1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 }else if( pNew->flags & MEM_Null ){ 349 /* Do not duplicate pointer values */ 350 pNew->flags &= ~(MEM_Term|MEM_Subtype); 351 } 352 return pNew; 353 } 354 355 /* Destroy an sqlite3_value object previously obtained from 356 ** sqlite3_value_dup(). 357 */ 358 void sqlite3_value_free(sqlite3_value *pOld){ 359 sqlite3ValueFree(pOld); 360 } 361 362 363 /**************************** sqlite3_result_ ******************************* 364 ** The following routines are used by user-defined functions to specify 365 ** the function result. 366 ** 367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 368 ** result as a string or blob. Appropriate errors are set if the string/blob 369 ** is too big or if an OOM occurs. 370 ** 371 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 372 ** on value P is not going to be used and need to be destroyed. 373 */ 374 static void setResultStrOrError( 375 sqlite3_context *pCtx, /* Function context */ 376 const char *z, /* String pointer */ 377 int n, /* Bytes in string, or negative */ 378 u8 enc, /* Encoding of z. 0 for BLOBs */ 379 void (*xDel)(void*) /* Destructor function */ 380 ){ 381 Mem *pOut = pCtx->pOut; 382 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 383 if( rc ){ 384 if( rc==SQLITE_TOOBIG ){ 385 sqlite3_result_error_toobig(pCtx); 386 }else{ 387 /* The only errors possible from sqlite3VdbeMemSetStr are 388 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 389 assert( rc==SQLITE_NOMEM ); 390 sqlite3_result_error_nomem(pCtx); 391 } 392 return; 393 } 394 sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db)); 395 if( sqlite3VdbeMemTooBig(pOut) ){ 396 sqlite3_result_error_toobig(pCtx); 397 } 398 } 399 static int invokeValueDestructor( 400 const void *p, /* Value to destroy */ 401 void (*xDel)(void*), /* The destructor */ 402 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 403 ){ 404 assert( xDel!=SQLITE_DYNAMIC ); 405 if( xDel==0 ){ 406 /* noop */ 407 }else if( xDel==SQLITE_TRANSIENT ){ 408 /* noop */ 409 }else{ 410 xDel((void*)p); 411 } 412 sqlite3_result_error_toobig(pCtx); 413 return SQLITE_TOOBIG; 414 } 415 void sqlite3_result_blob( 416 sqlite3_context *pCtx, 417 const void *z, 418 int n, 419 void (*xDel)(void *) 420 ){ 421 assert( n>=0 ); 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 setResultStrOrError(pCtx, z, n, 0, xDel); 424 } 425 void sqlite3_result_blob64( 426 sqlite3_context *pCtx, 427 const void *z, 428 sqlite3_uint64 n, 429 void (*xDel)(void *) 430 ){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 assert( xDel!=SQLITE_DYNAMIC ); 433 if( n>0x7fffffff ){ 434 (void)invokeValueDestructor(z, xDel, pCtx); 435 }else{ 436 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 437 } 438 } 439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 441 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 442 } 443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 445 pCtx->isError = SQLITE_ERROR; 446 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 447 } 448 #ifndef SQLITE_OMIT_UTF16 449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 451 pCtx->isError = SQLITE_ERROR; 452 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 453 } 454 #endif 455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 456 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 457 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 458 } 459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 461 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 462 } 463 void sqlite3_result_null(sqlite3_context *pCtx){ 464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 465 sqlite3VdbeMemSetNull(pCtx->pOut); 466 } 467 void sqlite3_result_pointer( 468 sqlite3_context *pCtx, 469 void *pPtr, 470 const char *zPType, 471 void (*xDestructor)(void*) 472 ){ 473 Mem *pOut = pCtx->pOut; 474 assert( sqlite3_mutex_held(pOut->db->mutex) ); 475 sqlite3VdbeMemRelease(pOut); 476 pOut->flags = MEM_Null; 477 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 478 } 479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 480 Mem *pOut = pCtx->pOut; 481 assert( sqlite3_mutex_held(pOut->db->mutex) ); 482 pOut->eSubtype = eSubtype & 0xff; 483 pOut->flags |= MEM_Subtype; 484 } 485 void sqlite3_result_text( 486 sqlite3_context *pCtx, 487 const char *z, 488 int n, 489 void (*xDel)(void *) 490 ){ 491 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 492 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 493 } 494 void sqlite3_result_text64( 495 sqlite3_context *pCtx, 496 const char *z, 497 sqlite3_uint64 n, 498 void (*xDel)(void *), 499 unsigned char enc 500 ){ 501 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 502 assert( xDel!=SQLITE_DYNAMIC ); 503 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 504 if( n>0x7fffffff ){ 505 (void)invokeValueDestructor(z, xDel, pCtx); 506 }else{ 507 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 508 } 509 } 510 #ifndef SQLITE_OMIT_UTF16 511 void sqlite3_result_text16( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 519 } 520 void sqlite3_result_text16be( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 528 } 529 void sqlite3_result_text16le( 530 sqlite3_context *pCtx, 531 const void *z, 532 int n, 533 void (*xDel)(void *) 534 ){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 537 } 538 #endif /* SQLITE_OMIT_UTF16 */ 539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 540 Mem *pOut = pCtx->pOut; 541 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 542 sqlite3VdbeMemCopy(pOut, pValue); 543 sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db)); 544 if( sqlite3VdbeMemTooBig(pOut) ){ 545 sqlite3_result_error_toobig(pCtx); 546 } 547 } 548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 549 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 550 } 551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 552 Mem *pOut = pCtx->pOut; 553 assert( sqlite3_mutex_held(pOut->db->mutex) ); 