1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 assert( p->startTime>0 ); 64 assert( db->xProfile!=0 ); 65 assert( db->init.busy==0 ); 66 assert( p->zSql!=0 ); 67 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 68 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 69 p->startTime = 0; 70 } 71 /* 72 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 73 ** is needed, and it invokes the callback if it is needed. 74 */ 75 # define checkProfileCallback(DB,P) \ 76 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 77 #else 78 # define checkProfileCallback(DB,P) /*no-op*/ 79 #endif 80 81 /* 82 ** The following routine destroys a virtual machine that is created by 83 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 84 ** success/failure code that describes the result of executing the virtual 85 ** machine. 86 ** 87 ** This routine sets the error code and string returned by 88 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 89 */ 90 int sqlite3_finalize(sqlite3_stmt *pStmt){ 91 int rc; 92 if( pStmt==0 ){ 93 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 94 ** pointer is a harmless no-op. */ 95 rc = SQLITE_OK; 96 }else{ 97 Vdbe *v = (Vdbe*)pStmt; 98 sqlite3 *db = v->db; 99 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 100 sqlite3_mutex_enter(db->mutex); 101 checkProfileCallback(db, v); 102 rc = sqlite3VdbeFinalize(v); 103 rc = sqlite3ApiExit(db, rc); 104 sqlite3LeaveMutexAndCloseZombie(db); 105 } 106 return rc; 107 } 108 109 /* 110 ** Terminate the current execution of an SQL statement and reset it 111 ** back to its starting state so that it can be reused. A success code from 112 ** the prior execution is returned. 113 ** 114 ** This routine sets the error code and string returned by 115 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 116 */ 117 int sqlite3_reset(sqlite3_stmt *pStmt){ 118 int rc; 119 if( pStmt==0 ){ 120 rc = SQLITE_OK; 121 }else{ 122 Vdbe *v = (Vdbe*)pStmt; 123 sqlite3 *db = v->db; 124 sqlite3_mutex_enter(db->mutex); 125 checkProfileCallback(db, v); 126 rc = sqlite3VdbeReset(v); 127 sqlite3VdbeRewind(v); 128 assert( (rc & (db->errMask))==rc ); 129 rc = sqlite3ApiExit(db, rc); 130 sqlite3_mutex_leave(db->mutex); 131 } 132 return rc; 133 } 134 135 /* 136 ** Set all the parameters in the compiled SQL statement to NULL. 137 */ 138 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 139 int i; 140 int rc = SQLITE_OK; 141 Vdbe *p = (Vdbe*)pStmt; 142 #if SQLITE_THREADSAFE 143 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 144 #endif 145 sqlite3_mutex_enter(mutex); 146 for(i=0; i<p->nVar; i++){ 147 sqlite3VdbeMemRelease(&p->aVar[i]); 148 p->aVar[i].flags = MEM_Null; 149 } 150 if( p->isPrepareV2 && p->expmask ){ 151 p->expired = 1; 152 } 153 sqlite3_mutex_leave(mutex); 154 return rc; 155 } 156 157 158 /**************************** sqlite3_value_ ******************************* 159 ** The following routines extract information from a Mem or sqlite3_value 160 ** structure. 161 */ 162 const void *sqlite3_value_blob(sqlite3_value *pVal){ 163 Mem *p = (Mem*)pVal; 164 if( p->flags & (MEM_Blob|MEM_Str) ){ 165 if( sqlite3VdbeMemExpandBlob(p)!=SQLITE_OK ){ 166 assert( p->flags==MEM_Null && p->z==0 ); 167 return 0; 168 } 169 p->flags |= MEM_Blob; 170 return p->n ? p->z : 0; 171 }else{ 172 return sqlite3_value_text(pVal); 173 } 174 } 175 int sqlite3_value_bytes(sqlite3_value *pVal){ 176 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 177 } 178 int sqlite3_value_bytes16(sqlite3_value *pVal){ 179 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 180 } 181 double sqlite3_value_double(sqlite3_value *pVal){ 182 return sqlite3VdbeRealValue((Mem*)pVal); 183 } 184 int sqlite3_value_int(sqlite3_value *pVal){ 185 return (int)sqlite3VdbeIntValue((Mem*)pVal); 186 } 187 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 188 return sqlite3VdbeIntValue((Mem*)pVal); 189 } 190 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 191 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 192 } 193 #ifndef SQLITE_OMIT_UTF16 194 const void *sqlite3_value_text16(sqlite3_value* pVal){ 195 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 196 } 197 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 198 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 199 } 200 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 201 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 202 } 203 #endif /* SQLITE_OMIT_UTF16 */ 204 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 205 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 206 ** point number string BLOB NULL 207 */ 208 int sqlite3_value_type(sqlite3_value* pVal){ 209 static const u8 aType[] = { 210 SQLITE_BLOB, /* 0x00 */ 211 SQLITE_NULL, /* 0x01 */ 212 SQLITE_TEXT, /* 0x02 */ 213 SQLITE_NULL, /* 0x03 */ 214 SQLITE_INTEGER, /* 0x04 */ 215 SQLITE_NULL, /* 0x05 */ 216 SQLITE_INTEGER, /* 0x06 */ 217 SQLITE_NULL, /* 0x07 */ 218 SQLITE_FLOAT, /* 0x08 */ 219 SQLITE_NULL, /* 0x09 */ 220 SQLITE_FLOAT, /* 0x0a */ 221 SQLITE_NULL, /* 0x0b */ 222 SQLITE_INTEGER, /* 0x0c */ 223 SQLITE_NULL, /* 0x0d */ 224 SQLITE_INTEGER, /* 0x0e */ 225 SQLITE_NULL, /* 0x0f */ 226 SQLITE_BLOB, /* 0x10 */ 227 SQLITE_NULL, /* 0x11 */ 228 SQLITE_TEXT, /* 0x12 */ 229 SQLITE_NULL, /* 0x13 */ 230 SQLITE_INTEGER, /* 0x14 */ 231 SQLITE_NULL, /* 0x15 */ 232 SQLITE_INTEGER, /* 0x16 */ 233 SQLITE_NULL, /* 0x17 */ 234 SQLITE_FLOAT, /* 0x18 */ 235 SQLITE_NULL, /* 0x19 */ 236 SQLITE_FLOAT, /* 0x1a */ 237 SQLITE_NULL, /* 0x1b */ 238 SQLITE_INTEGER, /* 0x1c */ 239 SQLITE_NULL, /* 0x1d */ 240 SQLITE_INTEGER, /* 0x1e */ 241 SQLITE_NULL, /* 0x1f */ 242 }; 243 return aType[pVal->flags&MEM_AffMask]; 244 } 245 246 /* Make a copy of an sqlite3_value object 247 */ 248 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 249 sqlite3_value *pNew; 250 if( pOrig==0 ) return 0; 251 pNew = sqlite3_malloc( sizeof(*pNew) ); 252 if( pNew==0 ) return 0; 253 memset(pNew, 0, sizeof(*pNew)); 254 memcpy(pNew, pOrig, MEMCELLSIZE); 255 pNew->flags &= ~MEM_Dyn; 256 pNew->db = 0; 257 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 258 pNew->flags &= ~(MEM_Static|MEM_Dyn); 259 pNew->flags |= MEM_Ephem; 260 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 261 sqlite3ValueFree(pNew); 262 pNew = 0; 263 } 264 } 265 return pNew; 266 } 267 268 /* Destroy an sqlite3_value object previously obtained from 269 ** sqlite3_value_dup(). 