xref: /sqlite-3.40.0/src/vdbeapi.c (revision cd7274ce)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 /*
20 ** Return TRUE (non-zero) of the statement supplied as an argument needs
21 ** to be recompiled.  A statement needs to be recompiled whenever the
22 ** execution environment changes in a way that would alter the program
23 ** that sqlite3_prepare() generates.  For example, if new functions or
24 ** collating sequences are registered or if an authorizer function is
25 ** added or changed.
26 */
27 int sqlite3_expired(sqlite3_stmt *pStmt){
28   Vdbe *p = (Vdbe*)pStmt;
29   return p==0 || p->expired;
30 }
31 
32 /*
33 ** The following routine destroys a virtual machine that is created by
34 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
35 ** success/failure code that describes the result of executing the virtual
36 ** machine.
37 **
38 ** This routine sets the error code and string returned by
39 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
40 */
41 int sqlite3_finalize(sqlite3_stmt *pStmt){
42   int rc;
43   if( pStmt==0 ){
44     rc = SQLITE_OK;
45   }else{
46     Vdbe *v = (Vdbe*)pStmt;
47     sqlite3_mutex *mutex = v->db->mutex;
48     sqlite3_mutex_enter(mutex);
49     rc = sqlite3VdbeFinalize(v);
50     sqlite3_mutex_leave(mutex);
51   }
52   return rc;
53 }
54 
55 /*
56 ** Terminate the current execution of an SQL statement and reset it
57 ** back to its starting state so that it can be reused. A success code from
58 ** the prior execution is returned.
59 **
60 ** This routine sets the error code and string returned by
61 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
62 */
63 int sqlite3_reset(sqlite3_stmt *pStmt){
64   int rc;
65   if( pStmt==0 ){
66     rc = SQLITE_OK;
67   }else{
68     Vdbe *v = (Vdbe*)pStmt;
69     sqlite3_mutex_enter(v->db->mutex);
70     rc = sqlite3VdbeReset(v);
71     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
72     assert( (rc & (v->db->errMask))==rc );
73     sqlite3_mutex_leave(v->db->mutex);
74   }
75   return rc;
76 }
77 
78 /*
79 ** Set all the parameters in the compiled SQL statement to NULL.
80 */
81 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
82   int i;
83   int rc = SQLITE_OK;
84   Vdbe *v = (Vdbe*)pStmt;
85   sqlite3_mutex_enter(v->db->mutex);
86   for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
87     rc = sqlite3_bind_null(pStmt, i);
88   }
89   sqlite3_mutex_leave(v->db->mutex);
90   return rc;
91 }
92 
93 
94 /**************************** sqlite3_value_  *******************************
95 ** The following routines extract information from a Mem or sqlite3_value
96 ** structure.
97 */
98 const void *sqlite3_value_blob(sqlite3_value *pVal){
99   Mem *p = (Mem*)pVal;
100   if( p->flags & (MEM_Blob|MEM_Str) ){
101     sqlite3VdbeMemExpandBlob(p);
102     p->flags &= ~MEM_Str;
103     p->flags |= MEM_Blob;
104     return p->z;
105   }else{
106     return sqlite3_value_text(pVal);
107   }
108 }
109 int sqlite3_value_bytes(sqlite3_value *pVal){
110   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
111 }
112 int sqlite3_value_bytes16(sqlite3_value *pVal){
113   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
114 }
115 double sqlite3_value_double(sqlite3_value *pVal){
116   return sqlite3VdbeRealValue((Mem*)pVal);
117 }
118 int sqlite3_value_int(sqlite3_value *pVal){
119   return sqlite3VdbeIntValue((Mem*)pVal);
120 }
121 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
122   return sqlite3VdbeIntValue((Mem*)pVal);
123 }
124 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
125   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
126 }
127 #ifndef SQLITE_OMIT_UTF16
128 const void *sqlite3_value_text16(sqlite3_value* pVal){
129   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
130 }
131 const void *sqlite3_value_text16be(sqlite3_value *pVal){
132   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
133 }
134 const void *sqlite3_value_text16le(sqlite3_value *pVal){
135   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
136 }
137 #endif /* SQLITE_OMIT_UTF16 */
138 int sqlite3_value_type(sqlite3_value* pVal){
139   return pVal->type;
140 }
141 
142 /**************************** sqlite3_result_  *******************************
143 ** The following routines are used by user-defined functions to specify
144 ** the function result.