554 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 555 sqlite3_result_error_toobig(pCtx); 556 return SQLITE_TOOBIG; 557 } 558 #ifndef SQLITE_OMIT_INCRBLOB 559 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 560 return SQLITE_OK; 561 #else 562 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 563 #endif 564 } 565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 566 pCtx->isError = errCode ? errCode : -1; 567 #ifdef SQLITE_DEBUG 568 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 569 #endif 570 if( pCtx->pOut->flags & MEM_Null ){ 571 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 572 SQLITE_STATIC); 573 } 574 } 575 576 /* Force an SQLITE_TOOBIG error. */ 577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 578 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 579 pCtx->isError = SQLITE_TOOBIG; 580 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 581 SQLITE_UTF8, SQLITE_STATIC); 582 } 583 584 /* An SQLITE_NOMEM error. */ 585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 586 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 587 sqlite3VdbeMemSetNull(pCtx->pOut); 588 pCtx->isError = SQLITE_NOMEM_BKPT; 589 sqlite3OomFault(pCtx->pOut->db); 590 } 591 592 #ifndef SQLITE_UNTESTABLE 593 /* Force the INT64 value currently stored as the result to be 594 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 595 ** test-control. 596 */ 597 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 598 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 599 if( pCtx->pOut->flags & MEM_Int ){ 600 pCtx->pOut->flags &= ~MEM_Int; 601 pCtx->pOut->flags |= MEM_IntReal; 602 } 603 } 604 #endif 605 606 607 /* 608 ** This function is called after a transaction has been committed. It 609 ** invokes callbacks registered with sqlite3_wal_hook() as required. 610 */ 611 static int doWalCallbacks(sqlite3 *db){ 612 int rc = SQLITE_OK; 613 #ifndef SQLITE_OMIT_WAL 614 int i; 615 for(i=0; i<db->nDb; i++){ 616 Btree *pBt = db->aDb[i].pBt; 617 if( pBt ){ 618 int nEntry; 619 sqlite3BtreeEnter(pBt); 620 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 621 sqlite3BtreeLeave(pBt); 622 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 623 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 624 } 625 } 626 } 627 #endif 628 return rc; 629 } 630 631 632 /* 633 ** Execute the statement pStmt, either until a row of data is ready, the 634 ** statement is completely executed or an error occurs. 635 ** 636 ** This routine implements the bulk of the logic behind the sqlite_step() 637 ** API. The only thing omitted is the automatic recompile if a 638 ** schema change has occurred. That detail is handled by the 639 ** outer sqlite3_step() wrapper procedure. 640 */ 641 static int sqlite3Step(Vdbe *p){ 642 sqlite3 *db; 643 int rc; 644 645 assert(p); 646 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 647 /* We used to require that sqlite3_reset() be called before retrying 648 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 649 ** with version 3.7.0, we changed this so that sqlite3_reset() would 650 ** be called automatically instead of throwing the SQLITE_MISUSE error. 651 ** This "automatic-reset" change is not technically an incompatibility, 652 ** since any application that receives an SQLITE_MISUSE is broken by 653 ** definition. 654 ** 655 ** Nevertheless, some published applications that were originally written 656 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 657 ** returns, and those were broken by the automatic-reset change. As a 658 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 659 ** legacy behavior of returning SQLITE_MISUSE for cases where the 660 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 661 ** or SQLITE_BUSY error. 662 */ 663 #ifdef SQLITE_OMIT_AUTORESET 664 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 665 sqlite3_reset((sqlite3_stmt*)p); 666 }else{ 667 return SQLITE_MISUSE_BKPT; 668 } 669 #else 670 sqlite3_reset((sqlite3_stmt*)p); 671 #endif 672 } 673 674 /* Check that malloc() has not failed. If it has, return early. */ 675 db = p->db; 676 if( db->mallocFailed ){ 677 p->rc = SQLITE_NOMEM; 678 return SQLITE_NOMEM_BKPT; 679 } 680 681 if( p->pc<0 && p->expired ){ 682 p->rc = SQLITE_SCHEMA; 683 rc = SQLITE_ERROR; 684 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 685 /* If this statement was prepared using saved SQL and an 686 ** error has occurred, then return the error code in p->rc to the 687 ** caller. Set the error code in the database handle to the same value. 688 */ 689 rc = sqlite3VdbeTransferError(p); 690 } 691 goto end_of_step; 692 } 693 if( p->pc<0 ){ 694 /* If there are no other statements currently running, then 695 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 696 ** from interrupting a statement that has not yet started. 697 */ 698 if( db->nVdbeActive==0 ){ 699 AtomicStore(&db->u1.isInterrupted, 0); 700 } 701 702 assert( db->nVdbeWrite>0 || db->autoCommit==0 703 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 704 ); 705 706 #ifndef SQLITE_OMIT_TRACE 707 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 708 && !db->init.busy && p->zSql ){ 709 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 710 }else{ 711 assert( p->startTime==0 ); 712 } 713 #endif 714 715 db->nVdbeActive++; 716 if( p->readOnly==0 ) db->nVdbeWrite++; 717 if( p->bIsReader ) db->nVdbeRead++; 718 p->pc = 0; 719 } 720 #ifdef SQLITE_DEBUG 721 p->rcApp = SQLITE_OK; 722 #endif 723 #ifndef SQLITE_OMIT_EXPLAIN 724 if( p->explain ){ 725 rc = sqlite3VdbeList(p); 726 }else 727 #endif /* SQLITE_OMIT_EXPLAIN */ 728 { 729 db->nVdbeExec++; 730 rc = sqlite3VdbeExec(p); 731 db->nVdbeExec--; 732 } 733 734 if( rc!=SQLITE_ROW ){ 735 #ifndef SQLITE_OMIT_TRACE 736 /* If the statement completed successfully, invoke the profile callback */ 737 checkProfileCallback(db, p); 738 #endif 739 740 if( rc==SQLITE_DONE && db->autoCommit ){ 741 assert( p->rc==SQLITE_OK ); 742 p->rc = doWalCallbacks(db); 743 if( p->rc!