270 */ 271 void sqlite3_value_free(sqlite3_value *pOld){ 272 sqlite3ValueFree(pOld); 273 } 274 275 276 /**************************** sqlite3_result_ ******************************* 277 ** The following routines are used by user-defined functions to specify 278 ** the function result. 279 ** 280 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 281 ** result as a string or blob but if the string or blob is too large, it 282 ** then sets the error code to SQLITE_TOOBIG 283 ** 284 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 285 ** on value P is not going to be used and need to be destroyed. 286 */ 287 static void setResultStrOrError( 288 sqlite3_context *pCtx, /* Function context */ 289 const char *z, /* String pointer */ 290 int n, /* Bytes in string, or negative */ 291 u8 enc, /* Encoding of z. 0 for BLOBs */ 292 void (*xDel)(void*) /* Destructor function */ 293 ){ 294 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 295 sqlite3_result_error_toobig(pCtx); 296 } 297 } 298 static int invokeValueDestructor( 299 const void *p, /* Value to destroy */ 300 void (*xDel)(void*), /* The destructor */ 301 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 302 ){ 303 assert( xDel!=SQLITE_DYNAMIC ); 304 if( xDel==0 ){ 305 /* noop */ 306 }else if( xDel==SQLITE_TRANSIENT ){ 307 /* noop */ 308 }else{ 309 xDel((void*)p); 310 } 311 if( pCtx ) sqlite3_result_error_toobig(pCtx); 312 return SQLITE_TOOBIG; 313 } 314 void sqlite3_result_blob( 315 sqlite3_context *pCtx, 316 const void *z, 317 int n, 318 void (*xDel)(void *) 319 ){ 320 assert( n>=0 ); 321 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 322 setResultStrOrError(pCtx, z, n, 0, xDel); 323 } 324 void sqlite3_result_blob64( 325 sqlite3_context *pCtx, 326 const void *z, 327 sqlite3_uint64 n, 328 void (*xDel)(void *) 329 ){ 330 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 331 assert( xDel!=SQLITE_DYNAMIC ); 332 if( n>0x7fffffff ){ 333 (void)invokeValueDestructor(z, xDel, pCtx); 334 }else{ 335 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 336 } 337 } 338 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 339 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 340 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 341 } 342 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 343 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 344 pCtx->isError = SQLITE_ERROR; 345 pCtx->fErrorOrAux = 1; 346 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 347 } 348 #ifndef SQLITE_OMIT_UTF16 349 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 350 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 351 pCtx->isError = SQLITE_ERROR; 352 pCtx->fErrorOrAux = 1; 353 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 354 } 355 #endif 356 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 357 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 358 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 359 } 360 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 361 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 362 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 363 } 364 void sqlite3_result_null(sqlite3_context *pCtx){ 365 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 366 sqlite3VdbeMemSetNull(pCtx->pOut); 367 } 368 void sqlite3_result_text( 369 sqlite3_context *pCtx, 370 const char *z, 371 int n, 372 void (*xDel)(void *) 373 ){ 374 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 375 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 376 } 377 void sqlite3_result_text64( 378 sqlite3_context *pCtx, 379 const char *z, 380 sqlite3_uint64 n, 381 void (*xDel)(void *), 382 unsigned char enc 383 ){ 384 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 385 assert( xDel!=SQLITE_DYNAMIC ); 386 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 387 if( n>0x7fffffff ){ 388 (void)invokeValueDestructor(z, xDel, pCtx); 389 }else{ 390 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 391 } 392 } 393 #ifndef SQLITE_OMIT_UTF16 394 void sqlite3_result_text16( 395 sqlite3_context *pCtx, 396 const void *z, 397 int n, 398 void (*xDel)(void *) 399 ){ 400 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 401 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 402 } 403 void sqlite3_result_text16be( 404 sqlite3_context *pCtx, 405 const void *z, 406 int n, 407 void (*xDel)(void *) 408 ){ 409 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 410 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 411 } 412 void sqlite3_result_text16le( 413 sqlite3_context *pCtx, 414 const void *z, 415 int n, 416 void (*xDel)(void *) 417 ){ 418 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 419 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 420 } 421 #endif /* SQLITE_OMIT_UTF16 */ 422 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 423 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 424 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 425 } 426 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 428 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 429 } 430 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 431 Mem *pOut = pCtx->pOut; 432 assert( sqlite3_mutex_held(pOut->db->mutex) ); 433 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 434 return SQLITE_TOOBIG; 435 } 436 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 437 return SQLITE_OK; 438 } 439 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 440 pCtx->isError = errCode; 441 pCtx->fErrorOrAux = 1; 442 #ifdef SQLITE_DEBUG 443 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 444 #endif 445 if( pCtx->pOut->flags & MEM_Null ){ 446 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 447 SQLITE_UTF8, SQLITE_STATIC); 448 } 449 } 450 451 /* Force an SQLITE_TOOBIG error. */ 452 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 453 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 454 pCtx->isError = SQLITE_TOOBIG; 455 pCtx->fErrorOrAux = 1; 456 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 457 SQLITE_UTF8, SQLITE_STATIC); 458 } 459 460 /* An SQLITE_NOMEM error. */ 461 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 462 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 463 sqlite3VdbeMemSetNull(pCtx->pOut); 464 pCtx->isError = SQLITE_NOMEM; 465 pCtx->fErrorOrAux = 1; 466 pCtx->pOut->db->mallocFailed = 1; 467 } 468 469 /* 470 ** This function is called after a transaction has been committed. It 471 ** invokes callbacks registered with sqlite3_wal_hook() as required. 