xref: /sqlite-3.40.0/src/vdbeapi.c (revision d5c35f6d)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 (not possible) */
238      SQLITE_NULL,     /* 0x01 NULL */
239      SQLITE_TEXT,     /* 0x02 TEXT */
240      SQLITE_NULL,     /* 0x03 (not possible) */
241      SQLITE_INTEGER,  /* 0x04 INTEGER */
242      SQLITE_NULL,     /* 0x05 (not possible) */
243      SQLITE_INTEGER,  /* 0x06 INTEGER + TEXT */
244      SQLITE_NULL,     /* 0x07 (not possible) */
245      SQLITE_FLOAT,    /* 0x08 FLOAT */
246      SQLITE_NULL,     /* 0x09 (not possible) */
247      SQLITE_FLOAT,    /* 0x0a FLOAT + TEXT */
248      SQLITE_NULL,     /* 0x0b (not possible) */
249      SQLITE_INTEGER,  /* 0x0c (not possible) */
250      SQLITE_NULL,     /* 0x0d (not possible) */
251      SQLITE_INTEGER,  /* 0x0e (not possible) */
252      SQLITE_NULL,     /* 0x0f (not possible) */
253      SQLITE_BLOB,     /* 0x10 BLOB */
254      SQLITE_NULL,     /* 0x11 (not possible) */
255      SQLITE_TEXT,     /* 0x12 (not possible) */
256      SQLITE_NULL,     /* 0x13 (not possible) */
257      SQLITE_INTEGER,  /* 0x14 INTEGER + BLOB */
258      SQLITE_NULL,     /* 0x15 (not possible) */
259      SQLITE_INTEGER,  /* 0x16 (not possible) */
260      SQLITE_NULL,     /* 0x17 (not possible) */
261      SQLITE_FLOAT,    /* 0x18 FLOAT + BLOB */
262      SQLITE_NULL,     /* 0x19 (not possible) */
263      SQLITE_FLOAT,    /* 0x1a (not possible) */
264      SQLITE_NULL,     /* 0x1b (not possible) */
265      SQLITE_INTEGER,  /* 0x1c (not possible) */
266      SQLITE_NULL,     /* 0x1d (not possible) */
267      SQLITE_INTEGER,  /* 0x1e (not possible) */
268      SQLITE_NULL,     /* 0x1f (not possible) */
269      SQLITE_FLOAT,    /* 0x20 INTREAL */
270      SQLITE_NULL,     /* 0x21 (not possible) */
271      SQLITE_TEXT,     /* 0x22 INTREAL + TEXT */
272      SQLITE_NULL,     /* 0x23 (not possible) */
273      SQLITE_FLOAT,    /* 0x24 (not possible) */
274      SQLITE_NULL,     /* 0x25 (not possible) */
275      SQLITE_FLOAT,    /* 0x26 (not possible) */
276      SQLITE_NULL,     /* 0x27 (not possible) */
277      SQLITE_FLOAT,    /* 0x28 (not possible) */
278      SQLITE_NULL,     /* 0x29 (not possible) */
279      SQLITE_FLOAT,    /* 0x2a (not possible) */
280      SQLITE_NULL,     /* 0x2b (not possible) */
281      SQLITE_FLOAT,    /* 0x2c (not possible) */
282      SQLITE_NULL,     /* 0x2d (not possible) */
283      SQLITE_FLOAT,    /* 0x2e (not possible) */
284      SQLITE_NULL,     /* 0x2f (not possible) */
285      SQLITE_BLOB,     /* 0x30 (not possible) */
286      SQLITE_NULL,     /* 0x31 (not possible) */
287      SQLITE_TEXT,     /* 0x32 (not possible) */
288      SQLITE_NULL,     /* 0x33 (not possible) */
289      SQLITE_FLOAT,    /* 0x34 (not possible) */
290      SQLITE_NULL,     /* 0x35 (not possible) */
291      SQLITE_FLOAT,    /* 0x36 (not possible) */
292      SQLITE_NULL,     /* 0x37 (not possible) */
293      SQLITE_FLOAT,    /* 0x38 (not possible) */
294      SQLITE_NULL,     /* 0x39 (not possible) */
295      SQLITE_FLOAT,    /* 0x3a (not possible) */
296      SQLITE_NULL,     /* 0x3b (not possible) */
297      SQLITE_FLOAT,    /* 0x3c (not possible) */
298      SQLITE_NULL,     /* 0x3d (not possible) */
299      SQLITE_FLOAT,    /* 0x3e (not possible) */
300      SQLITE_NULL,     /* 0x3f (not possible) */
301   };
302 #ifdef SQLITE_DEBUG
303   {
304     int eType = SQLITE_BLOB;
305     if( pVal->flags & MEM_Null ){
306       eType = SQLITE_NULL;
307     }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308       eType = SQLITE_FLOAT;
309     }else if( pVal->flags & MEM_Int ){
310       eType = SQLITE_INTEGER;
311     }else if( pVal->flags & MEM_Str ){
312       eType = SQLITE_TEXT;
313     }
314     assert( eType == aType[pVal->flags&MEM_AffMask] );
315   }
316 #endif
317   return aType[pVal->flags&MEM_AffMask];
318 }
319 
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
323 }
324 
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327   return (pVal->flags&MEM_FromBind)!=0;
328 }
329 
330 /* Make a copy of an sqlite3_value object
331 */
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333   sqlite3_value *pNew;
334   if( pOrig==0 ) return 0;
335   pNew = sqlite3_malloc( sizeof(*pNew) );
336   if( pNew==0 ) return 0;
337   memset(pNew, 0, sizeof(*pNew));
338   memcpy(pNew, pOrig, MEMCELLSIZE);
339   pNew->flags &= ~MEM_Dyn;
340   pNew->db = 0;
341   if( pNew->flags&(MEM_Str|MEM_Blob) ){
342     pNew->flags &= ~(MEM_Static|MEM_Dyn);
343     pNew->flags |= MEM_Ephem;
344     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345       sqlite3ValueFree(pNew);
346       pNew = 0;
347     }
348   }else if( pNew->flags & MEM_Null ){
349     /* Do not duplicate pointer values */
350     pNew->flags &= ~(MEM_Term|MEM_Subtype);
351   }
352   return pNew;
353 }
354 
355 /* Destroy an sqlite3_value object previously obtained from
356 ** sqlite3_value_dup().
357 */
358 void sqlite3_value_free(sqlite3_value *pOld){
359   sqlite3ValueFree(pOld);
360 }
361 
362 
363 /**************************** sqlite3_result_  *******************************
364 ** The following routines are used by user-defined functions to specify
365 ** the function result.
366 **
367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
368 ** result as a string or blob.  Appropriate errors are set if the string/blob
369 ** is too big or if an OOM occurs.
370 **
371 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
372 ** on value P is not going to be used and need to be destroyed.