145 */
146 void sqlite3_result_blob(
147   sqlite3_context *pCtx,
148   const void *z,
149   int n,
150   void (*xDel)(void *)
151 ){
152   assert( n>=0 );
153   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
154   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
155 }
156 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
157   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
158   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
159 }
160 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
161   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
162   pCtx->isError = 1;
163   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
164 }
165 #ifndef SQLITE_OMIT_UTF16
166 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
167   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
168   pCtx->isError = 1;
169   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
170 }
171 #endif
172 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
173   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
174   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
175 }
176 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
177   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
178   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
179 }
180 void sqlite3_result_null(sqlite3_context *pCtx){
181   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
182   sqlite3VdbeMemSetNull(&pCtx->s);
183 }
184 void sqlite3_result_text(
185   sqlite3_context *pCtx,
186   const char *z,
187   int n,
188   void (*xDel)(void *)
189 ){
190   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
191   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
192 }
193 #ifndef SQLITE_OMIT_UTF16
194 void sqlite3_result_text16(
195   sqlite3_context *pCtx,
196   const void *z,
197   int n,
198   void (*xDel)(void *)
199 ){
200   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
201   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
202 }
203 void sqlite3_result_text16be(
204   sqlite3_context *pCtx,
205   const void *z,
206   int n,
207   void (*xDel)(void *)
208 ){
209   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
210   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
211 }
212 void sqlite3_result_text16le(
213   sqlite3_context *pCtx,
214   const void *z,
215   int n,
216   void (*xDel)(void *)
217 ){
218   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
220 }
221 #endif /* SQLITE_OMIT_UTF16 */
222 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
223   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
224   sqlite3VdbeMemCopy(&pCtx->s, pValue);
225 }
226 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
227   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
228   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
229 }
230 
231 /* Force an SQLITE_TOOBIG error. */
232 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
233   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
234   sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
235 }
236 
237 /* An SQLITE_NOMEM error. */
238 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
239   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
240   sqlite3VdbeMemSetNull(&pCtx->s);
241   pCtx->isError = 1;
242   pCtx->s.db->mallocFailed = 1;
243 }
244 
245 /*
246 ** Execute the statement pStmt, either until a row of data is ready, the
247 ** statement is completely executed or an error occurs.
248 **
249 ** This routine implements the bulk of the logic behind the sqlite_step()
250 ** API.  The only thing omitted is the automatic recompile if a
251 ** schema change has occurred.  That detail is handled by the
252 ** outer sqlite3_step() wrapper procedure.
253 */
254 static int sqlite3Step(Vdbe *p){
255   sqlite3 *db;
256   int rc;
257 
258   assert(p);
259   if( p->magic!=VDBE_MAGIC_RUN ){
260     return SQLITE_MISUSE;
261   }
262 
263   /* Assert that malloc() has not failed */
264   db = p->db;
265   assert( !db->mallocFailed );
266 
267   if( p->aborted ){
268     return SQLITE_ABORT;
269   }
270   if( p->pc<=0 && p->expired ){
271     if( p->rc==SQLITE_OK ){
272       p->rc = SQLITE_SCHEMA;
273     }
274     rc = SQLITE_ERROR;
275     goto end_of_step;
276   }
277   if( sqlite3SafetyOn(db) ){
278     p->rc = SQLITE_MISUSE;
279     return SQLITE_MISUSE;
280   }
281   if( p->pc<0 ){
282     /* If there are no other statements currently running, then
283     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
284     ** from interrupting a statement that has not yet started.
