SQLITE_NULL,     /* 0x1d */
240      SQLITE_INTEGER,  /* 0x1e */
241      SQLITE_NULL,     /* 0x1f */
242   };
243   return aType[pVal->flags&MEM_AffMask];
244 }
245 
246 /* Make a copy of an sqlite3_value object
247 */
248 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
249   sqlite3_value *pNew;
250   if( pOrig==0 ) return 0;
251   pNew = sqlite3_malloc( sizeof(*pNew) );
252   if( pNew==0 ) return 0;
253   memset(pNew, 0, sizeof(*pNew));
254   memcpy(pNew, pOrig, MEMCELLSIZE);
255   pNew->flags &= ~MEM_Dyn;
256   pNew->db = 0;
257   if( pNew->flags&(MEM_Str|MEM_Blob) ){
258     pNew->flags &= ~(MEM_Static|MEM_Dyn);
259     pNew->flags |= MEM_Ephem;
260     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
261       sqlite3ValueFree(pNew);
262       pNew = 0;
263     }
264   }
265   return pNew;
266 }
267 
268 /* Destroy an sqlite3_value object previously obtained from
269 ** sqlite3_value_dup().
270 */
271 void sqlite3_value_free(sqlite3_value *pOld){
272   sqlite3ValueFree(pOld);
273 }
274 
275 
276 /**************************** sqlite3_result_  *******************************
277 ** The following routines are used by user-defined functions to specify
278 ** the function result.
279 **
280 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
281 ** result as a string or blob but if the string or blob is too large, it
282 ** then sets the error code to SQLITE_TOOBIG
283 **
284 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
285 ** on value P is not going to be used and need to be destroyed.
286 */
287 static void setResultStrOrError(
288   sqlite3_context *pCtx,  /* Function context */
289   const char *z,          /* String pointer */
290   int n,                  /* Bytes in string, or negative */
291   u8 enc,                 /* Encoding of z.  0 for BLOBs */
292   void (*xDel)(void*)     /* Destructor function */
293 ){
294   if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
295     sqlite3_result_error_toobig(pCtx);
296   }
297 }
298 static int invokeValueDestructor(
299   const void *p,             /* Value to destroy */
300   void (*xDel)(void*),       /* The destructor */
301   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
302 ){
303   assert( xDel!=SQLITE_DYNAMIC );
304   if( xDel==0 ){
305     /* noop */
306   }else if( xDel==SQLITE_TRANSIENT ){
307     /* noop */
308   }else{
309     xDel((void*)p);
310   }
311   if( pCtx ) sqlite3_result_error_toobig(pCtx);
312   return SQLITE_TOOBIG;
313 }
314 void sqlite3_result_blob(
315   sqlite3_context *pCtx,
316   const void *z,
317   int n,
318   void (*xDel)(void *)
319 ){
320   assert( n>=0 );
321   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
322   setResultStrOrError(pCtx, z, n, 0, xDel);
323 }
324 void sqlite3_result_blob64(
325   sqlite3_context *pCtx,
326   const void *z,
327   sqlite3_uint64 n,
328   void (*xDel)(void *)
329 ){
330   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
331   assert( xDel!=SQLITE_DYNAMIC );
332   if( n>0x7fffffff ){
333     (void)invokeValueDestructor(z, xDel, pCtx);
334   }else{
335     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
336   }
337 }
338 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
339   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
340   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
341 }
342 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
343   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
344   pCtx->isError = SQLITE_ERROR;
345   pCtx->fErrorOrAux = 1;
346   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
347 }
348 #ifndef SQLITE_OMIT_UTF16
349 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
350   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
351   pCtx->isError = SQLITE_ERROR;
352   pCtx->fErrorOrAux = 1;
353   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
354 }
355 #endif
356 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
357   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
358   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
359 }
360 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
361   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
362   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
363 }
364 void sqlite3_result_null(sqlite3_context *pCtx){
365   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
366   sqlite3VdbeMemSetNull(pCtx->pOut);
367 }
368 void sqlite3_result_text(
369   sqlite3_context *pCtx,
370   const char *z,
371   int n,
372   void (*xDel)(void *)
373 ){
374   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
375   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
376 }
377 void sqlite3_result_text64(
378   sqlite3_context *pCtx,
379   const char *z,
380   sqlite3_uint64 n,
381   void (*xDel)(void *),
382   unsigned char enc
383 ){
384   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
385   assert( xDel!=SQLITE_DYNAMIC );
386   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
387   if( n>0x7fffffff ){
388     (void)invokeValueDestructor(z, xDel, pCtx);
389   }else{
390     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
391   }
392 }
393 #ifndef SQLITE_OMIT_UTF16
394 void sqlite3_result_text16(
395   sqlite3_context *pCtx,
396   const void *z,
397   int n,
398   void (*xDel)(void *)
399 ){
400   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
401   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
402 }
403 void sqlite3_result_text16be(
404   sqlite3_context *pCtx,
405   const void *z,
406   int n,
407   void (*xDel)(void *)
408 ){
409   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
410   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
411 }
412 void sqlite3_result_text16le(
413   sqlite3_context *pCtx,
414   const void *z,
415   int n,
416   void (*xDel)(void *)
417 ){
418   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
419   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
420 }
421 #endif /* SQLITE_OMIT_UTF16 */
422 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
423   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
424   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
425 }
426 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
427   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
429 }
430 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
431   Mem *pOut = pCtx->pOut;
432   assert( sqlite3_mutex_held(pOut->db->mutex) );
433   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
434     return SQLITE_TOOBIG;
435   }
436   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
437   return SQLITE_OK;
438 }
439 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
440   pCtx->isError = errCode;
441   pCtx->fErrorOrAux = 1;
442 #ifdef SQLITE_DEBUG
443   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
444 #endif
445   if( pCtx->pOut->flags & MEM_Null ){
446     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
447                          SQLITE_UTF8, SQLITE_STATIC);
448   }
449 }
450 
451 /* Force an SQLITE_TOOBIG error. */
452 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
453   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
454   pCtx->isError = SQLITE_TOOBIG;
455   pCtx->fErrorOrAux = 1;
456   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
457                        SQLITE_UTF8, SQLITE_STATIC);
458 }
459 
460 /* An SQLITE_NOMEM error. */
461 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
462   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
463   sqlite3VdbeMemSetNull(pCtx->pOut);
464   pCtx->isError = SQLITE_NOMEM;
465   pCtx->fErrorOrAux = 1;
466   pCtx->pOut->db->mallocFailed = 1;
467 }
468 
469 /*
470 ** This function is called after a transaction has been committed. It
471 ** invokes callbacks registered with sqlite3_wal_hook() as required.