=SQLITE_OK ){ 744 rc = SQLITE_ERROR; 745 } 746 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 747 /* If this statement was prepared using saved SQL and an 748 ** error has occurred, then return the error code in p->rc to the 749 ** caller. Set the error code in the database handle to the same value. 750 */ 751 rc = sqlite3VdbeTransferError(p); 752 } 753 } 754 755 db->errCode = rc; 756 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 757 p->rc = SQLITE_NOMEM_BKPT; 758 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 759 } 760 end_of_step: 761 /* There are only a limited number of result codes allowed from the 762 ** statements prepared using the legacy sqlite3_prepare() interface */ 763 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 764 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 765 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 766 ); 767 return (rc&db->errMask); 768 } 769 770 /* 771 ** This is the top-level implementation of sqlite3_step(). Call 772 ** sqlite3Step() to do most of the work. If a schema error occurs, 773 ** call sqlite3Reprepare() and try again. 774 */ 775 int sqlite3_step(sqlite3_stmt *pStmt){ 776 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 777 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 778 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 779 sqlite3 *db; /* The database connection */ 780 781 if( vdbeSafetyNotNull(v) ){ 782 return SQLITE_MISUSE_BKPT; 783 } 784 db = v->db; 785 sqlite3_mutex_enter(db->mutex); 786 v->doingRerun = 0; 787 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 788 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 789 int savedPc = v->pc; 790 rc = sqlite3Reprepare(v); 791 if( rc!=SQLITE_OK ){ 792 /* This case occurs after failing to recompile an sql statement. 793 ** The error message from the SQL compiler has already been loaded 794 ** into the database handle. This block copies the error message 795 ** from the database handle into the statement and sets the statement 796 ** program counter to 0 to ensure that when the statement is 797 ** finalized or reset the parser error message is available via 798 ** sqlite3_errmsg() and sqlite3_errcode(). 799 */ 800 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 801 sqlite3DbFree(db, v->zErrMsg); 802 if( !db->mallocFailed ){ 803 v->zErrMsg = sqlite3DbStrDup(db, zErr); 804 v->rc = rc = sqlite3ApiExit(db, rc); 805 } else { 806 v->zErrMsg = 0; 807 v->rc = rc = SQLITE_NOMEM_BKPT; 808 } 809 break; 810 } 811 sqlite3_reset(pStmt); 812 if( savedPc>=0 ) v->doingRerun = 1; 813 assert( v->expired==0 ); 814 } 815 sqlite3_mutex_leave(db->mutex); 816 return rc; 817 } 818 819 820 /* 821 ** Extract the user data from a sqlite3_context structure and return a 822 ** pointer to it. 823 */ 824 void *sqlite3_user_data(sqlite3_context *p){ 825 assert( p && p->pFunc ); 826 return p->pFunc->pUserData; 827 } 828 829 /* 830 ** Extract the user data from a sqlite3_context structure and return a 831 ** pointer to it. 832 ** 833 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 834 ** returns a copy of the pointer to the database connection (the 1st 835 ** parameter) of the sqlite3_create_function() and 836 ** sqlite3_create_function16() routines that originally registered the 837 ** application defined function. 838 */ 839 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 840 assert( p && p->pOut ); 841 return p->pOut->db; 842 } 843 844 /* 845 ** If this routine is invoked from within an xColumn method of a virtual 846 ** table, then it returns true if and only if the the call is during an 847 ** UPDATE operation and the value of the column will not be modified 848 ** by the UPDATE. 849 ** 850 ** If this routine is called from any context other than within the 851 ** xColumn method of a virtual table, then the return value is meaningless 852 ** and arbitrary. 853 ** 854 ** Virtual table implements might use this routine to optimize their 855 ** performance by substituting a NULL result, or some other light-weight 856 ** value, as a signal to the xUpdate routine that the column is unchanged. 857 */ 858 int sqlite3_vtab_nochange(sqlite3_context *p){ 859 assert( p ); 860 return sqlite3_value_nochange(p->pOut); 861 } 862 863 /* 864 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 865 ** sqlite3_vtab_in_next() (if bNext!=0). 866 */ 867 static int valueFromValueList( 868 sqlite3_value *pVal, /* Pointer to the ValueList object */ 869 sqlite3_value **ppOut, /* Store the next value from the list here */ 870 int bNext /* 1 for _next(). 0 for _first() */ 871 ){ 872 int rc; 873 ValueList *pRhs; 874 875 *ppOut = 0; 876 if( pVal==0 ) return SQLITE_MISUSE; 877 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList"); 878 if( pRhs==0 ) return SQLITE_MISUSE; 879 if( bNext ){ 880 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 881 }else{ 882 int dummy = 0; 883 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 884 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 885 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 886 } 887 if( rc==SQLITE_OK ){ 888 u32 sz; /* Size of current row in bytes */ 889 Mem sMem; /* Raw content of current row */ 890 memset(&sMem, 0, sizeof(sMem)); 891 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 892 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 893 if( rc==SQLITE_OK ){ 894 u8 *zBuf = (u8*)sMem.z; 895 u32 iSerial; 896 sqlite3_value *pOut = pRhs->pOut; 897 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 898 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 899 pOut->enc = ENC(pOut->db); 900 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 901 rc = SQLITE_NOMEM; 902 }else{ 903 *ppOut = pOut; 904 } 905 } 906 sqlite3VdbeMemRelease(&sMem); 907 } 908 return rc; 909 } 910 911 /* 912 ** Set the iterator value pVal to point to the first value in the set. 913 ** Set (*ppOut) to point to this value before returning. 