1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags |= MEM_Blob; 139 return p->n ? p->z : 0; 140 }else{ 141 return sqlite3_value_text(pVal); 142 } 143 } 144 int sqlite3_value_bytes(sqlite3_value *pVal){ 145 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 146 } 147 int sqlite3_value_bytes16(sqlite3_value *pVal){ 148 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 149 } 150 double sqlite3_value_double(sqlite3_value *pVal){ 151 return sqlite3VdbeRealValue((Mem*)pVal); 152 } 153 int sqlite3_value_int(sqlite3_value *pVal){ 154 return (int)sqlite3VdbeIntValue((Mem*)pVal); 155 } 156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 157 return sqlite3VdbeIntValue((Mem*)pVal); 158 } 159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 160 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 161 } 162 #ifndef SQLITE_OMIT_UTF16 163 const void *sqlite3_value_text16(sqlite3_value* pVal){ 164 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 165 } 166 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 167 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 168 } 169 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 170 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 171 } 172 #endif /* SQLITE_OMIT_UTF16 */ 173 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 174 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 175 ** point number string BLOB NULL 176 */ 177 int sqlite3_value_type(sqlite3_value* pVal){ 178 static const u8 aType[] = { 179 SQLITE_BLOB, /* 0x00 */ 180 SQLITE_NULL, /* 0x01 */ 181 SQLITE_TEXT, /* 0x02 */ 182 SQLITE_NULL, /* 0x03 */ 183 SQLITE_INTEGER, /* 0x04 */ 184 SQLITE_NULL, /* 0x05 */ 185 SQLITE_INTEGER, /* 0x06 */ 186 SQLITE_NULL, /* 0x07 */ 187 SQLITE_FLOAT, /* 0x08 */ 188 SQLITE_NULL, /* 0x09 */ 189 SQLITE_FLOAT, /* 0x0a */ 190 SQLITE_NULL, /* 0x0b */ 191 SQLITE_INTEGER, /* 0x0c */ 192 SQLITE_NULL, /* 0x0d */ 193 SQLITE_INTEGER, /* 0x0e */ 194 SQLITE_NULL, /* 0x0f */ 195 SQLITE_BLOB, /* 0x10 */ 196 SQLITE_NULL, /* 0x11 */ 197 SQLITE_TEXT, /* 0x12 */ 198 SQLITE_NULL, /* 0x13 */ 199 SQLITE_INTEGER, /* 0x14 */ 200 SQLITE_NULL, /* 0x15 */ 201 SQLITE_INTEGER, /* 0x16 */ 202 SQLITE_NULL, /* 0x17 */ 203 SQLITE_FLOAT, /* 0x18 */ 204 SQLITE_NULL, /* 0x19 */ 205 SQLITE_FLOAT, /* 0x1a */ 206 SQLITE_NULL, /* 0x1b */ 207 SQLITE_INTEGER, /* 0x1c */ 208 SQLITE_NULL, /* 0x1d */ 209 SQLITE_INTEGER, /* 0x1e */ 210 SQLITE_NULL, /* 0x1f */ 211 }; 212 return aType[pVal->flags&MEM_AffMask]; 213 } 214 215 /**************************** sqlite3_result_ ******************************* 216 ** The following routines are used by user-defined functions to specify 217 ** the function result. 218 ** 219 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 220 ** result as a string or blob but if the string or blob is too large, it 221 ** then sets the error code to SQLITE_TOOBIG 222 ** 223 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 224 ** on value P is not going to be used and need to be destroyed. 225 */ 226 static void setResultStrOrError( 227 sqlite3_context *pCtx, /* Function context */ 228 const char *z, /* String pointer */ 229 int n, /* Bytes in string, or negative */ 230 u8 enc, /* Encoding of z. 0 for BLOBs */ 231 void (*xDel)(void*) /* Destructor function */ 232 ){ 233 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 234 sqlite3_result_error_toobig(pCtx); 235 } 236 } 237 static int invokeValueDestructor( 238 const void *p, /* Value to destroy */ 239 void (*xDel)(void*), /* The destructor */ 240 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 241 ){ 242 assert( xDel!=SQLITE_DYNAMIC ); 243 if( xDel==0 ){ 244 /* noop */ 245 }else if( xDel==SQLITE_TRANSIENT ){ 246 /* noop */ 247 }else{ 248 xDel((void*)p); 249 } 250 if( pCtx ) sqlite3_result_error_toobig(pCtx); 251 return SQLITE_TOOBIG; 252 } 253 void sqlite3_result_blob( 254 sqlite3_context *pCtx, 255 const void *z, 256 int n, 257 void (*xDel)(void *) 258 ){ 259 assert( n>=0 ); 260 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 261 setResultStrOrError(pCtx, z, n, 0, xDel); 262 } 263 void sqlite3_result_blob64( 264 sqlite3_context *pCtx, 265 const void *z, 266 sqlite3_uint64 n, 267 void (*xDel)(void *) 268 ){ 269 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 270 assert( xDel!=SQLITE_DYNAMIC ); 271 if( n>0x7fffffff ){ 272 (void)invokeValueDestructor(z, xDel, pCtx); 273 }else{ 274 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 275 } 276 } 277 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 278 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 279 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 280 } 281 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 282 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 283 pCtx->isError = SQLITE_ERROR; 284 pCtx->fErrorOrAux = 1; 285 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 286 } 287 #ifndef SQLITE_OMIT_UTF16 288 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 289 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 290 pCtx->isError = SQLITE_ERROR; 291 pCtx->fErrorOrAux = 1; 292 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 293 } 294 #endif 295 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 296 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 297 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 298 } 299 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 300 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 301 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 302 } 303 void sqlite3_result_null(sqlite3_context *pCtx){ 304 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 305 sqlite3VdbeMemSetNull(pCtx->pOut); 306 } 307 void sqlite3_result_text( 308 sqlite3_context *pCtx, 309 const char *z, 310 int n, 311 void (*xDel)(void *) 312 ){ 313 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 314 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 315 } 316 void sqlite3_result_text64( 317 sqlite3_context *pCtx, 318 const char *z, 319 sqlite3_uint64 n, 320 void (*xDel)(void *), 321 unsigned char enc 322 ){ 323 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 324 assert( xDel!