1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 assert( p->startTime>0 ); 64 assert( db->xProfile!=0 ); 65 assert( db->init.busy==0 ); 66 assert( p->zSql!=0 ); 67 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 68 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 69 p->startTime = 0; 70 } 71 /* 72 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 73 ** is needed, and it invokes the callback if it is needed. 74 */ 75 # define checkProfileCallback(DB,P) \ 76 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 77 #else 78 # define checkProfileCallback(DB,P) /*no-op*/ 79 #endif 80 81 /* 82 ** The following routine destroys a virtual machine that is created by 83 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 84 ** success/failure code that describes the result of executing the virtual 85 ** machine. 86 ** 87 ** This routine sets the error code and string returned by 88 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 89 */ 90 int sqlite3_finalize(sqlite3_stmt *pStmt){ 91 int rc; 92 if( pStmt==0 ){ 93 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 94 ** pointer is a harmless no-op. */ 95 rc = SQLITE_OK; 96 }else{ 97 Vdbe *v = (Vdbe*)pStmt; 98 sqlite3 *db = v->db; 99 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 100 sqlite3_mutex_enter(db->mutex); 101 checkProfileCallback(db, v); 102 rc = sqlite3VdbeFinalize(v); 103 rc = sqlite3ApiExit(db, rc); 104 sqlite3LeaveMutexAndCloseZombie(db); 105 } 106 return rc; 107 } 108 109 /* 110 ** Terminate the current execution of an SQL statement and reset it 111 ** back to its starting state so that it can be reused. A success code from 112 ** the prior execution is returned. 113 ** 114 ** This routine sets the error code and string returned by 115 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 116 */ 117 int sqlite3_reset(sqlite3_stmt *pStmt){ 118 int rc; 119 if( pStmt==0 ){ 120 rc = SQLITE_OK; 121 }else{ 122 Vdbe *v = (Vdbe*)pStmt; 123 sqlite3 *db = v->db; 124 sqlite3_mutex_enter(db->mutex); 125 checkProfileCallback(db, v); 126 rc = sqlite3VdbeReset(v); 127 sqlite3VdbeRewind(v); 128 assert( (rc & (db->errMask))==rc ); 129 rc = sqlite3ApiExit(db, rc); 130 sqlite3_mutex_leave(db->mutex); 131 } 132 return rc; 133 } 134 135 /* 136 ** Set all the parameters in the compiled SQL statement to NULL. 137 */ 138 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 139 int i; 140 int rc = SQLITE_OK; 141 Vdbe *p = (Vdbe*)pStmt; 142 #if SQLITE_THREADSAFE 143 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 144 #endif 145 sqlite3_mutex_enter(mutex); 146 for(i=0; i<p->nVar; i++){ 147 sqlite3VdbeMemRelease(&p->aVar[i]); 148 p->aVar[i].flags = MEM_Null; 149 } 150 if( p->isPrepareV2 && p->expmask ){ 151 p->expired = 1; 152 } 153 sqlite3_mutex_leave(mutex); 154 return rc; 155 } 156 157 158 /**************************** sqlite3_value_ ******************************* 159 ** The following routines extract information from a Mem or sqlite3_value 160 ** structure. 161 */ 162 const void *sqlite3_value_blob(sqlite3_value *pVal){ 163 Mem *p = (Mem*)pVal; 164 if( p->flags & (MEM_Blob|MEM_Str) ){ 165 if( sqlite3VdbeMemExpandBlob(p)!=SQLITE_OK ){ 166 assert( p->flags==MEM_Null && p->z==0 ); 167 return 0; 168 } 169 p->flags |= MEM_Blob; 170 return p->n ? p->z : 0; 171 }else{ 172 return sqlite3_value_text(pVal); 173 } 174 } 175 int sqlite3_value_bytes(sqlite3_value *pVal){ 176 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 177 } 178 int sqlite3_value_bytes16(sqlite3_value *pVal){ 179 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 180 } 181 double sqlite3_value_double(sqlite3_value *pVal){ 182 return sqlite3VdbeRealValue((Mem*)pVal); 183 } 184 int sqlite3_value_int(sqlite3_value *pVal){ 185 return (int)sqlite3VdbeIntValue((Mem*)pVal); 186 } 187 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 188 return sqlite3VdbeIntValue((Mem*)pVal); 189 } 190 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 191 return ((Mem*)pVal)->eSubtype; 192 } 193 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 194 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 195 } 196 #ifndef SQLITE_OMIT_UTF16 197 const void *sqlite3_value_text16(sqlite3_value* pVal){ 198 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 199 } 200 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 201 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 202 } 203 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 204 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 205 } 206 #endif /* SQLITE_OMIT_UTF16 */ 207 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 208 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 209 ** point number string BLOB NULL 210 */ 211 int sqlite3_value_type(sqlite3_value* pVal){ 212 static const u8 aType[] = { 213 SQLITE_BLOB, /* 0x00 */ 214 SQLITE_NULL, /* 0x01 */ 215 SQLITE_TEXT, /* 0x02 */ 216 SQLITE_NULL, /* 0x03 */ 217 SQLITE_INTEGER, /* 0x04 */ 218 SQLITE_NULL, /* 0x05 */ 219 SQLITE_INTEGER, /* 0x06 */ 220 SQLITE_NULL, /* 0x07 */ 221 SQLITE_FLOAT, /* 0x08 */ 222 SQLITE_NULL, /* 0x09 */ 223 SQLITE_FLOAT, /* 0x0a */ 224 SQLITE_NULL, /* 0x0b */ 225 SQLITE_INTEGER, /* 0x0c */ 226 SQLITE_NULL, /* 0x0d */ 227 SQLITE_INTEGER, /* 0x0e */ 228 SQLITE_NULL, /* 0x0f */ 229 SQLITE_BLOB, /* 0x10 */ 230 SQLITE_NULL, /* 0x11 */ 231 SQLITE_TEXT, /* 0x12 */ 232 SQLITE_NULL, /* 0x13 */ 233 SQLITE_INTEGER, /* 0x14 */ 234 SQLITE_NULL, /* 0x15 */ 235 SQLITE_INTEGER, /* 0x16 */ 236 SQLITE_NULL, /* 0x17 */ 237 SQLITE_FLOAT, /* 0x18 */ 238 SQLITE_NULL, /* 0x19 */ 239 SQLITE_FLOAT, /* 0x1a */ 240 SQLITE_NULL, /* 0x1b */ 241 SQLITE_INTEGER, /* 0x1c */ 242 SQLITE_NULL, /* 0x1d */ 243 SQLITE_INTEGER, /* 0x1e */ 244 SQLITE_NULL, /* 0x1f */ 245 }; 246 return aType[pVal->flags&MEM_AffMask]; 247 } 248 249 /* Make a copy of an sqlite3_value object 250 */ 251 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 252 sqlite3_value *pNew; 253 if( pOrig==0 ) return 0; 254 pNew = sqlite3_malloc( sizeof(*pNew) ); 255 if( pNew==0 ) return 0; 256 memset(pNew, 0, sizeof(*pNew)); 257 memcpy(pNew, pOrig, MEMCELLSIZE); 258 pNew->flags &= ~MEM_Dyn; 259 pNew->db = 0; 260 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 261 pNew->flags &= ~(MEM_Static|MEM_Dyn); 262 pNew->flags |= MEM_Ephem; 263 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 264 sqlite3ValueFree(pNew); 265 pNew = 0; 266 } 267 } 268 return pNew; 269 } 270 271 /* Destroy an sqlite3_value object previously obtained from 272 ** sqlite3_value_dup(). 