914 */ 915 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 916 return valueFromValueList(pVal, ppOut, 0); 917 } 918 919 /* 920 ** Set the iterator value pVal to point to the next value in the set. 921 ** Set (*ppOut) to point to this value before returning. 922 */ 923 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 924 return valueFromValueList(pVal, ppOut, 1); 925 } 926 927 /* 928 ** Return the current time for a statement. If the current time 929 ** is requested more than once within the same run of a single prepared 930 ** statement, the exact same time is returned for each invocation regardless 931 ** of the amount of time that elapses between invocations. In other words, 932 ** the time returned is always the time of the first call. 933 */ 934 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 935 int rc; 936 #ifndef SQLITE_ENABLE_STAT4 937 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 938 assert( p->pVdbe!=0 ); 939 #else 940 sqlite3_int64 iTime = 0; 941 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 942 #endif 943 if( *piTime==0 ){ 944 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 945 if( rc ) *piTime = 0; 946 } 947 return *piTime; 948 } 949 950 /* 951 ** Create a new aggregate context for p and return a pointer to 952 ** its pMem->z element. 953 */ 954 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 955 Mem *pMem = p->pMem; 956 assert( (pMem->flags & MEM_Agg)==0 ); 957 if( nByte<=0 ){ 958 sqlite3VdbeMemSetNull(pMem); 959 pMem->z = 0; 960 }else{ 961 sqlite3VdbeMemClearAndResize(pMem, nByte); 962 pMem->flags = MEM_Agg; 963 pMem->u.pDef = p->pFunc; 964 if( pMem->z ){ 965 memset(pMem->z, 0, nByte); 966 } 967 } 968 return (void*)pMem->z; 969 } 970 971 /* 972 ** Allocate or return the aggregate context for a user function. A new 973 ** context is allocated on the first call. Subsequent calls return the 974 ** same context that was returned on prior calls. 975 */ 976 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 977 assert( p && p->pFunc && p->pFunc->xFinalize ); 978 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 979 testcase( nByte<0 ); 980 if( (p->pMem->flags & MEM_Agg)==0 ){ 981 return createAggContext(p, nByte); 982 }else{ 983 return (void*)p->pMem->z; 984 } 985 } 986 987 /* 988 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 989 ** the user-function defined by pCtx. 990 ** 991 ** The left-most argument is 0. 992 ** 993 ** Undocumented behavior: If iArg is negative then access a cache of 994 ** auxiliary data pointers that is available to all functions within a 995 ** single prepared statement. The iArg values must match. 996 */ 997 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 998 AuxData *pAuxData; 999 1000 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1001 #if SQLITE_ENABLE_STAT4 1002 if( pCtx->pVdbe==0 ) return 0; 1003 #else 1004 assert( pCtx->pVdbe!=0 ); 1005 #endif 1006 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1007 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1008 return pAuxData->pAux; 1009 } 1010 } 1011 return 0; 1012 } 1013 1014 /* 1015 ** Set the auxiliary data pointer and delete function, for the iArg'th 1016 ** argument to the user-function defined by pCtx. Any previous value is 1017 ** deleted by calling the delete function specified when it was set. 1018 ** 1019 ** The left-most argument is 0. 1020 ** 1021 ** Undocumented behavior: If iArg is negative then make the data available 1022 ** to all functions within the current prepared statement using iArg as an 1023 ** access code. 1024 */ 1025 void sqlite3_set_auxdata( 1026 sqlite3_context *pCtx, 1027 int iArg, 1028 void *pAux, 1029 void (*xDelete)(void*) 1030 ){ 1031 AuxData *pAuxData; 1032 Vdbe *pVdbe = pCtx->pVdbe; 1033 1034 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1035 #ifdef SQLITE_ENABLE_STAT4 1036 if( pVdbe==0 ) goto failed; 1037 #else 1038 assert( pVdbe!=0 ); 1039 #endif 1040 1041 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1042 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1043 break; 1044 } 1045 } 1046 if( pAuxData==0 ){ 1047 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 1048 if( !pAuxData ) goto failed; 1049 pAuxData->iAuxOp = pCtx->iOp; 1050 pAuxData->iAuxArg = iArg; 1051 pAuxData->pNextAux = pVdbe->pAuxData; 1052 pVdbe->pAuxData = pAuxData; 1053 if( pCtx->isError==0 ) pCtx->isError = -1; 1054 }else if( pAuxData->xDeleteAux ){ 1055 pAuxData->xDeleteAux(pAuxData->pAux); 1056 } 1057 1058 pAuxData->pAux = pAux; 1059 pAuxData->xDeleteAux = xDelete; 1060 return; 1061 1062 failed: 1063 if( xDelete ){ 1064 xDelete(pAux); 1065 } 1066 } 1067 1068 #ifndef SQLITE_OMIT_DEPRECATED 1069 /* 1070 ** Return the number of times the Step function of an aggregate has been 1071 ** called. 1072 ** 1073 ** This function is deprecated. Do not use it for new code. It is 1074 ** provide only to avoid breaking legacy code. New aggregate function 1075 ** implementations should keep their own counts within their aggregate 1076 ** context. 1077 */ 1078 int sqlite3_aggregate_count(sqlite3_context *p){ 1079 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1080 return p->pMem->n; 1081 } 1082 #endif 1083 1084 /* 1085 ** Return the number of columns in the result set for the statement pStmt. 1086 */ 1087 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1088 Vdbe *pVm = (Vdbe *)pStmt; 1089 return pVm ? pVm->nResColumn : 0; 1090 } 1091 1092 /* 1093 ** Return the number of values available from the current row of the 1094 ** currently executing statement pStmt. 1095 */ 1096 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1097 Vdbe *pVm = (Vdbe *)pStmt; 1098 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1099 return pVm->nResColumn; 1100 } 1101 1102 /* 1103 ** Return a pointer to static memory containing an SQL NULL value. 