=SQLITE_DYNAMIC ); 325 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 326 if( n>0x7fffffff ){ 327 (void)invokeValueDestructor(z, xDel, pCtx); 328 }else{ 329 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 330 } 331 } 332 #ifndef SQLITE_OMIT_UTF16 333 void sqlite3_result_text16( 334 sqlite3_context *pCtx, 335 const void *z, 336 int n, 337 void (*xDel)(void *) 338 ){ 339 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 340 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 341 } 342 void sqlite3_result_text16be( 343 sqlite3_context *pCtx, 344 const void *z, 345 int n, 346 void (*xDel)(void *) 347 ){ 348 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 349 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 350 } 351 void sqlite3_result_text16le( 352 sqlite3_context *pCtx, 353 const void *z, 354 int n, 355 void (*xDel)(void *) 356 ){ 357 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 358 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 359 } 360 #endif /* SQLITE_OMIT_UTF16 */ 361 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 362 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 363 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 364 } 365 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 366 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 367 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 368 } 369 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 370 pCtx->isError = errCode; 371 pCtx->fErrorOrAux = 1; 372 #ifdef SQLITE_DEBUG 373 pCtx->pVdbe->rcApp = errCode; 374 #endif 375 if( pCtx->pOut->flags & MEM_Null ){ 376 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 377 SQLITE_UTF8, SQLITE_STATIC); 378 } 379 } 380 381 /* Force an SQLITE_TOOBIG error. */ 382 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 383 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 384 pCtx->isError = SQLITE_TOOBIG; 385 pCtx->fErrorOrAux = 1; 386 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 387 SQLITE_UTF8, SQLITE_STATIC); 388 } 389 390 /* An SQLITE_NOMEM error. */ 391 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 392 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 393 sqlite3VdbeMemSetNull(pCtx->pOut); 394 pCtx->isError = SQLITE_NOMEM; 395 pCtx->fErrorOrAux = 1; 396 pCtx->pOut->db->mallocFailed = 1; 397 } 398 399 /* 400 ** This function is called after a transaction has been committed. It 401 ** invokes callbacks registered with sqlite3_wal_hook() as required. 402 */ 403 static int doWalCallbacks(sqlite3 *db){ 404 int rc = SQLITE_OK; 405 #ifndef SQLITE_OMIT_WAL 406 int i; 407 for(i=0; i<db->nDb; i++){ 408 Btree *pBt = db->aDb[i].pBt; 409 if( pBt ){ 410 int nEntry; 411 sqlite3BtreeEnter(pBt); 412 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 413 sqlite3BtreeLeave(pBt); 414 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 415 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 416 } 417 } 418 } 419 #endif 420 return rc; 421 } 422 423 /* 424 ** Execute the statement pStmt, either until a row of data is ready, the 425 ** statement is completely executed or an error occurs. 426 ** 427 ** This routine implements the bulk of the logic behind the sqlite_step() 428 ** API. The only thing omitted is the automatic recompile if a 429 ** schema change has occurred. That detail is handled by the 430 ** outer sqlite3_step() wrapper procedure. 431 */ 432 static int sqlite3Step(Vdbe *p){ 433 sqlite3 *db; 434 int rc; 435 436 assert(p); 437 if( p->magic!=VDBE_MAGIC_RUN ){ 438 /* We used to require that sqlite3_reset() be called before retrying 439 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 440 ** with version 3.7.0, we changed this so that sqlite3_reset() would 441 ** be called automatically instead of throwing the SQLITE_MISUSE error. 442 ** This "automatic-reset" change is not technically an incompatibility, 443 ** since any application that receives an SQLITE_MISUSE is broken by 444 ** definition. 445 ** 446 ** Nevertheless, some published applications that were originally written 447 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 448 ** returns, and those were broken by the automatic-reset change. As a 449 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 450 ** legacy behavior of returning SQLITE_MISUSE for cases where the 451 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 452 ** or SQLITE_BUSY error. 453 */ 454 #ifdef SQLITE_OMIT_AUTORESET 455 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 456 sqlite3_reset((sqlite3_stmt*)p); 457 }else{ 458 return SQLITE_MISUSE_BKPT; 459 } 460 #else 461 sqlite3_reset((sqlite3_stmt*)p); 462 #endif 463 } 464 465 /* Check that malloc() has not failed. If it has, return early. */ 466 db = p->db; 467 if( db->mallocFailed ){ 468 p->rc = SQLITE_NOMEM; 469 return SQLITE_NOMEM; 470 } 471 472 if( p->pc<=0 && p->expired ){ 473 p->rc = SQLITE_SCHEMA; 474 rc = SQLITE_ERROR; 475 goto end_of_step; 476 } 477 if( p->pc<0 ){ 478 /* If there are no other statements currently running, then 479 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 480 ** from interrupting a statement that has not yet started. 