285     */
286     if( db->activeVdbeCnt==0 ){
287       db->u1.isInterrupted = 0;
288     }
289 
290 #ifndef SQLITE_OMIT_TRACE
291     /* Invoke the trace callback if there is one
292     */
293     if( db->xTrace && !db->init.busy ){
294       assert( p->nOp>0 );
295       assert( p->aOp[p->nOp-1].opcode==OP_Noop );
296       assert( p->aOp[p->nOp-1].p3!=0 );
297       assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
298       sqlite3SafetyOff(db);
299       db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
300       if( sqlite3SafetyOn(db) ){
301         p->rc = SQLITE_MISUSE;
302         return SQLITE_MISUSE;
303       }
304     }
305     if( db->xProfile && !db->init.busy ){
306       double rNow;
307       sqlite3OsCurrentTime(db->pVfs, &rNow);
308       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
309     }
310 #endif
311 
312     /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
313     ** on in debugging mode.
314     */
315 #ifdef SQLITE_DEBUG
316     if( (db->flags & SQLITE_SqlTrace)!=0 ){
317       sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
318     }
319 #endif /* SQLITE_DEBUG */
320 
321     db->activeVdbeCnt++;
322     p->pc = 0;
323   }
324 #ifndef SQLITE_OMIT_EXPLAIN
325   if( p->explain ){
326     rc = sqlite3VdbeList(p);
327   }else
328 #endif /* SQLITE_OMIT_EXPLAIN */
329   {
330     rc = sqlite3VdbeExec(p);
331   }
332 
333   if( sqlite3SafetyOff(db) ){
334     rc = SQLITE_MISUSE;
335   }
336 
337 #ifndef SQLITE_OMIT_TRACE
338   /* Invoke the profile callback if there is one
339   */
340   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
341     double rNow;
342     u64 elapseTime;
343 
344     sqlite3OsCurrentTime(db->pVfs, &rNow);
345     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
346     assert( p->nOp>0 );
347     assert( p->aOp[p->nOp-1].opcode==OP_Noop );
348     assert( p->aOp[p->nOp-1].p3!=0 );
349     assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
350     db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
351   }
352 #endif
353 
354   sqlite3Error(p->db, rc, 0);
355   p->rc = sqlite3ApiExit(p->db, p->rc);
356 end_of_step:
357   assert( (rc&0xff)==rc );
358   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
359     /* This behavior occurs if sqlite3_prepare_v2() was used to build
360     ** the prepared statement.  Return error codes directly */
361     sqlite3Error(p->db, p->rc, 0);
362     return p->rc;
363   }else{
364     /* This is for legacy sqlite3_prepare() builds and when the code
365     ** is SQLITE_ROW or SQLITE_DONE */
366     return rc;
367   }
368 }
369 
370 /*
371 ** This is the top-level implementation of sqlite3_step().  Call
372 ** sqlite3Step() to do most of the work.  If a schema error occurs,
373 ** call sqlite3Reprepare() and try again.
374 */
375 #ifdef SQLITE_OMIT_PARSER
376 int sqlite3_step(sqlite3_stmt *pStmt){
377   int rc = SQLITE_MISUSE;
378   if( pStmt ){
379     Vdbe *v;
380     v = (Vdbe*)pStmt;
381     sqlite3_mutex_enter(v->db->mutex);
382     rc = sqlite3Step(v);
383     sqlite3_mutex_leave(v->db->mutex);
384   }
385   return rc;
386 }
387 #else
388 int sqlite3_step(sqlite3_stmt *pStmt){
389   int rc = SQLITE_MISUSE;
390   if( pStmt ){
391     int cnt = 0;
392     Vdbe *v = (Vdbe*)pStmt;
393     sqlite3 *db = v->db;
394     sqlite3_mutex_enter(db->mutex);
395     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
396            && cnt++ < 5
397            && sqlite3Reprepare(v) ){
398       sqlite3_reset(pStmt);
399       v->expired = 0;
400     }
401     if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
402       /* This case occurs after failing to recompile an sql statement.
403       ** The error message from the SQL compiler has already been loaded
404       ** into the database handle. This block copies the error message
405       ** from the database handle into the statement and sets the statement
406       ** program counter to 0 to ensure that when the statement is
407       ** finalized or reset the parser error message is available via
408       ** sqlite3_errmsg() and sqlite3_errcode().