273 */ 274 void sqlite3_value_free(sqlite3_value *pOld){ 275 sqlite3ValueFree(pOld); 276 } 277 278 279 /**************************** sqlite3_result_ ******************************* 280 ** The following routines are used by user-defined functions to specify 281 ** the function result. 282 ** 283 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 284 ** result as a string or blob but if the string or blob is too large, it 285 ** then sets the error code to SQLITE_TOOBIG 286 ** 287 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 288 ** on value P is not going to be used and need to be destroyed. 289 */ 290 static void setResultStrOrError( 291 sqlite3_context *pCtx, /* Function context */ 292 const char *z, /* String pointer */ 293 int n, /* Bytes in string, or negative */ 294 u8 enc, /* Encoding of z. 0 for BLOBs */ 295 void (*xDel)(void*) /* Destructor function */ 296 ){ 297 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 298 sqlite3_result_error_toobig(pCtx); 299 } 300 } 301 static int invokeValueDestructor( 302 const void *p, /* Value to destroy */ 303 void (*xDel)(void*), /* The destructor */ 304 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 305 ){ 306 assert( xDel!=SQLITE_DYNAMIC ); 307 if( xDel==0 ){ 308 /* noop */ 309 }else if( xDel==SQLITE_TRANSIENT ){ 310 /* noop */ 311 }else{ 312 xDel((void*)p); 313 } 314 if( pCtx ) sqlite3_result_error_toobig(pCtx); 315 return SQLITE_TOOBIG; 316 } 317 void sqlite3_result_blob( 318 sqlite3_context *pCtx, 319 const void *z, 320 int n, 321 void (*xDel)(void *) 322 ){ 323 assert( n>=0 ); 324 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 325 setResultStrOrError(pCtx, z, n, 0, xDel); 326 } 327 void sqlite3_result_blob64( 328 sqlite3_context *pCtx, 329 const void *z, 330 sqlite3_uint64 n, 331 void (*xDel)(void *) 332 ){ 333 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 334 assert( xDel!=SQLITE_DYNAMIC ); 335 if( n>0x7fffffff ){ 336 (void)invokeValueDestructor(z, xDel, pCtx); 337 }else{ 338 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 339 } 340 } 341 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 342 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 343 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 344 } 345 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 346 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 347 pCtx->isError = SQLITE_ERROR; 348 pCtx->fErrorOrAux = 1; 349 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 350 } 351 #ifndef SQLITE_OMIT_UTF16 352 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 353 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 354 pCtx->isError = SQLITE_ERROR; 355 pCtx->fErrorOrAux = 1; 356 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 357 } 358 #endif 359 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 360 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 361 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 362 } 363 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 364 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 365 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 366 } 367 void sqlite3_result_null(sqlite3_context *pCtx){ 368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 369 sqlite3VdbeMemSetNull(pCtx->pOut); 370 } 371 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 372 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 373 pCtx->pOut->eSubtype = eSubtype & 0xff; 374 } 375 void sqlite3_result_text( 376 sqlite3_context *pCtx, 377 const char *z, 378 int n, 379 void (*xDel)(void *) 380 ){ 381 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 382 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 383 } 384 void sqlite3_result_text64( 385 sqlite3_context *pCtx, 386 const char *z, 387 sqlite3_uint64 n, 388 void (*xDel)(void *), 389 unsigned char enc 390 ){ 391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 392 assert( xDel!=SQLITE_DYNAMIC ); 393 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 394 if( n>0x7fffffff ){ 395 (void)invokeValueDestructor(z, xDel, pCtx); 396 }else{ 397 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 398 } 399 } 400 #ifndef SQLITE_OMIT_UTF16 401 void sqlite3_result_text16( 402 sqlite3_context *pCtx, 403 const void *z, 404 int n, 405 void (*xDel)(void *) 406 ){ 407 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 408 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 409 } 410 void sqlite3_result_text16be( 411 sqlite3_context *pCtx, 412 const void *z, 413 int n, 414 void (*xDel)(void *) 415 ){ 416 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 417 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 418 } 419 void sqlite3_result_text16le( 420 sqlite3_context *pCtx, 421 const void *z, 422 int n, 423 void (*xDel)(void *) 424 ){ 425 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 426 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 427 } 428 #endif /* SQLITE_OMIT_UTF16 */ 429 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 430 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 431 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 432 } 433 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 434 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 435 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 436 } 437 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 438 Mem *pOut = pCtx->pOut; 439 assert( sqlite3_mutex_held(pOut->db->mutex) ); 440 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 441 return SQLITE_TOOBIG; 442 } 443 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 444 return SQLITE_OK; 445 } 446 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 447 pCtx->isError = errCode; 448 pCtx->fErrorOrAux = 1; 449 #ifdef SQLITE_DEBUG 450 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 451 #endif 452 if( pCtx->pOut->flags & MEM_Null ){ 453 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 454 SQLITE_UTF8, SQLITE_STATIC); 455 } 456 } 457 458 /* Force an SQLITE_TOOBIG error. */ 459 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 461 pCtx->isError = SQLITE_TOOBIG; 462 pCtx->fErrorOrAux = 1; 463 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 464 SQLITE_UTF8, SQLITE_STATIC); 465 } 466 467 /* An SQLITE_NOMEM error. */ 468 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 469 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 470 sqlite3VdbeMemSetNull(pCtx->pOut); 471 pCtx->isError = SQLITE_NOMEM; 472 pCtx->fErrorOrAux = 1; 473 pCtx->pOut->db->mallocFailed = 1; 474 } 475 476 /* 477 ** This function is called after a transaction has been committed. It 478 ** invokes callbacks registered with sqlite3_wal_hook() as required. 