472 */ 473 static int doWalCallbacks(sqlite3 *db){ 474 int rc = SQLITE_OK; 475 #ifndef SQLITE_OMIT_WAL 476 int i; 477 for(i=0; i<db->nDb; i++){ 478 Btree *pBt = db->aDb[i].pBt; 479 if( pBt ){ 480 int nEntry; 481 sqlite3BtreeEnter(pBt); 482 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 483 sqlite3BtreeLeave(pBt); 484 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 485 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 486 } 487 } 488 } 489 #endif 490 return rc; 491 } 492 493 494 /* 495 ** Execute the statement pStmt, either until a row of data is ready, the 496 ** statement is completely executed or an error occurs. 497 ** 498 ** This routine implements the bulk of the logic behind the sqlite_step() 499 ** API. The only thing omitted is the automatic recompile if a 500 ** schema change has occurred. That detail is handled by the 501 ** outer sqlite3_step() wrapper procedure. 502 */ 503 static int sqlite3Step(Vdbe *p){ 504 sqlite3 *db; 505 int rc; 506 507 assert(p); 508 if( p->magic!=VDBE_MAGIC_RUN ){ 509 /* We used to require that sqlite3_reset() be called before retrying 510 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 511 ** with version 3.7.0, we changed this so that sqlite3_reset() would 512 ** be called automatically instead of throwing the SQLITE_MISUSE error. 513 ** This "automatic-reset" change is not technically an incompatibility, 514 ** since any application that receives an SQLITE_MISUSE is broken by 515 ** definition. 516 ** 517 ** Nevertheless, some published applications that were originally written 518 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 519 ** returns, and those were broken by the automatic-reset change. As a 520 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 521 ** legacy behavior of returning SQLITE_MISUSE for cases where the 522 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 523 ** or SQLITE_BUSY error. 524 */ 525 #ifdef SQLITE_OMIT_AUTORESET 526 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 527 sqlite3_reset((sqlite3_stmt*)p); 528 }else{ 529 return SQLITE_MISUSE_BKPT; 530 } 531 #else 532 sqlite3_reset((sqlite3_stmt*)p); 533 #endif 534 } 535 536 /* Check that malloc() has not failed. If it has, return early. */ 537 db = p->db; 538 if( db->mallocFailed ){ 539 p->rc = SQLITE_NOMEM; 540 return SQLITE_NOMEM; 541 } 542 543 if( p->pc<=0 && p->expired ){ 544 p->rc = SQLITE_SCHEMA; 545 rc = SQLITE_ERROR; 546 goto end_of_step; 547 } 548 if( p->pc<0 ){ 549 /* If there are no other statements currently running, then 550 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 551 ** from interrupting a statement that has not yet started. 552 */ 553 if( db->nVdbeActive==0 ){ 554 db->u1.isInterrupted = 0; 555 } 556 557 assert( db->nVdbeWrite>0 || db->autoCommit==0 558 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 559 ); 560 561 #ifndef SQLITE_OMIT_TRACE 562 if( db->xProfile && !db->init.busy && p->zSql ){ 563 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 564 }else{ 565 assert( p->startTime==0 ); 566 } 567 #endif 568 569 db->nVdbeActive++; 570 if( p->readOnly==0 ) db->nVdbeWrite++; 571 if( p->bIsReader ) db->nVdbeRead++; 572 p->pc = 0; 573 } 574 #ifdef SQLITE_DEBUG 575 p->rcApp = SQLITE_OK; 576 #endif 577 #ifndef SQLITE_OMIT_EXPLAIN 578 if( p->explain ){ 579 rc = sqlite3VdbeList(p); 580 }else 581 #endif /* SQLITE_OMIT_EXPLAIN */ 582 { 583 db->nVdbeExec++; 584 rc = sqlite3VdbeExec(p); 585 db->nVdbeExec--; 586 } 587 588 #ifndef SQLITE_OMIT_TRACE 589 /* If the statement completed successfully, invoke the profile callback */ 590 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 591 #endif 592 593 if( rc==SQLITE_DONE ){ 594 assert( p->rc==SQLITE_OK ); 595 p->rc = doWalCallbacks(db); 596 if( p->rc!=SQLITE_OK ){ 597 rc = SQLITE_ERROR; 598 } 599 } 600 601 db->errCode = rc; 602 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 603 p->rc = SQLITE_NOMEM; 604 } 605 end_of_step: 606 /* At this point local variable rc holds the value that should be 607 ** returned if this statement was compiled using the legacy 608 ** sqlite3_prepare() interface. According to the docs, this can only 609 ** be one of the values in the first assert() below. Variable p->rc 610 ** contains the value that would be returned if sqlite3_finalize() 611 ** were called on statement p. 612 */ 613 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 614 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 615 ); 616 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 617 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 618 /* If this statement was prepared using sqlite3_prepare_v2(), and an 619 ** error has occurred, then return the error code in p->rc to the 620 ** caller. Set the error code in the database handle to the same value. 621 */ 622 rc = sqlite3VdbeTransferError(p); 623 } 624 return (rc&db->errMask); 625 } 626 627 /* 628 ** This is the top-level implementation of sqlite3_step(). Call 629 ** sqlite3Step() to do most of the work. If a schema error occurs, 630 ** call sqlite3Reprepare() and try again. 631 */ 632 int sqlite3_step(sqlite3_stmt *pStmt){ 633 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 634 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 635 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 636 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 637 sqlite3 *db; /* The database connection */ 638 639 if( vdbeSafetyNotNull(v) ){ 640 return SQLITE_MISUSE_BKPT; 641 } 642 db = v->db; 643 sqlite3_mutex_enter(db->mutex); 644 v->doingRerun = 0; 645 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 646 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 647 int savedPc = v->pc; 648 rc2 = rc = sqlite3Reprepare(v); 649 if( rc!=SQLITE_OK) break; 650 sqlite3_reset(pStmt); 651 if( savedPc>=0 ) v->doingRerun = 1; 652 assert( v->expired==0 ); 653 } 654 if( rc2!