1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags |= MEM_Blob; 139 return p->n ? p->z : 0; 140 }else{ 141 return sqlite3_value_text(pVal); 142 } 143 } 144 int sqlite3_value_bytes(sqlite3_value *pVal){ 145 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 146 } 147 int sqlite3_value_bytes16(sqlite3_value *pVal){ 148 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 149 } 150 double sqlite3_value_double(sqlite3_value *pVal){ 151 return sqlite3VdbeRealValue((Mem*)pVal); 152 } 153 int sqlite3_value_int(sqlite3_value *pVal){ 154 return (int)sqlite3VdbeIntValue((Mem*)pVal); 155 } 156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 157 return sqlite3VdbeIntValue((Mem*)pVal); 158 } 159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 160 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 161 } 162 #ifndef SQLITE_OMIT_UTF16 163 const void *sqlite3_value_text16(sqlite3_value* pVal){ 164 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 165 } 166 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 167 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 168 } 169 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 170 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 171 } 172 #endif /* SQLITE_OMIT_UTF16 */ 173 int sqlite3_value_type(sqlite3_value* pVal){ 174 static const u8 aType[] = { 175 SQLITE_BLOB, /* 0x00 */ 176 SQLITE_NULL, /* 0x01 */ 177 SQLITE_TEXT, /* 0x02 */ 178 SQLITE_NULL, /* 0x03 */ 179 SQLITE_INTEGER, /* 0x04 */ 180 SQLITE_NULL, /* 0x05 */ 181 SQLITE_INTEGER, /* 0x06 */ 182 SQLITE_NULL, /* 0x07 */ 183 SQLITE_FLOAT, /* 0x08 */ 184 SQLITE_NULL, /* 0x09 */ 185 SQLITE_FLOAT, /* 0x0a */ 186 SQLITE_NULL, /* 0x0b */ 187 SQLITE_INTEGER, /* 0x0c */ 188 SQLITE_NULL, /* 0x0d */ 189 SQLITE_INTEGER, /* 0x0e */ 190 SQLITE_NULL, /* 0x0f */ 191 SQLITE_BLOB, /* 0x10 */ 192 SQLITE_NULL, /* 0x11 */ 193 SQLITE_TEXT, /* 0x12 */ 194 SQLITE_NULL, /* 0x13 */ 195 SQLITE_INTEGER, /* 0x14 */ 196 SQLITE_NULL, /* 0x15 */ 197 SQLITE_INTEGER, /* 0x16 */ 198 SQLITE_NULL, /* 0x17 */ 199 SQLITE_FLOAT, /* 0x18 */ 200 SQLITE_NULL, /* 0x19 */ 201 SQLITE_FLOAT, /* 0x1a */ 202 SQLITE_NULL, /* 0x1b */ 203 SQLITE_INTEGER, /* 0x1c */ 204 SQLITE_NULL, /* 0x1d */ 205 SQLITE_INTEGER, /* 0x1e */ 206 SQLITE_NULL, /* 0x1f */ 207 }; 208 return aType[pVal->flags&MEM_AffMask]; 209 } 210 211 /**************************** sqlite3_result_ ******************************* 212 ** The following routines are used by user-defined functions to specify 213 ** the function result. 214 ** 215 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 216 ** result as a string or blob but if the string or blob is too large, it 217 ** then sets the error code to SQLITE_TOOBIG 218 */ 219 static void setResultStrOrError( 220 sqlite3_context *pCtx, /* Function context */ 221 const char *z, /* String pointer */ 222 int n, /* Bytes in string, or negative */ 223 u8 enc, /* Encoding of z. 0 for BLOBs */ 224 void (*xDel)(void*) /* Destructor function */ 225 ){ 226 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 227 sqlite3_result_error_toobig(pCtx); 228 } 229 } 230 void sqlite3_result_blob( 231 sqlite3_context *pCtx, 232 const void *z, 233 int n, 234 void (*xDel)(void *) 235 ){ 236 assert( n>=0 ); 237 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 238 setResultStrOrError(pCtx, z, n, 0, xDel); 239 } 240 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 241 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 242 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 243 } 244 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 245 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 246 pCtx->isError = SQLITE_ERROR; 247 pCtx->fErrorOrAux = 1; 248 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 249 } 250 #ifndef SQLITE_OMIT_UTF16 251 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 252 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 253 pCtx->isError = SQLITE_ERROR; 254 pCtx->fErrorOrAux = 1; 255 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 256 } 257 #endif 258 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 259 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 260 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 261 } 262 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 263 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 264 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 265 } 266 void sqlite3_result_null(sqlite3_context *pCtx){ 267 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 268 sqlite3VdbeMemSetNull(pCtx->pOut); 269 } 270 void sqlite3_result_text( 271 sqlite3_context *pCtx, 272 const char *z, 273 int n, 274 void (*xDel)(void *) 275 ){ 276 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 277 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 278 } 279 #ifndef SQLITE_OMIT_UTF16 280 void sqlite3_result_text16( 281 sqlite3_context *pCtx, 282 const void *z, 283 int n, 284 void (*xDel)(void *) 285 ){ 286 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 287 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 288 } 289 void sqlite3_result_text16be( 290 sqlite3_context *pCtx, 291 const void *z, 292 int n, 293 void (*xDel)(void *) 294 ){ 295 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 296 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 297 } 298 void sqlite3_result_text16le( 299 sqlite3_context *pCtx, 300 const void *z, 301 int n, 302 void (*xDel)(void *) 303 ){ 304 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 305 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 306 } 307 #endif /* SQLITE_OMIT_UTF16 */ 308 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 309 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 310 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 311 } 312 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 313 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 314 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 315 } 316 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 317 pCtx->isError = errCode; 318 pCtx->fErrorOrAux = 1; 319 if( pCtx->pOut->flags & MEM_Null ){ 320 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 321 SQLITE_UTF8, SQLITE_STATIC); 322 } 323 } 324 325 /* Force an SQLITE_TOOBIG error. */ 326 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 327 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 328 pCtx->isError = SQLITE_TOOBIG; 329 pCtx->fErrorOrAux = 1; 330 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 331 SQLITE_UTF8, SQLITE_STATIC); 332 } 333 334 /* An SQLITE_NOMEM error. */ 335 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 336 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 337 sqlite3VdbeMemSetNull(pCtx->pOut); 338 pCtx->isError = SQLITE_NOMEM; 339 pCtx->fErrorOrAux = 1; 340 pCtx->pOut->db->mallocFailed = 1; 341 } 342 343 /* 344 ** This function is called after a transaction has been committed. It 345 ** invokes callbacks registered with sqlite3_wal_hook() as required. 346 */ 347 static int doWalCallbacks(sqlite3 *db){ 348 int rc = SQLITE_OK; 349 #ifndef SQLITE_OMIT_WAL 350 int i; 351 for(i=0; i<db->nDb; i++){ 352 Btree *pBt = db->aDb[i].pBt; 353 if( pBt ){ 354 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 355 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 356 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 357 } 358 } 359 } 360 #endif 361 return rc; 362 } 363 364 /* 365 ** Execute the statement pStmt, either until a row of data is ready, the 366 ** statement is completely executed or an error occurs. 367 ** 368 ** This routine implements the bulk of the logic behind the sqlite_step() 369 ** API. The only thing omitted is the automatic recompile if a 370 ** schema change has occurred. That detail is handled by the 371 ** outer sqlite3_step() wrapper procedure. 372 */ 373 static int sqlite3Step(Vdbe *p){ 374 sqlite3 *db; 375 int rc; 376 377 assert(p); 378 if( p->magic!=VDBE_MAGIC_RUN ){ 379 /* We used to require that sqlite3_reset() be called before retrying 380 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 381 ** with version 3.7.0, we changed this so that sqlite3_reset() would 382 ** be called automatically instead of throwing the SQLITE_MISUSE error. 383 ** This "automatic-reset" change is not technically an incompatibility, 384 ** since any application that receives an SQLITE_MISUSE is broken by 385 ** definition. 386 ** 387 ** Nevertheless, some published applications that were originally written 388 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 389 ** returns, and those were broken by the automatic-reset change. As a 390 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 391 ** legacy behavior of returning SQLITE_MISUSE for cases where the 392 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 393 ** or SQLITE_BUSY error. 394 */ 395 #ifdef SQLITE_OMIT_AUTORESET 396 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 397 sqlite3_reset((sqlite3_stmt*)p); 398 }else{ 399 return SQLITE_MISUSE_BKPT; 400 } 401 #else 402 sqlite3_reset((sqlite3_stmt*)p); 403 #endif 404 } 405 406 /* Check that malloc() has not failed. If it has, return early. */ 407 db = p->db; 408 if( db->mallocFailed ){ 409 p->rc = SQLITE_NOMEM; 410 return SQLITE_NOMEM; 411 } 412 413 if( p->pc<=0 && p->expired ){ 414 p->rc = SQLITE_SCHEMA; 415 rc = SQLITE_ERROR; 416 goto end_of_step; 417 } 418 if( p->pc<0 ){ 419 /* If there are no other statements currently running, then 420 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 421 ** from interrupting a statement that has not yet started. 