xref: /sqlite-3.40.0/src/vdbeapi.c (revision d5578433)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 /*
57 ** The following routine destroys a virtual machine that is created by
58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
59 ** success/failure code that describes the result of executing the virtual
60 ** machine.
61 **
62 ** This routine sets the error code and string returned by
63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
64 */
65 int sqlite3_finalize(sqlite3_stmt *pStmt){
66   int rc;
67   if( pStmt==0 ){
68     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
69     ** pointer is a harmless no-op. */
70     rc = SQLITE_OK;
71   }else{
72     Vdbe *v = (Vdbe*)pStmt;
73     sqlite3 *db = v->db;
74     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
75     sqlite3_mutex_enter(db->mutex);
76     rc = sqlite3VdbeFinalize(v);
77     rc = sqlite3ApiExit(db, rc);
78     sqlite3LeaveMutexAndCloseZombie(db);
79   }
80   return rc;
81 }
82 
83 /*
84 ** Terminate the current execution of an SQL statement and reset it
85 ** back to its starting state so that it can be reused. A success code from
86 ** the prior execution is returned.
87 **
88 ** This routine sets the error code and string returned by
89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
90 */
91 int sqlite3_reset(sqlite3_stmt *pStmt){
92   int rc;
93   if( pStmt==0 ){
94     rc = SQLITE_OK;
95   }else{
96     Vdbe *v = (Vdbe*)pStmt;
97     sqlite3_mutex_enter(v->db->mutex);
98     rc = sqlite3VdbeReset(v);
99     sqlite3VdbeRewind(v);
100     assert( (rc & (v->db->errMask))==rc );
101     rc = sqlite3ApiExit(v->db, rc);
102     sqlite3_mutex_leave(v->db->mutex);
103   }
104   return rc;
105 }
106 
107 /*
108 ** Set all the parameters in the compiled SQL statement to NULL.
109 */
110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
111   int i;
112   int rc = SQLITE_OK;
113   Vdbe *p = (Vdbe*)pStmt;
114 #if SQLITE_THREADSAFE
115   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
116 #endif
117   sqlite3_mutex_enter(mutex);
118   for(i=0; i<p->nVar; i++){
119     sqlite3VdbeMemRelease(&p->aVar[i]);
120     p->aVar[i].flags = MEM_Null;
121   }
122   if( p->isPrepareV2 && p->expmask ){
123     p->expired = 1;
124   }
125   sqlite3_mutex_leave(mutex);
126   return rc;
127 }
128 
129 
130 /**************************** sqlite3_value_  *******************************
131 ** The following routines extract information from a Mem or sqlite3_value
132 ** structure.
133 */
134 const void *sqlite3_value_blob(sqlite3_value *pVal){
135   Mem *p = (Mem*)pVal;
136   if( p->flags & (MEM_Blob|MEM_Str) ){
137     sqlite3VdbeMemExpandBlob(p);
138     p->flags &= ~MEM_Str;
139     p->flags |= MEM_Blob;
140     return p->n ? p->z : 0;
141   }else{
142     return sqlite3_value_text(pVal);
143   }
144 }
145 int sqlite3_value_bytes(sqlite3_value *pVal){
146   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
147 }
148 int sqlite3_value_bytes16(sqlite3_value *pVal){
149   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
150 }
151 double sqlite3_value_double(sqlite3_value *pVal){
152   return sqlite3VdbeRealValue((Mem*)pVal);
153 }
154 int sqlite3_value_int(sqlite3_value *pVal){
155   return (int)sqlite3VdbeIntValue((Mem*)pVal);
156 }
157 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
158   return sqlite3VdbeIntValue((Mem*)pVal);
159 }
160 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
161   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
162 }
163 #ifndef SQLITE_OMIT_UTF16
164 const void *sqlite3_value_text16(sqlite3_value* pVal){
165   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
166 }
167 const void *sqlite3_value_text16be(sqlite3_value *pVal){
168   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
169 }
170 const void *sqlite3_value_text16le(sqlite3_value *pVal){
171   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
172 }
173 #endif /* SQLITE_OMIT_UTF16 */
174 int sqlite3_value_type(sqlite3_value* pVal){
175   return pVal->type;
176 }
177 
178 /**************************** sqlite3_result_  *******************************
179 ** The following routines are used by user-defined functions to specify
180 ** the function result.