472 */
473 static int doWalCallbacks(sqlite3 *db){
474   int rc = SQLITE_OK;
475 #ifndef SQLITE_OMIT_WAL
476   int i;
477   for(i=0; i<db->nDb; i++){
478     Btree *pBt = db->aDb[i].pBt;
479     if( pBt ){
480       int nEntry;
481       sqlite3BtreeEnter(pBt);
482       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
483       sqlite3BtreeLeave(pBt);
484       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
485         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
486       }
487     }
488   }
489 #endif
490   return rc;
491 }
492 
493 
494 /*
495 ** Execute the statement pStmt, either until a row of data is ready, the
496 ** statement is completely executed or an error occurs.
497 **
498 ** This routine implements the bulk of the logic behind the sqlite_step()
499 ** API.  The only thing omitted is the automatic recompile if a
500 ** schema change has occurred.  That detail is handled by the
501 ** outer sqlite3_step() wrapper procedure.
502 */
503 static int sqlite3Step(Vdbe *p){
504   sqlite3 *db;
505   int rc;
506 
507   assert(p);
508   if( p->magic!=VDBE_MAGIC_RUN ){
509     /* We used to require that sqlite3_reset() be called before retrying
510     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
511     ** with version 3.7.0, we changed this so that sqlite3_reset() would
512     ** be called automatically instead of throwing the SQLITE_MISUSE error.
513     ** This "automatic-reset" change is not technically an incompatibility,
514     ** since any application that receives an SQLITE_MISUSE is broken by
515     ** definition.
516     **
517     ** Nevertheless, some published applications that were originally written
518     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
519     ** returns, and those were broken by the automatic-reset change.  As a
520     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
521     ** legacy behavior of returning SQLITE_MISUSE for cases where the
522     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
523     ** or SQLITE_BUSY error.
524     */
525 #ifdef SQLITE_OMIT_AUTORESET
526     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
527       sqlite3_reset((sqlite3_stmt*)p);
528     }else{
529       return SQLITE_MISUSE_BKPT;
530     }
531 #else
532     sqlite3_reset((sqlite3_stmt*)p);
533 #endif
534   }
535 
536   /* Check that malloc() has not failed. If it has, return early. */
537   db = p->db;
538   if( db->mallocFailed ){
539     p->rc = SQLITE_NOMEM;
540     return SQLITE_NOMEM;
541   }
542 
543   if( p->pc<=0 && p->expired ){
544     p->rc = SQLITE_SCHEMA;
545     rc = SQLITE_ERROR;
546     goto end_of_step;
547   }
548   if( p->pc<0 ){
549     /* If there are no other statements currently running, then
550     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
551     ** from interrupting a statement that has not yet started.
552     */
553     if( db->nVdbeActive==0 ){
554       db->u1.isInterrupted = 0;
555     }
556 
557     assert( db->nVdbeWrite>0 || db->autoCommit==0
558         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
559     );
560 
561 #ifndef SQLITE_OMIT_TRACE
562     if( db->xProfile && !db->init.busy && p->zSql ){
563       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
564     }else{
565       assert( p->startTime==0 );
566     }
567 #endif
568 
569     db->nVdbeActive++;
570     if( p->readOnly==0 ) db->nVdbeWrite++;
571     if( p->bIsReader ) db->nVdbeRead++;
572     p->pc = 0;
573   }
574 #ifdef SQLITE_DEBUG
575   p->rcApp = SQLITE_OK;
576 #endif
577 #ifndef SQLITE_OMIT_EXPLAIN
578   if( p->explain ){
579     rc = sqlite3VdbeList(p);
580   }else
581 #endif /* SQLITE_OMIT_EXPLAIN */
582   {
583     db->nVdbeExec++;
584     rc = sqlite3VdbeExec(p);
585     db->nVdbeExec--;
586   }
587 
588 #ifndef SQLITE_OMIT_TRACE
589   /* If the statement completed successfully, invoke the profile callback */
590   if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
591 #endif
592 
593   if( rc==SQLITE_DONE ){
594     assert( p->rc==SQLITE_OK );
595     p->rc = doWalCallbacks(db);
596     if( p->rc!=SQLITE_OK ){
597       rc = SQLITE_ERROR;
598     }
599   }
600 
601   db->errCode = rc;
602   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
603     p->rc = SQLITE_NOMEM;
604   }
605 end_of_step:
606   /* At this point local variable rc holds the value that should be
607   ** returned if this statement was compiled using the legacy
608   ** sqlite3_prepare() interface. According to the docs, this can only
609   ** be one of the values in the first assert() below. Variable p->rc
610   ** contains the value that would be returned if sqlite3_finalize()
611   ** were called on statement p.