422 */ 423 if( db->nVdbeActive==0 ){ 424 db->u1.isInterrupted = 0; 425 } 426 427 assert( db->nVdbeWrite>0 || db->autoCommit==0 428 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 429 ); 430 431 #ifndef SQLITE_OMIT_TRACE 432 if( db->xProfile && !db->init.busy ){ 433 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 434 } 435 #endif 436 437 db->nVdbeActive++; 438 if( p->readOnly==0 ) db->nVdbeWrite++; 439 if( p->bIsReader ) db->nVdbeRead++; 440 p->pc = 0; 441 } 442 #ifndef SQLITE_OMIT_EXPLAIN 443 if( p->explain ){ 444 rc = sqlite3VdbeList(p); 445 }else 446 #endif /* SQLITE_OMIT_EXPLAIN */ 447 { 448 db->nVdbeExec++; 449 rc = sqlite3VdbeExec(p); 450 db->nVdbeExec--; 451 } 452 453 #ifndef SQLITE_OMIT_TRACE 454 /* Invoke the profile callback if there is one 455 */ 456 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 457 sqlite3_int64 iNow; 458 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 459 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 460 } 461 #endif 462 463 if( rc==SQLITE_DONE ){ 464 assert( p->rc==SQLITE_OK ); 465 p->rc = doWalCallbacks(db); 466 if( p->rc!=SQLITE_OK ){ 467 rc = SQLITE_ERROR; 468 } 469 } 470 471 db->errCode = rc; 472 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 473 p->rc = SQLITE_NOMEM; 474 } 475 end_of_step: 476 /* At this point local variable rc holds the value that should be 477 ** returned if this statement was compiled using the legacy 478 ** sqlite3_prepare() interface. According to the docs, this can only 479 ** be one of the values in the first assert() below. Variable p->rc 480 ** contains the value that would be returned if sqlite3_finalize() 481 ** were called on statement p. 482 */ 483 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 484 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 485 ); 486 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 487 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 488 /* If this statement was prepared using sqlite3_prepare_v2(), and an 489 ** error has occurred, then return the error code in p->rc to the 490 ** caller. Set the error code in the database handle to the same value. 491 */ 492 rc = sqlite3VdbeTransferError(p); 493 } 494 return (rc&db->errMask); 495 } 496 497 /* 498 ** This is the top-level implementation of sqlite3_step(). Call 499 ** sqlite3Step() to do most of the work. If a schema error occurs, 500 ** call sqlite3Reprepare() and try again. 501 */ 502 int sqlite3_step(sqlite3_stmt *pStmt){ 503 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 504 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 505 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 506 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 507 sqlite3 *db; /* The database connection */ 508 509 if( vdbeSafetyNotNull(v) ){ 510 return SQLITE_MISUSE_BKPT; 511 } 512 db = v->db; 513 sqlite3_mutex_enter(db->mutex); 514 v->doingRerun = 0; 515 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 516 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 517 int savedPc = v->pc; 518 rc2 = rc = sqlite3Reprepare(v); 519 if( rc!=SQLITE_OK) break; 520 sqlite3_reset(pStmt); 521 if( savedPc>=0 ) v->doingRerun = 1; 522 assert( v->expired==0 ); 523 } 524 if( rc2!=SQLITE_OK ){ 525 /* This case occurs after failing to recompile an sql statement. 526 ** The error message from the SQL compiler has already been loaded 527 ** into the database handle. This block copies the error message 528 ** from the database handle into the statement and sets the statement 529 ** program counter to 0 to ensure that when the statement is 530 ** finalized or reset the parser error message is available via 531 ** sqlite3_errmsg() and sqlite3_errcode(). 532 */ 533 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 534 assert( zErr!=0 || db->mallocFailed ); 535 sqlite3DbFree(db, v->zErrMsg); 536 if( !db->mallocFailed ){ 537 v->zErrMsg = sqlite3DbStrDup(db, zErr); 538 v->rc = rc2; 539 } else { 540 v->zErrMsg = 0; 541 v->rc = rc = SQLITE_NOMEM; 542 } 543 } 544 rc = sqlite3ApiExit(db, rc); 545 sqlite3_mutex_leave(db->mutex); 546 return rc; 547 } 548 549 550 /* 551 ** Extract the user data from a sqlite3_context structure and return a 552 ** pointer to it. 553 */ 554 void *sqlite3_user_data(sqlite3_context *p){ 555 assert( p && p->pFunc ); 556 return p->pFunc->pUserData; 557 } 558 559 /* 560 ** Extract the user data from a sqlite3_context structure and return a 561 ** pointer to it. 562 ** 563 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 564 ** returns a copy of the pointer to the database connection (the 1st 565 ** parameter) of the sqlite3_create_function() and 566 ** sqlite3_create_function16() routines that originally registered the 567 ** application defined function. 568 */ 569 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 570 assert( p && p->pFunc ); 571 return p->pOut->db; 572 } 573 574 /* 575 ** Return the current time for a statement 576 */ 577 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 578 Vdbe *v = p->pVdbe; 579 int rc; 580 if( v->iCurrentTime==0 ){ 581 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, &v->iCurrentTime); 582 if( rc ) v->iCurrentTime = 0; 583 } 584 return v->iCurrentTime; 585 } 586 587 /* 588 ** The following is the implementation of an SQL function that always 589 ** fails with an error message stating that the function is used in the 590 ** wrong context. The sqlite3_overload_function() API might construct 591 ** SQL function that use this routine so that the functions will exist 592 ** for name resolution but are actually overloaded by the xFindFunction 593 ** method of virtual tables. 