181 **
182 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
183 ** result as a string or blob but if the string or blob is too large, it
184 ** then sets the error code to SQLITE_TOOBIG
185 */
186 static void setResultStrOrError(
187   sqlite3_context *pCtx,  /* Function context */
188   const char *z,          /* String pointer */
189   int n,                  /* Bytes in string, or negative */
190   u8 enc,                 /* Encoding of z.  0 for BLOBs */
191   void (*xDel)(void*)     /* Destructor function */
192 ){
193   if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
194     sqlite3_result_error_toobig(pCtx);
195   }
196 }
197 void sqlite3_result_blob(
198   sqlite3_context *pCtx,
199   const void *z,
200   int n,
201   void (*xDel)(void *)
202 ){
203   assert( n>=0 );
204   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
205   setResultStrOrError(pCtx, z, n, 0, xDel);
206 }
207 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
208   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
209   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
210 }
211 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
212   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
213   pCtx->isError = SQLITE_ERROR;
214   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
215 }
216 #ifndef SQLITE_OMIT_UTF16
217 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
218   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219   pCtx->isError = SQLITE_ERROR;
220   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
221 }
222 #endif
223 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
224   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
225   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
226 }
227 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
228   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
229   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
230 }
231 void sqlite3_result_null(sqlite3_context *pCtx){
232   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
233   sqlite3VdbeMemSetNull(&pCtx->s);
234 }
235 void sqlite3_result_text(
236   sqlite3_context *pCtx,
237   const char *z,
238   int n,
239   void (*xDel)(void *)
240 ){
241   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
242   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
243 }
244 #ifndef SQLITE_OMIT_UTF16
245 void sqlite3_result_text16(
246   sqlite3_context *pCtx,
247   const void *z,
248   int n,
249   void (*xDel)(void *)
250 ){
251   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
252   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
253 }
254 void sqlite3_result_text16be(
255   sqlite3_context *pCtx,
256   const void *z,
257   int n,
258   void (*xDel)(void *)
259 ){
260   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
261   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
262 }
263 void sqlite3_result_text16le(
264   sqlite3_context *pCtx,
265   const void *z,
266   int n,
267   void (*xDel)(void *)
268 ){
269   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
270   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
271 }
272 #endif /* SQLITE_OMIT_UTF16 */
273 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
274   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
275   sqlite3VdbeMemCopy(&pCtx->s, pValue);
276 }
277 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
278   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
279   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
280 }
281 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
282   pCtx->isError = errCode;
283   if( pCtx->s.flags & MEM_Null ){
284     sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
285                          SQLITE_UTF8, SQLITE_STATIC);
286   }
287 }
288 
289 /* Force an SQLITE_TOOBIG error. */
290 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
291   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
292   pCtx->isError = SQLITE_TOOBIG;
293   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
294                        SQLITE_UTF8, SQLITE_STATIC);
295 }
296 
297 /* An SQLITE_NOMEM error. */
298 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
299   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
300   sqlite3VdbeMemSetNull(&pCtx->s);
301   pCtx->isError = SQLITE_NOMEM;
302   pCtx->s.db->mallocFailed = 1;
303 }
304 
305 /*
306 ** This function is called after a transaction has been committed. It
307 ** invokes callbacks registered with sqlite3_wal_hook() as required.
308 */
309 static int doWalCallbacks(sqlite3 *db){
310   int rc = SQLITE_OK;
311 #ifndef SQLITE_OMIT_WAL
312   int i;
313   for(i=0; i<db->nDb; i++){
314     Btree *pBt = db->aDb[i].pBt;
315     if( pBt ){
316       int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
317       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
318         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
319       }
320     }
321   }
322 #endif
323   return rc;
324 }
325 
326 /*
327 ** Execute the statement pStmt, either until a row of data is ready, the
328 ** statement is completely executed or an error occurs.
329 **
330 ** This routine implements the bulk of the logic behind the sqlite_step()
331 ** API.  The only thing omitted is the automatic recompile if a
332 ** schema change has occurred.  That detail is handled by the
333 ** outer sqlite3_step() wrapper procedure.
334 */
335 static int sqlite3Step(Vdbe *p){
336   sqlite3 *db;
337   int rc;
338 
339   assert(p);
340   if( p->magic!=VDBE_MAGIC_RUN ){
341     /* We used to require that sqlite3_reset() be called before retrying
342     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
343     ** with version 3.7.0, we changed this so that sqlite3_reset() would
344     ** be called automatically instead of throwing the SQLITE_MISUSE error.
345     ** This "automatic-reset" change is not technically an incompatibility,
346     ** since any application that receives an SQLITE_MISUSE is broken by
347     ** definition.
348     **
349     ** Nevertheless, some published applications that were originally written
350     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
351     ** returns, and those were broken by the automatic-reset change.  As a
352     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
353     ** legacy behavior of returning SQLITE_MISUSE for cases where the
354     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
355     ** or SQLITE_BUSY error.
356     */
357 #ifdef SQLITE_OMIT_AUTORESET
358     if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){
359       sqlite3_reset((sqlite3_stmt*)p);
360     }else{
361       return SQLITE_MISUSE_BKPT;
362     }
363 #else
364     sqlite3_reset((sqlite3_stmt*)p);
365 #endif
366   }
367 
368   /* Check that malloc() has not failed. If it has, return early. */
369   db = p->db;
370   if( db->mallocFailed ){
371     p->rc = SQLITE_NOMEM;
372     return SQLITE_NOMEM;
373   }
374 
375   if( p->pc<=0 && p->expired ){
376     p->rc = SQLITE_SCHEMA;
377     rc = SQLITE_ERROR;
378     goto end_of_step;
379   }
380   if( p->pc<0 ){
381     /* If there are no other statements currently running, then
382     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
383     ** from interrupting a statement that has not yet started.