1104 */ 1105 static const Mem *columnNullValue(void){ 1106 /* Even though the Mem structure contains an element 1107 ** of type i64, on certain architectures (x86) with certain compiler 1108 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1109 ** instead of an 8-byte one. This all works fine, except that when 1110 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1111 ** that a Mem structure is located on an 8-byte boundary. To prevent 1112 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1113 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1114 ** __attribute__((aligned(8))) macro. */ 1115 static const Mem nullMem 1116 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1117 __attribute__((aligned(8))) 1118 #endif 1119 = { 1120 /* .u = */ {0}, 1121 /* .z = */ (char*)0, 1122 /* .n = */ (int)0, 1123 /* .flags = */ (u16)MEM_Null, 1124 /* .enc = */ (u8)0, 1125 /* .eSubtype = */ (u8)0, 1126 /* .db = */ (sqlite3*)0, 1127 /* .szMalloc = */ (int)0, 1128 /* .uTemp = */ (u32)0, 1129 /* .zMalloc = */ (char*)0, 1130 /* .xDel = */ (void(*)(void*))0, 1131 #ifdef SQLITE_DEBUG 1132 /* .pScopyFrom = */ (Mem*)0, 1133 /* .mScopyFlags= */ 0, 1134 #endif 1135 }; 1136 return &nullMem; 1137 } 1138 1139 /* 1140 ** Check to see if column iCol of the given statement is valid. If 1141 ** it is, return a pointer to the Mem for the value of that column. 1142 ** If iCol is not valid, return a pointer to a Mem which has a value 1143 ** of NULL. 1144 */ 1145 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1146 Vdbe *pVm; 1147 Mem *pOut; 1148 1149 pVm = (Vdbe *)pStmt; 1150 if( pVm==0 ) return (Mem*)columnNullValue(); 1151 assert( pVm->db ); 1152 sqlite3_mutex_enter(pVm->db->mutex); 1153 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1154 pOut = &pVm->pResultSet[i]; 1155 }else{ 1156 sqlite3Error(pVm->db, SQLITE_RANGE); 1157 pOut = (Mem*)columnNullValue(); 1158 } 1159 return pOut; 1160 } 1161 1162 /* 1163 ** This function is called after invoking an sqlite3_value_XXX function on a 1164 ** column value (i.e. a value returned by evaluating an SQL expression in the 1165 ** select list of a SELECT statement) that may cause a malloc() failure. If 1166 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1167 ** code of statement pStmt set to SQLITE_NOMEM. 1168 ** 1169 ** Specifically, this is called from within: 1170 ** 1171 ** sqlite3_column_int() 1172 ** sqlite3_column_int64() 1173 ** sqlite3_column_text() 1174 ** sqlite3_column_text16() 1175 ** sqlite3_column_real() 1176 ** sqlite3_column_bytes() 1177 ** sqlite3_column_bytes16() 1178 ** sqiite3_column_blob() 1179 */ 1180 static void columnMallocFailure(sqlite3_stmt *pStmt) 1181 { 1182 /* If malloc() failed during an encoding conversion within an 1183 ** sqlite3_column_XXX API, then set the return code of the statement to 1184 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1185 ** and _finalize() will return NOMEM. 1186 */ 1187 Vdbe *p = (Vdbe *)pStmt; 1188 if( p ){ 1189 assert( p->db!=0 ); 1190 assert( sqlite3_mutex_held(p->db->mutex) ); 1191 p->rc = sqlite3ApiExit(p->db, p->rc); 1192 sqlite3_mutex_leave(p->db->mutex); 1193 } 1194 } 1195 1196 /**************************** sqlite3_column_ ******************************* 1197 ** The following routines are used to access elements of the current row 1198 ** in the result set. 1199 */ 1200 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1201 const void *val; 1202 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1203 /* Even though there is no encoding conversion, value_blob() might 1204 ** need to call malloc() to expand the result of a zeroblob() 1205 ** expression. 1206 */ 1207 columnMallocFailure(pStmt); 1208 return val; 1209 } 1210 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1211 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1212 columnMallocFailure(pStmt); 1213 return val; 1214 } 1215 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1216 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1217 columnMallocFailure(pStmt); 1218 return val; 1219 } 1220 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1221 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1222 columnMallocFailure(pStmt); 1223 return val; 1224 } 1225 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1226 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1227 columnMallocFailure(pStmt); 1228 return val; 1229 } 1230 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1231 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1232 columnMallocFailure(pStmt); 1233 return val; 1234 } 1235 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1236 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1237 columnMallocFailure(pStmt); 1238 return val; 1239 } 1240 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1241 Mem *pOut = columnMem(pStmt, i); 1242 if( pOut->flags&MEM_Static ){ 1243 pOut->flags &= ~MEM_Static; 1244 pOut->flags |= MEM_Ephem; 1245 } 1246 columnMallocFailure(pStmt); 1247 return (sqlite3_value *)pOut; 1248 } 1249 #ifndef SQLITE_OMIT_UTF16 1250 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1251 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1252 columnMallocFailure(pStmt); 1253 return val; 1254 } 1255 #endif /* SQLITE_OMIT_UTF16 */ 1256 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1257 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1258 columnMallocFailure(pStmt); 1259 return iType; 1260 } 1261 1262 /* 1263 ** Convert the N-th element of pStmt->pColName[] into a string using 1264 ** xFunc() then return that string. If N is out of range, return 0. 