409       */
410       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
411       sqlite3_free(v->zErrMsg);
412       if( !db->mallocFailed ){
413         v->zErrMsg = sqlite3DbStrDup(db, zErr);
414       } else {
415         v->zErrMsg = 0;
416         v->rc = SQLITE_NOMEM;
417       }
418     }
419     rc = sqlite3ApiExit(db, rc);
420     sqlite3_mutex_leave(db->mutex);
421   }
422   return rc;
423 }
424 #endif
425 
426 /*
427 ** Extract the user data from a sqlite3_context structure and return a
428 ** pointer to it.
429 */
430 void *sqlite3_user_data(sqlite3_context *p){
431   assert( p && p->pFunc );
432   return p->pFunc->pUserData;
433 }
434 
435 /*
436 ** The following is the implementation of an SQL function that always
437 ** fails with an error message stating that the function is used in the
438 ** wrong context.  The sqlite3_overload_function() API might construct
439 ** SQL function that use this routine so that the functions will exist
440 ** for name resolution but are actually overloaded by the xFindFunction
441 ** method of virtual tables.
442 */
443 void sqlite3InvalidFunction(
444   sqlite3_context *context,  /* The function calling context */
445   int argc,                  /* Number of arguments to the function */
446   sqlite3_value **argv       /* Value of each argument */
447 ){
448   const char *zName = context->pFunc->zName;
449   char *zErr;
450   zErr = sqlite3MPrintf(0,
451       "unable to use function %s in the requested context", zName);
452   sqlite3_result_error(context, zErr, -1);
453   sqlite3_free(zErr);
454 }
455 
456 /*
457 ** Allocate or return the aggregate context for a user function.  A new
458 ** context is allocated on the first call.  Subsequent calls return the
459 ** same context that was returned on prior calls.
460 */
461 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
462   Mem *pMem;
463   assert( p && p->pFunc && p->pFunc->xStep );
464   assert( sqlite3_mutex_held(p->s.db->mutex) );
465   pMem = p->pMem;
466   if( (pMem->flags & MEM_Agg)==0 ){
467     if( nByte==0 ){
468       assert( pMem->flags==MEM_Null );
469       pMem->z = 0;
470     }else{
471       pMem->flags = MEM_Agg;
472       pMem->xDel = sqlite3_free;
473       pMem->u.pDef = p->pFunc;
474       pMem->z = sqlite3DbMallocZero(p->s.db, nByte);
475     }
476   }
477   return (void*)pMem->z;
478 }
479 
480 /*
481 ** Return the auxilary data pointer, if any, for the iArg'th argument to
482 ** the user-function defined by pCtx.
483 */
484 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
485   VdbeFunc *pVdbeFunc;
486 
487   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
488   pVdbeFunc = pCtx->pVdbeFunc;
489   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
490     return 0;
491   }
492   return pVdbeFunc->apAux[iArg].pAux;
493 }
494 
495 /*
496 ** Set the auxilary data pointer and delete function, for the iArg'th
497 ** argument to the user-function defined by pCtx. Any previous value is
498 ** deleted by calling the delete function specified when it was set.
499 */
500 void sqlite3_set_auxdata(
501   sqlite3_context *pCtx,
502   int iArg,
503   void *pAux,
504   void (*xDelete)(void*)
505 ){
506   struct AuxData *pAuxData;
507   VdbeFunc *pVdbeFunc;
508   if( iArg<0 ) goto failed;
509 
510   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
511   pVdbeFunc = pCtx->pVdbeFunc;
512   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
513     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
514     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
515     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
516     if( !pVdbeFunc ){
517       goto failed;
518     }
519     pCtx->pVdbeFunc = pVdbeFunc;
520     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
521     pVdbeFunc->nAux = iArg+1;
522     pVdbeFunc->pFunc = pCtx->pFunc;
523   }
524 
525   pAuxData = &pVdbeFunc->apAux[iArg];
526   if( pAuxData->pAux && pAuxData->xDelete ){
527     pAuxData->xDelete(pAuxData->pAux);
528   }
529   pAuxData->pAux = pAux;
530   pAuxData->xDelete = xDelete;
531   return;
532 
533 failed:
534   if( xDelete ){
535     xDelete(pAux);
536   }
537 }
538 
539 /*
540 ** Return the number of times the Step function of a aggregate has been
541 ** called.
542 **
543 ** This function is deprecated.  Do not use it for new code.  It is
544 ** provide only to avoid breaking legacy code.  New aggregate function
545 ** implementations should keep their own counts within their aggregate
546 ** context.