612   */
613   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
614        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
615   );
616   assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
617   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
618     /* If this statement was prepared using sqlite3_prepare_v2(), and an
619     ** error has occurred, then return the error code in p->rc to the
620     ** caller. Set the error code in the database handle to the same value.
621     */
622     rc = sqlite3VdbeTransferError(p);
623   }
624   return (rc&db->errMask);
625 }
626 
627 /*
628 ** This is the top-level implementation of sqlite3_step().  Call
629 ** sqlite3Step() to do most of the work.  If a schema error occurs,
630 ** call sqlite3Reprepare() and try again.
631 */
632 int sqlite3_step(sqlite3_stmt *pStmt){
633   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
634   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
635   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
636   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
637   sqlite3 *db;             /* The database connection */
638 
639   if( vdbeSafetyNotNull(v) ){
640     return SQLITE_MISUSE_BKPT;
641   }
642   db = v->db;
643   sqlite3_mutex_enter(db->mutex);
644   v->doingRerun = 0;
645   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
646          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
647     int savedPc = v->pc;
648     rc2 = rc = sqlite3Reprepare(v);
649     if( rc!=SQLITE_OK) break;
650     sqlite3_reset(pStmt);
651     if( savedPc>=0 ) v->doingRerun = 1;
652     assert( v->expired==0 );
653   }
654   if( rc2!=SQLITE_OK ){
655     /* This case occurs after failing to recompile an sql statement.
656     ** The error message from the SQL compiler has already been loaded
657     ** into the database handle. This block copies the error message
658     ** from the database handle into the statement and sets the statement
659     ** program counter to 0 to ensure that when the statement is
660     ** finalized or reset the parser error message is available via
661     ** sqlite3_errmsg() and sqlite3_errcode().
662     */
663     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
664     sqlite3DbFree(db, v->zErrMsg);
665     if( !db->mallocFailed ){
666       v->zErrMsg = sqlite3DbStrDup(db, zErr);
667       v->rc = rc2;
668     } else {
669       v->zErrMsg = 0;
670       v->rc = rc = SQLITE_NOMEM;
671     }
672   }
673   rc = sqlite3ApiExit(db, rc);
674   sqlite3_mutex_leave(db->mutex);
675   return rc;
676 }
677 
678 
679 /*
680 ** Extract the user data from a sqlite3_context structure and return a
681 ** pointer to it.
682 */
683 void *sqlite3_user_data(sqlite3_context *p){
684   assert( p && p->pFunc );
685   return p->pFunc->pUserData;
686 }
687 
688 /*
689 ** Extract the user data from a sqlite3_context structure and return a
690 ** pointer to it.
691 **
692 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
693 ** returns a copy of the pointer to the database connection (the 1st
694 ** parameter) of the sqlite3_create_function() and
695 ** sqlite3_create_function16() routines that originally registered the
696 ** application defined function.
697 */
698 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
699   assert( p && p->pFunc );
700   return p->pOut->db;
701 }
702 
703 /*
704 ** Return the current time for a statement.  If the current time
705 ** is requested more than once within the same run of a single prepared
706 ** statement, the exact same time is returned for each invocation regardless
707 ** of the amount of time that elapses between invocations.  In other words,
708 ** the time returned is always the time of the first call.
709 */
710 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
711   int rc;
712 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
713   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
714   assert( p->pVdbe!=0 );
715 #else
716   sqlite3_int64 iTime = 0;
717   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
718 #endif
719   if( *piTime==0 ){
720     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
721     if( rc ) *piTime = 0;
722   }
723   return *piTime;
724 }
725 
726 /*
727 ** The following is the implementation of an SQL function that always
728 ** fails with an error message stating that the function is used in the
729 ** wrong context.  The sqlite3_overload_function() API might construct
730 ** SQL function that use this routine so that the functions will exist
731 ** for name resolution but are actually overloaded by the xFindFunction
732 ** method of virtual tables.
733 */
734 void sqlite3InvalidFunction(
735   sqlite3_context *context,  /* The function calling context */
736   int NotUsed,               /* Number of arguments to the function */
737   sqlite3_value **NotUsed2   /* Value of each argument */
738 ){
739   const char *zName = context->pFunc->zName;
740   char *zErr;
741   UNUSED_PARAMETER2(NotUsed, NotUsed2);
742   zErr = sqlite3_mprintf(
743       "unable to use function %s in the requested context", zName);
744   sqlite3_result_error(context, zErr, -1);
745   sqlite3_free(zErr);
746 }
747 
748 /*
749 ** Create a new aggregate context for p and return a pointer to
750 ** its pMem->z element.
751 */
752 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
753   Mem *pMem = p->pMem;
754   assert( (pMem->flags & MEM_Agg)==0 );
755   if( nByte<=0 ){
756     sqlite3VdbeMemSetNull(pMem);
757     pMem->z = 0;
758   }else{
759     sqlite3VdbeMemClearAndResize(pMem, nByte);
760     pMem->flags = MEM_Agg;
761     pMem->u.pDef = p->pFunc;
762     if( pMem->z ){
763       memset(pMem->z, 0, nByte);
764     }
765   }
766   return (void*)pMem->z;
767 }
768 
769 /*
770 ** Allocate or return the aggregate context for a user function.  A new
771 ** context is allocated on the first call.  Subsequent calls return the
772 ** same context that was returned on prior calls.