481 */ 482 if( db->nVdbeActive==0 ){ 483 db->u1.isInterrupted = 0; 484 } 485 486 assert( db->nVdbeWrite>0 || db->autoCommit==0 487 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 488 ); 489 490 #ifndef SQLITE_OMIT_TRACE 491 if( db->xProfile && !db->init.busy ){ 492 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 493 } 494 #endif 495 496 db->nVdbeActive++; 497 if( p->readOnly==0 ) db->nVdbeWrite++; 498 if( p->bIsReader ) db->nVdbeRead++; 499 p->pc = 0; 500 } 501 #ifdef SQLITE_DEBUG 502 p->rcApp = SQLITE_OK; 503 #endif 504 #ifndef SQLITE_OMIT_EXPLAIN 505 if( p->explain ){ 506 rc = sqlite3VdbeList(p); 507 }else 508 #endif /* SQLITE_OMIT_EXPLAIN */ 509 { 510 db->nVdbeExec++; 511 rc = sqlite3VdbeExec(p); 512 db->nVdbeExec--; 513 } 514 515 #ifndef SQLITE_OMIT_TRACE 516 /* Invoke the profile callback if there is one 517 */ 518 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 519 sqlite3_int64 iNow; 520 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 521 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 522 } 523 #endif 524 525 if( rc==SQLITE_DONE ){ 526 assert( p->rc==SQLITE_OK ); 527 p->rc = doWalCallbacks(db); 528 if( p->rc!=SQLITE_OK ){ 529 rc = SQLITE_ERROR; 530 } 531 } 532 533 db->errCode = rc; 534 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 535 p->rc = SQLITE_NOMEM; 536 } 537 end_of_step: 538 /* At this point local variable rc holds the value that should be 539 ** returned if this statement was compiled using the legacy 540 ** sqlite3_prepare() interface. According to the docs, this can only 541 ** be one of the values in the first assert() below. Variable p->rc 542 ** contains the value that would be returned if sqlite3_finalize() 543 ** were called on statement p. 544 */ 545 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 546 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 547 ); 548 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 549 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 550 /* If this statement was prepared using sqlite3_prepare_v2(), and an 551 ** error has occurred, then return the error code in p->rc to the 552 ** caller. Set the error code in the database handle to the same value. 553 */ 554 rc = sqlite3VdbeTransferError(p); 555 } 556 return (rc&db->errMask); 557 } 558 559 /* 560 ** This is the top-level implementation of sqlite3_step(). Call 561 ** sqlite3Step() to do most of the work. If a schema error occurs, 562 ** call sqlite3Reprepare() and try again. 563 */ 564 int sqlite3_step(sqlite3_stmt *pStmt){ 565 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 566 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 567 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 568 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 569 sqlite3 *db; /* The database connection */ 570 571 if( vdbeSafetyNotNull(v) ){ 572 return SQLITE_MISUSE_BKPT; 573 } 574 db = v->db; 575 sqlite3_mutex_enter(db->mutex); 576 v->doingRerun = 0; 577 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 578 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 579 int savedPc = v->pc; 580 rc2 = rc = sqlite3Reprepare(v); 581 if( rc!=SQLITE_OK) break; 582 sqlite3_reset(pStmt); 583 if( savedPc>=0 ) v->doingRerun = 1; 584 assert( v->expired==0 ); 585 } 586 if( rc2!=SQLITE_OK ){ 587 /* This case occurs after failing to recompile an sql statement. 588 ** The error message from the SQL compiler has already been loaded 589 ** into the database handle. This block copies the error message 590 ** from the database handle into the statement and sets the statement 591 ** program counter to 0 to ensure that when the statement is 592 ** finalized or reset the parser error message is available via 593 ** sqlite3_errmsg() and sqlite3_errcode(). 594 */ 595 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 596 sqlite3DbFree(db, v->zErrMsg); 597 if( !db->mallocFailed ){ 598 v->zErrMsg = sqlite3DbStrDup(db, zErr); 599 v->rc = rc2; 600 } else { 601 v->zErrMsg = 0; 602 v->rc = rc = SQLITE_NOMEM; 603 } 604 } 605 rc = sqlite3ApiExit(db, rc); 606 sqlite3_mutex_leave(db->mutex); 607 return rc; 608 } 609 610 611 /* 612 ** Extract the user data from a sqlite3_context structure and return a 613 ** pointer to it. 614 */ 615 void *sqlite3_user_data(sqlite3_context *p){ 616 assert( p && p->pFunc ); 617 return p->pFunc->pUserData; 618 } 619 620 /* 621 ** Extract the user data from a sqlite3_context structure and return a 622 ** pointer to it. 623 ** 624 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 625 ** returns a copy of the pointer to the database connection (the 1st 626 ** parameter) of the sqlite3_create_function() and 627 ** sqlite3_create_function16() routines that originally registered the 628 ** application defined function. 629 */ 630 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 631 assert( p && p->pFunc ); 632 return p->pOut->db; 633 } 634 635 /* 636 ** Return the current time for a statement 637 */ 638 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 639 Vdbe *v = p->pVdbe; 640 int rc; 641 if( v->iCurrentTime==0 ){ 642 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, &v->iCurrentTime); 643 if( rc ) v->iCurrentTime = 0; 644 } 645 return v->iCurrentTime; 646 } 647 648 /* 649 ** The following is the implementation of an SQL function that always 650 ** fails with an error message stating that the function is used in the 651 ** wrong context. The sqlite3_overload_function() API might construct 652 ** SQL function that use this routine so that the functions will exist 653 ** for name resolution but are actually overloaded by the xFindFunction 654 ** method of virtual tables. 