384     */
385     if( db->activeVdbeCnt==0 ){
386       db->u1.isInterrupted = 0;
387     }
388 
389     assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 );
390 
391 #ifndef SQLITE_OMIT_TRACE
392     if( db->xProfile && !db->init.busy ){
393       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
394     }
395 #endif
396 
397     db->activeVdbeCnt++;
398     if( p->readOnly==0 ) db->writeVdbeCnt++;
399     p->pc = 0;
400   }
401 #ifndef SQLITE_OMIT_EXPLAIN
402   if( p->explain ){
403     rc = sqlite3VdbeList(p);
404   }else
405 #endif /* SQLITE_OMIT_EXPLAIN */
406   {
407     db->vdbeExecCnt++;
408     rc = sqlite3VdbeExec(p);
409     db->vdbeExecCnt--;
410   }
411 
412 #ifndef SQLITE_OMIT_TRACE
413   /* Invoke the profile callback if there is one
414   */
415   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
416     sqlite3_int64 iNow;
417     sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
418     db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
419   }
420 #endif
421 
422   if( rc==SQLITE_DONE ){
423     assert( p->rc==SQLITE_OK );
424     p->rc = doWalCallbacks(db);
425     if( p->rc!=SQLITE_OK ){
426       rc = SQLITE_ERROR;
427     }
428   }
429 
430   db->errCode = rc;
431   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
432     p->rc = SQLITE_NOMEM;
433   }
434 end_of_step:
435   /* At this point local variable rc holds the value that should be
436   ** returned if this statement was compiled using the legacy
437   ** sqlite3_prepare() interface. According to the docs, this can only
438   ** be one of the values in the first assert() below. Variable p->rc
439   ** contains the value that would be returned if sqlite3_finalize()
440   ** were called on statement p.
441   */
442   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
443        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
444   );
445   assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
446   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
447     /* If this statement was prepared using sqlite3_prepare_v2(), and an
448     ** error has occured, then return the error code in p->rc to the
449     ** caller. Set the error code in the database handle to the same value.
450     */
451     rc = sqlite3VdbeTransferError(p);
452   }
453   return (rc&db->errMask);
454 }
455 
456 /*
457 ** The maximum number of times that a statement will try to reparse
458 ** itself before giving up and returning SQLITE_SCHEMA.
459 */
460 #ifndef SQLITE_MAX_SCHEMA_RETRY
461 # define SQLITE_MAX_SCHEMA_RETRY 5
462 #endif
463 
464 /*
465 ** This is the top-level implementation of sqlite3_step().  Call
466 ** sqlite3Step() to do most of the work.  If a schema error occurs,
467 ** call sqlite3Reprepare() and try again.
468 */
469 int sqlite3_step(sqlite3_stmt *pStmt){
470   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
471   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
472   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
473   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
474   sqlite3 *db;             /* The database connection */
475 
476   if( vdbeSafetyNotNull(v) ){
477     return SQLITE_MISUSE_BKPT;
478   }
479   db = v->db;
480   sqlite3_mutex_enter(db->mutex);
481   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
482          && cnt++ < SQLITE_MAX_SCHEMA_RETRY
483          && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
484     sqlite3_reset(pStmt);
485     assert( v->expired==0 );
486   }
487   if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
488     /* This case occurs after failing to recompile an sql statement.
489     ** The error message from the SQL compiler has already been loaded
490     ** into the database handle. This block copies the error message
491     ** from the database handle into the statement and sets the statement
492     ** program counter to 0 to ensure that when the statement is
493     ** finalized or reset the parser error message is available via
494     ** sqlite3_errmsg() and sqlite3_errcode().
495     */
496     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
497     sqlite3DbFree(db, v->zErrMsg);
498     if( !db->mallocFailed ){
499       v->zErrMsg = sqlite3DbStrDup(db, zErr);
500       v->rc = rc2;
501     } else {
502       v->zErrMsg = 0;
503       v->rc = rc = SQLITE_NOMEM;
504     }
505   }
506   rc = sqlite3ApiExit(db, rc);
507   sqlite3_mutex_leave(db->mutex);
508   return rc;
509 }
510 
511 /*
512 ** Extract the user data from a sqlite3_context structure and return a
513 ** pointer to it.
514 */
515 void *sqlite3_user_data(sqlite3_context *p){
516   assert( p && p->pFunc );
517   return p->pFunc->pUserData;
518 }
519 
520 /*
521 ** Extract the user data from a sqlite3_context structure and return a
522 ** pointer to it.
523 **
524 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
525 ** returns a copy of the pointer to the database connection (the 1st
526 ** parameter) of the sqlite3_create_function() and
527 ** sqlite3_create_function16() routines that originally registered the
528 ** application defined function.