=SQLITE_OK ){ 655 /* This case occurs after failing to recompile an sql statement. 656 ** The error message from the SQL compiler has already been loaded 657 ** into the database handle. This block copies the error message 658 ** from the database handle into the statement and sets the statement 659 ** program counter to 0 to ensure that when the statement is 660 ** finalized or reset the parser error message is available via 661 ** sqlite3_errmsg() and sqlite3_errcode(). 662 */ 663 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 664 sqlite3DbFree(db, v->zErrMsg); 665 if( !db->mallocFailed ){ 666 v->zErrMsg = sqlite3DbStrDup(db, zErr); 667 v->rc = rc2; 668 } else { 669 v->zErrMsg = 0; 670 v->rc = rc = SQLITE_NOMEM; 671 } 672 } 673 rc = sqlite3ApiExit(db, rc); 674 sqlite3_mutex_leave(db->mutex); 675 return rc; 676 } 677 678 679 /* 680 ** Extract the user data from a sqlite3_context structure and return a 681 ** pointer to it. 682 */ 683 void *sqlite3_user_data(sqlite3_context *p){ 684 assert( p && p->pFunc ); 685 return p->pFunc->pUserData; 686 } 687 688 /* 689 ** Extract the user data from a sqlite3_context structure and return a 690 ** pointer to it. 691 ** 692 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 693 ** returns a copy of the pointer to the database connection (the 1st 694 ** parameter) of the sqlite3_create_function() and 695 ** sqlite3_create_function16() routines that originally registered the 696 ** application defined function. 697 */ 698 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 699 assert( p && p->pFunc ); 700 return p->pOut->db; 701 } 702 703 /* 704 ** Return the current time for a statement. If the current time 705 ** is requested more than once within the same run of a single prepared 706 ** statement, the exact same time is returned for each invocation regardless 707 ** of the amount of time that elapses between invocations. In other words, 708 ** the time returned is always the time of the first call. 709 */ 710 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 711 int rc; 712 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 713 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 714 assert( p->pVdbe!=0 ); 715 #else 716 sqlite3_int64 iTime = 0; 717 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 718 #endif 719 if( *piTime==0 ){ 720 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 721 if( rc ) *piTime = 0; 722 } 723 return *piTime; 724 } 725 726 /* 727 ** The following is the implementation of an SQL function that always 728 ** fails with an error message stating that the function is used in the 729 ** wrong context. The sqlite3_overload_function() API might construct 730 ** SQL function that use this routine so that the functions will exist 731 ** for name resolution but are actually overloaded by the xFindFunction 732 ** method of virtual tables. 733 */ 734 void sqlite3InvalidFunction( 735 sqlite3_context *context, /* The function calling context */ 736 int NotUsed, /* Number of arguments to the function */ 737 sqlite3_value **NotUsed2 /* Value of each argument */ 738 ){ 739 const char *zName = context->pFunc->zName; 740 char *zErr; 741 UNUSED_PARAMETER2(NotUsed, NotUsed2); 742 zErr = sqlite3_mprintf( 743 "unable to use function %s in the requested context", zName); 744 sqlite3_result_error(context, zErr, -1); 745 sqlite3_free(zErr); 746 } 747 748 /* 749 ** Create a new aggregate context for p and return a pointer to 750 ** its pMem->z element. 751 */ 752 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 753 Mem *pMem = p->pMem; 754 assert( (pMem->flags & MEM_Agg)==0 ); 755 if( nByte<=0 ){ 756 sqlite3VdbeMemSetNull(pMem); 757 pMem->z = 0; 758 }else{ 759 sqlite3VdbeMemClearAndResize(pMem, nByte); 760 pMem->flags = MEM_Agg; 761 pMem->u.pDef = p->pFunc; 762 if( pMem->z ){ 763 memset(pMem->z, 0, nByte); 764 } 765 } 766 return (void*)pMem->z; 767 } 768 769 /* 770 ** Allocate or return the aggregate context for a user function. A new 771 ** context is allocated on the first call. Subsequent calls return the 772 ** same context that was returned on prior calls. 773 */ 774 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 775 assert( p && p->pFunc && p->pFunc->xStep ); 776 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 777 testcase( nByte<0 ); 778 if( (p->pMem->flags & MEM_Agg)==0 ){ 779 return createAggContext(p, nByte); 780 }else{ 781 return (void*)p->pMem->z; 782 } 783 } 784 785 /* 786 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 787 ** the user-function defined by pCtx. 788 */ 789 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 790 AuxData *pAuxData; 791 792 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 793 #if SQLITE_ENABLE_STAT3_OR_STAT4 794 if( pCtx->pVdbe==0 ) return 0; 795 #else 796 assert( pCtx->pVdbe!=0 ); 797 #endif 798 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 799 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 800 } 801 802 return (pAuxData ? pAuxData->pAux : 0); 803 } 804 805 /* 806 ** Set the auxiliary data pointer and delete function, for the iArg'th 807 ** argument to the user-function defined by pCtx. Any previous value is 808 ** deleted by calling the delete function specified when it was set. 809 */ 810 void sqlite3_set_auxdata( 811 sqlite3_context *pCtx, 812 int iArg, 813 void *pAux, 814 void (*xDelete)(void*) 815 ){ 816 AuxData *pAuxData; 817 Vdbe *pVdbe = pCtx->pVdbe; 818 819 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 820 if( iArg<0 ) goto failed; 821 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 822 if( pVdbe==0 ) goto failed; 823 #else 824 assert( pVdbe!=0 ); 825 #endif 826 827 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 828 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 829 } 830 if( pAuxData==0 ){ 831 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 832 if( !pAuxData ) goto failed; 833 pAuxData->iOp = pCtx->iOp; 834 pAuxData->iArg = iArg; 835 pAuxData->pNext = pVdbe->pAuxData; 836 pVdbe->pAuxData = pAuxData; 837 if( pCtx->fErrorOrAux==0 ){ 838 pCtx->isError = 0; 839 pCtx->fErrorOrAux = 1; 840 } 841 }else if( pAuxData->xDelete ){ 842 pAuxData->xDelete(pAuxData->pAux); 843 } 844 845 pAuxData->pAux = pAux; 846 pAuxData->xDelete = xDelete; 847 return; 848 849 failed: 850 if( xDelete ){ 851 xDelete(pAux); 852 } 853 } 854 855 #ifndef SQLITE_OMIT_DEPRECATED 856 /* 857 ** Return the number of times the Step function of an aggregate has been 858 ** called. 