655 */ 656 void sqlite3InvalidFunction( 657 sqlite3_context *context, /* The function calling context */ 658 int NotUsed, /* Number of arguments to the function */ 659 sqlite3_value **NotUsed2 /* Value of each argument */ 660 ){ 661 const char *zName = context->pFunc->zName; 662 char *zErr; 663 UNUSED_PARAMETER2(NotUsed, NotUsed2); 664 zErr = sqlite3_mprintf( 665 "unable to use function %s in the requested context", zName); 666 sqlite3_result_error(context, zErr, -1); 667 sqlite3_free(zErr); 668 } 669 670 /* 671 ** Create a new aggregate context for p and return a pointer to 672 ** its pMem->z element. 673 */ 674 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 675 Mem *pMem = p->pMem; 676 assert( (pMem->flags & MEM_Agg)==0 ); 677 if( nByte<=0 ){ 678 sqlite3VdbeMemSetNull(pMem); 679 pMem->z = 0; 680 }else{ 681 sqlite3VdbeMemClearAndResize(pMem, nByte); 682 pMem->flags = MEM_Agg; 683 pMem->u.pDef = p->pFunc; 684 if( pMem->z ){ 685 memset(pMem->z, 0, nByte); 686 } 687 } 688 return (void*)pMem->z; 689 } 690 691 /* 692 ** Allocate or return the aggregate context for a user function. A new 693 ** context is allocated on the first call. Subsequent calls return the 694 ** same context that was returned on prior calls. 695 */ 696 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 697 assert( p && p->pFunc && p->pFunc->xStep ); 698 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 699 testcase( nByte<0 ); 700 if( (p->pMem->flags & MEM_Agg)==0 ){ 701 return createAggContext(p, nByte); 702 }else{ 703 return (void*)p->pMem->z; 704 } 705 } 706 707 /* 708 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 709 ** the user-function defined by pCtx. 710 */ 711 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 712 AuxData *pAuxData; 713 714 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 715 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 716 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 717 } 718 719 return (pAuxData ? pAuxData->pAux : 0); 720 } 721 722 /* 723 ** Set the auxiliary data pointer and delete function, for the iArg'th 724 ** argument to the user-function defined by pCtx. Any previous value is 725 ** deleted by calling the delete function specified when it was set. 726 */ 727 void sqlite3_set_auxdata( 728 sqlite3_context *pCtx, 729 int iArg, 730 void *pAux, 731 void (*xDelete)(void*) 732 ){ 733 AuxData *pAuxData; 734 Vdbe *pVdbe = pCtx->pVdbe; 735 736 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 737 if( iArg<0 ) goto failed; 738 739 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 740 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 741 } 742 if( pAuxData==0 ){ 743 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 744 if( !pAuxData ) goto failed; 745 pAuxData->iOp = pCtx->iOp; 746 pAuxData->iArg = iArg; 747 pAuxData->pNext = pVdbe->pAuxData; 748 pVdbe->pAuxData = pAuxData; 749 if( pCtx->fErrorOrAux==0 ){ 750 pCtx->isError = 0; 751 pCtx->fErrorOrAux = 1; 752 } 753 }else if( pAuxData->xDelete ){ 754 pAuxData->xDelete(pAuxData->pAux); 755 } 756 757 pAuxData->pAux = pAux; 758 pAuxData->xDelete = xDelete; 759 return; 760 761 failed: 762 if( xDelete ){ 763 xDelete(pAux); 764 } 765 } 766 767 #ifndef SQLITE_OMIT_DEPRECATED 768 /* 769 ** Return the number of times the Step function of an aggregate has been 770 ** called. 771 ** 772 ** This function is deprecated. Do not use it for new code. It is 773 ** provide only to avoid breaking legacy code. New aggregate function 774 ** implementations should keep their own counts within their aggregate 775 ** context. 776 */ 777 int sqlite3_aggregate_count(sqlite3_context *p){ 778 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 779 return p->pMem->n; 780 } 781 #endif 782 783 /* 784 ** Return the number of columns in the result set for the statement pStmt. 785 */ 786 int sqlite3_column_count(sqlite3_stmt *pStmt){ 787 Vdbe *pVm = (Vdbe *)pStmt; 788 return pVm ? pVm->nResColumn : 0; 789 } 790 791 /* 792 ** Return the number of values available from the current row of the 793 ** currently executing statement pStmt. 794 */ 795 int sqlite3_data_count(sqlite3_stmt *pStmt){ 796 Vdbe *pVm = (Vdbe *)pStmt; 797 if( pVm==0 || pVm->pResultSet==0 ) return 0; 798 return pVm->nResColumn; 799 } 800 801 /* 802 ** Return a pointer to static memory containing an SQL NULL value. 803 */ 804 static const Mem *columnNullValue(void){ 805 /* Even though the Mem structure contains an element 806 ** of type i64, on certain architectures (x86) with certain compiler 807 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 808 ** instead of an 8-byte one. This all works fine, except that when 809 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 810 ** that a Mem structure is located on an 8-byte boundary. To prevent 811 ** these assert()s from failing, when building with SQLITE_DEBUG defined 812 ** using gcc, we force nullMem to be 8-byte aligned using the magical 813 ** __attribute__((aligned(8))) macro. */ 814 static const Mem nullMem 815 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 816 __attribute__((aligned(8))) 817 #endif 818 = { 819 /* .u = */ {0}, 820 /* .flags = */ MEM_Null, 821 /* .enc = */ 0, 822 /* .n = */ 0, 823 /* .z = */ 0, 824 /* .zMalloc = */ 0, 825 /* .szMalloc = */ 0, 826 /* .iPadding1 = */ 0, 827 /* .db = */ 0, 828 /* .xDel = */ 0, 829 #ifdef SQLITE_DEBUG 830 /* .pScopyFrom = */ 0, 831 /* .pFiller = */ 0, 832 #endif 833 }; 834 return &nullMem; 835 } 836 837 /* 838 ** Check to see if column iCol of the given statement is valid. If 839 ** it is, return a pointer to the Mem for the value of that column. 