1265 ** 1266 ** There are up to 5 names for each column. useType determines which 1267 ** name is returned. Here are the names: 1268 ** 1269 ** 0 The column name as it should be displayed for output 1270 ** 1 The datatype name for the column 1271 ** 2 The name of the database that the column derives from 1272 ** 3 The name of the table that the column derives from 1273 ** 4 The name of the table column that the result column derives from 1274 ** 1275 ** If the result is not a simple column reference (if it is an expression 1276 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1277 */ 1278 static const void *columnName( 1279 sqlite3_stmt *pStmt, /* The statement */ 1280 int N, /* Which column to get the name for */ 1281 int useUtf16, /* True to return the name as UTF16 */ 1282 int useType /* What type of name */ 1283 ){ 1284 const void *ret; 1285 Vdbe *p; 1286 int n; 1287 sqlite3 *db; 1288 #ifdef SQLITE_ENABLE_API_ARMOR 1289 if( pStmt==0 ){ 1290 (void)SQLITE_MISUSE_BKPT; 1291 return 0; 1292 } 1293 #endif 1294 ret = 0; 1295 p = (Vdbe *)pStmt; 1296 db = p->db; 1297 assert( db!=0 ); 1298 n = sqlite3_column_count(pStmt); 1299 if( N<n && N>=0 ){ 1300 N += useType*n; 1301 sqlite3_mutex_enter(db->mutex); 1302 assert( db->mallocFailed==0 ); 1303 #ifndef SQLITE_OMIT_UTF16 1304 if( useUtf16 ){ 1305 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1306 }else 1307 #endif 1308 { 1309 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1310 } 1311 /* A malloc may have failed inside of the _text() call. If this 1312 ** is the case, clear the mallocFailed flag and return NULL. 1313 */ 1314 if( db->mallocFailed ){ 1315 sqlite3OomClear(db); 1316 ret = 0; 1317 } 1318 sqlite3_mutex_leave(db->mutex); 1319 } 1320 return ret; 1321 } 1322 1323 /* 1324 ** Return the name of the Nth column of the result set returned by SQL 1325 ** statement pStmt. 1326 */ 1327 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1328 return columnName(pStmt, N, 0, COLNAME_NAME); 1329 } 1330 #ifndef SQLITE_OMIT_UTF16 1331 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1332 return columnName(pStmt, N, 1, COLNAME_NAME); 1333 } 1334 #endif 1335 1336 /* 1337 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1338 ** not define OMIT_DECLTYPE. 1339 */ 1340 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1341 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1342 and SQLITE_ENABLE_COLUMN_METADATA" 1343 #endif 1344 1345 #ifndef SQLITE_OMIT_DECLTYPE 1346 /* 1347 ** Return the column declaration type (if applicable) of the 'i'th column 1348 ** of the result set of SQL statement pStmt. 1349 */ 1350 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1351 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1352 } 1353 #ifndef SQLITE_OMIT_UTF16 1354 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1355 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1356 } 1357 #endif /* SQLITE_OMIT_UTF16 */ 1358 #endif /* SQLITE_OMIT_DECLTYPE */ 1359 1360 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1361 /* 1362 ** Return the name of the database from which a result column derives. 1363 ** NULL is returned if the result column is an expression or constant or 1364 ** anything else which is not an unambiguous reference to a database column. 1365 */ 1366 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1367 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1368 } 1369 #ifndef SQLITE_OMIT_UTF16 1370 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1371 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1372 } 1373 #endif /* SQLITE_OMIT_UTF16 */ 1374 1375 /* 1376 ** Return the name of the table from which a result column derives. 1377 ** NULL is returned if the result column is an expression or constant or 1378 ** anything else which is not an unambiguous reference to a database column. 1379 */ 1380 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1381 return columnName(pStmt, N, 0, COLNAME_TABLE); 1382 } 1383 #ifndef SQLITE_OMIT_UTF16 1384 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1385 return columnName(pStmt, N, 1, COLNAME_TABLE); 1386 } 1387 #endif /* SQLITE_OMIT_UTF16 */ 1388 1389 /* 1390 ** Return the name of the table column from which a result column derives. 1391 ** NULL is returned if the result column is an expression or constant or 1392 ** anything else which is not an unambiguous reference to a database column. 1393 */ 1394 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1395 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1396 } 1397 #ifndef SQLITE_OMIT_UTF16 1398 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1399 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1400 } 1401 #endif /* SQLITE_OMIT_UTF16 */ 1402 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1403 1404 1405 /******************************* sqlite3_bind_ *************************** 1406 ** 1407 ** Routines used to attach values to wildcards in a compiled SQL statement. 1408 */ 1409 /* 1410 ** Unbind the value bound to variable i in virtual machine p. This is the 1411 ** the same as binding a NULL value to the column. If the "i" parameter is 1412 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1413 ** 1414 ** A successful evaluation of this routine acquires the mutex on p. 1415 ** the mutex is released if any kind of error occurs. 1416 ** 1417 ** The error code stored in database p->db is overwritten with the return 1418 ** value in any case. 1419 */ 1420 static int vdbeUnbind(Vdbe *p, int i){ 1421 Mem *pVar; 1422 if( vdbeSafetyNotNull(p) ){ 1423 return SQLITE_MISUSE_BKPT; 1424 } 1425 sqlite3_mutex_enter(p->db->mutex); 1426 if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1427 sqlite3Error(p->db, SQLITE_MISUSE); 1428 sqlite3_mutex_leave(p->db->mutex); 1429 sqlite3_log(SQLITE_MISUSE, 1430 "bind on a busy prepared statement: [%s]", p->zSql); 1431 return SQLITE_MISUSE_BKPT; 1432 } 1433 if( i<1 || i>p->nVar ){ 1434 sqlite3Error(p->db, SQLITE_RANGE); 1435 sqlite3_mutex_leave(p->db->mutex); 1436 return SQLITE_RANGE; 1437 } 1438 i--; 1439 pVar = &p->aVar[i]; 1440 sqlite3VdbeMemRelease(pVar); 1441 pVar->flags = MEM_Null; 1442 p->db->errCode = SQLITE_OK; 1443 1444 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1445 ** binding a new value to this variable invalidates the current query plan. 1446 ** 1447 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1448 ** parameter in the WHERE clause might influence the choice of query plan 1449 ** for a statement, then the statement will be automatically recompiled, 1450 ** as if there had been a schema change, on the first sqlite3_step() call 1451 ** following any change to the bindings of that parameter. 