373 */
374 static void setResultStrOrError(
375   sqlite3_context *pCtx,  /* Function context */
376   const char *z,          /* String pointer */
377   int n,                  /* Bytes in string, or negative */
378   u8 enc,                 /* Encoding of z.  0 for BLOBs */
379   void (*xDel)(void*)     /* Destructor function */
380 ){
381   int rc = sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel);
382   if( rc ){
383     if( rc==SQLITE_TOOBIG ){
384       sqlite3_result_error_toobig(pCtx);
385     }else{
386       /* The only errors possible from sqlite3VdbeMemSetStr are
387       ** SQLITE_TOOBIG and SQLITE_NOMEM */
388       assert( rc==SQLITE_NOMEM );
389       sqlite3_result_error_nomem(pCtx);
390     }
391   }
392 }
393 static int invokeValueDestructor(
394   const void *p,             /* Value to destroy */
395   void (*xDel)(void*),       /* The destructor */
396   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
397 ){
398   assert( xDel!=SQLITE_DYNAMIC );
399   if( xDel==0 ){
400     /* noop */
401   }else if( xDel==SQLITE_TRANSIENT ){
402     /* noop */
403   }else{
404     xDel((void*)p);
405   }
406   sqlite3_result_error_toobig(pCtx);
407   return SQLITE_TOOBIG;
408 }
409 void sqlite3_result_blob(
410   sqlite3_context *pCtx,
411   const void *z,
412   int n,
413   void (*xDel)(void *)
414 ){
415   assert( n>=0 );
416   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
417   setResultStrOrError(pCtx, z, n, 0, xDel);
418 }
419 void sqlite3_result_blob64(
420   sqlite3_context *pCtx,
421   const void *z,
422   sqlite3_uint64 n,
423   void (*xDel)(void *)
424 ){
425   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
426   assert( xDel!=SQLITE_DYNAMIC );
427   if( n>0x7fffffff ){
428     (void)invokeValueDestructor(z, xDel, pCtx);
429   }else{
430     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
431   }
432 }
433 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
434   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
435   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
436 }
437 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
438   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
439   pCtx->isError = SQLITE_ERROR;
440   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
441 }
442 #ifndef SQLITE_OMIT_UTF16
443 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
444   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
445   pCtx->isError = SQLITE_ERROR;
446   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
447 }
448 #endif
449 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
450   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
451   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
452 }
453 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
454   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
455   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
456 }
457 void sqlite3_result_null(sqlite3_context *pCtx){
458   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
459   sqlite3VdbeMemSetNull(pCtx->pOut);
460 }
461 void sqlite3_result_pointer(
462   sqlite3_context *pCtx,
463   void *pPtr,
464   const char *zPType,
465   void (*xDestructor)(void*)
466 ){
467   Mem *pOut = pCtx->pOut;
468   assert( sqlite3_mutex_held(pOut->db->mutex) );
469   sqlite3VdbeMemRelease(pOut);
470   pOut->flags = MEM_Null;
471   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
472 }
473 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
474   Mem *pOut = pCtx->pOut;
475   assert( sqlite3_mutex_held(pOut->db->mutex) );
476   pOut->eSubtype = eSubtype & 0xff;
477   pOut->flags |= MEM_Subtype;
478 }
479 void sqlite3_result_text(
480   sqlite3_context *pCtx,
481   const char *z,
482   int n,
483   void (*xDel)(void *)
484 ){
485   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
486   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
487 }
488 void sqlite3_result_text64(
489   sqlite3_context *pCtx,
490   const char *z,
491   sqlite3_uint64 n,
492   void (*xDel)(void *),
493   unsigned char enc
494 ){
495   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
496   assert( xDel!=SQLITE_DYNAMIC );
497   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
498   if( n>0x7fffffff ){
499     (void)invokeValueDestructor(z, xDel, pCtx);
500   }else{
501     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
502   }
503 }
504 #ifndef SQLITE_OMIT_UTF16
505 void sqlite3_result_text16(
506   sqlite3_context *pCtx,
507   const void *z,
508   int n,
509   void (*xDel)(void *)
510 ){
511   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
512   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
513 }
514 void sqlite3_result_text16be(
515   sqlite3_context *pCtx,
516   const void *z,
517   int n,
518   void (*xDel)(void *)
519 ){
520   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
521   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
522 }
523 void sqlite3_result_text16le(
524   sqlite3_context *pCtx,
525   const void *z,
526   int n,
527   void (*xDel)(void *)
528 ){
529   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
530   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
531 }
532 #endif /* SQLITE_OMIT_UTF16 */
533 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
534   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
535   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
536 }
537 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
538   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
539   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
540 }
541 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
542   Mem *pOut = pCtx->pOut;
543   assert( sqlite3_mutex_held(pOut->db->mutex) );
544   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
545     return SQLITE_TOOBIG;
546   }
547 #ifndef SQLITE_OMIT_INCRBLOB
548   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
549   return SQLITE_OK;
550 #else
551   return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
552 #endif
553 }
554 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
555   pCtx->isError = errCode ? errCode : -1;
556 #ifdef SQLITE_DEBUG
557   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
558 #endif
559   if( pCtx->pOut->flags & MEM_Null ){
560     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
561                          SQLITE_UTF8, SQLITE_STATIC);
562   }
563 }
564 
565 /* Force an SQLITE_TOOBIG error. */
566 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
567   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
568   pCtx->isError = SQLITE_TOOBIG;
569   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
570                        SQLITE_UTF8, SQLITE_STATIC);
571 }
572 
573 /* An SQLITE_NOMEM error. */
574 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
575   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
576   sqlite3VdbeMemSetNull(pCtx->pOut);
577   pCtx->isError = SQLITE_NOMEM_BKPT;
578   sqlite3OomFault(pCtx->pOut->db);
579 }
580 
581 #ifndef SQLITE_UNTESTABLE
582 /* Force the INT64 value currently stored as the result to be
583 ** a MEM_IntReal value.  See the SQLITE_TESTCTRL_RESULT_INTREAL
584 ** test-control.
585 */
586 void sqlite3ResultIntReal(sqlite3_context *pCtx){
587   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
588   if( pCtx->pOut->flags & MEM_Int ){
589     pCtx->pOut->flags &= ~MEM_Int;
590     pCtx->pOut->flags |= MEM_IntReal;
591   }
592 }
593 #endif
594 
595 
596 /*
597 ** This function is called after a transaction has been committed. It
598 ** invokes callbacks registered with sqlite3_wal_hook() as required.
599 */
600 static int doWalCallbacks(sqlite3 *db){
601   int rc = SQLITE_OK;
602 #ifndef SQLITE_OMIT_WAL
603   int i;
604   for(i=0; i<db->nDb; i++){
605     Btree *pBt = db->aDb[i].pBt;
606     if( pBt ){
607       int nEntry;
608       sqlite3BtreeEnter(pBt);
609       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
610       sqlite3BtreeLeave(pBt);
611       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
612         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
613       }
614     }
615   }
616 #endif
617   return rc;
618 }
619 
620 
621 /*
622 ** Execute the statement pStmt, either until a row of data is ready, the
623 ** statement is completely executed or an error occurs.
624 **
625 ** This routine implements the bulk of the logic behind the sqlite_step()
626 ** API.  The only thing omitted is the automatic recompile if a
627 ** schema change has occurred.  That detail is handled by the
628 ** outer sqlite3_step() wrapper procedure.
629 */
630 static int sqlite3Step(Vdbe *p){
631   sqlite3 *db;
632   int rc;
633 
634   assert(p);
635   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
636     /* We used to require that sqlite3_reset() be called before retrying
637     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
638     ** with version 3.7.0, we changed this so that sqlite3_reset() would
639     ** be called automatically instead of throwing the SQLITE_MISUSE error.
640     ** This "automatic-reset" change is not technically an incompatibility,
641     ** since any application that receives an SQLITE_MISUSE is broken by
642     ** definition.
643     **
644     ** Nevertheless, some published applications that were originally written
645     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
646     ** returns, and those were broken by the automatic-reset change.  As a
647     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
648     ** legacy behavior of returning SQLITE_MISUSE for cases where the
649     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
650     ** or SQLITE_BUSY error.
651     */
652 #ifdef SQLITE_OMIT_AUTORESET
653     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
654       sqlite3_reset((sqlite3_stmt*)p);
655     }else{
656       return SQLITE_MISUSE_BKPT;
657     }
658 #else
659     sqlite3_reset((sqlite3_stmt*)p);
660 #endif
661   }
662 
663   /* Check that malloc() has not failed. If it has, return early. */
664   db = p->db;
665   if( db->mallocFailed ){
666     p->rc = SQLITE_NOMEM;
667     return SQLITE_NOMEM_BKPT;
668   }
669 
670   if( p->pc<0 && p->expired ){
671     p->rc = SQLITE_SCHEMA;
672     rc = SQLITE_ERROR;
673     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
674       /* If this statement was prepared using saved SQL and an
675       ** error has occurred, then return the error code in p->rc to the
676       ** caller. Set the error code in the database handle to the same value.