594 */ 595 void sqlite3InvalidFunction( 596 sqlite3_context *context, /* The function calling context */ 597 int NotUsed, /* Number of arguments to the function */ 598 sqlite3_value **NotUsed2 /* Value of each argument */ 599 ){ 600 const char *zName = context->pFunc->zName; 601 char *zErr; 602 UNUSED_PARAMETER2(NotUsed, NotUsed2); 603 zErr = sqlite3_mprintf( 604 "unable to use function %s in the requested context", zName); 605 sqlite3_result_error(context, zErr, -1); 606 sqlite3_free(zErr); 607 } 608 609 /* 610 ** Create a new aggregate context for p and return a pointer to 611 ** its pMem->z element. 612 */ 613 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 614 Mem *pMem = p->pMem; 615 assert( (pMem->flags & MEM_Agg)==0 ); 616 if( nByte<=0 ){ 617 sqlite3VdbeMemReleaseExternal(pMem); 618 pMem->flags = MEM_Null; 619 pMem->z = 0; 620 }else{ 621 sqlite3VdbeMemGrow(pMem, nByte, 0); 622 pMem->flags = MEM_Agg; 623 pMem->u.pDef = p->pFunc; 624 if( pMem->z ){ 625 memset(pMem->z, 0, nByte); 626 } 627 } 628 return (void*)pMem->z; 629 } 630 631 /* 632 ** Allocate or return the aggregate context for a user function. A new 633 ** context is allocated on the first call. Subsequent calls return the 634 ** same context that was returned on prior calls. 635 */ 636 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 637 assert( p && p->pFunc && p->pFunc->xStep ); 638 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 639 testcase( nByte<0 ); 640 if( (p->pMem->flags & MEM_Agg)==0 ){ 641 return createAggContext(p, nByte); 642 }else{ 643 return (void*)p->pMem->z; 644 } 645 } 646 647 /* 648 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 649 ** the user-function defined by pCtx. 650 */ 651 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 652 AuxData *pAuxData; 653 654 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 655 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 656 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 657 } 658 659 return (pAuxData ? pAuxData->pAux : 0); 660 } 661 662 /* 663 ** Set the auxiliary data pointer and delete function, for the iArg'th 664 ** argument to the user-function defined by pCtx. Any previous value is 665 ** deleted by calling the delete function specified when it was set. 666 */ 667 void sqlite3_set_auxdata( 668 sqlite3_context *pCtx, 669 int iArg, 670 void *pAux, 671 void (*xDelete)(void*) 672 ){ 673 AuxData *pAuxData; 674 Vdbe *pVdbe = pCtx->pVdbe; 675 676 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 677 if( iArg<0 ) goto failed; 678 679 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 680 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 681 } 682 if( pAuxData==0 ){ 683 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 684 if( !pAuxData ) goto failed; 685 pAuxData->iOp = pCtx->iOp; 686 pAuxData->iArg = iArg; 687 pAuxData->pNext = pVdbe->pAuxData; 688 pVdbe->pAuxData = pAuxData; 689 if( pCtx->fErrorOrAux==0 ){ 690 pCtx->isError = 0; 691 pCtx->fErrorOrAux = 1; 692 } 693 }else if( pAuxData->xDelete ){ 694 pAuxData->xDelete(pAuxData->pAux); 695 } 696 697 pAuxData->pAux = pAux; 698 pAuxData->xDelete = xDelete; 699 return; 700 701 failed: 702 if( xDelete ){ 703 xDelete(pAux); 704 } 705 } 706 707 #ifndef SQLITE_OMIT_DEPRECATED 708 /* 709 ** Return the number of times the Step function of an aggregate has been 710 ** called. 711 ** 712 ** This function is deprecated. Do not use it for new code. It is 713 ** provide only to avoid breaking legacy code. New aggregate function 714 ** implementations should keep their own counts within their aggregate 715 ** context. 716 */ 717 int sqlite3_aggregate_count(sqlite3_context *p){ 718 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 719 return p->pMem->n; 720 } 721 #endif 722 723 /* 724 ** Return the number of columns in the result set for the statement pStmt. 725 */ 726 int sqlite3_column_count(sqlite3_stmt *pStmt){ 727 Vdbe *pVm = (Vdbe *)pStmt; 728 return pVm ? pVm->nResColumn : 0; 729 } 730 731 /* 732 ** Return the number of values available from the current row of the 733 ** currently executing statement pStmt. 734 */ 735 int sqlite3_data_count(sqlite3_stmt *pStmt){ 736 Vdbe *pVm = (Vdbe *)pStmt; 737 if( pVm==0 || pVm->pResultSet==0 ) return 0; 738 return pVm->nResColumn; 739 } 740 741 /* 742 ** Return a pointer to static memory containing an SQL NULL value. 