840 ** If iCol is not valid, return a pointer to a Mem which has a value 841 ** of NULL. 842 */ 843 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 844 Vdbe *pVm; 845 Mem *pOut; 846 847 pVm = (Vdbe *)pStmt; 848 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 849 sqlite3_mutex_enter(pVm->db->mutex); 850 pOut = &pVm->pResultSet[i]; 851 }else{ 852 if( pVm && ALWAYS(pVm->db) ){ 853 sqlite3_mutex_enter(pVm->db->mutex); 854 sqlite3Error(pVm->db, SQLITE_RANGE); 855 } 856 pOut = (Mem*)columnNullValue(); 857 } 858 return pOut; 859 } 860 861 /* 862 ** This function is called after invoking an sqlite3_value_XXX function on a 863 ** column value (i.e. a value returned by evaluating an SQL expression in the 864 ** select list of a SELECT statement) that may cause a malloc() failure. If 865 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 866 ** code of statement pStmt set to SQLITE_NOMEM. 867 ** 868 ** Specifically, this is called from within: 869 ** 870 ** sqlite3_column_int() 871 ** sqlite3_column_int64() 872 ** sqlite3_column_text() 873 ** sqlite3_column_text16() 874 ** sqlite3_column_real() 875 ** sqlite3_column_bytes() 876 ** sqlite3_column_bytes16() 877 ** sqiite3_column_blob() 878 */ 879 static void columnMallocFailure(sqlite3_stmt *pStmt) 880 { 881 /* If malloc() failed during an encoding conversion within an 882 ** sqlite3_column_XXX API, then set the return code of the statement to 883 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 884 ** and _finalize() will return NOMEM. 885 */ 886 Vdbe *p = (Vdbe *)pStmt; 887 if( p ){ 888 p->rc = sqlite3ApiExit(p->db, p->rc); 889 sqlite3_mutex_leave(p->db->mutex); 890 } 891 } 892 893 /**************************** sqlite3_column_ ******************************* 894 ** The following routines are used to access elements of the current row 895 ** in the result set. 896 */ 897 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 898 const void *val; 899 val = sqlite3_value_blob( columnMem(pStmt,i) ); 900 /* Even though there is no encoding conversion, value_blob() might 901 ** need to call malloc() to expand the result of a zeroblob() 902 ** expression. 903 */ 904 columnMallocFailure(pStmt); 905 return val; 906 } 907 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 908 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 909 columnMallocFailure(pStmt); 910 return val; 911 } 912 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 913 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 914 columnMallocFailure(pStmt); 915 return val; 916 } 917 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 918 double val = sqlite3_value_double( columnMem(pStmt,i) ); 919 columnMallocFailure(pStmt); 920 return val; 921 } 922 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 923 int val = sqlite3_value_int( columnMem(pStmt,i) ); 924 columnMallocFailure(pStmt); 925 return val; 926 } 927 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 928 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 929 columnMallocFailure(pStmt); 930 return val; 931 } 932 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 933 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 934 columnMallocFailure(pStmt); 935 return val; 936 } 937 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 938 Mem *pOut = columnMem(pStmt, i); 939 if( pOut->flags&MEM_Static ){ 940 pOut->flags &= ~MEM_Static; 941 pOut->flags |= MEM_Ephem; 942 } 943 columnMallocFailure(pStmt); 944 return (sqlite3_value *)pOut; 945 } 946 #ifndef SQLITE_OMIT_UTF16 947 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 948 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 949 columnMallocFailure(pStmt); 950 return val; 951 } 952 #endif /* SQLITE_OMIT_UTF16 */ 953 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 954 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 955 columnMallocFailure(pStmt); 956 return iType; 957 } 958 959 /* 960 ** Convert the N-th element of pStmt->pColName[] into a string using 961 ** xFunc() then return that string. If N is out of range, return 0. 962 ** 963 ** There are up to 5 names for each column. useType determines which 964 ** name is returned. Here are the names: 965 ** 966 ** 0 The column name as it should be displayed for output 967 ** 1 The datatype name for the column 968 ** 2 The name of the database that the column derives from 969 ** 3 The name of the table that the column derives from 970 ** 4 The name of the table column that the result column derives from 971 ** 972 ** If the result is not a simple column reference (if it is an expression 973 ** or a constant) then useTypes 2, 3, and 4 return NULL. 974 */ 975 static const void *columnName( 976 sqlite3_stmt *pStmt, 977 int N, 978 const void *(*xFunc)(Mem*), 979 int useType 980 ){ 981 const void *ret; 982 Vdbe *p; 983 int n; 984 sqlite3 *db; 985 #ifdef SQLITE_ENABLE_API_ARMOR 986 if( pStmt==0 ){ 987 (void)SQLITE_MISUSE_BKPT; 988 return 0; 989 } 990 #endif 991 ret = 0; 992 p = (Vdbe *)pStmt; 993 db = p->db; 994 assert( db!