677       */
678       rc = sqlite3VdbeTransferError(p);
679     }
680     goto end_of_step;
681   }
682   if( p->pc<0 ){
683     /* If there are no other statements currently running, then
684     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
685     ** from interrupting a statement that has not yet started.
686     */
687     if( db->nVdbeActive==0 ){
688       AtomicStore(&db->u1.isInterrupted, 0);
689     }
690 
691     assert( db->nVdbeWrite>0 || db->autoCommit==0
692         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
693     );
694 
695 #ifndef SQLITE_OMIT_TRACE
696     if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
697         && !db->init.busy && p->zSql ){
698       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
699     }else{
700       assert( p->startTime==0 );
701     }
702 #endif
703 
704     db->nVdbeActive++;
705     if( p->readOnly==0 ) db->nVdbeWrite++;
706     if( p->bIsReader ) db->nVdbeRead++;
707     p->pc = 0;
708   }
709 #ifdef SQLITE_DEBUG
710   p->rcApp = SQLITE_OK;
711 #endif
712 #ifndef SQLITE_OMIT_EXPLAIN
713   if( p->explain ){
714     rc = sqlite3VdbeList(p);
715   }else
716 #endif /* SQLITE_OMIT_EXPLAIN */
717   {
718     db->nVdbeExec++;
719     rc = sqlite3VdbeExec(p);
720     db->nVdbeExec--;
721   }
722 
723   if( rc!=SQLITE_ROW ){
724 #ifndef SQLITE_OMIT_TRACE
725     /* If the statement completed successfully, invoke the profile callback */
726     checkProfileCallback(db, p);
727 #endif
728 
729     if( rc==SQLITE_DONE && db->autoCommit ){
730       assert( p->rc==SQLITE_OK );
731       p->rc = doWalCallbacks(db);
732       if( p->rc!=SQLITE_OK ){
733         rc = SQLITE_ERROR;
734       }
735     }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
736       /* If this statement was prepared using saved SQL and an
737       ** error has occurred, then return the error code in p->rc to the
738       ** caller. Set the error code in the database handle to the same value.
739       */
740       rc = sqlite3VdbeTransferError(p);
741     }
742   }
743 
744   db->errCode = rc;
745   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
746     p->rc = SQLITE_NOMEM_BKPT;
747     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
748   }
749 end_of_step:
750   /* There are only a limited number of result codes allowed from the
751   ** statements prepared using the legacy sqlite3_prepare() interface */
752   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
753        || rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
754        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
755   );
756   return (rc&db->errMask);
757 }
758 
759 /*
760 ** This is the top-level implementation of sqlite3_step().  Call
761 ** sqlite3Step() to do most of the work.  If a schema error occurs,
762 ** call sqlite3Reprepare() and try again.
763 */
764 int sqlite3_step(sqlite3_stmt *pStmt){
765   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
766   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
767   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
768   sqlite3 *db;             /* The database connection */
769 
770   if( vdbeSafetyNotNull(v) ){
771     return SQLITE_MISUSE_BKPT;
772   }
773   db = v->db;
774   sqlite3_mutex_enter(db->mutex);
775   v->doingRerun = 0;
776   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
777          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
778     int savedPc = v->pc;
779     rc = sqlite3Reprepare(v);
780     if( rc!=SQLITE_OK ){
781       /* This case occurs after failing to recompile an sql statement.
782       ** The error message from the SQL compiler has already been loaded
783       ** into the database handle. This block copies the error message
784       ** from the database handle into the statement and sets the statement
785       ** program counter to 0 to ensure that when the statement is
786       ** finalized or reset the parser error message is available via
787       ** sqlite3_errmsg() and sqlite3_errcode().
788       */
789       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
790       sqlite3DbFree(db, v->zErrMsg);
791       if( !db->mallocFailed ){
792         v->zErrMsg = sqlite3DbStrDup(db, zErr);
793         v->rc = rc = sqlite3ApiExit(db, rc);
794       } else {
795         v->zErrMsg = 0;
796         v->rc = rc = SQLITE_NOMEM_BKPT;
797       }
798       break;
799     }
800     sqlite3_reset(pStmt);
801     if( savedPc>=0 ) v->doingRerun = 1;
802     assert( v->expired==0 );
803   }
804   sqlite3_mutex_leave(db->mutex);
805   return rc;
806 }
807 
808 
809 /*
810 ** Extract the user data from a sqlite3_context structure and return a
811 ** pointer to it.
812 */
813 void *sqlite3_user_data(sqlite3_context *p){
814   assert( p && p->pFunc );
815   return p->pFunc->pUserData;
816 }
817 
818 /*
819 ** Extract the user data from a sqlite3_context structure and return a
820 ** pointer to it.
821 **
822 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
823 ** returns a copy of the pointer to the database connection (the 1st
824 ** parameter) of the sqlite3_create_function() and
825 ** sqlite3_create_function16() routines that originally registered the
826 ** application defined function.
827 */
828 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
829   assert( p && p->pOut );
830   return p->pOut->db;
831 }
832 
833 /*
834 ** If this routine is invoked from within an xColumn method of a virtual
835 ** table, then it returns true if and only if the the call is during an
836 ** UPDATE operation and the value of the column will not be modified
837 ** by the UPDATE.
838 **
839 ** If this routine is called from any context other than within the
840 ** xColumn method of a virtual table, then the return value is meaningless
841 ** and arbitrary.
842 **
843 ** Virtual table implements might use this routine to optimize their
844 ** performance by substituting a NULL result, or some other light-weight
845 ** value, as a signal to the xUpdate routine that the column is unchanged.
846 */
847 int sqlite3_vtab_nochange(sqlite3_context *p){
848   assert( p );
849   return sqlite3_value_nochange(p->pOut);
850 }
851 
852 /*
853 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
854 ** sqlite3_vtab_in_next() (if bNext!=0).
855 */
856 static int valueFromValueList(
857   sqlite3_value *pVal,        /* Pointer to the ValueList object */
858   sqlite3_value **ppOut,      /* Store the next value from the list here */
859   int bNext                   /* 1 for _next(). 0 for _first() */
860 ){
861   int rc;
862   ValueList *pRhs;
863 
864   *ppOut = 0;
865   if( pVal==0 ) return SQLITE_MISUSE;
866   pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
867   if( pRhs==0 ) return SQLITE_MISUSE;
868   if( bNext ){
869     rc = sqlite3BtreeNext(pRhs->pCsr, 0);
870   }else{
871     int dummy = 0;
872     rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
873     assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
874     if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
875   }
876   if( rc==SQLITE_OK ){
877     u32 sz;       /* Size of current row in bytes */
878     Mem sMem;     /* Raw content of current row */
879     memset(&sMem, 0, sizeof(sMem));
880     sz = sqlite3BtreePayloadSize(pRhs->pCsr);
881     rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
882     if( rc==SQLITE_OK ){
883       u8 *zBuf = (u8*)sMem.z;
884       u32 iSerial;
885       sqlite3_value *pOut = pRhs->pOut;
886       int iOff = 1 + getVarint32(&zBuf[1], iSerial);
887       sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
888       pOut->enc = ENC(pOut->db);
889       if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
890         rc = SQLITE_NOMEM;
891       }else{
892         *ppOut = pOut;
893       }
894     }
895     sqlite3VdbeMemRelease(&sMem);
896   }
897   return rc;
898 }
899 
900 /*
901 ** Set the iterator value pVal to point to the first value in the set.
902 ** Set (*ppOut) to point to this value before returning.
903 */
904 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
905   return valueFromValueList(pVal, ppOut, 0);
906 }
907 
908 /*
909 ** Set the iterator value pVal to point to the next value in the set.
910 ** Set (*ppOut) to point to this value before returning.
911 */
912 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
913   return valueFromValueList(pVal, ppOut, 1);
914 }
915 
916 /*
917 ** Return the current time for a statement.  If the current time
918 ** is requested more than once within the same run of a single prepared
919 ** statement, the exact same time is returned for each invocation regardless
920 ** of the amount of time that elapses between invocations.  In other words,
921 ** the time returned is always the time of the first call.