773 */
774 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
775   assert( p && p->pFunc && p->pFunc->xStep );
776   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
777   testcase( nByte<0 );
778   if( (p->pMem->flags & MEM_Agg)==0 ){
779     return createAggContext(p, nByte);
780   }else{
781     return (void*)p->pMem->z;
782   }
783 }
784 
785 /*
786 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
787 ** the user-function defined by pCtx.
788 */
789 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
790   AuxData *pAuxData;
791 
792   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
793 #if SQLITE_ENABLE_STAT3_OR_STAT4
794   if( pCtx->pVdbe==0 ) return 0;
795 #else
796   assert( pCtx->pVdbe!=0 );
797 #endif
798   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
799     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
800   }
801 
802   return (pAuxData ? pAuxData->pAux : 0);
803 }
804 
805 /*
806 ** Set the auxiliary data pointer and delete function, for the iArg'th
807 ** argument to the user-function defined by pCtx. Any previous value is
808 ** deleted by calling the delete function specified when it was set.
809 */
810 void sqlite3_set_auxdata(
811   sqlite3_context *pCtx,
812   int iArg,
813   void *pAux,
814   void (*xDelete)(void*)
815 ){
816   AuxData *pAuxData;
817   Vdbe *pVdbe = pCtx->pVdbe;
818 
819   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
820   if( iArg<0 ) goto failed;
821 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
822   if( pVdbe==0 ) goto failed;
823 #else
824   assert( pVdbe!=0 );
825 #endif
826 
827   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
828     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
829   }
830   if( pAuxData==0 ){
831     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
832     if( !pAuxData ) goto failed;
833     pAuxData->iOp = pCtx->iOp;
834     pAuxData->iArg = iArg;
835     pAuxData->pNext = pVdbe->pAuxData;
836     pVdbe->pAuxData = pAuxData;
837     if( pCtx->fErrorOrAux==0 ){
838       pCtx->isError = 0;
839       pCtx->fErrorOrAux = 1;
840     }
841   }else if( pAuxData->xDelete ){
842     pAuxData->xDelete(pAuxData->pAux);
843   }
844 
845   pAuxData->pAux = pAux;
846   pAuxData->xDelete = xDelete;
847   return;
848 
849 failed:
850   if( xDelete ){
851     xDelete(pAux);
852   }
853 }
854 
855 #ifndef SQLITE_OMIT_DEPRECATED
856 /*
857 ** Return the number of times the Step function of an aggregate has been
858 ** called.
859 **
860 ** This function is deprecated.  Do not use it for new code.  It is
861 ** provide only to avoid breaking legacy code.  New aggregate function
862 ** implementations should keep their own counts within their aggregate
863 ** context.
864 */
865 int sqlite3_aggregate_count(sqlite3_context *p){
866   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
867   return p->pMem->n;
868 }
869 #endif
870 
871 /*
872 ** Return the number of columns in the result set for the statement pStmt.
873 */
874 int sqlite3_column_count(sqlite3_stmt *pStmt){
875   Vdbe *pVm = (Vdbe *)pStmt;
876   return pVm ? pVm->nResColumn : 0;
877 }
878 
879 /*
880 ** Return the number of values available from the current row of the
881 ** currently executing statement pStmt.
882 */
883 int sqlite3_data_count(sqlite3_stmt *pStmt){
884   Vdbe *pVm = (Vdbe *)pStmt;
885   if( pVm==0 || pVm->pResultSet==0 ) return 0;
886   return pVm->nResColumn;
887 }
888 
889 /*
890 ** Return a pointer to static memory containing an SQL NULL value.
891 */
892 static const Mem *columnNullValue(void){
893   /* Even though the Mem structure contains an element
894   ** of type i64, on certain architectures (x86) with certain compiler
895   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
896   ** instead of an 8-byte one. This all works fine, except that when
897   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
898   ** that a Mem structure is located on an 8-byte boundary. To prevent
899   ** these assert()s from failing, when building with SQLITE_DEBUG defined
900   ** using gcc, we force nullMem to be 8-byte aligned using the magical
901   ** __attribute__((aligned(8))) macro.  */
902   static const Mem nullMem
903 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
904     __attribute__((aligned(8)))
905 #endif
906     = {
907         /* .u          = */ {0},
908         /* .flags      = */ MEM_Null,
909         /* .enc        = */ 0,
910         /* .n          = */ 0,
911         /* .z          = */ 0,
912         /* .zMalloc    = */ 0,
913         /* .szMalloc   = */ 0,
914         /* .iPadding1  = */ 0,
915         /* .db         = */ 0,
916         /* .xDel       = */ 0,
917 #ifdef SQLITE_DEBUG
918         /* .pScopyFrom = */ 0,
919         /* .pFiller    = */ 0,
920 #endif
921       };
922   return &nullMem;
923 }
924 
925 /*
926 ** Check to see if column iCol of the given statement is valid.  If
927 ** it is, return a pointer to the Mem for the value of that column.
928 ** If iCol is not valid, return a pointer to a Mem which has a value
929 ** of NULL.
930 */
931 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
932   Vdbe *pVm;
933   Mem *pOut;
934 
935   pVm = (Vdbe *)pStmt;
936   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
937     sqlite3_mutex_enter(pVm->db->mutex);
938     pOut = &pVm->pResultSet[i];
939   }else{
940     if( pVm && ALWAYS(pVm->db) ){
941       sqlite3_mutex_enter(pVm->db->mutex);
942       sqlite3Error(pVm->db, SQLITE_RANGE);
943     }
944     pOut = (Mem*)columnNullValue();
945   }
946   return pOut;
947 }
948 
949 /*
950 ** This function is called after invoking an sqlite3_value_XXX function on a
951 ** column value (i.e. a value returned by evaluating an SQL expression in the
952 ** select list of a SELECT statement) that may cause a malloc() failure. If
953 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
954 ** code of statement pStmt set to SQLITE_NOMEM.