529 */
530 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
531   assert( p && p->pFunc );
532   return p->s.db;
533 }
534 
535 /*
536 ** The following is the implementation of an SQL function that always
537 ** fails with an error message stating that the function is used in the
538 ** wrong context.  The sqlite3_overload_function() API might construct
539 ** SQL function that use this routine so that the functions will exist
540 ** for name resolution but are actually overloaded by the xFindFunction
541 ** method of virtual tables.
542 */
543 void sqlite3InvalidFunction(
544   sqlite3_context *context,  /* The function calling context */
545   int NotUsed,               /* Number of arguments to the function */
546   sqlite3_value **NotUsed2   /* Value of each argument */
547 ){
548   const char *zName = context->pFunc->zName;
549   char *zErr;
550   UNUSED_PARAMETER2(NotUsed, NotUsed2);
551   zErr = sqlite3_mprintf(
552       "unable to use function %s in the requested context", zName);
553   sqlite3_result_error(context, zErr, -1);
554   sqlite3_free(zErr);
555 }
556 
557 /*
558 ** Allocate or return the aggregate context for a user function.  A new
559 ** context is allocated on the first call.  Subsequent calls return the
560 ** same context that was returned on prior calls.
561 */
562 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
563   Mem *pMem;
564   assert( p && p->pFunc && p->pFunc->xStep );
565   assert( sqlite3_mutex_held(p->s.db->mutex) );
566   pMem = p->pMem;
567   testcase( nByte<0 );
568   if( (pMem->flags & MEM_Agg)==0 ){
569     if( nByte<=0 ){
570       sqlite3VdbeMemReleaseExternal(pMem);
571       pMem->flags = MEM_Null;
572       pMem->z = 0;
573     }else{
574       sqlite3VdbeMemGrow(pMem, nByte, 0);
575       pMem->flags = MEM_Agg;
576       pMem->u.pDef = p->pFunc;
577       if( pMem->z ){
578         memset(pMem->z, 0, nByte);
579       }
580     }
581   }
582   return (void*)pMem->z;
583 }
584 
585 /*
586 ** Return the auxilary data pointer, if any, for the iArg'th argument to
587 ** the user-function defined by pCtx.
588 */
589 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
590   VdbeFunc *pVdbeFunc;
591 
592   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
593   pVdbeFunc = pCtx->pVdbeFunc;
594   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
595     return 0;
596   }
597   return pVdbeFunc->apAux[iArg].pAux;
598 }
599 
600 /*
601 ** Set the auxilary data pointer and delete function, for the iArg'th
602 ** argument to the user-function defined by pCtx. Any previous value is
603 ** deleted by calling the delete function specified when it was set.
604 */
605 void sqlite3_set_auxdata(
606   sqlite3_context *pCtx,
607   int iArg,
608   void *pAux,
609   void (*xDelete)(void*)
610 ){
611   struct AuxData *pAuxData;
612   VdbeFunc *pVdbeFunc;
613   if( iArg<0 ) goto failed;
614 
615   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
616   pVdbeFunc = pCtx->pVdbeFunc;
617   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
618     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
619     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
620     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
621     if( !pVdbeFunc ){
622       goto failed;
623     }
624     pCtx->pVdbeFunc = pVdbeFunc;
625     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
626     pVdbeFunc->nAux = iArg+1;
627     pVdbeFunc->pFunc = pCtx->pFunc;
628   }
629 
630   pAuxData = &pVdbeFunc->apAux[iArg];
631   if( pAuxData->pAux && pAuxData->xDelete ){
632     pAuxData->xDelete(pAuxData->pAux);
633   }
634   pAuxData->pAux = pAux;
635   pAuxData->xDelete = xDelete;
636   return;
637 
638 failed:
639   if( xDelete ){
640     xDelete(pAux);
641   }
642 }
643 
644 #ifndef SQLITE_OMIT_DEPRECATED
645 /*
646 ** Return the number of times the Step function of a aggregate has been
647 ** called.
648 **
649 ** This function is deprecated.  Do not use it for new code.  It is
650 ** provide only to avoid breaking legacy code.  New aggregate function
651 ** implementations should keep their own counts within their aggregate
652 ** context.
653 */
654 int sqlite3_aggregate_count(sqlite3_context *p){
655   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
656   return p->pMem->n;
657 }
658 #endif
659 
660 /*
661 ** Return the number of columns in the result set for the statement pStmt.
662 */
663 int sqlite3_column_count(sqlite3_stmt *pStmt){
664   Vdbe *pVm = (Vdbe *)pStmt;
665   return pVm ? pVm->nResColumn : 0;
666 }
667 
668 /*
669 ** Return the number of values available from the current row of the
670 ** currently executing statement pStmt.
671 */
672 int sqlite3_data_count(sqlite3_stmt *pStmt){
673   Vdbe *pVm = (Vdbe *)pStmt;
674   if( pVm==0 || pVm->pResultSet==0 ) return 0;
675   return pVm->nResColumn;
676 }
677 
678 
679 /*
680 ** Check to see if column iCol of the given statement is valid.  If
681 ** it is, return a pointer to the Mem for the value of that column.