922 */
923 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
924   int rc;
925 #ifndef SQLITE_ENABLE_STAT4
926   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
927   assert( p->pVdbe!=0 );
928 #else
929   sqlite3_int64 iTime = 0;
930   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
931 #endif
932   if( *piTime==0 ){
933     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
934     if( rc ) *piTime = 0;
935   }
936   return *piTime;
937 }
938 
939 /*
940 ** Create a new aggregate context for p and return a pointer to
941 ** its pMem->z element.
942 */
943 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
944   Mem *pMem = p->pMem;
945   assert( (pMem->flags & MEM_Agg)==0 );
946   if( nByte<=0 ){
947     sqlite3VdbeMemSetNull(pMem);
948     pMem->z = 0;
949   }else{
950     sqlite3VdbeMemClearAndResize(pMem, nByte);
951     pMem->flags = MEM_Agg;
952     pMem->u.pDef = p->pFunc;
953     if( pMem->z ){
954       memset(pMem->z, 0, nByte);
955     }
956   }
957   return (void*)pMem->z;
958 }
959 
960 /*
961 ** Allocate or return the aggregate context for a user function.  A new
962 ** context is allocated on the first call.  Subsequent calls return the
963 ** same context that was returned on prior calls.
964 */
965 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
966   assert( p && p->pFunc && p->pFunc->xFinalize );
967   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
968   testcase( nByte<0 );
969   if( (p->pMem->flags & MEM_Agg)==0 ){
970     return createAggContext(p, nByte);
971   }else{
972     return (void*)p->pMem->z;
973   }
974 }
975 
976 /*
977 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
978 ** the user-function defined by pCtx.
979 **
980 ** The left-most argument is 0.
981 **
982 ** Undocumented behavior:  If iArg is negative then access a cache of
983 ** auxiliary data pointers that is available to all functions within a
984 ** single prepared statement.  The iArg values must match.
985 */
986 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
987   AuxData *pAuxData;
988 
989   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
990 #if SQLITE_ENABLE_STAT4
991   if( pCtx->pVdbe==0 ) return 0;
992 #else
993   assert( pCtx->pVdbe!=0 );
994 #endif
995   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
996     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
997       return pAuxData->pAux;
998     }
999   }
1000   return 0;
1001 }
1002 
1003 /*
1004 ** Set the auxiliary data pointer and delete function, for the iArg'th
1005 ** argument to the user-function defined by pCtx. Any previous value is
1006 ** deleted by calling the delete function specified when it was set.
1007 **
1008 ** The left-most argument is 0.
1009 **
1010 ** Undocumented behavior:  If iArg is negative then make the data available
1011 ** to all functions within the current prepared statement using iArg as an
1012 ** access code.
1013 */
1014 void sqlite3_set_auxdata(
1015   sqlite3_context *pCtx,
1016   int iArg,
1017   void *pAux,
1018   void (*xDelete)(void*)
1019 ){
1020   AuxData *pAuxData;
1021   Vdbe *pVdbe = pCtx->pVdbe;
1022 
1023   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1024 #ifdef SQLITE_ENABLE_STAT4
1025   if( pVdbe==0 ) goto failed;
1026 #else
1027   assert( pVdbe!=0 );
1028 #endif
1029 
1030   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1031     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1032       break;
1033     }
1034   }
1035   if( pAuxData==0 ){
1036     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1037     if( !pAuxData ) goto failed;
1038     pAuxData->iAuxOp = pCtx->iOp;
1039     pAuxData->iAuxArg = iArg;
1040     pAuxData->pNextAux = pVdbe->pAuxData;
1041     pVdbe->pAuxData = pAuxData;
1042     if( pCtx->isError==0 ) pCtx->isError = -1;
1043   }else if( pAuxData->xDeleteAux ){
1044     pAuxData->xDeleteAux(pAuxData->pAux);
1045   }
1046 
1047   pAuxData->pAux = pAux;
1048   pAuxData->xDeleteAux = xDelete;
1049   return;
1050 
1051 failed:
1052   if( xDelete ){
1053     xDelete(pAux);
1054   }
1055 }
1056 
1057 #ifndef SQLITE_OMIT_DEPRECATED
1058 /*
1059 ** Return the number of times the Step function of an aggregate has been
1060 ** called.
1061 **
1062 ** This function is deprecated.  Do not use it for new code.  It is
1063 ** provide only to avoid breaking legacy code.  New aggregate function
1064 ** implementations should keep their own counts within their aggregate
1065 ** context.
1066 */
1067 int sqlite3_aggregate_count(sqlite3_context *p){
1068   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1069   return p->pMem->n;
1070 }
1071 #endif
1072 
1073 /*
1074 ** Return the number of columns in the result set for the statement pStmt.
1075 */
1076 int sqlite3_column_count(sqlite3_stmt *pStmt){
1077   Vdbe *pVm = (Vdbe *)pStmt;
1078   return pVm ? pVm->nResColumn : 0;
1079 }
1080 
1081 /*
1082 ** Return the number of values available from the current row of the
1083 ** currently executing statement pStmt.
1084 */
1085 int sqlite3_data_count(sqlite3_stmt *pStmt){
1086   Vdbe *pVm = (Vdbe *)pStmt;
1087   if( pVm==0 || pVm->pResultSet==0 ) return 0;
1088   return pVm->nResColumn;
1089 }
1090 
1091 /*
1092 ** Return a pointer to static memory containing an SQL NULL value.
1093 */
1094 static const Mem *columnNullValue(void){
1095   /* Even though the Mem structure contains an element
1096   ** of type i64, on certain architectures (x86) with certain compiler
1097   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1098   ** instead of an 8-byte one. This all works fine, except that when
1099   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1100   ** that a Mem structure is located on an 8-byte boundary. To prevent
1101   ** these assert()s from failing, when building with SQLITE_DEBUG defined
1102   ** using gcc, we force nullMem to be 8-byte aligned using the magical
1103   ** __attribute__((aligned(8))) macro.  */
1104   static const Mem nullMem
1105 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1106     __attribute__((aligned(8)))
1107 #endif
1108     = {
1109         /* .u          = */ {0},
1110         /* .z          = */ (char*)0,
1111         /* .n          = */ (int)0,
1112         /* .flags      = */ (u16)MEM_Null,
1113         /* .enc        = */ (u8)0,
1114         /* .eSubtype   = */ (u8)0,
1115         /* .db         = */ (sqlite3*)0,
1116         /* .szMalloc   = */ (int)0,
1117         /* .uTemp      = */ (u32)0,
1118         /* .zMalloc    = */ (char*)0,
1119         /* .xDel       = */ (void(*)(void*))0,
1120 #ifdef SQLITE_DEBUG
1121         /* .pScopyFrom = */ (Mem*)0,
1122         /* .mScopyFlags= */ 0,
1123 #endif
1124       };
1125   return &nullMem;
1126 }
1127 
1128 /*
1129 ** Check to see if column iCol of the given statement is valid.  If
1130 ** it is, return a pointer to the Mem for the value of that column.
1131 ** If iCol is not valid, return a pointer to a Mem which has a value
1132 ** of NULL.
1133 */
1134 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1135   Vdbe *pVm;
1136   Mem *pOut;
1137 
1138   pVm = (Vdbe *)pStmt;
1139   if( pVm==0 ) return (Mem*)columnNullValue();
1140   assert( pVm->db );
1141   sqlite3_mutex_enter(pVm->db->mutex);
1142   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1143     pOut = &pVm->pResultSet[i];
1144   }else{
1145     sqlite3Error(pVm->db, SQLITE_RANGE);
1146     pOut = (Mem*)columnNullValue();
1147   }
1148   return pOut;
1149 }
1150 
1151 /*
1152 ** This function is called after invoking an sqlite3_value_XXX function on a
1153 ** column value (i.e. a value returned by evaluating an SQL expression in the
1154 ** select list of a SELECT statement) that may cause a malloc() failure. If
1155 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1156 ** code of statement pStmt set to SQLITE_NOMEM.