=0 ); 995 n = sqlite3_column_count(pStmt); 996 if( N<n && N>=0 ){ 997 N += useType*n; 998 sqlite3_mutex_enter(db->mutex); 999 assert( db->mallocFailed==0 ); 1000 ret = xFunc(&p->aColName[N]); 1001 /* A malloc may have failed inside of the xFunc() call. If this 1002 ** is the case, clear the mallocFailed flag and return NULL. 1003 */ 1004 if( db->mallocFailed ){ 1005 db->mallocFailed = 0; 1006 ret = 0; 1007 } 1008 sqlite3_mutex_leave(db->mutex); 1009 } 1010 return ret; 1011 } 1012 1013 /* 1014 ** Return the name of the Nth column of the result set returned by SQL 1015 ** statement pStmt. 1016 */ 1017 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1018 return columnName( 1019 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1020 } 1021 #ifndef SQLITE_OMIT_UTF16 1022 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1023 return columnName( 1024 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1025 } 1026 #endif 1027 1028 /* 1029 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1030 ** not define OMIT_DECLTYPE. 1031 */ 1032 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1033 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1034 and SQLITE_ENABLE_COLUMN_METADATA" 1035 #endif 1036 1037 #ifndef SQLITE_OMIT_DECLTYPE 1038 /* 1039 ** Return the column declaration type (if applicable) of the 'i'th column 1040 ** of the result set of SQL statement pStmt. 1041 */ 1042 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1043 return columnName( 1044 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1045 } 1046 #ifndef SQLITE_OMIT_UTF16 1047 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1048 return columnName( 1049 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1050 } 1051 #endif /* SQLITE_OMIT_UTF16 */ 1052 #endif /* SQLITE_OMIT_DECLTYPE */ 1053 1054 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1055 /* 1056 ** Return the name of the database from which a result column derives. 1057 ** NULL is returned if the result column is an expression or constant or 1058 ** anything else which is not an unambiguous reference to a database column. 1059 */ 1060 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1061 return columnName( 1062 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1063 } 1064 #ifndef SQLITE_OMIT_UTF16 1065 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1066 return columnName( 1067 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1068 } 1069 #endif /* SQLITE_OMIT_UTF16 */ 1070 1071 /* 1072 ** Return the name of the table from which a result column derives. 1073 ** NULL is returned if the result column is an expression or constant or 1074 ** anything else which is not an unambiguous reference to a database column. 1075 */ 1076 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1077 return columnName( 1078 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1079 } 1080 #ifndef SQLITE_OMIT_UTF16 1081 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1082 return columnName( 1083 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1084 } 1085 #endif /* SQLITE_OMIT_UTF16 */ 1086 1087 /* 1088 ** Return the name of the table column from which a result column derives. 1089 ** NULL is returned if the result column is an expression or constant or 1090 ** anything else which is not an unambiguous reference to a database column. 1091 */ 1092 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1093 return columnName( 1094 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1095 } 1096 #ifndef SQLITE_OMIT_UTF16 1097 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1098 return columnName( 1099 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1100 } 1101 #endif /* SQLITE_OMIT_UTF16 */ 1102 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1103 1104 1105 /******************************* sqlite3_bind_ *************************** 1106 ** 1107 ** Routines used to attach values to wildcards in a compiled SQL statement. 1108 */ 1109 /* 1110 ** Unbind the value bound to variable i in virtual machine p. This is the 1111 ** the same as binding a NULL value to the column. If the "i" parameter is 1112 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1113 ** 1114 ** A successful evaluation of this routine acquires the mutex on p. 1115 ** the mutex is released if any kind of error occurs. 1116 ** 1117 ** The error code stored in database p->db is overwritten with the return 1118 ** value in any case. 1119 */ 1120 static int vdbeUnbind(Vdbe *p, int i){ 1121 Mem *pVar; 1122 if( vdbeSafetyNotNull(p) ){ 1123 return SQLITE_MISUSE_BKPT; 1124 } 1125 sqlite3_mutex_enter(p->db->mutex); 1126 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1127 sqlite3Error(p->db, SQLITE_MISUSE); 1128 sqlite3_mutex_leave(p->db->mutex); 1129 sqlite3_log(SQLITE_MISUSE, 1130 "bind on a busy prepared statement: [%s]", p->zSql); 1131 return SQLITE_MISUSE_BKPT; 1132 } 1133 if( i<1 || i>p->nVar ){ 1134 sqlite3Error(p->db, SQLITE_RANGE); 1135 sqlite3_mutex_leave(p->db->mutex); 1136 return SQLITE_RANGE; 1137 } 1138 i--; 1139 pVar = &p->aVar[i]; 1140 sqlite3VdbeMemRelease(pVar); 1141 pVar->flags = MEM_Null; 1142 sqlite3Error(p->db, SQLITE_OK); 1143 1144 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1145 ** binding a new value to this variable invalidates the current query plan. 1146 ** 1147 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1148 ** parameter in the WHERE clause might influence the choice of query plan 1149 ** for a statement, then the statement will be automatically recompiled, 1150 ** as if there had been a schema change, on the first sqlite3_step() call 1151 ** following any change to the bindings of that parameter. 1152 */ 1153 if( p->isPrepareV2 && 1154 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1155 ){ 1156 p->expired = 1; 1157 } 1158 return SQLITE_OK; 1159 } 1160 1161 /* 1162 ** Bind a text or BLOB value. 