682 ** If iCol is not valid, return a pointer to a Mem which has a value
683 ** of NULL.
684 */
685 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
686   Vdbe *pVm;
687   Mem *pOut;
688 
689   pVm = (Vdbe *)pStmt;
690   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
691     sqlite3_mutex_enter(pVm->db->mutex);
692     pOut = &pVm->pResultSet[i];
693   }else{
694     /* If the value passed as the second argument is out of range, return
695     ** a pointer to the following static Mem object which contains the
696     ** value SQL NULL. Even though the Mem structure contains an element
697     ** of type i64, on certain architectures (x86) with certain compiler
698     ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
699     ** instead of an 8-byte one. This all works fine, except that when
700     ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
701     ** that a Mem structure is located on an 8-byte boundary. To prevent
702     ** these assert()s from failing, when building with SQLITE_DEBUG defined
703     ** using gcc, we force nullMem to be 8-byte aligned using the magical
704     ** __attribute__((aligned(8))) macro.  */
705     static const Mem nullMem
706 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
707       __attribute__((aligned(8)))
708 #endif
709       = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0,
710 #ifdef SQLITE_DEBUG
711          0, 0,  /* pScopyFrom, pFiller */
712 #endif
713          0, 0 };
714 
715     if( pVm && ALWAYS(pVm->db) ){
716       sqlite3_mutex_enter(pVm->db->mutex);
717       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
718     }
719     pOut = (Mem*)&nullMem;
720   }
721   return pOut;
722 }
723 
724 /*
725 ** This function is called after invoking an sqlite3_value_XXX function on a
726 ** column value (i.e. a value returned by evaluating an SQL expression in the
727 ** select list of a SELECT statement) that may cause a malloc() failure. If
728 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
729 ** code of statement pStmt set to SQLITE_NOMEM.
730 **
731 ** Specifically, this is called from within:
732 **
733 **     sqlite3_column_int()
734 **     sqlite3_column_int64()
735 **     sqlite3_column_text()
736 **     sqlite3_column_text16()
737 **     sqlite3_column_real()
738 **     sqlite3_column_bytes()
739 **     sqlite3_column_bytes16()
740 **     sqiite3_column_blob()
741 */
742 static void columnMallocFailure(sqlite3_stmt *pStmt)
743 {
744   /* If malloc() failed during an encoding conversion within an
745   ** sqlite3_column_XXX API, then set the return code of the statement to
746   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
747   ** and _finalize() will return NOMEM.
748   */
749   Vdbe *p = (Vdbe *)pStmt;
750   if( p ){
751     p->rc = sqlite3ApiExit(p->db, p->rc);
752     sqlite3_mutex_leave(p->db->mutex);
753   }
754 }
755 
756 /**************************** sqlite3_column_  *******************************
757 ** The following routines are used to access elements of the current row
758 ** in the result set.
759 */
760 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
761   const void *val;
762   val = sqlite3_value_blob( columnMem(pStmt,i) );
763   /* Even though there is no encoding conversion, value_blob() might
764   ** need to call malloc() to expand the result of a zeroblob()
765   ** expression.
766   */
767   columnMallocFailure(pStmt);
768   return val;
769 }
770 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
771   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
772   columnMallocFailure(pStmt);
773   return val;
774 }
775 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
776   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
777   columnMallocFailure(pStmt);
778   return val;
779 }
780 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
781   double val = sqlite3_value_double( columnMem(pStmt,i) );
782   columnMallocFailure(pStmt);
783   return val;
784 }
785 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
786   int val = sqlite3_value_int( columnMem(pStmt,i) );
787   columnMallocFailure(pStmt);
788   return val;
789 }
790 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
791   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
792   columnMallocFailure(pStmt);
793   return val;
794 }
795 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
796   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
797   columnMallocFailure(pStmt);
798   return val;
799 }
800 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
801   Mem *pOut = columnMem(pStmt, i);
802   if( pOut->flags&MEM_Static ){
803     pOut->flags &= ~MEM_Static;
804     pOut->flags |= MEM_Ephem;
805   }
806   columnMallocFailure(pStmt);
807   return (sqlite3_value *)pOut;
808 }
809 #ifndef SQLITE_OMIT_UTF16
810 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
811   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
812   columnMallocFailure(pStmt);
813   return val;
814 }
815 #endif /* SQLITE_OMIT_UTF16 */
816 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
817   int iType = sqlite3_value_type( columnMem(pStmt,i) );
818   columnMallocFailure(pStmt);
819   return iType;
820 }
821 
822 /* The following function is experimental and subject to change or
823 ** removal */
824 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
825 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
826 **}
827 */
828 
829 /*
830 ** Convert the N-th element of pStmt->pColName[] into a string using
831 ** xFunc() then return that string.  If N is out of range, return 0.