1157 **
1158 ** Specifically, this is called from within:
1159 **
1160 **     sqlite3_column_int()
1161 **     sqlite3_column_int64()
1162 **     sqlite3_column_text()
1163 **     sqlite3_column_text16()
1164 **     sqlite3_column_real()
1165 **     sqlite3_column_bytes()
1166 **     sqlite3_column_bytes16()
1167 **     sqiite3_column_blob()
1168 */
1169 static void columnMallocFailure(sqlite3_stmt *pStmt)
1170 {
1171   /* If malloc() failed during an encoding conversion within an
1172   ** sqlite3_column_XXX API, then set the return code of the statement to
1173   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1174   ** and _finalize() will return NOMEM.
1175   */
1176   Vdbe *p = (Vdbe *)pStmt;
1177   if( p ){
1178     assert( p->db!=0 );
1179     assert( sqlite3_mutex_held(p->db->mutex) );
1180     p->rc = sqlite3ApiExit(p->db, p->rc);
1181     sqlite3_mutex_leave(p->db->mutex);
1182   }
1183 }
1184 
1185 /**************************** sqlite3_column_  *******************************
1186 ** The following routines are used to access elements of the current row
1187 ** in the result set.
1188 */
1189 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1190   const void *val;
1191   val = sqlite3_value_blob( columnMem(pStmt,i) );
1192   /* Even though there is no encoding conversion, value_blob() might
1193   ** need to call malloc() to expand the result of a zeroblob()
1194   ** expression.
1195   */
1196   columnMallocFailure(pStmt);
1197   return val;
1198 }
1199 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1200   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1201   columnMallocFailure(pStmt);
1202   return val;
1203 }
1204 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1205   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1206   columnMallocFailure(pStmt);
1207   return val;
1208 }
1209 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1210   double val = sqlite3_value_double( columnMem(pStmt,i) );
1211   columnMallocFailure(pStmt);
1212   return val;
1213 }
1214 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1215   int val = sqlite3_value_int( columnMem(pStmt,i) );
1216   columnMallocFailure(pStmt);
1217   return val;
1218 }
1219 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1220   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1221   columnMallocFailure(pStmt);
1222   return val;
1223 }
1224 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1225   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1226   columnMallocFailure(pStmt);
1227   return val;
1228 }
1229 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1230   Mem *pOut = columnMem(pStmt, i);
1231   if( pOut->flags&MEM_Static ){
1232     pOut->flags &= ~MEM_Static;
1233     pOut->flags |= MEM_Ephem;
1234   }
1235   columnMallocFailure(pStmt);
1236   return (sqlite3_value *)pOut;
1237 }
1238 #ifndef SQLITE_OMIT_UTF16
1239 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1240   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1241   columnMallocFailure(pStmt);
1242   return val;
1243 }
1244 #endif /* SQLITE_OMIT_UTF16 */
1245 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1246   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1247   columnMallocFailure(pStmt);
1248   return iType;
1249 }
1250 
1251 /*
1252 ** Convert the N-th element of pStmt->pColName[] into a string using
1253 ** xFunc() then return that string.  If N is out of range, return 0.
1254 **
1255 ** There are up to 5 names for each column.  useType determines which
1256 ** name is returned.  Here are the names:
1257 **
1258 **    0      The column name as it should be displayed for output
1259 **    1      The datatype name for the column
1260 **    2      The name of the database that the column derives from
1261 **    3      The name of the table that the column derives from
1262 **    4      The name of the table column that the result column derives from
1263 **
1264 ** If the result is not a simple column reference (if it is an expression
1265 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1266 */
1267 static const void *columnName(
1268   sqlite3_stmt *pStmt,     /* The statement */
1269   int N,                   /* Which column to get the name for */
1270   int useUtf16,            /* True to return the name as UTF16 */
1271   int useType              /* What type of name */
1272 ){
1273   const void *ret;
1274   Vdbe *p;
1275   int n;
1276   sqlite3 *db;
1277 #ifdef SQLITE_ENABLE_API_ARMOR
1278   if( pStmt==0 ){
1279     (void)SQLITE_MISUSE_BKPT;
1280     return 0;
1281   }
1282 #endif
1283   ret = 0;
1284   p = (Vdbe *)pStmt;
1285   db = p->db;
1286   assert( db!=0 );
1287   n = sqlite3_column_count(pStmt);
1288   if( N<n && N>=0 ){
1289     N += useType*n;
1290     sqlite3_mutex_enter(db->mutex);
1291     assert( db->mallocFailed==0 );
1292 #ifndef SQLITE_OMIT_UTF16
1293     if( useUtf16 ){
1294       ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1295     }else
1296 #endif
1297     {
1298       ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1299     }
1300     /* A malloc may have failed inside of the _text() call. If this
1301     ** is the case, clear the mallocFailed flag and return NULL.
1302     */
1303     if( db->mallocFailed ){
1304       sqlite3OomClear(db);
1305       ret = 0;
1306     }
1307     sqlite3_mutex_leave(db->mutex);
1308   }
1309   return ret;
1310 }
1311 
1312 /*
1313 ** Return the name of the Nth column of the result set returned by SQL
1314 ** statement pStmt.
1315 */
1316 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1317   return columnName(pStmt, N, 0, COLNAME_NAME);
1318 }
1319 #ifndef SQLITE_OMIT_UTF16
1320 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1321   return columnName(pStmt, N, 1, COLNAME_NAME);
1322 }
1323 #endif
1324 
1325 /*
1326 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1327 ** not define OMIT_DECLTYPE.
1328 */
1329 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1330 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1331          and SQLITE_ENABLE_COLUMN_METADATA"
1332 #endif
1333 
1334 #ifndef SQLITE_OMIT_DECLTYPE
1335 /*
1336 ** Return the column declaration type (if applicable) of the 'i'th column
1337 ** of the result set of SQL statement pStmt.
1338 */
1339 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1340   return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1341 }
1342 #ifndef SQLITE_OMIT_UTF16
1343 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1344   return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1345 }
1346 #endif /* SQLITE_OMIT_UTF16 */
1347 #endif /* SQLITE_OMIT_DECLTYPE */
1348 
1349 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1350 /*
1351 ** Return the name of the database from which a result column derives.
1352 ** NULL is returned if the result column is an expression or constant or
1353 ** anything else which is not an unambiguous reference to a database column.
1354 */
1355 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1356   return columnName(pStmt, N, 0, COLNAME_DATABASE);
1357 }
1358 #ifndef SQLITE_OMIT_UTF16
1359 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1360   return columnName(pStmt, N, 1, COLNAME_DATABASE);
1361 }
1362 #endif /* SQLITE_OMIT_UTF16 */
1363 
1364 /*
1365 ** Return the name of the table from which a result column derives.
1366 ** NULL is returned if the result column is an expression or constant or
1367 ** anything else which is not an unambiguous reference to a database column.
1368 */
1369 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1370   return columnName(pStmt, N, 0, COLNAME_TABLE);
1371 }
1372 #ifndef SQLITE_OMIT_UTF16
1373 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1374   return columnName(pStmt, N, 1, COLNAME_TABLE);
1375 }
1376 #endif /* SQLITE_OMIT_UTF16 */
1377 
1378 /*
1379 ** Return the name of the table column from which a result column derives.
1380 ** NULL is returned if the result column is an expression or constant or
1381 ** anything else which is not an unambiguous reference to a database column.
1382 */
1383 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1384   return columnName(pStmt, N, 0, COLNAME_COLUMN);
1385 }
1386 #ifndef SQLITE_OMIT_UTF16
1387 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1388   return columnName(pStmt, N, 1, COLNAME_COLUMN);
1389 }
1390 #endif /* SQLITE_OMIT_UTF16 */
1391 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1392 
1393 
1394 /******************************* sqlite3_bind_  ***************************
1395 **
1396 ** Routines used to attach values to wildcards in a compiled SQL statement.
1397 */
1398 /*
1399 ** Unbind the value bound to variable i in virtual machine p. This is the
1400 ** the same as binding a NULL value to the column. If the "i" parameter is
1401 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1402 **
1403 ** A successful evaluation of this routine acquires the mutex on p.