479 */ 480 static int doWalCallbacks(sqlite3 *db){ 481 int rc = SQLITE_OK; 482 #ifndef SQLITE_OMIT_WAL 483 int i; 484 for(i=0; i<db->nDb; i++){ 485 Btree *pBt = db->aDb[i].pBt; 486 if( pBt ){ 487 int nEntry; 488 sqlite3BtreeEnter(pBt); 489 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 490 sqlite3BtreeLeave(pBt); 491 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 492 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 493 } 494 } 495 } 496 #endif 497 return rc; 498 } 499 500 501 /* 502 ** Execute the statement pStmt, either until a row of data is ready, the 503 ** statement is completely executed or an error occurs. 504 ** 505 ** This routine implements the bulk of the logic behind the sqlite_step() 506 ** API. The only thing omitted is the automatic recompile if a 507 ** schema change has occurred. That detail is handled by the 508 ** outer sqlite3_step() wrapper procedure. 509 */ 510 static int sqlite3Step(Vdbe *p){ 511 sqlite3 *db; 512 int rc; 513 514 assert(p); 515 if( p->magic!=VDBE_MAGIC_RUN ){ 516 /* We used to require that sqlite3_reset() be called before retrying 517 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 518 ** with version 3.7.0, we changed this so that sqlite3_reset() would 519 ** be called automatically instead of throwing the SQLITE_MISUSE error. 520 ** This "automatic-reset" change is not technically an incompatibility, 521 ** since any application that receives an SQLITE_MISUSE is broken by 522 ** definition. 523 ** 524 ** Nevertheless, some published applications that were originally written 525 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 526 ** returns, and those were broken by the automatic-reset change. As a 527 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 528 ** legacy behavior of returning SQLITE_MISUSE for cases where the 529 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 530 ** or SQLITE_BUSY error. 531 */ 532 #ifdef SQLITE_OMIT_AUTORESET 533 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 534 sqlite3_reset((sqlite3_stmt*)p); 535 }else{ 536 return SQLITE_MISUSE_BKPT; 537 } 538 #else 539 sqlite3_reset((sqlite3_stmt*)p); 540 #endif 541 } 542 543 /* Check that malloc() has not failed. If it has, return early. */ 544 db = p->db; 545 if( db->mallocFailed ){ 546 p->rc = SQLITE_NOMEM; 547 return SQLITE_NOMEM; 548 } 549 550 if( p->pc<=0 && p->expired ){ 551 p->rc = SQLITE_SCHEMA; 552 rc = SQLITE_ERROR; 553 goto end_of_step; 554 } 555 if( p->pc<0 ){ 556 /* If there are no other statements currently running, then 557 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 558 ** from interrupting a statement that has not yet started. 559 */ 560 if( db->nVdbeActive==0 ){ 561 db->u1.isInterrupted = 0; 562 } 563 564 assert( db->nVdbeWrite>0 || db->autoCommit==0 565 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 566 ); 567 568 #ifndef SQLITE_OMIT_TRACE 569 if( db->xProfile && !db->init.busy && p->zSql ){ 570 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 571 }else{ 572 assert( p->startTime==0 ); 573 } 574 #endif 575 576 db->nVdbeActive++; 577 if( p->readOnly==0 ) db->nVdbeWrite++; 578 if( p->bIsReader ) db->nVdbeRead++; 579 p->pc = 0; 580 } 581 #ifdef SQLITE_DEBUG 582 p->rcApp = SQLITE_OK; 583 #endif 584 #ifndef SQLITE_OMIT_EXPLAIN 585 if( p->explain ){ 586 rc = sqlite3VdbeList(p); 587 }else 588 #endif /* SQLITE_OMIT_EXPLAIN */ 589 { 590 db->nVdbeExec++; 591 rc = sqlite3VdbeExec(p); 592 db->nVdbeExec--; 593 } 594 595 #ifndef SQLITE_OMIT_TRACE 596 /* If the statement completed successfully, invoke the profile callback */ 597 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 598 #endif 599 600 if( rc==SQLITE_DONE ){ 601 assert( p->rc==SQLITE_OK ); 602 p->rc = doWalCallbacks(db); 603 if( p->rc!=SQLITE_OK ){ 604 rc = SQLITE_ERROR; 605 } 606 } 607 608 db->errCode = rc; 609 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 610 p->rc = SQLITE_NOMEM; 611 } 612 end_of_step: 613 /* At this point local variable rc holds the value that should be 614 ** returned if this statement was compiled using the legacy 615 ** sqlite3_prepare() interface. According to the docs, this can only 616 ** be one of the values in the first assert() below. Variable p->rc 617 ** contains the value that would be returned if sqlite3_finalize() 618 ** were called on statement p. 619 */ 620 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 621 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 622 ); 623 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 624 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 625 /* If this statement was prepared using sqlite3_prepare_v2(), and an 626 ** error has occurred, then return the error code in p->rc to the 627 ** caller. Set the error code in the database handle to the same value. 628 */ 629 rc = sqlite3VdbeTransferError(p); 630 } 631 return (rc&db->errMask); 632 } 633 634 /* 635 ** This is the top-level implementation of sqlite3_step(). Call 636 ** sqlite3Step() to do most of the work. If a schema error occurs, 637 ** call sqlite3Reprepare() and try again. 638 */ 639 int sqlite3_step(sqlite3_stmt *pStmt){ 640 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 641 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 642 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 643 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 644 sqlite3 *db; /* The database connection */ 645 646 if( vdbeSafetyNotNull(v) ){ 647 return SQLITE_MISUSE_BKPT; 648 } 649 db = v->db; 650 sqlite3_mutex_enter(db->mutex); 651 v->doingRerun = 0; 652 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 653 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 654 int savedPc = v->pc; 655 rc2 = rc = sqlite3Reprepare(v); 656 if( rc!