832 **
833 ** There are up to 5 names for each column.  useType determines which
834 ** name is returned.  Here are the names:
835 **
836 **    0      The column name as it should be displayed for output
837 **    1      The datatype name for the column
838 **    2      The name of the database that the column derives from
839 **    3      The name of the table that the column derives from
840 **    4      The name of the table column that the result column derives from
841 **
842 ** If the result is not a simple column reference (if it is an expression
843 ** or a constant) then useTypes 2, 3, and 4 return NULL.
844 */
845 static const void *columnName(
846   sqlite3_stmt *pStmt,
847   int N,
848   const void *(*xFunc)(Mem*),
849   int useType
850 ){
851   const void *ret = 0;
852   Vdbe *p = (Vdbe *)pStmt;
853   int n;
854   sqlite3 *db = p->db;
855 
856   assert( db!=0 );
857   n = sqlite3_column_count(pStmt);
858   if( N<n && N>=0 ){
859     N += useType*n;
860     sqlite3_mutex_enter(db->mutex);
861     assert( db->mallocFailed==0 );
862     ret = xFunc(&p->aColName[N]);
863      /* A malloc may have failed inside of the xFunc() call. If this
864     ** is the case, clear the mallocFailed flag and return NULL.
865     */
866     if( db->mallocFailed ){
867       db->mallocFailed = 0;
868       ret = 0;
869     }
870     sqlite3_mutex_leave(db->mutex);
871   }
872   return ret;
873 }
874 
875 /*
876 ** Return the name of the Nth column of the result set returned by SQL
877 ** statement pStmt.
878 */
879 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
880   return columnName(
881       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
882 }
883 #ifndef SQLITE_OMIT_UTF16
884 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
885   return columnName(
886       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
887 }
888 #endif
889 
890 /*
891 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
892 ** not define OMIT_DECLTYPE.
893 */
894 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
895 # error "Must not define both SQLITE_OMIT_DECLTYPE \
896          and SQLITE_ENABLE_COLUMN_METADATA"
897 #endif
898 
899 #ifndef SQLITE_OMIT_DECLTYPE
900 /*
901 ** Return the column declaration type (if applicable) of the 'i'th column
902 ** of the result set of SQL statement pStmt.
903 */
904 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
905   return columnName(
906       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
907 }
908 #ifndef SQLITE_OMIT_UTF16
909 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
910   return columnName(
911       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
912 }
913 #endif /* SQLITE_OMIT_UTF16 */
914 #endif /* SQLITE_OMIT_DECLTYPE */
915 
916 #ifdef SQLITE_ENABLE_COLUMN_METADATA
917 /*
918 ** Return the name of the database from which a result column derives.
919 ** NULL is returned if the result column is an expression or constant or
920 ** anything else which is not an unabiguous reference to a database column.
921 */
922 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
923   return columnName(
924       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
925 }
926 #ifndef SQLITE_OMIT_UTF16
927 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
928   return columnName(
929       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
930 }
931 #endif /* SQLITE_OMIT_UTF16 */
932 
933 /*
934 ** Return the name of the table from which a result column derives.
935 ** NULL is returned if the result column is an expression or constant or
936 ** anything else which is not an unabiguous reference to a database column.
937 */
938 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
939   return columnName(
940       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
941 }
942 #ifndef SQLITE_OMIT_UTF16
943 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
944   return columnName(
945       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
946 }
947 #endif /* SQLITE_OMIT_UTF16 */
948 
949 /*
950 ** Return the name of the table column from which a result column derives.
951 ** NULL is returned if the result column is an expression or constant or
952 ** anything else which is not an unabiguous reference to a database column.
953 */
954 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
955   return columnName(
956       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
957 }
958 #ifndef SQLITE_OMIT_UTF16
959 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
960   return columnName(
961       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
962 }
963 #endif /* SQLITE_OMIT_UTF16 */
964 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
965 
966 
967 /******************************* sqlite3_bind_  ***************************
968 **
969 ** Routines used to attach values to wildcards in a compiled SQL statement.
970 */
971 /*
972 ** Unbind the value bound to variable i in virtual machine p. This is the
973 ** the same as binding a NULL value to the column. If the "i" parameter is
974 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
975 **
976 ** A successful evaluation of this routine acquires the mutex on p.
977 ** the mutex is released if any kind of error occurs.
978 **
979 ** The error code stored in database p->db is overwritten with the return
980 ** value in any case.
981 */
982 static int vdbeUnbind(Vdbe *p, int i){
983   Mem *pVar;
984   if( vdbeSafetyNotNull(p) ){
985     return SQLITE_MISUSE_BKPT;
986   }
987   sqlite3_mutex_enter(p->db->mutex);
988   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
989     sqlite3Error(p->db, SQLITE_MISUSE, 0);
990     sqlite3_mutex_leave(p->db->mutex);
991     sqlite3_log(SQLITE_MISUSE,
992         "bind on a busy prepared statement: [%s]", p->zSql);
993     return SQLITE_MISUSE_BKPT;
994   }
995   if( i<1 || i>p->nVar ){
996     sqlite3Error(p->db, SQLITE_RANGE, 0);
997     sqlite3_mutex_leave(p->db->mutex);
998     return SQLITE_RANGE;
999   }
1000   i--;
1001   pVar = &p->aVar[i];
1002   sqlite3VdbeMemRelease(pVar);
1003   pVar->flags = MEM_Null;
1004   sqlite3Error(p->db, SQLITE_OK, 0);
1005 
1006   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1007   ** binding a new value to this variable invalidates the current query plan.