1452 */ 1453 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1454 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1455 p->expired = 1; 1456 } 1457 return SQLITE_OK; 1458 } 1459 1460 /* 1461 ** Bind a text or BLOB value. 1462 */ 1463 static int bindText( 1464 sqlite3_stmt *pStmt, /* The statement to bind against */ 1465 int i, /* Index of the parameter to bind */ 1466 const void *zData, /* Pointer to the data to be bound */ 1467 i64 nData, /* Number of bytes of data to be bound */ 1468 void (*xDel)(void*), /* Destructor for the data */ 1469 u8 encoding /* Encoding for the data */ 1470 ){ 1471 Vdbe *p = (Vdbe *)pStmt; 1472 Mem *pVar; 1473 int rc; 1474 1475 rc = vdbeUnbind(p, i); 1476 if( rc==SQLITE_OK ){ 1477 if( zData!=0 ){ 1478 pVar = &p->aVar[i-1]; 1479 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1480 if( rc==SQLITE_OK && encoding!=0 ){ 1481 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1482 } 1483 if( rc ){ 1484 sqlite3Error(p->db, rc); 1485 rc = sqlite3ApiExit(p->db, rc); 1486 } 1487 } 1488 sqlite3_mutex_leave(p->db->mutex); 1489 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1490 xDel((void*)zData); 1491 } 1492 return rc; 1493 } 1494 1495 1496 /* 1497 ** Bind a blob value to an SQL statement variable. 1498 */ 1499 int sqlite3_bind_blob( 1500 sqlite3_stmt *pStmt, 1501 int i, 1502 const void *zData, 1503 int nData, 1504 void (*xDel)(void*) 1505 ){ 1506 #ifdef SQLITE_ENABLE_API_ARMOR 1507 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1508 #endif 1509 return bindText(pStmt, i, zData, nData, xDel, 0); 1510 } 1511 int sqlite3_bind_blob64( 1512 sqlite3_stmt *pStmt, 1513 int i, 1514 const void *zData, 1515 sqlite3_uint64 nData, 1516 void (*xDel)(void*) 1517 ){ 1518 assert( xDel!=SQLITE_DYNAMIC ); 1519 return bindText(pStmt, i, zData, nData, xDel, 0); 1520 } 1521 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1522 int rc; 1523 Vdbe *p = (Vdbe *)pStmt; 1524 rc = vdbeUnbind(p, i); 1525 if( rc==SQLITE_OK ){ 1526 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1527 sqlite3_mutex_leave(p->db->mutex); 1528 } 1529 return rc; 1530 } 1531 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1532 return sqlite3_bind_int64(p, i, (i64)iValue); 1533 } 1534 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1535 int rc; 1536 Vdbe *p = (Vdbe *)pStmt; 1537 rc = vdbeUnbind(p, i); 1538 if( rc==SQLITE_OK ){ 1539 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1540 sqlite3_mutex_leave(p->db->mutex); 1541 } 1542 return rc; 1543 } 1544 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1545 int rc; 1546 Vdbe *p = (Vdbe*)pStmt; 1547 rc = vdbeUnbind(p, i); 1548 if( rc==SQLITE_OK ){ 1549 sqlite3_mutex_leave(p->db->mutex); 1550 } 1551 return rc; 1552 } 1553 int sqlite3_bind_pointer( 1554 sqlite3_stmt *pStmt, 1555 int i, 1556 void *pPtr, 1557 const char *zPTtype, 1558 void (*xDestructor)(void*) 1559 ){ 1560 int rc; 1561 Vdbe *p = (Vdbe*)pStmt; 1562 rc = vdbeUnbind(p, i); 1563 if( rc==SQLITE_OK ){ 1564 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1565 sqlite3_mutex_leave(p->db->mutex); 1566 }else if( xDestructor ){ 1567 xDestructor(pPtr); 1568 } 1569 return rc; 1570 } 1571 int sqlite3_bind_text( 1572 sqlite3_stmt *pStmt, 1573 int i, 1574 const char *zData, 1575 int nData, 1576 void (*xDel)(void*) 1577 ){ 1578 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1579 } 1580 int sqlite3_bind_text64( 1581 sqlite3_stmt *pStmt, 1582 int i, 1583 const char *zData, 1584 sqlite3_uint64 nData, 1585 void (*xDel)(void*), 1586 unsigned char enc 1587 ){ 1588 assert( xDel!=SQLITE_DYNAMIC ); 1589 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1590 return bindText(pStmt, i, zData, nData, xDel, enc); 1591 } 1592 #ifndef SQLITE_OMIT_UTF16 1593 int sqlite3_bind_text16( 1594 sqlite3_stmt *pStmt, 1595 int i, 1596 const void *zData, 1597 int nData, 1598 void (*xDel)(void*) 1599 ){ 1600 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1601 } 1602 #endif /* SQLITE_OMIT_UTF16 */ 1603 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1604 int rc; 1605 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1606 case SQLITE_INTEGER: { 1607 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1608 break; 1609 } 1610 case SQLITE_FLOAT: { 1611 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 1612 rc = sqlite3_bind_double(pStmt, i, 1613 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 1614 ); 1615 break; 1616 } 1617 case SQLITE_BLOB: { 1618 if( pValue->flags & MEM_Zero ){ 1619 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1620 }else{ 1621 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1622 } 1623 break; 1624 } 1625 case SQLITE_TEXT: { 1626 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1627 pValue->enc); 1628 break; 1629 } 1630 default: { 1631 rc = sqlite3_bind_null(pStmt, i); 1632 break; 1633 } 1634 } 1635 return rc; 1636 } 1637 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1638 int rc; 1639 Vdbe *p = (Vdbe *)pStmt; 1640 rc = vdbeUnbind(p, i); 1641 if( rc==SQLITE_OK ){ 1642 #ifndef SQLITE_OMIT_INCRBLOB 1643 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1644 #else 1645 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1646 #endif 1647 sqlite3_mutex_leave(p->db->mutex); 1648 } 1649 return rc; 1650 } 1651 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1652 int rc; 1653 Vdbe *p = (Vdbe *)pStmt; 1654 sqlite3_mutex_enter(p->db->mutex); 1655 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1656 rc = SQLITE_TOOBIG; 1657 }else{ 1658 assert( (n & 0x7FFFFFFF)==n ); 1659 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1660 } 1661 rc = sqlite3ApiExit(p->db, rc); 1662 sqlite3_mutex_leave(p->db->mutex); 1663 return rc; 1664 } 1665 1666 /* 1667 ** Return the number of wildcards that can be potentially bound to. 1668 ** This routine is added to support DBD::SQLite. 