547 */
548 int sqlite3_aggregate_count(sqlite3_context *p){
549   assert( p && p->pFunc && p->pFunc->xStep );
550   return p->pMem->n;
551 }
552 
553 /*
554 ** Return the number of columns in the result set for the statement pStmt.
555 */
556 int sqlite3_column_count(sqlite3_stmt *pStmt){
557   Vdbe *pVm = (Vdbe *)pStmt;
558   return pVm ? pVm->nResColumn : 0;
559 }
560 
561 /*
562 ** Return the number of values available from the current row of the
563 ** currently executing statement pStmt.
564 */
565 int sqlite3_data_count(sqlite3_stmt *pStmt){
566   Vdbe *pVm = (Vdbe *)pStmt;
567   if( pVm==0 || !pVm->resOnStack ) return 0;
568   return pVm->nResColumn;
569 }
570 
571 
572 /*
573 ** Check to see if column iCol of the given statement is valid.  If
574 ** it is, return a pointer to the Mem for the value of that column.
575 ** If iCol is not valid, return a pointer to a Mem which has a value
576 ** of NULL.
577 */
578 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
579   Vdbe *pVm;
580   int vals;
581   Mem *pOut;
582 
583   pVm = (Vdbe *)pStmt;
584   if( pVm && pVm->resOnStack && i<pVm->nResColumn && i>=0 ){
585     sqlite3_mutex_enter(pVm->db->mutex);
586     vals = sqlite3_data_count(pStmt);
587     pOut = &pVm->pTos[(1-vals)+i];
588   }else{
589     static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
590     if( pVm->db ){
591       sqlite3_mutex_enter(pVm->db->mutex);
592       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
593     }
594     pOut = (Mem*)&nullMem;
595   }
596   return pOut;
597 }
598 
599 /*
600 ** This function is called after invoking an sqlite3_value_XXX function on a
601 ** column value (i.e. a value returned by evaluating an SQL expression in the
602 ** select list of a SELECT statement) that may cause a malloc() failure. If
603 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
604 ** code of statement pStmt set to SQLITE_NOMEM.
605 **
606 ** Specifically, this is called from within:
607 **
608 **     sqlite3_column_int()
609 **     sqlite3_column_int64()
610 **     sqlite3_column_text()
611 **     sqlite3_column_text16()
612 **     sqlite3_column_real()
613 **     sqlite3_column_bytes()
614 **     sqlite3_column_bytes16()
615 **
616 ** But not for sqlite3_column_blob(), which never calls malloc().
617 */
618 static void columnMallocFailure(sqlite3_stmt *pStmt)
619 {
620   /* If malloc() failed during an encoding conversion within an
621   ** sqlite3_column_XXX API, then set the return code of the statement to
622   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
623   ** and _finalize() will return NOMEM.
624   */
625   Vdbe *p = (Vdbe *)pStmt;
626   if( p ){
627     p->rc = sqlite3ApiExit(p->db, p->rc);
628     sqlite3_mutex_leave(p->db->mutex);
629   }
630 }
631 
632 /**************************** sqlite3_column_  *******************************
633 ** The following routines are used to access elements of the current row
634 ** in the result set.
635 */
636 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
637   const void *val;
638   val = sqlite3_value_blob( columnMem(pStmt,i) );
639   /* Even though there is no encoding conversion, value_blob() might
640   ** need to call malloc() to expand the result of a zeroblob()
641   ** expression.