955 **
956 ** Specifically, this is called from within:
957 **
958 **     sqlite3_column_int()
959 **     sqlite3_column_int64()
960 **     sqlite3_column_text()
961 **     sqlite3_column_text16()
962 **     sqlite3_column_real()
963 **     sqlite3_column_bytes()
964 **     sqlite3_column_bytes16()
965 **     sqiite3_column_blob()
966 */
967 static void columnMallocFailure(sqlite3_stmt *pStmt)
968 {
969   /* If malloc() failed during an encoding conversion within an
970   ** sqlite3_column_XXX API, then set the return code of the statement to
971   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
972   ** and _finalize() will return NOMEM.
973   */
974   Vdbe *p = (Vdbe *)pStmt;
975   if( p ){
976     p->rc = sqlite3ApiExit(p->db, p->rc);
977     sqlite3_mutex_leave(p->db->mutex);
978   }
979 }
980 
981 /**************************** sqlite3_column_  *******************************
982 ** The following routines are used to access elements of the current row
983 ** in the result set.
984 */
985 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
986   const void *val;
987   val = sqlite3_value_blob( columnMem(pStmt,i) );
988   /* Even though there is no encoding conversion, value_blob() might
989   ** need to call malloc() to expand the result of a zeroblob()
990   ** expression.
991   */
992   columnMallocFailure(pStmt);
993   return val;
994 }
995 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
996   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
997   columnMallocFailure(pStmt);
998   return val;
999 }
1000 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1001   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1002   columnMallocFailure(pStmt);
1003   return val;
1004 }
1005 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1006   double val = sqlite3_value_double( columnMem(pStmt,i) );
1007   columnMallocFailure(pStmt);
1008   return val;
1009 }
1010 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1011   int val = sqlite3_value_int( columnMem(pStmt,i) );
1012   columnMallocFailure(pStmt);
1013   return val;
1014 }
1015 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1016   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1017   columnMallocFailure(pStmt);
1018   return val;
1019 }
1020 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1021   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1022   columnMallocFailure(pStmt);
1023   return val;
1024 }
1025 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1026   Mem *pOut = columnMem(pStmt, i);
1027   if( pOut->flags&MEM_Static ){
1028     pOut->flags &= ~MEM_Static;
1029     pOut->flags |= MEM_Ephem;
1030   }
1031   columnMallocFailure(pStmt);
1032   return (sqlite3_value *)pOut;
1033 }
1034 #ifndef SQLITE_OMIT_UTF16
1035 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1036   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1037   columnMallocFailure(pStmt);
1038   return val;
1039 }
1040 #endif /* SQLITE_OMIT_UTF16 */
1041 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1042   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1043   columnMallocFailure(pStmt);
1044   return iType;
1045 }
1046 
1047 /*
1048 ** Convert the N-th element of pStmt->pColName[] into a string using
1049 ** xFunc() then return that string.  If N is out of range, return 0.
1050 **
1051 ** There are up to 5 names for each column.  useType determines which
1052 ** name is returned.  Here are the names:
1053 **
1054 **    0      The column name as it should be displayed for output
1055 **    1      The datatype name for the column
1056 **    2      The name of the database that the column derives from
1057 **    3      The name of the table that the column derives from
1058 **    4      The name of the table column that the result column derives from
1059 **
1060 ** If the result is not a simple column reference (if it is an expression
1061 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1062 */
1063 static const void *columnName(
1064   sqlite3_stmt *pStmt,
1065   int N,
1066   const void *(*xFunc)(Mem*),
1067   int useType
1068 ){
1069   const void *ret;
1070   Vdbe *p;
1071   int n;
1072   sqlite3 *db;
1073 #ifdef SQLITE_ENABLE_API_ARMOR
1074   if( pStmt==0 ){
1075     (void)SQLITE_MISUSE_BKPT;
1076     return 0;
1077   }
1078 #endif
1079   ret = 0;
1080   p = (Vdbe *)pStmt;
1081   db = p->db;
1082   assert( db!=0 );
1083   n = sqlite3_column_count(pStmt);
1084   if( N<n && N>=0 ){
1085     N += useType*n;
1086     sqlite3_mutex_enter(db->mutex);
1087     assert( db->mallocFailed==0 );
1088     ret = xFunc(&p->aColName[N]);
1089      /* A malloc may have failed inside of the xFunc() call. If this
1090     ** is the case, clear the mallocFailed flag and return NULL.
1091     */
1092     if( db->mallocFailed ){
1093       db->mallocFailed = 0;
1094       ret = 0;
1095     }
1096     sqlite3_mutex_leave(db->mutex);
1097   }
1098   return ret;
1099 }
1100 
1101 /*
1102 ** Return the name of the Nth column of the result set returned by SQL
1103 ** statement pStmt.
1104 */
1105 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1106   return columnName(
1107       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1108 }
1109 #ifndef SQLITE_OMIT_UTF16
1110 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1111   return columnName(
1112       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1113 }
1114 #endif
1115 
1116 /*
1117 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1118 ** not define OMIT_DECLTYPE.
1119 */
1120 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1121 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1122          and SQLITE_ENABLE_COLUMN_METADATA"
1123 #endif
1124 
1125 #ifndef SQLITE_OMIT_DECLTYPE
1126 /*
1127 ** Return the column declaration type (if applicable) of the 'i'th column
1128 ** of the result set of SQL statement pStmt.