=SQLITE_OK) break; 657 sqlite3_reset(pStmt); 658 if( savedPc>=0 ) v->doingRerun = 1; 659 assert( v->expired==0 ); 660 } 661 if( rc2!=SQLITE_OK ){ 662 /* This case occurs after failing to recompile an sql statement. 663 ** The error message from the SQL compiler has already been loaded 664 ** into the database handle. This block copies the error message 665 ** from the database handle into the statement and sets the statement 666 ** program counter to 0 to ensure that when the statement is 667 ** finalized or reset the parser error message is available via 668 ** sqlite3_errmsg() and sqlite3_errcode(). 669 */ 670 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 671 sqlite3DbFree(db, v->zErrMsg); 672 if( !db->mallocFailed ){ 673 v->zErrMsg = sqlite3DbStrDup(db, zErr); 674 v->rc = rc2; 675 } else { 676 v->zErrMsg = 0; 677 v->rc = rc = SQLITE_NOMEM; 678 } 679 } 680 rc = sqlite3ApiExit(db, rc); 681 sqlite3_mutex_leave(db->mutex); 682 return rc; 683 } 684 685 686 /* 687 ** Extract the user data from a sqlite3_context structure and return a 688 ** pointer to it. 689 */ 690 void *sqlite3_user_data(sqlite3_context *p){ 691 assert( p && p->pFunc ); 692 return p->pFunc->pUserData; 693 } 694 695 /* 696 ** Extract the user data from a sqlite3_context structure and return a 697 ** pointer to it. 698 ** 699 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 700 ** returns a copy of the pointer to the database connection (the 1st 701 ** parameter) of the sqlite3_create_function() and 702 ** sqlite3_create_function16() routines that originally registered the 703 ** application defined function. 704 */ 705 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 706 assert( p && p->pOut ); 707 return p->pOut->db; 708 } 709 710 /* 711 ** Return the current time for a statement. If the current time 712 ** is requested more than once within the same run of a single prepared 713 ** statement, the exact same time is returned for each invocation regardless 714 ** of the amount of time that elapses between invocations. In other words, 715 ** the time returned is always the time of the first call. 716 */ 717 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 718 int rc; 719 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 720 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 721 assert( p->pVdbe!=0 ); 722 #else 723 sqlite3_int64 iTime = 0; 724 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 725 #endif 726 if( *piTime==0 ){ 727 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 728 if( rc ) *piTime = 0; 729 } 730 return *piTime; 731 } 732 733 /* 734 ** The following is the implementation of an SQL function that always 735 ** fails with an error message stating that the function is used in the 736 ** wrong context. The sqlite3_overload_function() API might construct 737 ** SQL function that use this routine so that the functions will exist 738 ** for name resolution but are actually overloaded by the xFindFunction 739 ** method of virtual tables. 740 */ 741 void sqlite3InvalidFunction( 742 sqlite3_context *context, /* The function calling context */ 743 int NotUsed, /* Number of arguments to the function */ 744 sqlite3_value **NotUsed2 /* Value of each argument */ 745 ){ 746 const char *zName = context->pFunc->zName; 747 char *zErr; 748 UNUSED_PARAMETER2(NotUsed, NotUsed2); 749 zErr = sqlite3_mprintf( 750 "unable to use function %s in the requested context", zName); 751 sqlite3_result_error(context, zErr, -1); 752 sqlite3_free(zErr); 753 } 754 755 /* 756 ** Create a new aggregate context for p and return a pointer to 757 ** its pMem->z element. 758 */ 759 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 760 Mem *pMem = p->pMem; 761 assert( (pMem->flags & MEM_Agg)==0 ); 762 if( nByte<=0 ){ 763 sqlite3VdbeMemSetNull(pMem); 764 pMem->z = 0; 765 }else{ 766 sqlite3VdbeMemClearAndResize(pMem, nByte); 767 pMem->flags = MEM_Agg; 768 pMem->u.pDef = p->pFunc; 769 if( pMem->z ){ 770 memset(pMem->z, 0, nByte); 771 } 772 } 773 return (void*)pMem->z; 774 } 775 776 /* 777 ** Allocate or return the aggregate context for a user function. A new 778 ** context is allocated on the first call. Subsequent calls return the 779 ** same context that was returned on prior calls. 780 */ 781 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 782 assert( p && p->pFunc && p->pFunc->xStep ); 783 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 784 testcase( nByte<0 ); 785 if( (p->pMem->flags & MEM_Agg)==0 ){ 786 return createAggContext(p, nByte); 787 }else{ 788 return (void*)p->pMem->z; 789 } 790 } 791 792 /* 793 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 794 ** the user-function defined by pCtx. 795 */ 796 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 797 AuxData *pAuxData; 798 799 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 800 #if SQLITE_ENABLE_STAT3_OR_STAT4 801 if( pCtx->pVdbe==0 ) return 0; 802 #else 803 assert( pCtx->pVdbe!=0 ); 804 #endif 805 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 806 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 807 } 808 809 return (pAuxData ? pAuxData->pAux : 0); 810 } 811 812 /* 813 ** Set the auxiliary data pointer and delete function, for the iArg'th 814 ** argument to the user-function defined by pCtx. Any previous value is 815 ** deleted by calling the delete function specified when it was set. 816 */ 817 void sqlite3_set_auxdata( 818 sqlite3_context *pCtx, 819 int iArg, 820 void *pAux, 821 void (*xDelete)(void*) 822 ){ 823 AuxData *pAuxData; 824 Vdbe *pVdbe = pCtx->pVdbe; 825 826 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 827 if( iArg<0 ) goto failed; 828 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 829 if( pVdbe==0 ) goto failed; 830 #else 831 assert( pVdbe!=0 ); 832 #endif 833 834 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 835 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 836 } 837 if( pAuxData==0 ){ 838 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 839 if( !pAuxData ) goto failed; 840 pAuxData->iOp = pCtx->iOp; 841 pAuxData->iArg = iArg; 842 pAuxData->pNext = pVdbe->pAuxData; 843 pVdbe->pAuxData = pAuxData; 844 if( pCtx->fErrorOrAux==0 ){ 845 pCtx->isError = 0; 846 pCtx->fErrorOrAux = 1; 847 } 848 }else if( pAuxData->xDelete ){ 849 pAuxData->xDelete(pAuxData->pAux); 850 } 851 852 pAuxData->pAux = pAux; 853 pAuxData->xDelete = xDelete; 854 return; 855 856 failed: 857 if( xDelete ){ 858 xDelete(pAux); 859 } 860 } 861 862 #ifndef SQLITE_OMIT_DEPRECATED 863 /* 864 ** Return the number of times the Step function of an aggregate has been 865 ** called. 