642   */
643   columnMallocFailure(pStmt);
644   return val;
645 }
646 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
647   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
648   columnMallocFailure(pStmt);
649   return val;
650 }
651 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
652   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
653   columnMallocFailure(pStmt);
654   return val;
655 }
656 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
657   double val = sqlite3_value_double( columnMem(pStmt,i) );
658   columnMallocFailure(pStmt);
659   return val;
660 }
661 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
662   int val = sqlite3_value_int( columnMem(pStmt,i) );
663   columnMallocFailure(pStmt);
664   return val;
665 }
666 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
667   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
668   columnMallocFailure(pStmt);
669   return val;
670 }
671 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
672   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
673   columnMallocFailure(pStmt);
674   return val;
675 }
676 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
677   sqlite3_value *pOut = columnMem(pStmt, i);
678   columnMallocFailure(pStmt);
679   return pOut;
680 }
681 #ifndef SQLITE_OMIT_UTF16
682 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
683   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
684   columnMallocFailure(pStmt);
685   return val;
686 }
687 #endif /* SQLITE_OMIT_UTF16 */
688 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
689   int iType = sqlite3_value_type( columnMem(pStmt,i) );
690   columnMallocFailure(pStmt);
691   return iType;
692 }
693 
694 /* The following function is experimental and subject to change or
695 ** removal */
696 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
697 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
698 **}
699 */
700 
701 /*
702 ** Convert the N-th element of pStmt->pColName[] into a string using
703 ** xFunc() then return that string.  If N is out of range, return 0.
704 **
705 ** There are up to 5 names for each column.  useType determines which
706 ** name is returned.  Here are the names:
707 **
708 **    0      The column name as it should be displayed for output
709 **    1      The datatype name for the column
710 **    2      The name of the database that the column derives from
711 **    3      The name of the table that the column derives from
712 **    4      The name of the table column that the result column derives from
713 **
714 ** If the result is not a simple column reference (if it is an expression
715 ** or a constant) then useTypes 2, 3, and 4 return NULL.
716 */
717 static const void *columnName(
718   sqlite3_stmt *pStmt,
719   int N,
720   const void *(*xFunc)(Mem*),
721   int useType
722 ){
723   const void *ret = 0;
724   Vdbe *p = (Vdbe *)pStmt;
725   int n;
726 
727 
728   if( p!=0 ){
729     n = sqlite3_column_count(pStmt);
730     if( N<n && N>=0 ){
731       N += useType*n;
732       sqlite3_mutex_enter(p->db->mutex);
733       ret = xFunc(&p->aColName[N]);
734 
735       /* A malloc may have failed inside of the xFunc() call. If this
736       ** is the case, clear the mallocFailed flag and return NULL.
737       */
738       if( p->db && p->db->mallocFailed ){
739         p->db->mallocFailed = 0;
740         ret = 0;
741       }
742       sqlite3_mutex_leave(p->db->mutex);
743     }
744   }
745   return ret;
746 }
747 
748 /*
749 ** Return the name of the Nth column of the result set returned by SQL
750 ** statement pStmt.
751 */
752 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
753   return columnName(
754       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
755 }
756 #ifndef SQLITE_OMIT_UTF16
757 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
758   return columnName(
759       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
760 }
761 #endif
762 
763 /*
764 ** Return the column declaration type (if applicable) of the 'i'th column
765 ** of the result set of SQL statement pStmt.
766 */
767 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
768   return columnName(
769       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
770 }
771 #ifndef SQLITE_OMIT_UTF16
772 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
773   return columnName(
774       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
775 }
776 #endif /* SQLITE_OMIT_UTF16 */
777 
778 #ifdef SQLITE_ENABLE_COLUMN_METADATA
779 /*
780 ** Return the name of the database from which a result column derives.
781 ** NULL is returned if the result column is an expression or constant or
782 ** anything else which is not an unabiguous reference to a database column.
783 */
784 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
785   return columnName(
786       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
787 }
788 #ifndef SQLITE_OMIT_UTF16
789 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
790   return columnName(
791       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
792 }
793 #endif /* SQLITE_OMIT_UTF16 */
794 
795 /*
796 ** Return the name of the table from which a result column derives.
797 ** NULL is returned if the result column is an expression or constant or
798 ** anything else which is not an unabiguous reference to a database column.
799 */
800 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
801   return columnName(
802       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
803 }
804 #ifndef SQLITE_OMIT_UTF16
805 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
806   return columnName(
807       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
808 }
809 #endif /* SQLITE_OMIT_UTF16 */
810 
811 /*
812 ** Return the name of the table column from which a result column derives.
813 ** NULL is returned if the result column is an expression or constant or
814 ** anything else which is not an unabiguous reference to a database column.