1129 */
1130 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1131   return columnName(
1132       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1133 }
1134 #ifndef SQLITE_OMIT_UTF16
1135 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1136   return columnName(
1137       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1138 }
1139 #endif /* SQLITE_OMIT_UTF16 */
1140 #endif /* SQLITE_OMIT_DECLTYPE */
1141 
1142 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1143 /*
1144 ** Return the name of the database from which a result column derives.
1145 ** NULL is returned if the result column is an expression or constant or
1146 ** anything else which is not an unambiguous reference to a database column.
1147 */
1148 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1149   return columnName(
1150       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1151 }
1152 #ifndef SQLITE_OMIT_UTF16
1153 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1154   return columnName(
1155       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1156 }
1157 #endif /* SQLITE_OMIT_UTF16 */
1158 
1159 /*
1160 ** Return the name of the table from which a result column derives.
1161 ** NULL is returned if the result column is an expression or constant or
1162 ** anything else which is not an unambiguous reference to a database column.
1163 */
1164 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1165   return columnName(
1166       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1167 }
1168 #ifndef SQLITE_OMIT_UTF16
1169 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1170   return columnName(
1171       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1172 }
1173 #endif /* SQLITE_OMIT_UTF16 */
1174 
1175 /*
1176 ** Return the name of the table column from which a result column derives.
1177 ** NULL is returned if the result column is an expression or constant or
1178 ** anything else which is not an unambiguous reference to a database column.
1179 */
1180 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1181   return columnName(
1182       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1183 }
1184 #ifndef SQLITE_OMIT_UTF16
1185 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1186   return columnName(
1187       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1188 }
1189 #endif /* SQLITE_OMIT_UTF16 */
1190 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1191 
1192 
1193 /******************************* sqlite3_bind_  ***************************
1194 **
1195 ** Routines used to attach values to wildcards in a compiled SQL statement.
1196 */
1197 /*
1198 ** Unbind the value bound to variable i in virtual machine p. This is the
1199 ** the same as binding a NULL value to the column. If the "i" parameter is
1200 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1201 **
1202 ** A successful evaluation of this routine acquires the mutex on p.
1203 ** the mutex is released if any kind of error occurs.
1204 **
1205 ** The error code stored in database p->db is overwritten with the return
1206 ** value in any case.
1207 */
1208 static int vdbeUnbind(Vdbe *p, int i){
1209   Mem *pVar;
1210   if( vdbeSafetyNotNull(p) ){
1211     return SQLITE_MISUSE_BKPT;
1212   }
1213   sqlite3_mutex_enter(p->db->mutex);
1214   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1215     sqlite3Error(p->db, SQLITE_MISUSE);
1216     sqlite3_mutex_leave(p->db->mutex);
1217     sqlite3_log(SQLITE_MISUSE,
1218         "bind on a busy prepared statement: [%s]", p->zSql);
1219     return SQLITE_MISUSE_BKPT;
1220   }
1221   if( i<1 || i>p->nVar ){
1222     sqlite3Error(p->db, SQLITE_RANGE);
1223     sqlite3_mutex_leave(p->db->mutex);
1224     return SQLITE_RANGE;
1225   }
1226   i--;
1227   pVar = &p->aVar[i];
1228   sqlite3VdbeMemRelease(pVar);
1229   pVar->flags = MEM_Null;
1230   sqlite3Error(p->db, SQLITE_OK);
1231 
1232   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1233   ** binding a new value to this variable invalidates the current query plan.
1234   **
1235   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1236   ** parameter in the WHERE clause might influence the choice of query plan
1237   ** for a statement, then the statement will be automatically recompiled,
1238   ** as if there had been a schema change, on the first sqlite3_step() call
1239   ** following any change to the bindings of that parameter.
1240   */
1241   if( p->isPrepareV2 &&
1242      ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1243   ){
1244     p->expired = 1;
1245   }
1246   return SQLITE_OK;
1247 }
1248 
1249 /*
1250 ** Bind a text or BLOB value.
1251 */
1252 static int bindText(
1253   sqlite3_stmt *pStmt,   /* The statement to bind against */
1254   int i,                 /* Index of the parameter to bind */
1255   const void *zData,     /* Pointer to the data to be bound */
1256   int nData,             /* Number of bytes of data to be bound */
1257   void (*xDel)(void*),   /* Destructor for the data */
1258   u8 encoding            /* Encoding for the data */
1259 ){
1260   Vdbe *p = (Vdbe *)pStmt;
1261   Mem *pVar;
1262   int rc;
1263 
1264   rc = vdbeUnbind(p, i);
1265   if( rc==SQLITE_OK ){
1266     if( zData!=0 ){
1267       pVar = &p->aVar[i-1];
1268       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1269       if( rc==SQLITE_OK && encoding!=0 ){
1270         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1271       }
1272       sqlite3Error(p->db, rc);
1273       rc = sqlite3ApiExit(p->db, rc);
1274     }
1275     sqlite3_mutex_leave(p->db->mutex);
1276   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1277     xDel((void*)zData);
1278   }
1279   return rc;
1280 }
1281 
1282 
1283 /*
1284 ** Bind a blob value to an SQL statement variable.