866 ** 867 ** This function is deprecated. Do not use it for new code. It is 868 ** provide only to avoid breaking legacy code. New aggregate function 869 ** implementations should keep their own counts within their aggregate 870 ** context. 871 */ 872 int sqlite3_aggregate_count(sqlite3_context *p){ 873 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 874 return p->pMem->n; 875 } 876 #endif 877 878 /* 879 ** Return the number of columns in the result set for the statement pStmt. 880 */ 881 int sqlite3_column_count(sqlite3_stmt *pStmt){ 882 Vdbe *pVm = (Vdbe *)pStmt; 883 return pVm ? pVm->nResColumn : 0; 884 } 885 886 /* 887 ** Return the number of values available from the current row of the 888 ** currently executing statement pStmt. 889 */ 890 int sqlite3_data_count(sqlite3_stmt *pStmt){ 891 Vdbe *pVm = (Vdbe *)pStmt; 892 if( pVm==0 || pVm->pResultSet==0 ) return 0; 893 return pVm->nResColumn; 894 } 895 896 /* 897 ** Return a pointer to static memory containing an SQL NULL value. 898 */ 899 static const Mem *columnNullValue(void){ 900 /* Even though the Mem structure contains an element 901 ** of type i64, on certain architectures (x86) with certain compiler 902 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 903 ** instead of an 8-byte one. This all works fine, except that when 904 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 905 ** that a Mem structure is located on an 8-byte boundary. To prevent 906 ** these assert()s from failing, when building with SQLITE_DEBUG defined 907 ** using gcc, we force nullMem to be 8-byte aligned using the magical 908 ** __attribute__((aligned(8))) macro. */ 909 static const Mem nullMem 910 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 911 __attribute__((aligned(8))) 912 #endif 913 = { 914 /* .u = */ {0}, 915 /* .flags = */ (u16)MEM_Null, 916 /* .enc = */ (u8)0, 917 /* .eSubtype = */ (u8)0, 918 /* .n = */ (int)0, 919 /* .z = */ (char*)0, 920 /* .zMalloc = */ (char*)0, 921 /* .szMalloc = */ (int)0, 922 /* .uTemp = */ (u32)0, 923 /* .db = */ (sqlite3*)0, 924 /* .xDel = */ (void(*)(void*))0, 925 #ifdef SQLITE_DEBUG 926 /* .pScopyFrom = */ (Mem*)0, 927 /* .pFiller = */ (void*)0, 928 #endif 929 }; 930 return &nullMem; 931 } 932 933 /* 934 ** Check to see if column iCol of the given statement is valid. If 935 ** it is, return a pointer to the Mem for the value of that column. 936 ** If iCol is not valid, return a pointer to a Mem which has a value 937 ** of NULL. 938 */ 939 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 940 Vdbe *pVm; 941 Mem *pOut; 942 943 pVm = (Vdbe *)pStmt; 944 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 945 sqlite3_mutex_enter(pVm->db->mutex); 946 pOut = &pVm->pResultSet[i]; 947 }else{ 948 if( pVm && ALWAYS(pVm->db) ){ 949 sqlite3_mutex_enter(pVm->db->mutex); 950 sqlite3Error(pVm->db, SQLITE_RANGE); 951 } 952 pOut = (Mem*)columnNullValue(); 953 } 954 return pOut; 955 } 956 957 /* 958 ** This function is called after invoking an sqlite3_value_XXX function on a 959 ** column value (i.e. a value returned by evaluating an SQL expression in the 960 ** select list of a SELECT statement) that may cause a malloc() failure. If 961 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 962 ** code of statement pStmt set to SQLITE_NOMEM. 963 ** 964 ** Specifically, this is called from within: 965 ** 966 ** sqlite3_column_int() 967 ** sqlite3_column_int64() 968 ** sqlite3_column_text() 969 ** sqlite3_column_text16() 970 ** sqlite3_column_real() 971 ** sqlite3_column_bytes() 972 ** sqlite3_column_bytes16() 973 ** sqiite3_column_blob() 974 */ 975 static void columnMallocFailure(sqlite3_stmt *pStmt) 976 { 977 /* If malloc() failed during an encoding conversion within an 978 ** sqlite3_column_XXX API, then set the return code of the statement to 979 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 980 ** and _finalize() will return NOMEM. 981 */ 982 Vdbe *p = (Vdbe *)pStmt; 983 if( p ){ 984 p->rc = sqlite3ApiExit(p->db, p->rc); 985 sqlite3_mutex_leave(p->db->mutex); 986 } 987 } 988 989 /**************************** sqlite3_column_ ******************************* 990 ** The following routines are used to access elements of the current row 991 ** in the result set. 992 */ 993 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 994 const void *val; 995 val = sqlite3_value_blob( columnMem(pStmt,i) ); 996 /* Even though there is no encoding conversion, value_blob() might 997 ** need to call malloc() to expand the result of a zeroblob() 998 ** expression. 999 */ 1000 columnMallocFailure(pStmt); 1001 return val; 1002 } 1003 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1004 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1005 columnMallocFailure(pStmt); 1006 return val; 1007 } 1008 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1009 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1010 columnMallocFailure(pStmt); 1011 return val; 1012 } 1013 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1014 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1015 columnMallocFailure(pStmt); 1016 return val; 1017 } 1018 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1019 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1020 columnMallocFailure(pStmt); 1021 return val; 1022 } 1023 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1024 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1025 columnMallocFailure(pStmt); 1026 return val; 1027 } 1028 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1029 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1030 columnMallocFailure(pStmt); 1031 return val; 1032 } 1033 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1034 Mem *pOut = columnMem(pStmt, i); 1035 if( pOut->flags&MEM_Static ){ 1036 pOut->flags &= ~MEM_Static; 1037 pOut->flags |= MEM_Ephem; 1038 } 1039 columnMallocFailure(pStmt); 1040 return (sqlite3_value *)pOut; 1041 } 1042 #ifndef SQLITE_OMIT_UTF16 1043 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1044 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1045 columnMallocFailure(pStmt); 1046 return val; 1047 } 1048 #endif /* SQLITE_OMIT_UTF16 */ 1049 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1050 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1051 columnMallocFailure(pStmt); 1052 return iType; 1053 } 1054 1055 /* 1056 ** Convert the N-th element of pStmt->pColName[] into a string using 1057 ** xFunc() then return that string. If N is out of range, return 0. 