859 ** 860 ** This function is deprecated. Do not use it for new code. It is 861 ** provide only to avoid breaking legacy code. New aggregate function 862 ** implementations should keep their own counts within their aggregate 863 ** context. 864 */ 865 int sqlite3_aggregate_count(sqlite3_context *p){ 866 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 867 return p->pMem->n; 868 } 869 #endif 870 871 /* 872 ** Return the number of columns in the result set for the statement pStmt. 873 */ 874 int sqlite3_column_count(sqlite3_stmt *pStmt){ 875 Vdbe *pVm = (Vdbe *)pStmt; 876 return pVm ? pVm->nResColumn : 0; 877 } 878 879 /* 880 ** Return the number of values available from the current row of the 881 ** currently executing statement pStmt. 882 */ 883 int sqlite3_data_count(sqlite3_stmt *pStmt){ 884 Vdbe *pVm = (Vdbe *)pStmt; 885 if( pVm==0 || pVm->pResultSet==0 ) return 0; 886 return pVm->nResColumn; 887 } 888 889 /* 890 ** Return a pointer to static memory containing an SQL NULL value. 891 */ 892 static const Mem *columnNullValue(void){ 893 /* Even though the Mem structure contains an element 894 ** of type i64, on certain architectures (x86) with certain compiler 895 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 896 ** instead of an 8-byte one. This all works fine, except that when 897 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 898 ** that a Mem structure is located on an 8-byte boundary. To prevent 899 ** these assert()s from failing, when building with SQLITE_DEBUG defined 900 ** using gcc, we force nullMem to be 8-byte aligned using the magical 901 ** __attribute__((aligned(8))) macro. */ 902 static const Mem nullMem 903 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 904 __attribute__((aligned(8))) 905 #endif 906 = { 907 /* .u = */ {0}, 908 /* .flags = */ MEM_Null, 909 /* .enc = */ 0, 910 /* .n = */ 0, 911 /* .z = */ 0, 912 /* .zMalloc = */ 0, 913 /* .szMalloc = */ 0, 914 /* .iPadding1 = */ 0, 915 /* .db = */ 0, 916 /* .xDel = */ 0, 917 #ifdef SQLITE_DEBUG 918 /* .pScopyFrom = */ 0, 919 /* .pFiller = */ 0, 920 #endif 921 }; 922 return &nullMem; 923 } 924 925 /* 926 ** Check to see if column iCol of the given statement is valid. If 927 ** it is, return a pointer to the Mem for the value of that column. 928 ** If iCol is not valid, return a pointer to a Mem which has a value 929 ** of NULL. 930 */ 931 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 932 Vdbe *pVm; 933 Mem *pOut; 934 935 pVm = (Vdbe *)pStmt; 936 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 937 sqlite3_mutex_enter(pVm->db->mutex); 938 pOut = &pVm->pResultSet[i]; 939 }else{ 940 if( pVm && ALWAYS(pVm->db) ){ 941 sqlite3_mutex_enter(pVm->db->mutex); 942 sqlite3Error(pVm->db, SQLITE_RANGE); 943 } 944 pOut = (Mem*)columnNullValue(); 945 } 946 return pOut; 947 } 948 949 /* 950 ** This function is called after invoking an sqlite3_value_XXX function on a 951 ** column value (i.e. a value returned by evaluating an SQL expression in the 952 ** select list of a SELECT statement) that may cause a malloc() failure. If 953 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 954 ** code of statement pStmt set to SQLITE_NOMEM. 955 ** 956 ** Specifically, this is called from within: 957 ** 958 ** sqlite3_column_int() 959 ** sqlite3_column_int64() 960 ** sqlite3_column_text() 961 ** sqlite3_column_text16() 962 ** sqlite3_column_real() 963 ** sqlite3_column_bytes() 964 ** sqlite3_column_bytes16() 965 ** sqiite3_column_blob() 966 */ 967 static void columnMallocFailure(sqlite3_stmt *pStmt) 968 { 969 /* If malloc() failed during an encoding conversion within an 970 ** sqlite3_column_XXX API, then set the return code of the statement to 971 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 972 ** and _finalize() will return NOMEM. 973 */ 974 Vdbe *p = (Vdbe *)pStmt; 975 if( p ){ 976 p->rc = sqlite3ApiExit(p->db, p->rc); 977 sqlite3_mutex_leave(p->db->mutex); 978 } 979 } 980 981 /**************************** sqlite3_column_ ******************************* 982 ** The following routines are used to access elements of the current row 983 ** in the result set. 984 */ 985 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 986 const void *val; 987 val = sqlite3_value_blob( columnMem(pStmt,i) ); 988 /* Even though there is no encoding conversion, value_blob() might 989 ** need to call malloc() to expand the result of a zeroblob() 990 ** expression. 991 */ 992 columnMallocFailure(pStmt); 993 return val; 994 } 995 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 996 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 997 columnMallocFailure(pStmt); 998 return val; 999 } 1000 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1001 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1002 columnMallocFailure(pStmt); 1003 return val; 1004 } 1005 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1006 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1007 columnMallocFailure(pStmt); 1008 return val; 1009 } 1010 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1011 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1012 columnMallocFailure(pStmt); 1013 return val; 1014 } 1015 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1016 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1017 columnMallocFailure(pStmt); 1018 return val; 1019 } 1020 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1021 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1022 columnMallocFailure(pStmt); 1023 return val; 1024 } 1025 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1026 Mem *pOut = columnMem(pStmt, i); 1027 if( pOut->flags&MEM_Static ){ 1028 pOut->flags &= ~MEM_Static; 1029 pOut->flags |= MEM_Ephem; 1030 } 1031 columnMallocFailure(pStmt); 1032 return (sqlite3_value *)pOut; 1033 } 1034 #ifndef SQLITE_OMIT_UTF16 1035 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1036 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1037 columnMallocFailure(pStmt); 1038 return val; 1039 } 1040 #endif /* SQLITE_OMIT_UTF16 */ 1041 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1042 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1043 columnMallocFailure(pStmt); 1044 return iType; 1045 } 1046 1047 /* 1048 ** Convert the N-th element of pStmt->pColName[] into a string using 1049 ** xFunc() then return that string. If N is out of range, return 0. 