743 */ 744 static const Mem *columnNullValue(void){ 745 /* Even though the Mem structure contains an element 746 ** of type i64, on certain architectures (x86) with certain compiler 747 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 748 ** instead of an 8-byte one. This all works fine, except that when 749 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 750 ** that a Mem structure is located on an 8-byte boundary. To prevent 751 ** these assert()s from failing, when building with SQLITE_DEBUG defined 752 ** using gcc, we force nullMem to be 8-byte aligned using the magical 753 ** __attribute__((aligned(8))) macro. */ 754 static const Mem nullMem 755 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 756 __attribute__((aligned(8))) 757 #endif 758 = {0, "", (double)0, {0}, 0, MEM_Null, 0, 759 #ifdef SQLITE_DEBUG 760 0, 0, /* pScopyFrom, pFiller */ 761 #endif 762 0, 0 }; 763 return &nullMem; 764 } 765 766 /* 767 ** Check to see if column iCol of the given statement is valid. If 768 ** it is, return a pointer to the Mem for the value of that column. 769 ** If iCol is not valid, return a pointer to a Mem which has a value 770 ** of NULL. 771 */ 772 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 773 Vdbe *pVm; 774 Mem *pOut; 775 776 pVm = (Vdbe *)pStmt; 777 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 778 sqlite3_mutex_enter(pVm->db->mutex); 779 pOut = &pVm->pResultSet[i]; 780 }else{ 781 if( pVm && ALWAYS(pVm->db) ){ 782 sqlite3_mutex_enter(pVm->db->mutex); 783 sqlite3Error(pVm->db, SQLITE_RANGE); 784 } 785 pOut = (Mem*)columnNullValue(); 786 } 787 return pOut; 788 } 789 790 /* 791 ** This function is called after invoking an sqlite3_value_XXX function on a 792 ** column value (i.e. a value returned by evaluating an SQL expression in the 793 ** select list of a SELECT statement) that may cause a malloc() failure. If 794 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 795 ** code of statement pStmt set to SQLITE_NOMEM. 796 ** 797 ** Specifically, this is called from within: 798 ** 799 ** sqlite3_column_int() 800 ** sqlite3_column_int64() 801 ** sqlite3_column_text() 802 ** sqlite3_column_text16() 803 ** sqlite3_column_real() 804 ** sqlite3_column_bytes() 805 ** sqlite3_column_bytes16() 806 ** sqiite3_column_blob() 807 */ 808 static void columnMallocFailure(sqlite3_stmt *pStmt) 809 { 810 /* If malloc() failed during an encoding conversion within an 811 ** sqlite3_column_XXX API, then set the return code of the statement to 812 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 813 ** and _finalize() will return NOMEM. 814 */ 815 Vdbe *p = (Vdbe *)pStmt; 816 if( p ){ 817 p->rc = sqlite3ApiExit(p->db, p->rc); 818 sqlite3_mutex_leave(p->db->mutex); 819 } 820 } 821 822 /**************************** sqlite3_column_ ******************************* 823 ** The following routines are used to access elements of the current row 824 ** in the result set. 825 */ 826 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 827 const void *val; 828 val = sqlite3_value_blob( columnMem(pStmt,i) ); 829 /* Even though there is no encoding conversion, value_blob() might 830 ** need to call malloc() to expand the result of a zeroblob() 831 ** expression. 832 */ 833 columnMallocFailure(pStmt); 834 return val; 835 } 836 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 837 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 838 columnMallocFailure(pStmt); 839 return val; 840 } 841 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 842 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 843 columnMallocFailure(pStmt); 844 return val; 845 } 846 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 847 double val = sqlite3_value_double( columnMem(pStmt,i) ); 848 columnMallocFailure(pStmt); 849 return val; 850 } 851 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 852 int val = sqlite3_value_int( columnMem(pStmt,i) ); 853 columnMallocFailure(pStmt); 854 return val; 855 } 856 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 857 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 858 columnMallocFailure(pStmt); 859 return val; 860 } 861 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 862 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 863 columnMallocFailure(pStmt); 864 return val; 865 } 866 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 867 Mem *pOut = columnMem(pStmt, i); 868 if( pOut->flags&MEM_Static ){ 869 pOut->flags &= ~MEM_Static; 870 pOut->flags |= MEM_Ephem; 871 } 872 columnMallocFailure(pStmt); 873 return (sqlite3_value *)pOut; 874 } 875 #ifndef SQLITE_OMIT_UTF16 876 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 877 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 878 columnMallocFailure(pStmt); 879 return val; 880 } 881 #endif /* SQLITE_OMIT_UTF16 */ 882 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 883 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 884 columnMallocFailure(pStmt); 885 return iType; 886 } 887 888 /* 889 ** Convert the N-th element of pStmt->pColName[] into a string using 890 ** xFunc() then return that string. If N is out of range, return 0. 