1058 ** 1059 ** There are up to 5 names for each column. useType determines which 1060 ** name is returned. Here are the names: 1061 ** 1062 ** 0 The column name as it should be displayed for output 1063 ** 1 The datatype name for the column 1064 ** 2 The name of the database that the column derives from 1065 ** 3 The name of the table that the column derives from 1066 ** 4 The name of the table column that the result column derives from 1067 ** 1068 ** If the result is not a simple column reference (if it is an expression 1069 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1070 */ 1071 static const void *columnName( 1072 sqlite3_stmt *pStmt, 1073 int N, 1074 const void *(*xFunc)(Mem*), 1075 int useType 1076 ){ 1077 const void *ret; 1078 Vdbe *p; 1079 int n; 1080 sqlite3 *db; 1081 #ifdef SQLITE_ENABLE_API_ARMOR 1082 if( pStmt==0 ){ 1083 (void)SQLITE_MISUSE_BKPT; 1084 return 0; 1085 } 1086 #endif 1087 ret = 0; 1088 p = (Vdbe *)pStmt; 1089 db = p->db; 1090 assert( db!=0 ); 1091 n = sqlite3_column_count(pStmt); 1092 if( N<n && N>=0 ){ 1093 N += useType*n; 1094 sqlite3_mutex_enter(db->mutex); 1095 assert( db->mallocFailed==0 ); 1096 ret = xFunc(&p->aColName[N]); 1097 /* A malloc may have failed inside of the xFunc() call. If this 1098 ** is the case, clear the mallocFailed flag and return NULL. 1099 */ 1100 if( db->mallocFailed ){ 1101 db->mallocFailed = 0; 1102 ret = 0; 1103 } 1104 sqlite3_mutex_leave(db->mutex); 1105 } 1106 return ret; 1107 } 1108 1109 /* 1110 ** Return the name of the Nth column of the result set returned by SQL 1111 ** statement pStmt. 1112 */ 1113 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1114 return columnName( 1115 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1116 } 1117 #ifndef SQLITE_OMIT_UTF16 1118 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1119 return columnName( 1120 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1121 } 1122 #endif 1123 1124 /* 1125 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1126 ** not define OMIT_DECLTYPE. 1127 */ 1128 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1129 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1130 and SQLITE_ENABLE_COLUMN_METADATA" 1131 #endif 1132 1133 #ifndef SQLITE_OMIT_DECLTYPE 1134 /* 1135 ** Return the column declaration type (if applicable) of the 'i'th column 1136 ** of the result set of SQL statement pStmt. 1137 */ 1138 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1139 return columnName( 1140 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1141 } 1142 #ifndef SQLITE_OMIT_UTF16 1143 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1144 return columnName( 1145 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1146 } 1147 #endif /* SQLITE_OMIT_UTF16 */ 1148 #endif /* SQLITE_OMIT_DECLTYPE */ 1149 1150 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1151 /* 1152 ** Return the name of the database from which a result column derives. 1153 ** NULL is returned if the result column is an expression or constant or 1154 ** anything else which is not an unambiguous reference to a database column. 1155 */ 1156 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1157 return columnName( 1158 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1159 } 1160 #ifndef SQLITE_OMIT_UTF16 1161 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1162 return columnName( 1163 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1164 } 1165 #endif /* SQLITE_OMIT_UTF16 */ 1166 1167 /* 1168 ** Return the name of the table from which a result column derives. 1169 ** NULL is returned if the result column is an expression or constant or 1170 ** anything else which is not an unambiguous reference to a database column. 1171 */ 1172 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1173 return columnName( 1174 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1175 } 1176 #ifndef SQLITE_OMIT_UTF16 1177 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1178 return columnName( 1179 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1180 } 1181 #endif /* SQLITE_OMIT_UTF16 */ 1182 1183 /* 1184 ** Return the name of the table column from which a result column derives. 1185 ** NULL is returned if the result column is an expression or constant or 1186 ** anything else which is not an unambiguous reference to a database column. 1187 */ 1188 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1189 return columnName( 1190 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1191 } 1192 #ifndef SQLITE_OMIT_UTF16 1193 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1194 return columnName( 1195 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1196 } 1197 #endif /* SQLITE_OMIT_UTF16 */ 1198 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1199 1200 1201 /******************************* sqlite3_bind_ *************************** 1202 ** 1203 ** Routines used to attach values to wildcards in a compiled SQL statement. 1204 */ 1205 /* 1206 ** Unbind the value bound to variable i in virtual machine p. This is the 1207 ** the same as binding a NULL value to the column. If the "i" parameter is 1208 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1209 ** 1210 ** A successful evaluation of this routine acquires the mutex on p. 1211 ** the mutex is released if any kind of error occurs. 