815 */
816 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
817   return columnName(
818       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
819 }
820 #ifndef SQLITE_OMIT_UTF16
821 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
822   return columnName(
823       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
824 }
825 #endif /* SQLITE_OMIT_UTF16 */
826 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
827 
828 
829 /******************************* sqlite3_bind_  ***************************
830 **
831 ** Routines used to attach values to wildcards in a compiled SQL statement.
832 */
833 /*
834 ** Unbind the value bound to variable i in virtual machine p. This is the
835 ** the same as binding a NULL value to the column. If the "i" parameter is
836 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
837 **
838 ** The error code stored in database p->db is overwritten with the return
839 ** value in any case.
840 */
841 static int vdbeUnbind(Vdbe *p, int i){
842   Mem *pVar;
843   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
844     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
845     return SQLITE_MISUSE;
846   }
847   if( i<1 || i>p->nVar ){
848     sqlite3Error(p->db, SQLITE_RANGE, 0);
849     return SQLITE_RANGE;
850   }
851   i--;
852   pVar = &p->aVar[i];
853   sqlite3VdbeMemRelease(pVar);
854   pVar->flags = MEM_Null;
855   sqlite3Error(p->db, SQLITE_OK, 0);
856   return SQLITE_OK;
857 }
858 
859 /*
860 ** Bind a text or BLOB value.
861 */
862 static int bindText(
863   sqlite3_stmt *pStmt,   /* The statement to bind against */
864   int i,                 /* Index of the parameter to bind */
865   const void *zData,     /* Pointer to the data to be bound */
866   int nData,             /* Number of bytes of data to be bound */
867   void (*xDel)(void*),   /* Destructor for the data */
868   int encoding           /* Encoding for the data */
869 ){
870   Vdbe *p = (Vdbe *)pStmt;
871   Mem *pVar;
872   int rc;
873 
874   if( p==0 ){
875     return SQLITE_MISUSE;
876   }
877   sqlite3_mutex_enter(p->db->mutex);
878   rc = vdbeUnbind(p, i);
879   if( rc==SQLITE_OK && zData!=0 ){
880     pVar = &p->aVar[i-1];
881     rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
882     if( rc==SQLITE_OK && encoding!=0 ){
883       rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
884     }
885     sqlite3Error(p->db, rc, 0);
886     rc = sqlite3ApiExit(p->db, rc);
887   }
888   sqlite3_mutex_leave(p->db->mutex);
889   return rc;
890 }
891 
892 
893 /*
894 ** Bind a blob value to an SQL statement variable.
895 */
896 int sqlite3_bind_blob(
897   sqlite3_stmt *pStmt,
898   int i,
899   const void *zData,
900   int nData,
901   void (*xDel)(void*)
902 ){
903   return bindText(pStmt, i, zData, nData, xDel, 0);
904 }
905 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
906   int rc;
907   Vdbe *p = (Vdbe *)pStmt;
908   sqlite3_mutex_enter(p->db->mutex);
909   rc = vdbeUnbind(p, i);
910   if( rc==SQLITE_OK ){
911     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
912   }
913   sqlite3_mutex_leave(p->db->mutex);
914   return rc;
915 }
916 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
917   return sqlite3_bind_int64(p, i, (i64)iValue);
918 }
919 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
920   int rc;
921   Vdbe *p = (Vdbe *)pStmt;
922   sqlite3_mutex_enter(p->db->mutex);
923   rc = vdbeUnbind(p, i);
924   if( rc==SQLITE_OK ){
925     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
926   }
927   sqlite3_mutex_leave(p->db->mutex);
928   return rc;
929 }
930 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
931   int rc;
932   Vdbe *p = (Vdbe*)pStmt;
933   sqlite3_mutex_enter(p->db->mutex);
934   rc = vdbeUnbind(p, i);
935   sqlite3_mutex_leave(p->db->mutex);
936   return rc;
937 }
938 int sqlite3_bind_text(
939   sqlite3_stmt *pStmt,
940   int i,
941   const char *zData,
942   int nData,
943   void (*xDel)(void*)
944 ){
945   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
946 }
947 #ifndef SQLITE_OMIT_UTF16
948 int sqlite3_bind_text16(
949   sqlite3_stmt *pStmt,
950   int i,
951   const void *zData,
952   int nData,
953   void (*xDel)(void*)
954 ){
955   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
956 }
957 #endif /* SQLITE_OMIT_UTF16 */
958 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
959   int rc;
960   Vdbe *p = (Vdbe *)pStmt;
961   sqlite3_mutex_enter(p->db->mutex);
962   rc = vdbeUnbind(p, i);
963   if( rc==SQLITE_OK ){
964     rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
965   }
966   sqlite3_mutex_leave(p->db->mutex);
967   return rc;
968 }
969 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
970   int rc;
971   Vdbe *p = (Vdbe *)pStmt;
972   sqlite3_mutex_enter(p->db->mutex);
973   rc = vdbeUnbind(p, i);
974   if( rc==SQLITE_OK ){
975     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
976   }
977   sqlite3_mutex_leave(p->db->mutex);
978   return rc;
979 }
980 
981 /*
982 ** Return the number of wildcards that can be potentially bound to.