1050 ** 1051 ** There are up to 5 names for each column. useType determines which 1052 ** name is returned. Here are the names: 1053 ** 1054 ** 0 The column name as it should be displayed for output 1055 ** 1 The datatype name for the column 1056 ** 2 The name of the database that the column derives from 1057 ** 3 The name of the table that the column derives from 1058 ** 4 The name of the table column that the result column derives from 1059 ** 1060 ** If the result is not a simple column reference (if it is an expression 1061 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1062 */ 1063 static const void *columnName( 1064 sqlite3_stmt *pStmt, 1065 int N, 1066 const void *(*xFunc)(Mem*), 1067 int useType 1068 ){ 1069 const void *ret; 1070 Vdbe *p; 1071 int n; 1072 sqlite3 *db; 1073 #ifdef SQLITE_ENABLE_API_ARMOR 1074 if( pStmt==0 ){ 1075 (void)SQLITE_MISUSE_BKPT; 1076 return 0; 1077 } 1078 #endif 1079 ret = 0; 1080 p = (Vdbe *)pStmt; 1081 db = p->db; 1082 assert( db!=0 ); 1083 n = sqlite3_column_count(pStmt); 1084 if( N<n && N>=0 ){ 1085 N += useType*n; 1086 sqlite3_mutex_enter(db->mutex); 1087 assert( db->mallocFailed==0 ); 1088 ret = xFunc(&p->aColName[N]); 1089 /* A malloc may have failed inside of the xFunc() call. If this 1090 ** is the case, clear the mallocFailed flag and return NULL. 1091 */ 1092 if( db->mallocFailed ){ 1093 db->mallocFailed = 0; 1094 ret = 0; 1095 } 1096 sqlite3_mutex_leave(db->mutex); 1097 } 1098 return ret; 1099 } 1100 1101 /* 1102 ** Return the name of the Nth column of the result set returned by SQL 1103 ** statement pStmt. 1104 */ 1105 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1106 return columnName( 1107 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1108 } 1109 #ifndef SQLITE_OMIT_UTF16 1110 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1111 return columnName( 1112 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1113 } 1114 #endif 1115 1116 /* 1117 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1118 ** not define OMIT_DECLTYPE. 1119 */ 1120 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1121 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1122 and SQLITE_ENABLE_COLUMN_METADATA" 1123 #endif 1124 1125 #ifndef SQLITE_OMIT_DECLTYPE 1126 /* 1127 ** Return the column declaration type (if applicable) of the 'i'th column 1128 ** of the result set of SQL statement pStmt. 1129 */ 1130 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1131 return columnName( 1132 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1133 } 1134 #ifndef SQLITE_OMIT_UTF16 1135 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1136 return columnName( 1137 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1138 } 1139 #endif /* SQLITE_OMIT_UTF16 */ 1140 #endif /* SQLITE_OMIT_DECLTYPE */ 1141 1142 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1143 /* 1144 ** Return the name of the database from which a result column derives. 1145 ** NULL is returned if the result column is an expression or constant or 1146 ** anything else which is not an unambiguous reference to a database column. 1147 */ 1148 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1149 return columnName( 1150 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1151 } 1152 #ifndef SQLITE_OMIT_UTF16 1153 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1154 return columnName( 1155 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1156 } 1157 #endif /* SQLITE_OMIT_UTF16 */ 1158 1159 /* 1160 ** Return the name of the table from which a result column derives. 1161 ** NULL is returned if the result column is an expression or constant or 1162 ** anything else which is not an unambiguous reference to a database column. 1163 */ 1164 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1165 return columnName( 1166 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1167 } 1168 #ifndef SQLITE_OMIT_UTF16 1169 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1170 return columnName( 1171 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1172 } 1173 #endif /* SQLITE_OMIT_UTF16 */ 1174 1175 /* 1176 ** Return the name of the table column from which a result column derives. 1177 ** NULL is returned if the result column is an expression or constant or 1178 ** anything else which is not an unambiguous reference to a database column. 1179 */ 1180 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1181 return columnName( 1182 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1183 } 1184 #ifndef SQLITE_OMIT_UTF16 1185 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1186 return columnName( 1187 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1188 } 1189 #endif /* SQLITE_OMIT_UTF16 */ 1190 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1191 1192 1193 /******************************* sqlite3_bind_ *************************** 1194 ** 1195 ** Routines used to attach values to wildcards in a compiled SQL statement. 1196 */ 1197 /* 1198 ** Unbind the value bound to variable i in virtual machine p. This is the 1199 ** the same as binding a NULL value to the column. If the "i" parameter is 1200 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1201 ** 1202 ** A successful evaluation of this routine acquires the mutex on p. 1203 ** the mutex is released if any kind of error occurs. 