1212 ** 1213 ** The error code stored in database p->db is overwritten with the return 1214 ** value in any case. 1215 */ 1216 static int vdbeUnbind(Vdbe *p, int i){ 1217 Mem *pVar; 1218 if( vdbeSafetyNotNull(p) ){ 1219 return SQLITE_MISUSE_BKPT; 1220 } 1221 sqlite3_mutex_enter(p->db->mutex); 1222 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1223 sqlite3Error(p->db, SQLITE_MISUSE); 1224 sqlite3_mutex_leave(p->db->mutex); 1225 sqlite3_log(SQLITE_MISUSE, 1226 "bind on a busy prepared statement: [%s]", p->zSql); 1227 return SQLITE_MISUSE_BKPT; 1228 } 1229 if( i<1 || i>p->nVar ){ 1230 sqlite3Error(p->db, SQLITE_RANGE); 1231 sqlite3_mutex_leave(p->db->mutex); 1232 return SQLITE_RANGE; 1233 } 1234 i--; 1235 pVar = &p->aVar[i]; 1236 sqlite3VdbeMemRelease(pVar); 1237 pVar->flags = MEM_Null; 1238 sqlite3Error(p->db, SQLITE_OK); 1239 1240 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1241 ** binding a new value to this variable invalidates the current query plan. 1242 ** 1243 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1244 ** parameter in the WHERE clause might influence the choice of query plan 1245 ** for a statement, then the statement will be automatically recompiled, 1246 ** as if there had been a schema change, on the first sqlite3_step() call 1247 ** following any change to the bindings of that parameter. 1248 */ 1249 if( p->isPrepareV2 && 1250 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1251 ){ 1252 p->expired = 1; 1253 } 1254 return SQLITE_OK; 1255 } 1256 1257 /* 1258 ** Bind a text or BLOB value. 1259 */ 1260 static int bindText( 1261 sqlite3_stmt *pStmt, /* The statement to bind against */ 1262 int i, /* Index of the parameter to bind */ 1263 const void *zData, /* Pointer to the data to be bound */ 1264 int nData, /* Number of bytes of data to be bound */ 1265 void (*xDel)(void*), /* Destructor for the data */ 1266 u8 encoding /* Encoding for the data */ 1267 ){ 1268 Vdbe *p = (Vdbe *)pStmt; 1269 Mem *pVar; 1270 int rc; 1271 1272 rc = vdbeUnbind(p, i); 1273 if( rc==SQLITE_OK ){ 1274 if( zData!=0 ){ 1275 pVar = &p->aVar[i-1]; 1276 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1277 if( rc==SQLITE_OK && encoding!=0 ){ 1278 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1279 } 1280 sqlite3Error(p->db, rc); 1281 rc = sqlite3ApiExit(p->db, rc); 1282 } 1283 sqlite3_mutex_leave(p->db->mutex); 1284 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1285 xDel((void*)zData); 1286 } 1287 return rc; 1288 } 1289 1290 1291 /* 1292 ** Bind a blob value to an SQL statement variable. 1293 */ 1294 int sqlite3_bind_blob( 1295 sqlite3_stmt *pStmt, 1296 int i, 1297 const void *zData, 1298 int nData, 1299 void (*xDel)(void*) 1300 ){ 1301 return bindText(pStmt, i, zData, nData, xDel, 0); 1302 } 1303 int sqlite3_bind_blob64( 1304 sqlite3_stmt *pStmt, 1305 int i, 1306 const void *zData, 1307 sqlite3_uint64 nData, 1308 void (*xDel)(void*) 1309 ){ 1310 assert( xDel!=SQLITE_DYNAMIC ); 1311 if( nData>0x7fffffff ){ 1312 return invokeValueDestructor(zData, xDel, 0); 1313 }else{ 1314 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1315 } 1316 } 1317 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1318 int rc; 1319 Vdbe *p = (Vdbe *)pStmt; 1320 rc = vdbeUnbind(p, i); 1321 if( rc==SQLITE_OK ){ 1322 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1323 sqlite3_mutex_leave(p->db->mutex); 1324 } 1325 return rc; 1326 } 1327 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1328 return sqlite3_bind_int64(p, i, (i64)iValue); 1329 } 1330 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1331 int rc; 1332 Vdbe *p = (Vdbe *)pStmt; 1333 rc = vdbeUnbind(p, i); 1334 if( rc==SQLITE_OK ){ 1335 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1336 sqlite3_mutex_leave(p->db->mutex); 1337 } 1338 return rc; 1339 } 1340 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1341 int rc; 1342 Vdbe *p = (Vdbe*)pStmt; 1343 rc = vdbeUnbind(p, i); 1344 if( rc==SQLITE_OK ){ 1345 sqlite3_mutex_leave(p->db->mutex); 1346 } 1347 return rc; 1348 } 1349 int sqlite3_bind_text( 1350 sqlite3_stmt *pStmt, 1351 int i, 1352 const char *zData, 1353 int nData, 1354 void (*xDel)(void*) 1355 ){ 1356 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1357 } 1358 int sqlite3_bind_text64( 1359 sqlite3_stmt *pStmt, 1360 int i, 1361 const char *zData, 1362 sqlite3_uint64 nData, 1363 void (*xDel)(void*), 1364 unsigned char enc 1365 ){ 1366 assert( xDel!=SQLITE_DYNAMIC ); 1367 if( nData>0x7fffffff ){ 1368 return invokeValueDestructor(zData, xDel, 0); 1369 }else{ 1370 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1371 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1372 } 1373 } 1374 #ifndef SQLITE_OMIT_UTF16 1375 int sqlite3_bind_text16( 1376 sqlite3_stmt *pStmt, 1377 int i, 1378 const void *zData, 1379 int nData, 1380 void (*xDel)(void*) 1381 ){ 1382 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1383 } 1384 #endif /* SQLITE_OMIT_UTF16 */ 1385 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1386 int rc; 1387 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1388 case SQLITE_INTEGER: { 1389 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1390 break; 1391 } 1392 case SQLITE_FLOAT: { 1393 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1394 break; 1395 } 1396 case SQLITE_BLOB: { 1397 if( pValue->flags & MEM_Zero ){ 1398 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1399 }else{ 1400 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1401 } 1402 break; 1403 } 1404 case SQLITE_TEXT: { 1405 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1406 pValue->enc); 1407 break; 1408 } 1409 default: { 1410 rc = sqlite3_bind_null(pStmt, i); 1411 break; 1412 } 1413 } 1414 return rc; 1415 } 1416 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1417 int rc; 1418 Vdbe *p = (Vdbe *)pStmt; 1419 rc = vdbeUnbind(p, i); 1420 if( rc==SQLITE_OK ){ 1421 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1422 sqlite3_mutex_leave(p->db->mutex); 1423 } 1424 return rc; 1425 } 1426 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1427 int rc; 1428 Vdbe *p = (Vdbe *)pStmt; 1429 sqlite3_mutex_enter(p->db->mutex); 1430 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1431 rc = SQLITE_TOOBIG; 1432 }else{ 1433 assert( (n & 0x7FFFFFFF)==n ); 1434 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1435 } 1436 rc = sqlite3ApiExit(p->db, rc); 1437 sqlite3_mutex_leave(p->db->mutex); 1438 return rc; 1439 } 1440 1441 /* 1442 ** Return the number of wildcards that can be potentially bound to. 1443 ** This routine is added to support DBD::SQLite. 1444 */ 1445 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1446 Vdbe *p = (Vdbe*)pStmt; 1447 return p ? p->nVar : 0; 1448 } 1449 1450 /* 1451 ** Return the name of a wildcard parameter. Return NULL if the index 1452 ** is out of range or if the wildcard is unnamed. 