1008   **
1009   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1010   ** parameter in the WHERE clause might influence the choice of query plan
1011   ** for a statement, then the statement will be automatically recompiled,
1012   ** as if there had been a schema change, on the first sqlite3_step() call
1013   ** following any change to the bindings of that parameter.
1014   */
1015   if( p->isPrepareV2 &&
1016      ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1017   ){
1018     p->expired = 1;
1019   }
1020   return SQLITE_OK;
1021 }
1022 
1023 /*
1024 ** Bind a text or BLOB value.
1025 */
1026 static int bindText(
1027   sqlite3_stmt *pStmt,   /* The statement to bind against */
1028   int i,                 /* Index of the parameter to bind */
1029   const void *zData,     /* Pointer to the data to be bound */
1030   int nData,             /* Number of bytes of data to be bound */
1031   void (*xDel)(void*),   /* Destructor for the data */
1032   u8 encoding            /* Encoding for the data */
1033 ){
1034   Vdbe *p = (Vdbe *)pStmt;
1035   Mem *pVar;
1036   int rc;
1037 
1038   rc = vdbeUnbind(p, i);
1039   if( rc==SQLITE_OK ){
1040     if( zData!=0 ){
1041       pVar = &p->aVar[i-1];
1042       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1043       if( rc==SQLITE_OK && encoding!=0 ){
1044         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1045       }
1046       sqlite3Error(p->db, rc, 0);
1047       rc = sqlite3ApiExit(p->db, rc);
1048     }
1049     sqlite3_mutex_leave(p->db->mutex);
1050   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1051     xDel((void*)zData);
1052   }
1053   return rc;
1054 }
1055 
1056 
1057 /*
1058 ** Bind a blob value to an SQL statement variable.
1059 */
1060 int sqlite3_bind_blob(
1061   sqlite3_stmt *pStmt,
1062   int i,
1063   const void *zData,
1064   int nData,
1065   void (*xDel)(void*)
1066 ){
1067   return bindText(pStmt, i, zData, nData, xDel, 0);
1068 }
1069 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1070   int rc;
1071   Vdbe *p = (Vdbe *)pStmt;
1072   rc = vdbeUnbind(p, i);
1073   if( rc==SQLITE_OK ){
1074     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1075     sqlite3_mutex_leave(p->db->mutex);
1076   }
1077   return rc;
1078 }
1079 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1080   return sqlite3_bind_int64(p, i, (i64)iValue);
1081 }
1082 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1083   int rc;
1084   Vdbe *p = (Vdbe *)pStmt;
1085   rc = vdbeUnbind(p, i);
1086   if( rc==SQLITE_OK ){
1087     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1088     sqlite3_mutex_leave(p->db->mutex);
1089   }
1090   return rc;
1091 }
1092 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1093   int rc;
1094   Vdbe *p = (Vdbe*)pStmt;
1095   rc = vdbeUnbind(p, i);
1096   if( rc==SQLITE_OK ){
1097     sqlite3_mutex_leave(p->db->mutex);
1098   }
1099   return rc;
1100 }
1101 int sqlite3_bind_text(
1102   sqlite3_stmt *pStmt,
1103   int i,
1104   const char *zData,
1105   int nData,
1106   void (*xDel)(void*)
1107 ){
1108   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1109 }
1110 #ifndef SQLITE_OMIT_UTF16
1111 int sqlite3_bind_text16(
1112   sqlite3_stmt *pStmt,
1113   int i,
1114   const void *zData,
1115   int nData,
1116   void (*xDel)(void*)
1117 ){
1118   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1119 }
1120 #endif /* SQLITE_OMIT_UTF16 */
1121 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1122   int rc;
1123   switch( pValue->type ){
1124     case SQLITE_INTEGER: {
1125       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1126       break;
1127     }
1128     case SQLITE_FLOAT: {
1129       rc = sqlite3_bind_double(pStmt, i, pValue->r);
1130       break;
1131     }
1132     case SQLITE_BLOB: {
1133       if( pValue->flags & MEM_Zero ){
1134         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1135       }else{
1136         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1137       }
1138       break;
1139     }
1140     case SQLITE_TEXT: {
1141       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1142                               pValue->enc);
1143       break;
1144     }
1145     default: {
1146       rc = sqlite3_bind_null(pStmt, i);
1147       break;
1148     }
1149   }
1150   return rc;
1151 }
1152 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1153   int rc;
1154   Vdbe *p = (Vdbe *)pStmt;
1155   rc = vdbeUnbind(p, i);
1156   if( rc==SQLITE_OK ){
1157     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1158     sqlite3_mutex_leave(p->db->mutex);
1159   }
1160   return rc;
1161 }
1162 
1163 /*
1164 ** Return the number of wildcards that can be potentially bound to.