1204 ** 1205 ** The error code stored in database p->db is overwritten with the return 1206 ** value in any case. 1207 */ 1208 static int vdbeUnbind(Vdbe *p, int i){ 1209 Mem *pVar; 1210 if( vdbeSafetyNotNull(p) ){ 1211 return SQLITE_MISUSE_BKPT; 1212 } 1213 sqlite3_mutex_enter(p->db->mutex); 1214 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1215 sqlite3Error(p->db, SQLITE_MISUSE); 1216 sqlite3_mutex_leave(p->db->mutex); 1217 sqlite3_log(SQLITE_MISUSE, 1218 "bind on a busy prepared statement: [%s]", p->zSql); 1219 return SQLITE_MISUSE_BKPT; 1220 } 1221 if( i<1 || i>p->nVar ){ 1222 sqlite3Error(p->db, SQLITE_RANGE); 1223 sqlite3_mutex_leave(p->db->mutex); 1224 return SQLITE_RANGE; 1225 } 1226 i--; 1227 pVar = &p->aVar[i]; 1228 sqlite3VdbeMemRelease(pVar); 1229 pVar->flags = MEM_Null; 1230 sqlite3Error(p->db, SQLITE_OK); 1231 1232 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1233 ** binding a new value to this variable invalidates the current query plan. 1234 ** 1235 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1236 ** parameter in the WHERE clause might influence the choice of query plan 1237 ** for a statement, then the statement will be automatically recompiled, 1238 ** as if there had been a schema change, on the first sqlite3_step() call 1239 ** following any change to the bindings of that parameter. 1240 */ 1241 if( p->isPrepareV2 && 1242 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1243 ){ 1244 p->expired = 1; 1245 } 1246 return SQLITE_OK; 1247 } 1248 1249 /* 1250 ** Bind a text or BLOB value. 1251 */ 1252 static int bindText( 1253 sqlite3_stmt *pStmt, /* The statement to bind against */ 1254 int i, /* Index of the parameter to bind */ 1255 const void *zData, /* Pointer to the data to be bound */ 1256 int nData, /* Number of bytes of data to be bound */ 1257 void (*xDel)(void*), /* Destructor for the data */ 1258 u8 encoding /* Encoding for the data */ 1259 ){ 1260 Vdbe *p = (Vdbe *)pStmt; 1261 Mem *pVar; 1262 int rc; 1263 1264 rc = vdbeUnbind(p, i); 1265 if( rc==SQLITE_OK ){ 1266 if( zData!=0 ){ 1267 pVar = &p->aVar[i-1]; 1268 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1269 if( rc==SQLITE_OK && encoding!=0 ){ 1270 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1271 } 1272 sqlite3Error(p->db, rc); 1273 rc = sqlite3ApiExit(p->db, rc); 1274 } 1275 sqlite3_mutex_leave(p->db->mutex); 1276 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1277 xDel((void*)zData); 1278 } 1279 return rc; 1280 } 1281 1282 1283 /* 1284 ** Bind a blob value to an SQL statement variable. 1285 */ 1286 int sqlite3_bind_blob( 1287 sqlite3_stmt *pStmt, 1288 int i, 1289 const void *zData, 1290 int nData, 1291 void (*xDel)(void*) 1292 ){ 1293 return bindText(pStmt, i, zData, nData, xDel, 0); 1294 } 1295 int sqlite3_bind_blob64( 1296 sqlite3_stmt *pStmt, 1297 int i, 1298 const void *zData, 1299 sqlite3_uint64 nData, 1300 void (*xDel)(void*) 1301 ){ 1302 assert( xDel!=SQLITE_DYNAMIC ); 1303 if( nData>0x7fffffff ){ 1304 return invokeValueDestructor(zData, xDel, 0); 1305 }else{ 1306 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1307 } 1308 } 1309 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1310 int rc; 1311 Vdbe *p = (Vdbe *)pStmt; 1312 rc = vdbeUnbind(p, i); 1313 if( rc==SQLITE_OK ){ 1314 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1315 sqlite3_mutex_leave(p->db->mutex); 1316 } 1317 return rc; 1318 } 1319 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1320 return sqlite3_bind_int64(p, i, (i64)iValue); 1321 } 1322 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1323 int rc; 1324 Vdbe *p = (Vdbe *)pStmt; 1325 rc = vdbeUnbind(p, i); 1326 if( rc==SQLITE_OK ){ 1327 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1328 sqlite3_mutex_leave(p->db->mutex); 1329 } 1330 return rc; 1331 } 1332 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1333 int rc; 1334 Vdbe *p = (Vdbe*)pStmt; 1335 rc = vdbeUnbind(p, i); 1336 if( rc==SQLITE_OK ){ 1337 sqlite3_mutex_leave(p->db->mutex); 1338 } 1339 return rc; 1340 } 1341 int sqlite3_bind_text( 1342 sqlite3_stmt *pStmt, 1343 int i, 1344 const char *zData, 1345 int nData, 1346 void (*xDel)(void*) 1347 ){ 1348 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1349 } 1350 int sqlite3_bind_text64( 1351 sqlite3_stmt *pStmt, 1352 int i, 1353 const char *zData, 1354 sqlite3_uint64 nData, 1355 void (*xDel)(void*), 1356 unsigned char enc 1357 ){ 1358 assert( xDel!=SQLITE_DYNAMIC ); 1359 if( nData>0x7fffffff ){ 1360 return invokeValueDestructor(zData, xDel, 0); 1361 }else{ 1362 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1363 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1364 } 1365 } 1366 #ifndef SQLITE_OMIT_UTF16 1367 int sqlite3_bind_text16( 1368 sqlite3_stmt *pStmt, 1369 int i, 1370 const void *zData, 1371 int nData, 1372 void (*xDel)(void*) 1373 ){ 1374 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1375 } 1376 #endif /* SQLITE_OMIT_UTF16 */ 1377 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1378 int rc; 1379 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1380 case SQLITE_INTEGER: { 1381 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1382 break; 1383 } 1384 case SQLITE_FLOAT: { 1385 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1386 break; 1387 } 1388 case SQLITE_BLOB: { 1389 if( pValue->flags & MEM_Zero ){ 1390 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1391 }else{ 1392 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1393 } 1394 break; 1395 } 1396 case SQLITE_TEXT: { 1397 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1398 pValue->enc); 1399 break; 1400 } 1401 default: { 1402 rc = sqlite3_bind_null(pStmt, i); 1403 break; 1404 } 1405 } 1406 return rc; 1407 } 1408 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1409 int rc; 1410 Vdbe *p = (Vdbe *)pStmt; 1411 rc = vdbeUnbind(p, i); 1412 if( rc==SQLITE_OK ){ 1413 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1414 sqlite3_mutex_leave(p->db->mutex); 1415 } 1416 return rc; 1417 } 1418 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1419 int rc; 1420 Vdbe *p = (Vdbe *)pStmt; 1421 sqlite3_mutex_enter(p->db->mutex); 1422 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1423 rc = SQLITE_TOOBIG; 1424 }else{ 1425 assert( (n & 0x7FFFFFFF)==n ); 1426 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1427 } 1428 rc = sqlite3ApiExit(p->db, rc); 1429 sqlite3_mutex_leave(p->db->mutex); 1430 return rc; 1431 } 1432 1433 /* 1434 ** Return the number of wildcards that can be potentially bound to. 1435 ** This routine is added to support DBD::SQLite. 1436 */ 1437 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1438 Vdbe *p = (Vdbe*)pStmt; 1439 return p ? p->nVar : 0; 1440 } 1441 1442 /* 1443 ** Return the name of a wildcard parameter. Return NULL if the index 1444 ** is out of range or if the wildcard is unnamed. 