1163 */ 1164 static int bindText( 1165 sqlite3_stmt *pStmt, /* The statement to bind against */ 1166 int i, /* Index of the parameter to bind */ 1167 const void *zData, /* Pointer to the data to be bound */ 1168 int nData, /* Number of bytes of data to be bound */ 1169 void (*xDel)(void*), /* Destructor for the data */ 1170 u8 encoding /* Encoding for the data */ 1171 ){ 1172 Vdbe *p = (Vdbe *)pStmt; 1173 Mem *pVar; 1174 int rc; 1175 1176 rc = vdbeUnbind(p, i); 1177 if( rc==SQLITE_OK ){ 1178 if( zData!=0 ){ 1179 pVar = &p->aVar[i-1]; 1180 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1181 if( rc==SQLITE_OK && encoding!=0 ){ 1182 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1183 } 1184 sqlite3Error(p->db, rc); 1185 rc = sqlite3ApiExit(p->db, rc); 1186 } 1187 sqlite3_mutex_leave(p->db->mutex); 1188 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1189 xDel((void*)zData); 1190 } 1191 return rc; 1192 } 1193 1194 1195 /* 1196 ** Bind a blob value to an SQL statement variable. 1197 */ 1198 int sqlite3_bind_blob( 1199 sqlite3_stmt *pStmt, 1200 int i, 1201 const void *zData, 1202 int nData, 1203 void (*xDel)(void*) 1204 ){ 1205 return bindText(pStmt, i, zData, nData, xDel, 0); 1206 } 1207 int sqlite3_bind_blob64( 1208 sqlite3_stmt *pStmt, 1209 int i, 1210 const void *zData, 1211 sqlite3_uint64 nData, 1212 void (*xDel)(void*) 1213 ){ 1214 assert( xDel!=SQLITE_DYNAMIC ); 1215 if( nData>0x7fffffff ){ 1216 return invokeValueDestructor(zData, xDel, 0); 1217 }else{ 1218 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1219 } 1220 } 1221 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1222 int rc; 1223 Vdbe *p = (Vdbe *)pStmt; 1224 rc = vdbeUnbind(p, i); 1225 if( rc==SQLITE_OK ){ 1226 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1227 sqlite3_mutex_leave(p->db->mutex); 1228 } 1229 return rc; 1230 } 1231 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1232 return sqlite3_bind_int64(p, i, (i64)iValue); 1233 } 1234 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1235 int rc; 1236 Vdbe *p = (Vdbe *)pStmt; 1237 rc = vdbeUnbind(p, i); 1238 if( rc==SQLITE_OK ){ 1239 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1240 sqlite3_mutex_leave(p->db->mutex); 1241 } 1242 return rc; 1243 } 1244 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1245 int rc; 1246 Vdbe *p = (Vdbe*)pStmt; 1247 rc = vdbeUnbind(p, i); 1248 if( rc==SQLITE_OK ){ 1249 sqlite3_mutex_leave(p->db->mutex); 1250 } 1251 return rc; 1252 } 1253 int sqlite3_bind_text( 1254 sqlite3_stmt *pStmt, 1255 int i, 1256 const char *zData, 1257 int nData, 1258 void (*xDel)(void*) 1259 ){ 1260 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1261 } 1262 int sqlite3_bind_text64( 1263 sqlite3_stmt *pStmt, 1264 int i, 1265 const char *zData, 1266 sqlite3_uint64 nData, 1267 void (*xDel)(void*), 1268 unsigned char enc 1269 ){ 1270 assert( xDel!=SQLITE_DYNAMIC ); 1271 if( nData>0x7fffffff ){ 1272 return invokeValueDestructor(zData, xDel, 0); 1273 }else{ 1274 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1275 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1276 } 1277 } 1278 #ifndef SQLITE_OMIT_UTF16 1279 int sqlite3_bind_text16( 1280 sqlite3_stmt *pStmt, 1281 int i, 1282 const void *zData, 1283 int nData, 1284 void (*xDel)(void*) 1285 ){ 1286 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1287 } 1288 #endif /* SQLITE_OMIT_UTF16 */ 1289 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1290 int rc; 1291 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1292 case SQLITE_INTEGER: { 1293 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1294 break; 1295 } 1296 case SQLITE_FLOAT: { 1297 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1298 break; 1299 } 1300 case SQLITE_BLOB: { 1301 if( pValue->flags & MEM_Zero ){ 1302 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1303 }else{ 1304 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1305 } 1306 break; 1307 } 1308 case SQLITE_TEXT: { 1309 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1310 pValue->enc); 1311 break; 1312 } 1313 default: { 1314 rc = sqlite3_bind_null(pStmt, i); 1315 break; 1316 } 1317 } 1318 return rc; 1319 } 1320 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1321 int rc; 1322 Vdbe *p = (Vdbe *)pStmt; 1323 rc = vdbeUnbind(p, i); 1324 if( rc==SQLITE_OK ){ 1325 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1326 sqlite3_mutex_leave(p->db->mutex); 1327 } 1328 return rc; 1329 } 1330 1331 /* 1332 ** Return the number of wildcards that can be potentially bound to. 1333 ** This routine is added to support DBD::SQLite. 1334 */ 1335 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1336 Vdbe *p = (Vdbe*)pStmt; 1337 return p ? p->nVar : 0; 1338 } 1339 1340 /* 1341 ** Return the name of a wildcard parameter. Return NULL if the index 1342 ** is out of range or if the wildcard is unnamed. 1343 ** 1344 ** The result is always UTF-8. 1345 */ 1346 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1347 Vdbe *p = (Vdbe*)pStmt; 1348 if( p==0 || i<1 || i>p->nzVar ){ 1349 return 0; 1350 } 1351 return p->azVar[i-1]; 1352 } 1353 1354 /* 1355 ** Given a wildcard parameter name, return the index of the variable 1356 ** with that name. If there is no variable with the given name, 1357 ** return 0. 