1404 ** the mutex is released if any kind of error occurs.
1405 **
1406 ** The error code stored in database p->db is overwritten with the return
1407 ** value in any case.
1408 */
1409 static int vdbeUnbind(Vdbe *p, int i){
1410   Mem *pVar;
1411   if( vdbeSafetyNotNull(p) ){
1412     return SQLITE_MISUSE_BKPT;
1413   }
1414   sqlite3_mutex_enter(p->db->mutex);
1415   if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1416     sqlite3Error(p->db, SQLITE_MISUSE);
1417     sqlite3_mutex_leave(p->db->mutex);
1418     sqlite3_log(SQLITE_MISUSE,
1419         "bind on a busy prepared statement: [%s]", p->zSql);
1420     return SQLITE_MISUSE_BKPT;
1421   }
1422   if( i<1 || i>p->nVar ){
1423     sqlite3Error(p->db, SQLITE_RANGE);
1424     sqlite3_mutex_leave(p->db->mutex);
1425     return SQLITE_RANGE;
1426   }
1427   i--;
1428   pVar = &p->aVar[i];
1429   sqlite3VdbeMemRelease(pVar);
1430   pVar->flags = MEM_Null;
1431   p->db->errCode = SQLITE_OK;
1432 
1433   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1434   ** binding a new value to this variable invalidates the current query plan.
1435   **
1436   ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1437   ** parameter in the WHERE clause might influence the choice of query plan
1438   ** for a statement, then the statement will be automatically recompiled,
1439   ** as if there had been a schema change, on the first sqlite3_step() call
1440   ** following any change to the bindings of that parameter.
1441   */
1442   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1443   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1444     p->expired = 1;
1445   }
1446   return SQLITE_OK;
1447 }
1448 
1449 /*
1450 ** Bind a text or BLOB value.
1451 */
1452 static int bindText(
1453   sqlite3_stmt *pStmt,   /* The statement to bind against */
1454   int i,                 /* Index of the parameter to bind */
1455   const void *zData,     /* Pointer to the data to be bound */
1456   i64 nData,             /* Number of bytes of data to be bound */
1457   void (*xDel)(void*),   /* Destructor for the data */
1458   u8 encoding            /* Encoding for the data */
1459 ){
1460   Vdbe *p = (Vdbe *)pStmt;
1461   Mem *pVar;
1462   int rc;
1463 
1464   rc = vdbeUnbind(p, i);
1465   if( rc==SQLITE_OK ){
1466     if( zData!=0 ){
1467       pVar = &p->aVar[i-1];
1468       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1469       if( rc==SQLITE_OK && encoding!=0 ){
1470         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1471       }
1472       if( rc ){
1473         sqlite3Error(p->db, rc);
1474         rc = sqlite3ApiExit(p->db, rc);
1475       }
1476     }
1477     sqlite3_mutex_leave(p->db->mutex);
1478   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1479     xDel((void*)zData);
1480   }
1481   return rc;
1482 }
1483 
1484 
1485 /*
1486 ** Bind a blob value to an SQL statement variable.
1487 */
1488 int sqlite3_bind_blob(
1489   sqlite3_stmt *pStmt,
1490   int i,
1491   const void *zData,
1492   int nData,
1493   void (*xDel)(void*)
1494 ){
1495 #ifdef SQLITE_ENABLE_API_ARMOR
1496   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1497 #endif
1498   return bindText(pStmt, i, zData, nData, xDel, 0);
1499 }
1500 int sqlite3_bind_blob64(
1501   sqlite3_stmt *pStmt,
1502   int i,
1503   const void *zData,
1504   sqlite3_uint64 nData,
1505   void (*xDel)(void*)
1506 ){
1507   assert( xDel!=SQLITE_DYNAMIC );
1508   return bindText(pStmt, i, zData, nData, xDel, 0);
1509 }
1510 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1511   int rc;
1512   Vdbe *p = (Vdbe *)pStmt;
1513   rc = vdbeUnbind(p, i);
1514   if( rc==SQLITE_OK ){
1515     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1516     sqlite3_mutex_leave(p->db->mutex);
1517   }
1518   return rc;
1519 }
1520 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1521   return sqlite3_bind_int64(p, i, (i64)iValue);
1522 }
1523 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1524   int rc;
1525   Vdbe *p = (Vdbe *)pStmt;
1526   rc = vdbeUnbind(p, i);
1527   if( rc==SQLITE_OK ){
1528     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1529     sqlite3_mutex_leave(p->db->mutex);
1530   }
1531   return rc;
1532 }
1533 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1534   int rc;
1535   Vdbe *p = (Vdbe*)pStmt;
1536   rc = vdbeUnbind(p, i);
1537   if( rc==SQLITE_OK ){
1538     sqlite3_mutex_leave(p->db->mutex);
1539   }
1540   return rc;
1541 }
1542 int sqlite3_bind_pointer(
1543   sqlite3_stmt *pStmt,
1544   int i,
1545   void *pPtr,
1546   const char *zPTtype,
1547   void (*xDestructor)(void*)
1548 ){
1549   int rc;
1550   Vdbe *p = (Vdbe*)pStmt;
1551   rc = vdbeUnbind(p, i);
1552   if( rc==SQLITE_OK ){
1553     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1554     sqlite3_mutex_leave(p->db->mutex);
1555   }else if( xDestructor ){
1556     xDestructor(pPtr);
1557   }
1558   return rc;
1559 }
1560 int sqlite3_bind_text(
1561   sqlite3_stmt *pStmt,
1562   int i,
1563   const char *zData,
1564   int nData,
1565   void (*xDel)(void*)
1566 ){
1567   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1568 }
1569 int sqlite3_bind_text64(
1570   sqlite3_stmt *pStmt,
1571   int i,
1572   const char *zData,
1573   sqlite3_uint64 nData,
1574   void (*xDel)(void*),
1575   unsigned char enc
1576 ){
1577   assert( xDel!=SQLITE_DYNAMIC );
1578   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1579   return bindText(pStmt, i, zData, nData, xDel, enc);
1580 }
1581 #ifndef SQLITE_OMIT_UTF16
1582 int sqlite3_bind_text16(
1583   sqlite3_stmt *pStmt,
1584   int i,
1585   const void *zData,
1586   int nData,
1587   void (*xDel)(void*)
1588 ){
1589   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1590 }
1591 #endif /* SQLITE_OMIT_UTF16 */
1592 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1593   int rc;
1594   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1595     case SQLITE_INTEGER: {
1596       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1597       break;
1598     }
1599     case SQLITE_FLOAT: {
1600       assert( pValue->flags & (MEM_Real|MEM_IntReal) );
1601       rc = sqlite3_bind_double(pStmt, i,
1602           (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
1603       );
1604       break;
1605     }
1606     case SQLITE_BLOB: {
1607       if( pValue->flags & MEM_Zero ){
1608         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1609       }else{
1610         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1611       }
1612       break;
1613     }
1614     case SQLITE_TEXT: {
1615       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1616                               pValue->enc);
1617       break;
1618     }
1619     default: {
1620       rc = sqlite3_bind_null(pStmt, i);
1621       break;
1622     }
1623   }
1624   return rc;
1625 }
1626 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1627   int rc;
1628   Vdbe *p = (Vdbe *)pStmt;
1629   rc = vdbeUnbind(p, i);
1630   if( rc==SQLITE_OK ){
1631 #ifndef SQLITE_OMIT_INCRBLOB
1632     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1633 #else
1634     rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1635 #endif
1636     sqlite3_mutex_leave(p->db->mutex);
1637   }
1638   return rc;
1639 }
1640 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1641   int rc;
1642   Vdbe *p = (Vdbe *)pStmt;
1643   sqlite3_mutex_enter(p->db->mutex);
1644   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1645     rc = SQLITE_TOOBIG;
1646   }else{
1647     assert( (n & 0x7FFFFFFF)==n );
1648     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1649   }
1650   rc = sqlite3ApiExit(p->db, rc);
1651   sqlite3_mutex_leave(p->db->mutex);
1652   return rc;
1653 }
1654 
1655 /*
1656 ** Return the number of wildcards that can be potentially bound to.