1165 ** This routine is added to support DBD::SQLite.
1166 */
1167 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1168   Vdbe *p = (Vdbe*)pStmt;
1169   return p ? p->nVar : 0;
1170 }
1171 
1172 /*
1173 ** Return the name of a wildcard parameter.  Return NULL if the index
1174 ** is out of range or if the wildcard is unnamed.
1175 **
1176 ** The result is always UTF-8.
1177 */
1178 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1179   Vdbe *p = (Vdbe*)pStmt;
1180   if( p==0 || i<1 || i>p->nzVar ){
1181     return 0;
1182   }
1183   return p->azVar[i-1];
1184 }
1185 
1186 /*
1187 ** Given a wildcard parameter name, return the index of the variable
1188 ** with that name.  If there is no variable with the given name,
1189 ** return 0.
1190 */
1191 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1192   int i;
1193   if( p==0 ){
1194     return 0;
1195   }
1196   if( zName ){
1197     for(i=0; i<p->nzVar; i++){
1198       const char *z = p->azVar[i];
1199       if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
1200         return i+1;
1201       }
1202     }
1203   }
1204   return 0;
1205 }
1206 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1207   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1208 }
1209 
1210 /*
1211 ** Transfer all bindings from the first statement over to the second.
1212 */
1213 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1214   Vdbe *pFrom = (Vdbe*)pFromStmt;
1215   Vdbe *pTo = (Vdbe*)pToStmt;
1216   int i;
1217   assert( pTo->db==pFrom->db );
1218   assert( pTo->nVar==pFrom->nVar );
1219   sqlite3_mutex_enter(pTo->db->mutex);
1220   for(i=0; i<pFrom->nVar; i++){
1221     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1222   }
1223   sqlite3_mutex_leave(pTo->db->mutex);
1224   return SQLITE_OK;
1225 }
1226 
1227 #ifndef SQLITE_OMIT_DEPRECATED
1228 /*
1229 ** Deprecated external interface.  Internal/core SQLite code
1230 ** should call sqlite3TransferBindings.
1231 **
1232 ** Is is misuse to call this routine with statements from different
1233 ** database connections.  But as this is a deprecated interface, we
1234 ** will not bother to check for that condition.
1235 **
1236 ** If the two statements contain a different number of bindings, then
1237 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1238 ** SQLITE_OK is returned.
1239 */
1240 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1241   Vdbe *pFrom = (Vdbe*)pFromStmt;
1242   Vdbe *pTo = (Vdbe*)pToStmt;
1243   if( pFrom->nVar!=pTo->nVar ){
1244     return SQLITE_ERROR;
1245   }
1246   if( pTo->isPrepareV2 && pTo->expmask ){
1247     pTo->expired = 1;
1248   }
1249   if( pFrom->isPrepareV2 && pFrom->expmask ){
1250     pFrom->expired = 1;
1251   }
1252   return sqlite3TransferBindings(pFromStmt, pToStmt);
1253 }
1254 #endif
1255 
1256 /*
1257 ** Return the sqlite3* database handle to which the prepared statement given
1258 ** in the argument belongs.  This is the same database handle that was
1259 ** the first argument to the sqlite3_prepare() that was used to create
1260 ** the statement in the first place.
1261 */
1262 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1263   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1264 }
1265 
1266 /*
1267 ** Return true if the prepared statement is guaranteed to not modify the
1268 ** database.
1269 */
1270 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1271   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1272 }
1273 
1274 /*
1275 ** Return true if the prepared statement is in need of being reset.
1276 */
1277 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1278   Vdbe *v = (Vdbe*)pStmt;
1279   return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN;
1280 }
1281 
1282 /*
1283 ** Return a pointer to the next prepared statement after pStmt associated
1284 ** with database connection pDb.  If pStmt is NULL, return the first
1285 ** prepared statement for the database connection.  Return NULL if there
1286 ** are no more.
1287 */
1288 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1289   sqlite3_stmt *pNext;
1290   sqlite3_mutex_enter(pDb->mutex);
1291   if( pStmt==0 ){
1292     pNext = (sqlite3_stmt*)pDb->pVdbe;
1293   }else{
1294     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1295   }
1296   sqlite3_mutex_leave(pDb->mutex);
1297   return pNext;
1298 }
1299 
1300 /*
1301 ** Return the value of a status counter for a prepared statement
1302 */
1303 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1304   Vdbe *pVdbe = (Vdbe*)pStmt;
1305   int v = pVdbe->aCounter[op-1];
1306   if( resetFlag ) pVdbe->aCounter[op-1] = 0;
1307   return v;
1308 }
1309