891 ** 892 ** There are up to 5 names for each column. useType determines which 893 ** name is returned. Here are the names: 894 ** 895 ** 0 The column name as it should be displayed for output 896 ** 1 The datatype name for the column 897 ** 2 The name of the database that the column derives from 898 ** 3 The name of the table that the column derives from 899 ** 4 The name of the table column that the result column derives from 900 ** 901 ** If the result is not a simple column reference (if it is an expression 902 ** or a constant) then useTypes 2, 3, and 4 return NULL. 903 */ 904 static const void *columnName( 905 sqlite3_stmt *pStmt, 906 int N, 907 const void *(*xFunc)(Mem*), 908 int useType 909 ){ 910 const void *ret = 0; 911 Vdbe *p = (Vdbe *)pStmt; 912 int n; 913 sqlite3 *db = p->db; 914 915 assert( db!=0 ); 916 n = sqlite3_column_count(pStmt); 917 if( N<n && N>=0 ){ 918 N += useType*n; 919 sqlite3_mutex_enter(db->mutex); 920 assert( db->mallocFailed==0 ); 921 ret = xFunc(&p->aColName[N]); 922 /* A malloc may have failed inside of the xFunc() call. If this 923 ** is the case, clear the mallocFailed flag and return NULL. 924 */ 925 if( db->mallocFailed ){ 926 db->mallocFailed = 0; 927 ret = 0; 928 } 929 sqlite3_mutex_leave(db->mutex); 930 } 931 return ret; 932 } 933 934 /* 935 ** Return the name of the Nth column of the result set returned by SQL 936 ** statement pStmt. 937 */ 938 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 939 return columnName( 940 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 941 } 942 #ifndef SQLITE_OMIT_UTF16 943 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 944 return columnName( 945 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 946 } 947 #endif 948 949 /* 950 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 951 ** not define OMIT_DECLTYPE. 952 */ 953 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 954 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 955 and SQLITE_ENABLE_COLUMN_METADATA" 956 #endif 957 958 #ifndef SQLITE_OMIT_DECLTYPE 959 /* 960 ** Return the column declaration type (if applicable) of the 'i'th column 961 ** of the result set of SQL statement pStmt. 962 */ 963 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 964 return columnName( 965 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 966 } 967 #ifndef SQLITE_OMIT_UTF16 968 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 969 return columnName( 970 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 971 } 972 #endif /* SQLITE_OMIT_UTF16 */ 973 #endif /* SQLITE_OMIT_DECLTYPE */ 974 975 #ifdef SQLITE_ENABLE_COLUMN_METADATA 976 /* 977 ** Return the name of the database from which a result column derives. 978 ** NULL is returned if the result column is an expression or constant or 979 ** anything else which is not an unambiguous reference to a database column. 980 */ 981 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 982 return columnName( 983 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 984 } 985 #ifndef SQLITE_OMIT_UTF16 986 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 987 return columnName( 988 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 989 } 990 #endif /* SQLITE_OMIT_UTF16 */ 991 992 /* 993 ** Return the name of the table from which a result column derives. 994 ** NULL is returned if the result column is an expression or constant or 995 ** anything else which is not an unambiguous reference to a database column. 996 */ 997 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 998 return columnName( 999 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1000 } 1001 #ifndef SQLITE_OMIT_UTF16 1002 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1003 return columnName( 1004 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1005 } 1006 #endif /* SQLITE_OMIT_UTF16 */ 1007 1008 /* 1009 ** Return the name of the table column from which a result column derives. 1010 ** NULL is returned if the result column is an expression or constant or 1011 ** anything else which is not an unambiguous reference to a database column. 1012 */ 1013 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1014 return columnName( 1015 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1016 } 1017 #ifndef SQLITE_OMIT_UTF16 1018 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1019 return columnName( 1020 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1021 } 1022 #endif /* SQLITE_OMIT_UTF16 */ 1023 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1024 1025 1026 /******************************* sqlite3_bind_ *************************** 1027 ** 1028 ** Routines used to attach values to wildcards in a compiled SQL statement. 1029 */ 1030 /* 1031 ** Unbind the value bound to variable i in virtual machine p. This is the 1032 ** the same as binding a NULL value to the column. If the "i" parameter is 1033 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1034 ** 1035 ** A successful evaluation of this routine acquires the mutex on p. 1036 ** the mutex is released if any kind of error occurs. 