1358 */ 1359 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1360 int i; 1361 if( p==0 ){ 1362 return 0; 1363 } 1364 if( zName ){ 1365 for(i=0; i<p->nzVar; i++){ 1366 const char *z = p->azVar[i]; 1367 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1368 return i+1; 1369 } 1370 } 1371 } 1372 return 0; 1373 } 1374 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1375 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1376 } 1377 1378 /* 1379 ** Transfer all bindings from the first statement over to the second. 1380 */ 1381 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1382 Vdbe *pFrom = (Vdbe*)pFromStmt; 1383 Vdbe *pTo = (Vdbe*)pToStmt; 1384 int i; 1385 assert( pTo->db==pFrom->db ); 1386 assert( pTo->nVar==pFrom->nVar ); 1387 sqlite3_mutex_enter(pTo->db->mutex); 1388 for(i=0; i<pFrom->nVar; i++){ 1389 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1390 } 1391 sqlite3_mutex_leave(pTo->db->mutex); 1392 return SQLITE_OK; 1393 } 1394 1395 #ifndef SQLITE_OMIT_DEPRECATED 1396 /* 1397 ** Deprecated external interface. Internal/core SQLite code 1398 ** should call sqlite3TransferBindings. 1399 ** 1400 ** It is misuse to call this routine with statements from different 1401 ** database connections. But as this is a deprecated interface, we 1402 ** will not bother to check for that condition. 1403 ** 1404 ** If the two statements contain a different number of bindings, then 1405 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1406 ** SQLITE_OK is returned. 1407 */ 1408 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1409 Vdbe *pFrom = (Vdbe*)pFromStmt; 1410 Vdbe *pTo = (Vdbe*)pToStmt; 1411 if( pFrom->nVar!=pTo->nVar ){ 1412 return SQLITE_ERROR; 1413 } 1414 if( pTo->isPrepareV2 && pTo->expmask ){ 1415 pTo->expired = 1; 1416 } 1417 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1418 pFrom->expired = 1; 1419 } 1420 return sqlite3TransferBindings(pFromStmt, pToStmt); 1421 } 1422 #endif 1423 1424 /* 1425 ** Return the sqlite3* database handle to which the prepared statement given 1426 ** in the argument belongs. This is the same database handle that was 1427 ** the first argument to the sqlite3_prepare() that was used to create 1428 ** the statement in the first place. 1429 */ 1430 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1431 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1432 } 1433 1434 /* 1435 ** Return true if the prepared statement is guaranteed to not modify the 1436 ** database. 1437 */ 1438 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1439 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1440 } 1441 1442 /* 1443 ** Return true if the prepared statement is in need of being reset. 1444 */ 1445 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1446 Vdbe *v = (Vdbe*)pStmt; 1447 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1448 } 1449 1450 /* 1451 ** Return a pointer to the next prepared statement after pStmt associated 1452 ** with database connection pDb. If pStmt is NULL, return the first 1453 ** prepared statement for the database connection. Return NULL if there 1454 ** are no more. 1455 */ 1456 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1457 sqlite3_stmt *pNext; 1458 #ifdef SQLITE_ENABLE_API_ARMOR 1459 if( !sqlite3SafetyCheckOk(pDb) ){ 1460 (void)SQLITE_MISUSE_BKPT; 1461 return 0; 1462 } 1463 #endif 1464 sqlite3_mutex_enter(pDb->mutex); 1465 if( pStmt==0 ){ 1466 pNext = (sqlite3_stmt*)pDb->pVdbe; 1467 }else{ 1468 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1469 } 1470 sqlite3_mutex_leave(pDb->mutex); 1471 return pNext; 1472 } 1473 1474 /* 1475 ** Return the value of a status counter for a prepared statement 1476 */ 1477 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1478 Vdbe *pVdbe = (Vdbe*)pStmt; 1479 u32 v; 1480 #ifdef SQLITE_ENABLE_API_ARMOR 1481 if( !pStmt ){ 1482 (void)SQLITE_MISUSE_BKPT; 1483 return 0; 1484 } 1485 #endif 1486 v = pVdbe->aCounter[op]; 1487 if( resetFlag ) pVdbe->aCounter[op] = 0; 1488 return (int)v; 1489 } 1490 1491 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1492 /* 1493 ** Return status data for a single loop within query pStmt. 1494 */ 1495 int sqlite3_stmt_scanstatus( 1496 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1497 int idx, /* Index of loop to report on */ 1498 int iScanStatusOp, /* Which metric to return */ 1499 void *pOut /* OUT: Write the answer here */ 1500 ){ 1501 Vdbe *p = (Vdbe*)pStmt; 1502 ScanStatus *pScan; 1503 if( idx<0 || idx>=p->nScan ) return 1; 1504 pScan = &p->aScan[idx]; 1505 switch( iScanStatusOp ){ 1506 case SQLITE_SCANSTAT_NLOOP: { 1507 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1508 break; 1509 } 1510 case SQLITE_SCANSTAT_NVISIT: { 1511 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1512 break; 1513 } 1514 case SQLITE_SCANSTAT_EST: { 1515 double r = 1.0; 1516 LogEst x = pScan->nEst; 1517 while( x<100 ){ 1518 x += 10; 1519 r *= 0.5; 1520 } 1521 *(double*)pOut = r*sqlite3LogEstToInt(x); 1522 break; 1523 } 1524 case SQLITE_SCANSTAT_NAME: { 1525 *(const char**)pOut = pScan->zName; 1526 break; 1527 } 1528 case SQLITE_SCANSTAT_EXPLAIN: { 1529 if( pScan->addrExplain ){ 1530 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1531 }else{ 1532 *(const char**)pOut = 0; 1533 } 1534 break; 1535 } 1536 case SQLITE_SCANSTAT_SELECTID: { 1537 if( pScan->addrExplain ){ 1538 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1539 }else{ 1540 *(int*)pOut = -1; 1541 } 1542 break; 1543 } 1544 default: { 1545 return 1; 1546 } 1547 } 1548 return 0; 1549 } 1550 1551 /* 1552 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1553 */ 1554 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1555 Vdbe *p = (Vdbe*)pStmt; 1556 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1557 } 1558 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1559