983 ** This routine is added to support DBD::SQLite.
984 */
985 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
986   Vdbe *p = (Vdbe*)pStmt;
987   return p ? p->nVar : 0;
988 }
989 
990 /*
991 ** Create a mapping from variable numbers to variable names
992 ** in the Vdbe.azVar[] array, if such a mapping does not already
993 ** exist.
994 */
995 static void createVarMap(Vdbe *p){
996   if( !p->okVar ){
997     sqlite3_mutex_enter(p->db->mutex);
998     if( !p->okVar ){
999       int j;
1000       Op *pOp;
1001       for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1002         if( pOp->opcode==OP_Variable ){
1003           assert( pOp->p1>0 && pOp->p1<=p->nVar );
1004           p->azVar[pOp->p1-1] = pOp->p3;
1005         }
1006       }
1007       p->okVar = 1;
1008     }
1009     sqlite3_mutex_leave(p->db->mutex);
1010   }
1011 }
1012 
1013 /*
1014 ** Return the name of a wildcard parameter.  Return NULL if the index
1015 ** is out of range or if the wildcard is unnamed.
1016 **
1017 ** The result is always UTF-8.
1018 */
1019 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1020   Vdbe *p = (Vdbe*)pStmt;
1021   if( p==0 || i<1 || i>p->nVar ){
1022     return 0;
1023   }
1024   createVarMap(p);
1025   return p->azVar[i-1];
1026 }
1027 
1028 /*
1029 ** Given a wildcard parameter name, return the index of the variable
1030 ** with that name.  If there is no variable with the given name,
1031 ** return 0.
1032 */
1033 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1034   Vdbe *p = (Vdbe*)pStmt;
1035   int i;
1036   if( p==0 ){
1037     return 0;
1038   }
1039   createVarMap(p);
1040   if( zName ){
1041     for(i=0; i<p->nVar; i++){
1042       const char *z = p->azVar[i];
1043       if( z && strcmp(z,zName)==0 ){
1044         return i+1;
1045       }
1046     }
1047   }
1048   return 0;
1049 }
1050 
1051 /*
1052 ** Transfer all bindings from the first statement over to the second.
1053 ** If the two statements contain a different number of bindings, then
1054 ** an SQLITE_ERROR is returned.
1055 */
1056 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1057   Vdbe *pFrom = (Vdbe*)pFromStmt;
1058   Vdbe *pTo = (Vdbe*)pToStmt;
1059   int i, rc = SQLITE_OK;
1060   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1061     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1062     || pTo->db!=pFrom->db ){
1063     return SQLITE_MISUSE;
1064   }
1065   if( pFrom->nVar!=pTo->nVar ){
1066     return SQLITE_ERROR;
1067   }
1068   sqlite3_mutex_enter(pTo->db->mutex);
1069   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1070     sqlite3MallocDisallow();
1071     rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1072     sqlite3MallocAllow();
1073   }
1074   sqlite3_mutex_leave(pTo->db->mutex);
1075   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1076   return rc;
1077 }
1078 
1079 /*
1080 ** Return the sqlite3* database handle to which the prepared statement given
1081 ** in the argument belongs.  This is the same database handle that was
1082 ** the first argument to the sqlite3_prepare() that was used to create
1083 ** the statement in the first place.
1084 */
1085 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1086   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1087 }
1088