1657 ** This routine is added to support DBD::SQLite.
1658 */
1659 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1660   Vdbe *p = (Vdbe*)pStmt;
1661   return p ? p->nVar : 0;
1662 }
1663 
1664 /*
1665 ** Return the name of a wildcard parameter.  Return NULL if the index
1666 ** is out of range or if the wildcard is unnamed.
1667 **
1668 ** The result is always UTF-8.
1669 */
1670 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1671   Vdbe *p = (Vdbe*)pStmt;
1672   if( p==0 ) return 0;
1673   return sqlite3VListNumToName(p->pVList, i);
1674 }
1675 
1676 /*
1677 ** Given a wildcard parameter name, return the index of the variable
1678 ** with that name.  If there is no variable with the given name,
1679 ** return 0.
1680 */
1681 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1682   if( p==0 || zName==0 ) return 0;
1683   return sqlite3VListNameToNum(p->pVList, zName, nName);
1684 }
1685 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1686   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1687 }
1688 
1689 /*
1690 ** Transfer all bindings from the first statement over to the second.
1691 */
1692 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1693   Vdbe *pFrom = (Vdbe*)pFromStmt;
1694   Vdbe *pTo = (Vdbe*)pToStmt;
1695   int i;
1696   assert( pTo->db==pFrom->db );
1697   assert( pTo->nVar==pFrom->nVar );
1698   sqlite3_mutex_enter(pTo->db->mutex);
1699   for(i=0; i<pFrom->nVar; i++){
1700     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1701   }
1702   sqlite3_mutex_leave(pTo->db->mutex);
1703   return SQLITE_OK;
1704 }
1705 
1706 #ifndef SQLITE_OMIT_DEPRECATED
1707 /*
1708 ** Deprecated external interface.  Internal/core SQLite code
1709 ** should call sqlite3TransferBindings.
1710 **
1711 ** It is misuse to call this routine with statements from different
1712 ** database connections.  But as this is a deprecated interface, we
1713 ** will not bother to check for that condition.
1714 **
1715 ** If the two statements contain a different number of bindings, then
1716 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1717 ** SQLITE_OK is returned.
1718 */
1719 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1720   Vdbe *pFrom = (Vdbe*)pFromStmt;
1721   Vdbe *pTo = (Vdbe*)pToStmt;
1722   if( pFrom->nVar!=pTo->nVar ){
1723     return SQLITE_ERROR;
1724   }
1725   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1726   if( pTo->expmask ){
1727     pTo->expired = 1;
1728   }
1729   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1730   if( pFrom->expmask ){
1731     pFrom->expired = 1;
1732   }
1733   return sqlite3TransferBindings(pFromStmt, pToStmt);
1734 }
1735 #endif
1736 
1737 /*
1738 ** Return the sqlite3* database handle to which the prepared statement given
1739 ** in the argument belongs.  This is the same database handle that was
1740 ** the first argument to the sqlite3_prepare() that was used to create
1741 ** the statement in the first place.
1742 */
1743 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1744   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1745 }
1746 
1747 /*
1748 ** Return true if the prepared statement is guaranteed to not modify the
1749 ** database.
1750 */
1751 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1752   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1753 }
1754 
1755 /*
1756 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1757 ** statement is an EXPLAIN QUERY PLAN
1758 */
1759 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1760   return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1761 }
1762 
1763 /*
1764 ** Return true if the prepared statement is in need of being reset.
1765 */
1766 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1767   Vdbe *v = (Vdbe*)pStmt;
1768   return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0;
1769 }
1770 
1771 /*
1772 ** Return a pointer to the next prepared statement after pStmt associated
1773 ** with database connection pDb.  If pStmt is NULL, return the first
1774 ** prepared statement for the database connection.  Return NULL if there
1775 ** are no more.
1776 */
1777 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1778   sqlite3_stmt *pNext;
1779 #ifdef SQLITE_ENABLE_API_ARMOR
1780   if( !sqlite3SafetyCheckOk(pDb) ){
1781     (void)SQLITE_MISUSE_BKPT;
1782     return 0;
1783   }
1784 #endif
1785   sqlite3_mutex_enter(pDb->mutex);
1786   if( pStmt==0 ){
1787     pNext = (sqlite3_stmt*)pDb->pVdbe;
1788   }else{
1789     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1790   }
1791   sqlite3_mutex_leave(pDb->mutex);
1792   return pNext;
1793 }
1794 
1795 /*
1796 ** Return the value of a status counter for a prepared statement
1797 */
1798 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1799   Vdbe *pVdbe = (Vdbe*)pStmt;
1800   u32 v;
1801 #ifdef SQLITE_ENABLE_API_ARMOR
1802   if( !pStmt
1803    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1804   ){
1805     (void)SQLITE_MISUSE_BKPT;
1806     return 0;
1807   }
1808 #endif
1809   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1810     sqlite3 *db = pVdbe->db;
1811     sqlite3_mutex_enter(db->mutex);
1812     v = 0;
1813     db->pnBytesFreed = (int*)&v;
1814     sqlite3VdbeClearObject(db, pVdbe);
1815     sqlite3DbFree(db, pVdbe);
1816     db->pnBytesFreed = 0;
1817     sqlite3_mutex_leave(db->mutex);
1818   }else{
1819     v = pVdbe->aCounter[op];
1820     if( resetFlag ) pVdbe->aCounter[op] = 0;
1821   }
1822   return (int)v;
1823 }
1824 
1825 /*
1826 ** Return the SQL associated with a prepared statement
1827 */
1828 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1829   Vdbe *p = (Vdbe *)pStmt;
1830   return p ? p->zSql : 0;
1831 }
1832 
1833 /*
1834 ** Return the SQL associated with a prepared statement with
1835 ** bound parameters expanded.  Space to hold the returned string is
1836 ** obtained from sqlite3_malloc().  The caller is responsible for
1837 ** freeing the returned string by passing it to sqlite3_free().
1838 **
1839 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1840 ** expanded bound parameters.
1841 */
1842 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1843 #ifdef SQLITE_OMIT_TRACE
1844   return 0;
1845 #else
1846   char *z = 0;
1847   const char *zSql = sqlite3_sql(pStmt);
1848   if( zSql ){
1849     Vdbe *p = (Vdbe *)pStmt;
1850     sqlite3_mutex_enter(p->db->mutex);
1851     z = sqlite3VdbeExpandSql(p, zSql);
1852     sqlite3_mutex_leave(p->db->mutex);
1853   }
1854   return z;
1855 #endif
1856 }
1857 
1858 #ifdef SQLITE_ENABLE_NORMALIZE
1859 /*
1860 ** Return the normalized SQL associated with a prepared statement.
1861 */
1862 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1863   Vdbe *p = (Vdbe *)pStmt;
1864   if( p==0 ) return 0;
1865   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1866     sqlite3_mutex_enter(p->db->mutex);
1867     p->zNormSql = sqlite3Normalize(p, p->zSql);
1868     sqlite3_mutex_leave(p->db->mutex);
1869   }
1870   return p->zNormSql;
1871 }
1872 #endif /* SQLITE_ENABLE_NORMALIZE */
1873 
1874 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1875 /*
1876 ** Allocate and populate an UnpackedRecord structure based on the serialized
1877 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1878 ** if successful, or a NULL pointer if an OOM error is encountered.
1879 */
1880 static UnpackedRecord *vdbeUnpackRecord(
1881   KeyInfo *pKeyInfo,
1882   int nKey,
1883   const void *pKey
1884 ){
1885   UnpackedRecord *pRet;           /* Return value */
1886 
1887   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1888   if( pRet ){
1889     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1890     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1891   }
1892   return pRet;
1893 }
1894 
1895 /*
1896 ** This function is called from within a pre-update callback to retrieve
1897 ** a field of the row currently being updated or deleted.