1453 ** 1454 ** The result is always UTF-8. 1455 */ 1456 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1457 Vdbe *p = (Vdbe*)pStmt; 1458 if( p==0 || i<1 || i>p->nzVar ){ 1459 return 0; 1460 } 1461 return p->azVar[i-1]; 1462 } 1463 1464 /* 1465 ** Given a wildcard parameter name, return the index of the variable 1466 ** with that name. If there is no variable with the given name, 1467 ** return 0. 1468 */ 1469 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1470 int i; 1471 if( p==0 ){ 1472 return 0; 1473 } 1474 if( zName ){ 1475 for(i=0; i<p->nzVar; i++){ 1476 const char *z = p->azVar[i]; 1477 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1478 return i+1; 1479 } 1480 } 1481 } 1482 return 0; 1483 } 1484 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1485 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1486 } 1487 1488 /* 1489 ** Transfer all bindings from the first statement over to the second. 1490 */ 1491 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1492 Vdbe *pFrom = (Vdbe*)pFromStmt; 1493 Vdbe *pTo = (Vdbe*)pToStmt; 1494 int i; 1495 assert( pTo->db==pFrom->db ); 1496 assert( pTo->nVar==pFrom->nVar ); 1497 sqlite3_mutex_enter(pTo->db->mutex); 1498 for(i=0; i<pFrom->nVar; i++){ 1499 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1500 } 1501 sqlite3_mutex_leave(pTo->db->mutex); 1502 return SQLITE_OK; 1503 } 1504 1505 #ifndef SQLITE_OMIT_DEPRECATED 1506 /* 1507 ** Deprecated external interface. Internal/core SQLite code 1508 ** should call sqlite3TransferBindings. 1509 ** 1510 ** It is misuse to call this routine with statements from different 1511 ** database connections. But as this is a deprecated interface, we 1512 ** will not bother to check for that condition. 1513 ** 1514 ** If the two statements contain a different number of bindings, then 1515 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1516 ** SQLITE_OK is returned. 1517 */ 1518 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1519 Vdbe *pFrom = (Vdbe*)pFromStmt; 1520 Vdbe *pTo = (Vdbe*)pToStmt; 1521 if( pFrom->nVar!=pTo->nVar ){ 1522 return SQLITE_ERROR; 1523 } 1524 if( pTo->isPrepareV2 && pTo->expmask ){ 1525 pTo->expired = 1; 1526 } 1527 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1528 pFrom->expired = 1; 1529 } 1530 return sqlite3TransferBindings(pFromStmt, pToStmt); 1531 } 1532 #endif 1533 1534 /* 1535 ** Return the sqlite3* database handle to which the prepared statement given 1536 ** in the argument belongs. This is the same database handle that was 1537 ** the first argument to the sqlite3_prepare() that was used to create 1538 ** the statement in the first place. 1539 */ 1540 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1541 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1542 } 1543 1544 /* 1545 ** Return true if the prepared statement is guaranteed to not modify the 1546 ** database. 1547 */ 1548 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1549 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1550 } 1551 1552 /* 1553 ** Return true if the prepared statement is in need of being reset. 1554 */ 1555 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1556 Vdbe *v = (Vdbe*)pStmt; 1557 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1558 } 1559 1560 /* 1561 ** Return a pointer to the next prepared statement after pStmt associated 1562 ** with database connection pDb. If pStmt is NULL, return the first 1563 ** prepared statement for the database connection. Return NULL if there 1564 ** are no more. 1565 */ 1566 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1567 sqlite3_stmt *pNext; 1568 #ifdef SQLITE_ENABLE_API_ARMOR 1569 if( !sqlite3SafetyCheckOk(pDb) ){ 1570 (void)SQLITE_MISUSE_BKPT; 1571 return 0; 1572 } 1573 #endif 1574 sqlite3_mutex_enter(pDb->mutex); 1575 if( pStmt==0 ){ 1576 pNext = (sqlite3_stmt*)pDb->pVdbe; 1577 }else{ 1578 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1579 } 1580 sqlite3_mutex_leave(pDb->mutex); 1581 return pNext; 1582 } 1583 1584 /* 1585 ** Return the value of a status counter for a prepared statement 1586 */ 1587 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1588 Vdbe *pVdbe = (Vdbe*)pStmt; 1589 u32 v; 1590 #ifdef SQLITE_ENABLE_API_ARMOR 1591 if( !pStmt ){ 1592 (void)SQLITE_MISUSE_BKPT; 1593 return 0; 1594 } 1595 #endif 1596 v = pVdbe->aCounter[op]; 1597 if( resetFlag ) pVdbe->aCounter[op] = 0; 1598 return (int)v; 1599 } 1600 1601 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1602 /* 1603 ** Return status data for a single loop within query pStmt. 1604 */ 1605 int sqlite3_stmt_scanstatus( 1606 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1607 int idx, /* Index of loop to report on */ 1608 int iScanStatusOp, /* Which metric to return */ 1609 void *pOut /* OUT: Write the answer here */ 1610 ){ 1611 Vdbe *p = (Vdbe*)pStmt; 1612 ScanStatus *pScan; 1613 if( idx<0 || idx>=p->nScan ) return 1; 1614 pScan = &p->aScan[idx]; 1615 switch( iScanStatusOp ){ 1616 case SQLITE_SCANSTAT_NLOOP: { 1617 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1618 break; 1619 } 1620 case SQLITE_SCANSTAT_NVISIT: { 1621 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1622 break; 1623 } 1624 case SQLITE_SCANSTAT_EST: { 1625 double r = 1.0; 1626 LogEst x = pScan->nEst; 1627 while( x<100 ){ 1628 x += 10; 1629 r *= 0.5; 1630 } 1631 *(double*)pOut = r*sqlite3LogEstToInt(x); 1632 break; 1633 } 1634 case SQLITE_SCANSTAT_NAME: { 1635 *(const char**)pOut = pScan->zName; 1636 break; 1637 } 1638 case SQLITE_SCANSTAT_EXPLAIN: { 1639 if( pScan->addrExplain ){ 1640 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1641 }else{ 1642 *(const char**)pOut = 0; 1643 } 1644 break; 1645 } 1646 case SQLITE_SCANSTAT_SELECTID: { 1647 if( pScan->addrExplain ){ 1648 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1649 }else{ 1650 *(int*)pOut = -1; 1651 } 1652 break; 1653 } 1654 default: { 1655 return 1; 1656 } 1657 } 1658 return 0; 1659 } 1660 1661 /* 1662 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1663 */ 1664 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1665 Vdbe *p = (Vdbe*)pStmt; 1666 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1667 } 1668 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1669