1037 ** 1038 ** The error code stored in database p->db is overwritten with the return 1039 ** value in any case. 1040 */ 1041 static int vdbeUnbind(Vdbe *p, int i){ 1042 Mem *pVar; 1043 if( vdbeSafetyNotNull(p) ){ 1044 return SQLITE_MISUSE_BKPT; 1045 } 1046 sqlite3_mutex_enter(p->db->mutex); 1047 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1048 sqlite3Error(p->db, SQLITE_MISUSE); 1049 sqlite3_mutex_leave(p->db->mutex); 1050 sqlite3_log(SQLITE_MISUSE, 1051 "bind on a busy prepared statement: [%s]", p->zSql); 1052 return SQLITE_MISUSE_BKPT; 1053 } 1054 if( i<1 || i>p->nVar ){ 1055 sqlite3Error(p->db, SQLITE_RANGE); 1056 sqlite3_mutex_leave(p->db->mutex); 1057 return SQLITE_RANGE; 1058 } 1059 i--; 1060 pVar = &p->aVar[i]; 1061 sqlite3VdbeMemRelease(pVar); 1062 pVar->flags = MEM_Null; 1063 sqlite3Error(p->db, SQLITE_OK); 1064 1065 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1066 ** binding a new value to this variable invalidates the current query plan. 1067 ** 1068 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1069 ** parameter in the WHERE clause might influence the choice of query plan 1070 ** for a statement, then the statement will be automatically recompiled, 1071 ** as if there had been a schema change, on the first sqlite3_step() call 1072 ** following any change to the bindings of that parameter. 1073 */ 1074 if( p->isPrepareV2 && 1075 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1076 ){ 1077 p->expired = 1; 1078 } 1079 return SQLITE_OK; 1080 } 1081 1082 /* 1083 ** Bind a text or BLOB value. 1084 */ 1085 static int bindText( 1086 sqlite3_stmt *pStmt, /* The statement to bind against */ 1087 int i, /* Index of the parameter to bind */ 1088 const void *zData, /* Pointer to the data to be bound */ 1089 int nData, /* Number of bytes of data to be bound */ 1090 void (*xDel)(void*), /* Destructor for the data */ 1091 u8 encoding /* Encoding for the data */ 1092 ){ 1093 Vdbe *p = (Vdbe *)pStmt; 1094 Mem *pVar; 1095 int rc; 1096 1097 rc = vdbeUnbind(p, i); 1098 if( rc==SQLITE_OK ){ 1099 if( zData!=0 ){ 1100 pVar = &p->aVar[i-1]; 1101 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1102 if( rc==SQLITE_OK && encoding!=0 ){ 1103 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1104 } 1105 sqlite3Error(p->db, rc); 1106 rc = sqlite3ApiExit(p->db, rc); 1107 } 1108 sqlite3_mutex_leave(p->db->mutex); 1109 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1110 xDel((void*)zData); 1111 } 1112 return rc; 1113 } 1114 1115 1116 /* 1117 ** Bind a blob value to an SQL statement variable. 1118 */ 1119 int sqlite3_bind_blob( 1120 sqlite3_stmt *pStmt, 1121 int i, 1122 const void *zData, 1123 int nData, 1124 void (*xDel)(void*) 1125 ){ 1126 return bindText(pStmt, i, zData, nData, xDel, 0); 1127 } 1128 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1129 int rc; 1130 Vdbe *p = (Vdbe *)pStmt; 1131 rc = vdbeUnbind(p, i); 1132 if( rc==SQLITE_OK ){ 1133 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1134 sqlite3_mutex_leave(p->db->mutex); 1135 } 1136 return rc; 1137 } 1138 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1139 return sqlite3_bind_int64(p, i, (i64)iValue); 1140 } 1141 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1142 int rc; 1143 Vdbe *p = (Vdbe *)pStmt; 1144 rc = vdbeUnbind(p, i); 1145 if( rc==SQLITE_OK ){ 1146 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1147 sqlite3_mutex_leave(p->db->mutex); 1148 } 1149 return rc; 1150 } 1151 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1152 int rc; 1153 Vdbe *p = (Vdbe*)pStmt; 1154 rc = vdbeUnbind(p, i); 1155 if( rc==SQLITE_OK ){ 1156 sqlite3_mutex_leave(p->db->mutex); 1157 } 1158 return rc; 1159 } 1160 int sqlite3_bind_text( 1161 sqlite3_stmt *pStmt, 1162 int i, 1163 const char *zData, 1164 int nData, 1165 void (*xDel)(void*) 1166 ){ 1167 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1168 } 1169 #ifndef SQLITE_OMIT_UTF16 1170 int sqlite3_bind_text16( 1171 sqlite3_stmt *pStmt, 1172 int i, 1173 const void *zData, 1174 int nData, 1175 void (*xDel)(void*) 1176 ){ 1177 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1178 } 1179 #endif /* SQLITE_OMIT_UTF16 */ 1180 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1181 int rc; 1182 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1183 case SQLITE_INTEGER: { 1184 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1185 break; 1186 } 1187 case SQLITE_FLOAT: { 1188 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1189 break; 1190 } 1191 case SQLITE_BLOB: { 1192 if( pValue->flags & MEM_Zero ){ 1193 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1194 }else{ 1195 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1196 } 1197 break; 1198 } 1199 case SQLITE_TEXT: { 1200 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1201 pValue->enc); 1202 break; 1203 } 1204 default: { 1205 rc = sqlite3_bind_null(pStmt, i); 1206 break; 1207 } 1208 } 1209 return rc; 1210 } 1211 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1212 int rc; 1213 Vdbe *p = (Vdbe *)pStmt; 1214 rc = vdbeUnbind(p, i); 1215 if( rc==SQLITE_OK ){ 1216 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1217 sqlite3_mutex_leave(p->db->mutex); 1218 } 1219 return rc; 1220 } 1221 1222 /* 1223 ** Return the number of wildcards that can be potentially bound to. 1224 ** This routine is added to support DBD::SQLite. 