1285 */
1286 int sqlite3_bind_blob(
1287   sqlite3_stmt *pStmt,
1288   int i,
1289   const void *zData,
1290   int nData,
1291   void (*xDel)(void*)
1292 ){
1293   return bindText(pStmt, i, zData, nData, xDel, 0);
1294 }
1295 int sqlite3_bind_blob64(
1296   sqlite3_stmt *pStmt,
1297   int i,
1298   const void *zData,
1299   sqlite3_uint64 nData,
1300   void (*xDel)(void*)
1301 ){
1302   assert( xDel!=SQLITE_DYNAMIC );
1303   if( nData>0x7fffffff ){
1304     return invokeValueDestructor(zData, xDel, 0);
1305   }else{
1306     return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1307   }
1308 }
1309 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1310   int rc;
1311   Vdbe *p = (Vdbe *)pStmt;
1312   rc = vdbeUnbind(p, i);
1313   if( rc==SQLITE_OK ){
1314     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1315     sqlite3_mutex_leave(p->db->mutex);
1316   }
1317   return rc;
1318 }
1319 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1320   return sqlite3_bind_int64(p, i, (i64)iValue);
1321 }
1322 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1323   int rc;
1324   Vdbe *p = (Vdbe *)pStmt;
1325   rc = vdbeUnbind(p, i);
1326   if( rc==SQLITE_OK ){
1327     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1328     sqlite3_mutex_leave(p->db->mutex);
1329   }
1330   return rc;
1331 }
1332 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1333   int rc;
1334   Vdbe *p = (Vdbe*)pStmt;
1335   rc = vdbeUnbind(p, i);
1336   if( rc==SQLITE_OK ){
1337     sqlite3_mutex_leave(p->db->mutex);
1338   }
1339   return rc;
1340 }
1341 int sqlite3_bind_text(
1342   sqlite3_stmt *pStmt,
1343   int i,
1344   const char *zData,
1345   int nData,
1346   void (*xDel)(void*)
1347 ){
1348   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1349 }
1350 int sqlite3_bind_text64(
1351   sqlite3_stmt *pStmt,
1352   int i,
1353   const char *zData,
1354   sqlite3_uint64 nData,
1355   void (*xDel)(void*),
1356   unsigned char enc
1357 ){
1358   assert( xDel!=SQLITE_DYNAMIC );
1359   if( nData>0x7fffffff ){
1360     return invokeValueDestructor(zData, xDel, 0);
1361   }else{
1362     if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1363     return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1364   }
1365 }
1366 #ifndef SQLITE_OMIT_UTF16
1367 int sqlite3_bind_text16(
1368   sqlite3_stmt *pStmt,
1369   int i,
1370   const void *zData,
1371   int nData,
1372   void (*xDel)(void*)
1373 ){
1374   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1375 }
1376 #endif /* SQLITE_OMIT_UTF16 */
1377 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1378   int rc;
1379   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1380     case SQLITE_INTEGER: {
1381       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1382       break;
1383     }
1384     case SQLITE_FLOAT: {
1385       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1386       break;
1387     }
1388     case SQLITE_BLOB: {
1389       if( pValue->flags & MEM_Zero ){
1390         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1391       }else{
1392         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1393       }
1394       break;
1395     }
1396     case SQLITE_TEXT: {
1397       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1398                               pValue->enc);
1399       break;
1400     }
1401     default: {
1402       rc = sqlite3_bind_null(pStmt, i);
1403       break;
1404     }
1405   }
1406   return rc;
1407 }
1408 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1409   int rc;
1410   Vdbe *p = (Vdbe *)pStmt;
1411   rc = vdbeUnbind(p, i);
1412   if( rc==SQLITE_OK ){
1413     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1414     sqlite3_mutex_leave(p->db->mutex);
1415   }
1416   return rc;
1417 }
1418 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1419   int rc;
1420   Vdbe *p = (Vdbe *)pStmt;
1421   sqlite3_mutex_enter(p->db->mutex);
1422   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1423     rc = SQLITE_TOOBIG;
1424   }else{
1425     assert( (n & 0x7FFFFFFF)==n );
1426     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1427   }
1428   rc = sqlite3ApiExit(p->db, rc);
1429   sqlite3_mutex_leave(p->db->mutex);
1430   return rc;
1431 }
1432 
1433 /*
1434 ** Return the number of wildcards that can be potentially bound to.
1435 ** This routine is added to support DBD::SQLite.
1436 */
1437 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1438   Vdbe *p = (Vdbe*)pStmt;
1439   return p ? p->nVar : 0;
1440 }
1441 
1442 /*
1443 ** Return the name of a wildcard parameter.  Return NULL if the index
1444 ** is out of range or if the wildcard is unnamed.
1445 **
1446 ** The result is always UTF-8.
1447 */
1448 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1449   Vdbe *p = (Vdbe*)pStmt;
1450   if( p==0 || i<1 || i>p->nzVar ){
1451     return 0;
1452   }
1453   return p->azVar[i-1];
1454 }
1455 
1456 /*
1457 ** Given a wildcard parameter name, return the index of the variable
1458 ** with that name.  If there is no variable with the given name,
1459 ** return 0.
1460 */
1461 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1462   int i;
1463   if( p==0 ){
1464     return 0;
1465   }
1466   if( zName ){
1467     for(i=0; i<p->nzVar; i++){
1468       const char *z = p->azVar[i];
1469       if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
1470         return i+1;
1471       }
1472     }
1473   }
1474   return 0;
1475 }
1476 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1477   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1478 }
1479 
1480 /*
1481 ** Transfer all bindings from the first statement over to the second.