1445 ** 1446 ** The result is always UTF-8. 1447 */ 1448 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1449 Vdbe *p = (Vdbe*)pStmt; 1450 if( p==0 || i<1 || i>p->nzVar ){ 1451 return 0; 1452 } 1453 return p->azVar[i-1]; 1454 } 1455 1456 /* 1457 ** Given a wildcard parameter name, return the index of the variable 1458 ** with that name. If there is no variable with the given name, 1459 ** return 0. 1460 */ 1461 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1462 int i; 1463 if( p==0 ){ 1464 return 0; 1465 } 1466 if( zName ){ 1467 for(i=0; i<p->nzVar; i++){ 1468 const char *z = p->azVar[i]; 1469 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1470 return i+1; 1471 } 1472 } 1473 } 1474 return 0; 1475 } 1476 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1477 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1478 } 1479 1480 /* 1481 ** Transfer all bindings from the first statement over to the second. 1482 */ 1483 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1484 Vdbe *pFrom = (Vdbe*)pFromStmt; 1485 Vdbe *pTo = (Vdbe*)pToStmt; 1486 int i; 1487 assert( pTo->db==pFrom->db ); 1488 assert( pTo->nVar==pFrom->nVar ); 1489 sqlite3_mutex_enter(pTo->db->mutex); 1490 for(i=0; i<pFrom->nVar; i++){ 1491 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1492 } 1493 sqlite3_mutex_leave(pTo->db->mutex); 1494 return SQLITE_OK; 1495 } 1496 1497 #ifndef SQLITE_OMIT_DEPRECATED 1498 /* 1499 ** Deprecated external interface. Internal/core SQLite code 1500 ** should call sqlite3TransferBindings. 1501 ** 1502 ** It is misuse to call this routine with statements from different 1503 ** database connections. But as this is a deprecated interface, we 1504 ** will not bother to check for that condition. 1505 ** 1506 ** If the two statements contain a different number of bindings, then 1507 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1508 ** SQLITE_OK is returned. 1509 */ 1510 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1511 Vdbe *pFrom = (Vdbe*)pFromStmt; 1512 Vdbe *pTo = (Vdbe*)pToStmt; 1513 if( pFrom->nVar!=pTo->nVar ){ 1514 return SQLITE_ERROR; 1515 } 1516 if( pTo->isPrepareV2 && pTo->expmask ){ 1517 pTo->expired = 1; 1518 } 1519 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1520 pFrom->expired = 1; 1521 } 1522 return sqlite3TransferBindings(pFromStmt, pToStmt); 1523 } 1524 #endif 1525 1526 /* 1527 ** Return the sqlite3* database handle to which the prepared statement given 1528 ** in the argument belongs. This is the same database handle that was 1529 ** the first argument to the sqlite3_prepare() that was used to create 1530 ** the statement in the first place. 1531 */ 1532 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1533 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1534 } 1535 1536 /* 1537 ** Return true if the prepared statement is guaranteed to not modify the 1538 ** database. 1539 */ 1540 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1541 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1542 } 1543 1544 /* 1545 ** Return true if the prepared statement is in need of being reset. 1546 */ 1547 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1548 Vdbe *v = (Vdbe*)pStmt; 1549 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1550 } 1551 1552 /* 1553 ** Return a pointer to the next prepared statement after pStmt associated 1554 ** with database connection pDb. If pStmt is NULL, return the first 1555 ** prepared statement for the database connection. Return NULL if there 1556 ** are no more. 1557 */ 1558 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1559 sqlite3_stmt *pNext; 1560 #ifdef SQLITE_ENABLE_API_ARMOR 1561 if( !sqlite3SafetyCheckOk(pDb) ){ 1562 (void)SQLITE_MISUSE_BKPT; 1563 return 0; 1564 } 1565 #endif 1566 sqlite3_mutex_enter(pDb->mutex); 1567 if( pStmt==0 ){ 1568 pNext = (sqlite3_stmt*)pDb->pVdbe; 1569 }else{ 1570 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1571 } 1572 sqlite3_mutex_leave(pDb->mutex); 1573 return pNext; 1574 } 1575 1576 /* 1577 ** Return the value of a status counter for a prepared statement 1578 */ 1579 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1580 Vdbe *pVdbe = (Vdbe*)pStmt; 1581 u32 v; 1582 #ifdef SQLITE_ENABLE_API_ARMOR 1583 if( !pStmt ){ 1584 (void)SQLITE_MISUSE_BKPT; 1585 return 0; 1586 } 1587 #endif 1588 v = pVdbe->aCounter[op]; 1589 if( resetFlag ) pVdbe->aCounter[op] = 0; 1590 return (int)v; 1591 } 1592 1593 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1594 /* 1595 ** Return status data for a single loop within query pStmt. 1596 */ 1597 int sqlite3_stmt_scanstatus( 1598 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1599 int idx, /* Index of loop to report on */ 1600 int iScanStatusOp, /* Which metric to return */ 1601 void *pOut /* OUT: Write the answer here */ 1602 ){ 1603 Vdbe *p = (Vdbe*)pStmt; 1604 ScanStatus *pScan; 1605 if( idx<0 || idx>=p->nScan ) return 1; 1606 pScan = &p->aScan[idx]; 1607 switch( iScanStatusOp ){ 1608 case SQLITE_SCANSTAT_NLOOP: { 1609 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1610 break; 1611 } 1612 case SQLITE_SCANSTAT_NVISIT: { 1613 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1614 break; 1615 } 1616 case SQLITE_SCANSTAT_EST: { 1617 double r = 1.0; 1618 LogEst x = pScan->nEst; 1619 while( x<100 ){ 1620 x += 10; 1621 r *= 0.5; 1622 } 1623 *(double*)pOut = r*sqlite3LogEstToInt(x); 1624 break; 1625 } 1626 case SQLITE_SCANSTAT_NAME: { 1627 *(const char**)pOut = pScan->zName; 1628 break; 1629 } 1630 case SQLITE_SCANSTAT_EXPLAIN: { 1631 if( pScan->addrExplain ){ 1632 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1633 }else{ 1634 *(const char**)pOut = 0; 1635 } 1636 break; 1637 } 1638 case SQLITE_SCANSTAT_SELECTID: { 1639 if( pScan->addrExplain ){ 1640 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1641 }else{ 1642 *(int*)pOut = -1; 1643 } 1644 break; 1645 } 1646 default: { 1647 return 1; 1648 } 1649 } 1650 return 0; 1651 } 1652 1653 /* 1654 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1655 */ 1656 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1657 Vdbe *p = (Vdbe*)pStmt; 1658 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1659 } 1660 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1661