1225 */ 1226 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1227 Vdbe *p = (Vdbe*)pStmt; 1228 return p ? p->nVar : 0; 1229 } 1230 1231 /* 1232 ** Return the name of a wildcard parameter. Return NULL if the index 1233 ** is out of range or if the wildcard is unnamed. 1234 ** 1235 ** The result is always UTF-8. 1236 */ 1237 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1238 Vdbe *p = (Vdbe*)pStmt; 1239 if( p==0 || i<1 || i>p->nzVar ){ 1240 return 0; 1241 } 1242 return p->azVar[i-1]; 1243 } 1244 1245 /* 1246 ** Given a wildcard parameter name, return the index of the variable 1247 ** with that name. If there is no variable with the given name, 1248 ** return 0. 1249 */ 1250 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1251 int i; 1252 if( p==0 ){ 1253 return 0; 1254 } 1255 if( zName ){ 1256 for(i=0; i<p->nzVar; i++){ 1257 const char *z = p->azVar[i]; 1258 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1259 return i+1; 1260 } 1261 } 1262 } 1263 return 0; 1264 } 1265 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1266 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1267 } 1268 1269 /* 1270 ** Transfer all bindings from the first statement over to the second. 1271 */ 1272 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1273 Vdbe *pFrom = (Vdbe*)pFromStmt; 1274 Vdbe *pTo = (Vdbe*)pToStmt; 1275 int i; 1276 assert( pTo->db==pFrom->db ); 1277 assert( pTo->nVar==pFrom->nVar ); 1278 sqlite3_mutex_enter(pTo->db->mutex); 1279 for(i=0; i<pFrom->nVar; i++){ 1280 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1281 } 1282 sqlite3_mutex_leave(pTo->db->mutex); 1283 return SQLITE_OK; 1284 } 1285 1286 #ifndef SQLITE_OMIT_DEPRECATED 1287 /* 1288 ** Deprecated external interface. Internal/core SQLite code 1289 ** should call sqlite3TransferBindings. 1290 ** 1291 ** It is misuse to call this routine with statements from different 1292 ** database connections. But as this is a deprecated interface, we 1293 ** will not bother to check for that condition. 1294 ** 1295 ** If the two statements contain a different number of bindings, then 1296 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1297 ** SQLITE_OK is returned. 1298 */ 1299 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1300 Vdbe *pFrom = (Vdbe*)pFromStmt; 1301 Vdbe *pTo = (Vdbe*)pToStmt; 1302 if( pFrom->nVar!=pTo->nVar ){ 1303 return SQLITE_ERROR; 1304 } 1305 if( pTo->isPrepareV2 && pTo->expmask ){ 1306 pTo->expired = 1; 1307 } 1308 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1309 pFrom->expired = 1; 1310 } 1311 return sqlite3TransferBindings(pFromStmt, pToStmt); 1312 } 1313 #endif 1314 1315 /* 1316 ** Return the sqlite3* database handle to which the prepared statement given 1317 ** in the argument belongs. This is the same database handle that was 1318 ** the first argument to the sqlite3_prepare() that was used to create 1319 ** the statement in the first place. 1320 */ 1321 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1322 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1323 } 1324 1325 /* 1326 ** Return true if the prepared statement is guaranteed to not modify the 1327 ** database. 1328 */ 1329 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1330 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1331 } 1332 1333 /* 1334 ** Return true if the prepared statement is in need of being reset. 1335 */ 1336 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1337 Vdbe *v = (Vdbe*)pStmt; 1338 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1339 } 1340 1341 /* 1342 ** Return a pointer to the next prepared statement after pStmt associated 1343 ** with database connection pDb. If pStmt is NULL, return the first 1344 ** prepared statement for the database connection. Return NULL if there 1345 ** are no more. 1346 */ 1347 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1348 sqlite3_stmt *pNext; 1349 sqlite3_mutex_enter(pDb->mutex); 1350 if( pStmt==0 ){ 1351 pNext = (sqlite3_stmt*)pDb->pVdbe; 1352 }else{ 1353 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1354 } 1355 sqlite3_mutex_leave(pDb->mutex); 1356 return pNext; 1357 } 1358 1359 /* 1360 ** Return the value of a status counter for a prepared statement 1361 */ 1362 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1363 Vdbe *pVdbe = (Vdbe*)pStmt; 1364 u32 v = pVdbe->aCounter[op]; 1365 if( resetFlag ) pVdbe->aCounter[op] = 0; 1366 return (int)v; 1367 } 1368