1482 */
1483 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1484   Vdbe *pFrom = (Vdbe*)pFromStmt;
1485   Vdbe *pTo = (Vdbe*)pToStmt;
1486   int i;
1487   assert( pTo->db==pFrom->db );
1488   assert( pTo->nVar==pFrom->nVar );
1489   sqlite3_mutex_enter(pTo->db->mutex);
1490   for(i=0; i<pFrom->nVar; i++){
1491     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1492   }
1493   sqlite3_mutex_leave(pTo->db->mutex);
1494   return SQLITE_OK;
1495 }
1496 
1497 #ifndef SQLITE_OMIT_DEPRECATED
1498 /*
1499 ** Deprecated external interface.  Internal/core SQLite code
1500 ** should call sqlite3TransferBindings.
1501 **
1502 ** It is misuse to call this routine with statements from different
1503 ** database connections.  But as this is a deprecated interface, we
1504 ** will not bother to check for that condition.
1505 **
1506 ** If the two statements contain a different number of bindings, then
1507 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1508 ** SQLITE_OK is returned.
1509 */
1510 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1511   Vdbe *pFrom = (Vdbe*)pFromStmt;
1512   Vdbe *pTo = (Vdbe*)pToStmt;
1513   if( pFrom->nVar!=pTo->nVar ){
1514     return SQLITE_ERROR;
1515   }
1516   if( pTo->isPrepareV2 && pTo->expmask ){
1517     pTo->expired = 1;
1518   }
1519   if( pFrom->isPrepareV2 && pFrom->expmask ){
1520     pFrom->expired = 1;
1521   }
1522   return sqlite3TransferBindings(pFromStmt, pToStmt);
1523 }
1524 #endif
1525 
1526 /*
1527 ** Return the sqlite3* database handle to which the prepared statement given
1528 ** in the argument belongs.  This is the same database handle that was
1529 ** the first argument to the sqlite3_prepare() that was used to create
1530 ** the statement in the first place.
1531 */
1532 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1533   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1534 }
1535 
1536 /*
1537 ** Return true if the prepared statement is guaranteed to not modify the
1538 ** database.
1539 */
1540 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1541   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1542 }
1543 
1544 /*
1545 ** Return true if the prepared statement is in need of being reset.
1546 */
1547 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1548   Vdbe *v = (Vdbe*)pStmt;
1549   return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
1550 }
1551 
1552 /*
1553 ** Return a pointer to the next prepared statement after pStmt associated
1554 ** with database connection pDb.  If pStmt is NULL, return the first
1555 ** prepared statement for the database connection.  Return NULL if there
1556 ** are no more.
1557 */
1558 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1559   sqlite3_stmt *pNext;
1560 #ifdef SQLITE_ENABLE_API_ARMOR
1561   if( !sqlite3SafetyCheckOk(pDb) ){
1562     (void)SQLITE_MISUSE_BKPT;
1563     return 0;
1564   }
1565 #endif
1566   sqlite3_mutex_enter(pDb->mutex);
1567   if( pStmt==0 ){
1568     pNext = (sqlite3_stmt*)pDb->pVdbe;
1569   }else{
1570     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1571   }
1572   sqlite3_mutex_leave(pDb->mutex);
1573   return pNext;
1574 }
1575 
1576 /*
1577 ** Return the value of a status counter for a prepared statement
1578 */
1579 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1580   Vdbe *pVdbe = (Vdbe*)pStmt;
1581   u32 v;
1582 #ifdef SQLITE_ENABLE_API_ARMOR
1583   if( !pStmt ){
1584     (void)SQLITE_MISUSE_BKPT;
1585     return 0;
1586   }
1587 #endif
1588   v = pVdbe->aCounter[op];
1589   if( resetFlag ) pVdbe->aCounter[op] = 0;
1590   return (int)v;
1591 }
1592 
1593 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1594 /*
1595 ** Return status data for a single loop within query pStmt.
1596 */
1597 int sqlite3_stmt_scanstatus(
1598   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
1599   int idx,                        /* Index of loop to report on */
1600   int iScanStatusOp,              /* Which metric to return */
1601   void *pOut                      /* OUT: Write the answer here */
1602 ){
1603   Vdbe *p = (Vdbe*)pStmt;
1604   ScanStatus *pScan;
1605   if( idx<0 || idx>=p->nScan ) return 1;
1606   pScan = &p->aScan[idx];
1607   switch( iScanStatusOp ){
1608     case SQLITE_SCANSTAT_NLOOP: {
1609       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1610       break;
1611     }
1612     case SQLITE_SCANSTAT_NVISIT: {
1613       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1614       break;
1615     }
1616     case SQLITE_SCANSTAT_EST: {
1617       double r = 1.0;
1618       LogEst x = pScan->nEst;
1619       while( x<100 ){
1620         x += 10;
1621         r *= 0.5;
1622       }
1623       *(double*)pOut = r*sqlite3LogEstToInt(x);
1624       break;
1625     }
1626     case SQLITE_SCANSTAT_NAME: {
1627       *(const char**)pOut = pScan->zName;
1628       break;
1629     }
1630     case SQLITE_SCANSTAT_EXPLAIN: {
1631       if( pScan->addrExplain ){
1632         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1633       }else{
1634         *(const char**)pOut = 0;
1635       }
1636       break;
1637     }
1638     case SQLITE_SCANSTAT_SELECTID: {
1639       if( pScan->addrExplain ){
1640         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1641       }else{
1642         *(int*)pOut = -1;
1643       }
1644       break;
1645     }
1646     default: {
1647       return 1;
1648     }
1649   }
1650   return 0;
1651 }
1652 
1653 /*
1654 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1655 */
1656 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1657   Vdbe *p = (Vdbe*)pStmt;
1658   memset(p->anExec, 0, p->nOp * sizeof(i64));
1659 }
1660 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
1661