1898 */
1899 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1900   PreUpdate *p = db->pPreUpdate;
1901   Mem *pMem;
1902   int rc = SQLITE_OK;
1903 
1904   /* Test that this call is being made from within an SQLITE_DELETE or
1905   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1906   if( !p || p->op==SQLITE_INSERT ){
1907     rc = SQLITE_MISUSE_BKPT;
1908     goto preupdate_old_out;
1909   }
1910   if( p->pPk ){
1911     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1912   }
1913   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1914     rc = SQLITE_RANGE;
1915     goto preupdate_old_out;
1916   }
1917 
1918   /* If the old.* record has not yet been loaded into memory, do so now. */
1919   if( p->pUnpacked==0 ){
1920     u32 nRec;
1921     u8 *aRec;
1922 
1923     assert( p->pCsr->eCurType==CURTYPE_BTREE );
1924     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1925     aRec = sqlite3DbMallocRaw(db, nRec);
1926     if( !aRec ) goto preupdate_old_out;
1927     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1928     if( rc==SQLITE_OK ){
1929       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1930       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1931     }
1932     if( rc!=SQLITE_OK ){
1933       sqlite3DbFree(db, aRec);
1934       goto preupdate_old_out;
1935     }
1936     p->aRecord = aRec;
1937   }
1938 
1939   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1940   if( iIdx==p->pTab->iPKey ){
1941     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1942   }else if( iIdx>=p->pUnpacked->nField ){
1943     *ppValue = (sqlite3_value *)columnNullValue();
1944   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1945     if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1946       testcase( pMem->flags & MEM_Int );
1947       testcase( pMem->flags & MEM_IntReal );
1948       sqlite3VdbeMemRealify(pMem);
1949     }
1950   }
1951 
1952  preupdate_old_out:
1953   sqlite3Error(db, rc);
1954   return sqlite3ApiExit(db, rc);
1955 }
1956 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1957 
1958 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1959 /*
1960 ** This function is called from within a pre-update callback to retrieve
1961 ** the number of columns in the row being updated, deleted or inserted.
1962 */
1963 int sqlite3_preupdate_count(sqlite3 *db){
1964   PreUpdate *p = db->pPreUpdate;
1965   return (p ? p->keyinfo.nKeyField : 0);
1966 }
1967 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1968 
1969 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1970 /*
1971 ** This function is designed to be called from within a pre-update callback
1972 ** only. It returns zero if the change that caused the callback was made
1973 ** immediately by a user SQL statement. Or, if the change was made by a
1974 ** trigger program, it returns the number of trigger programs currently
1975 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1976 ** top-level trigger etc.).
1977 **
1978 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1979 ** or SET DEFAULT action is considered a trigger.
1980 */
1981 int sqlite3_preupdate_depth(sqlite3 *db){
1982   PreUpdate *p = db->pPreUpdate;
1983   return (p ? p->v->nFrame : 0);
1984 }
1985 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1986 
1987 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1988 /*
1989 ** This function is designed to be called from within a pre-update callback
1990 ** only.
1991 */
1992 int sqlite3_preupdate_blobwrite(sqlite3 *db){
1993   PreUpdate *p = db->pPreUpdate;
1994   return (p ? p->iBlobWrite : -1);
1995 }
1996 #endif
1997 
1998 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1999 /*
2000 ** This function is called from within a pre-update callback to retrieve
2001 ** a field of the row currently being updated or inserted.
2002 */
2003 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
2004   PreUpdate *p = db->pPreUpdate;
2005   int rc = SQLITE_OK;
2006   Mem *pMem;
2007 
2008   if( !p || p->op==SQLITE_DELETE ){
2009     rc = SQLITE_MISUSE_BKPT;
2010     goto preupdate_new_out;
2011   }
2012   if( p->pPk && p->op!=SQLITE_UPDATE ){
2013     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2014   }
2015   if( iIdx>=p->pCsr->nField || iIdx<0 ){
2016     rc = SQLITE_RANGE;
2017     goto preupdate_new_out;
2018   }
2019 
2020   if( p->op==SQLITE_INSERT ){
2021     /* For an INSERT, memory cell p->iNewReg contains the serialized record
2022     ** that is being inserted. Deserialize it. */
2023     UnpackedRecord *pUnpack = p->pNewUnpacked;
2024     if( !pUnpack ){
2025       Mem *pData = &p->v->aMem[p->iNewReg];
2026       rc = ExpandBlob(pData);
2027       if( rc!=SQLITE_OK ) goto preupdate_new_out;
2028       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2029       if( !pUnpack ){
2030         rc = SQLITE_NOMEM;
2031         goto preupdate_new_out;
2032       }
2033       p->pNewUnpacked = pUnpack;
2034     }
2035     pMem = &pUnpack->aMem[iIdx];
2036     if( iIdx==p->pTab->iPKey ){
2037       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2038     }else if( iIdx>=pUnpack->nField ){
2039       pMem = (sqlite3_value *)columnNullValue();
2040     }
2041   }else{
2042     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2043     ** value. Make a copy of the cell contents and return a pointer to it.
2044     ** It is not safe to return a pointer to the memory cell itself as the
2045     ** caller may modify the value text encoding.
2046     */
2047     assert( p->op==SQLITE_UPDATE );
2048     if( !p->aNew ){
2049       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2050       if( !p->aNew ){
2051         rc = SQLITE_NOMEM;
2052         goto preupdate_new_out;
2053       }
2054     }
2055     assert( iIdx>=0 && iIdx<p->pCsr->nField );
2056     pMem = &p->aNew[iIdx];
2057     if( pMem->flags==0 ){
2058       if( iIdx==p->pTab->iPKey ){
2059         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2060       }else{
2061         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2062         if( rc!=SQLITE_OK ) goto preupdate_new_out;
2063       }
2064     }
2065   }
2066   *ppValue = pMem;
2067 
2068  preupdate_new_out:
2069   sqlite3Error(db, rc);
2070   return sqlite3ApiExit(db, rc);
2071 }
2072 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2073 
2074 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2075 /*
2076 ** Return status data for a single loop within query pStmt.
2077 */
2078 int sqlite3_stmt_scanstatus(
2079   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
2080   int idx,                        /* Index of loop to report on */
2081   int iScanStatusOp,              /* Which metric to return */
2082   void *pOut                      /* OUT: Write the answer here */
2083 ){
2084   Vdbe *p = (Vdbe*)pStmt;
2085   ScanStatus *pScan;
2086   if( idx<0 || idx>=p->nScan ) return 1;
2087   pScan = &p->aScan[idx];
2088   switch( iScanStatusOp ){
2089     case SQLITE_SCANSTAT_NLOOP: {
2090       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2091       break;
2092     }
2093     case SQLITE_SCANSTAT_NVISIT: {
2094       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2095       break;
2096     }
2097     case SQLITE_SCANSTAT_EST: {
2098       double r = 1.0;
2099       LogEst x = pScan->nEst;
2100       while( x<100 ){
2101         x += 10;
2102         r *= 0.5;
2103       }
2104       *(double*)pOut = r*sqlite3LogEstToInt(x);
2105       break;
2106     }
2107     case SQLITE_SCANSTAT_NAME: {
2108       *(const char**)pOut = pScan->zName;
2109       break;
2110     }
2111     case SQLITE_SCANSTAT_EXPLAIN: {
2112       if( pScan->addrExplain ){
2113         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2114       }else{
2115         *(const char**)pOut = 0;
2116       }
2117       break;
2118     }
2119     case SQLITE_SCANSTAT_SELECTID: {
2120       if( pScan->addrExplain ){
2121         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2122       }else{
2123         *(int*)pOut = -1;
2124       }
2125       break;
2126     }
2127     default: {
2128       return 1;
2129     }
2130   }
2131   return 0;
2132 }
2133 
2134 /*
2135 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2136 */
2137 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2138   Vdbe *p = (Vdbe*)pStmt;
2139   memset(p->anExec, 0, p->nOp * sizeof(i64));
2140 }
2141 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
2142