1669 */ 1670 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1671 Vdbe *p = (Vdbe*)pStmt; 1672 return p ? p->nVar : 0; 1673 } 1674 1675 /* 1676 ** Return the name of a wildcard parameter. Return NULL if the index 1677 ** is out of range or if the wildcard is unnamed. 1678 ** 1679 ** The result is always UTF-8. 1680 */ 1681 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1682 Vdbe *p = (Vdbe*)pStmt; 1683 if( p==0 ) return 0; 1684 return sqlite3VListNumToName(p->pVList, i); 1685 } 1686 1687 /* 1688 ** Given a wildcard parameter name, return the index of the variable 1689 ** with that name. If there is no variable with the given name, 1690 ** return 0. 1691 */ 1692 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1693 if( p==0 || zName==0 ) return 0; 1694 return sqlite3VListNameToNum(p->pVList, zName, nName); 1695 } 1696 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1697 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1698 } 1699 1700 /* 1701 ** Transfer all bindings from the first statement over to the second. 1702 */ 1703 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1704 Vdbe *pFrom = (Vdbe*)pFromStmt; 1705 Vdbe *pTo = (Vdbe*)pToStmt; 1706 int i; 1707 assert( pTo->db==pFrom->db ); 1708 assert( pTo->nVar==pFrom->nVar ); 1709 sqlite3_mutex_enter(pTo->db->mutex); 1710 for(i=0; i<pFrom->nVar; i++){ 1711 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1712 } 1713 sqlite3_mutex_leave(pTo->db->mutex); 1714 return SQLITE_OK; 1715 } 1716 1717 #ifndef SQLITE_OMIT_DEPRECATED 1718 /* 1719 ** Deprecated external interface. Internal/core SQLite code 1720 ** should call sqlite3TransferBindings. 1721 ** 1722 ** It is misuse to call this routine with statements from different 1723 ** database connections. But as this is a deprecated interface, we 1724 ** will not bother to check for that condition. 1725 ** 1726 ** If the two statements contain a different number of bindings, then 1727 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1728 ** SQLITE_OK is returned. 1729 */ 1730 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1731 Vdbe *pFrom = (Vdbe*)pFromStmt; 1732 Vdbe *pTo = (Vdbe*)pToStmt; 1733 if( pFrom->nVar!=pTo->nVar ){ 1734 return SQLITE_ERROR; 1735 } 1736 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1737 if( pTo->expmask ){ 1738 pTo->expired = 1; 1739 } 1740 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1741 if( pFrom->expmask ){ 1742 pFrom->expired = 1; 1743 } 1744 return sqlite3TransferBindings(pFromStmt, pToStmt); 1745 } 1746 #endif 1747 1748 /* 1749 ** Return the sqlite3* database handle to which the prepared statement given 1750 ** in the argument belongs. This is the same database handle that was 1751 ** the first argument to the sqlite3_prepare() that was used to create 1752 ** the statement in the first place. 1753 */ 1754 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1755 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1756 } 1757 1758 /* 1759 ** Return true if the prepared statement is guaranteed to not modify the 1760 ** database. 1761 */ 1762 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1763 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1764 } 1765 1766 /* 1767 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1768 ** statement is an EXPLAIN QUERY PLAN 1769 */ 1770 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1771 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1772 } 1773 1774 /* 1775 ** Return true if the prepared statement is in need of being reset. 1776 */ 1777 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1778 Vdbe *v = (Vdbe*)pStmt; 1779 return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0; 1780 } 1781 1782 /* 1783 ** Return a pointer to the next prepared statement after pStmt associated 1784 ** with database connection pDb. If pStmt is NULL, return the first 1785 ** prepared statement for the database connection. Return NULL if there 1786 ** are no more. 1787 */ 1788 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1789 sqlite3_stmt *pNext; 1790 #ifdef SQLITE_ENABLE_API_ARMOR 1791 if( !sqlite3SafetyCheckOk(pDb) ){ 1792 (void)SQLITE_MISUSE_BKPT; 1793 return 0; 1794 } 1795 #endif 1796 sqlite3_mutex_enter(pDb->mutex); 1797 if( pStmt==0 ){ 1798 pNext = (sqlite3_stmt*)pDb->pVdbe; 1799 }else{ 1800 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1801 } 1802 sqlite3_mutex_leave(pDb->mutex); 1803 return pNext; 1804 } 1805 1806 /* 1807 ** Return the value of a status counter for a prepared statement 1808 */ 1809 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1810 Vdbe *pVdbe = (Vdbe*)pStmt; 1811 u32 v; 1812 #ifdef SQLITE_ENABLE_API_ARMOR 1813 if( !pStmt 1814 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1815 ){ 1816 (void)SQLITE_MISUSE_BKPT; 1817 return 0; 1818 } 1819 #endif 1820 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1821 sqlite3 *db = pVdbe->db; 1822 sqlite3_mutex_enter(db->mutex); 1823 v = 0; 1824 db->pnBytesFreed = (int*)&v; 1825 sqlite3VdbeClearObject(db, pVdbe); 1826 sqlite3DbFree(db, pVdbe); 1827 db->pnBytesFreed = 0; 1828 sqlite3_mutex_leave(db->mutex); 1829 }else{ 1830 v = pVdbe->aCounter[op]; 1831 if( resetFlag ) pVdbe->aCounter[op] = 0; 1832 } 1833 return (int)v; 1834 } 1835 1836 /* 1837 ** Return the SQL associated with a prepared statement 1838 */ 1839 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1840 Vdbe *p = (Vdbe *)pStmt; 1841 return p ? p->zSql : 0; 1842 } 1843 1844 /* 1845 ** Return the SQL associated with a prepared statement with 1846 ** bound parameters expanded. Space to hold the returned string is 1847 ** obtained from sqlite3_malloc(). The caller is responsible for 1848 ** freeing the returned string by passing it to sqlite3_free(). 1849 ** 1850 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1851 ** expanded bound parameters. 1852 */ 1853 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1854 #ifdef SQLITE_OMIT_TRACE 1855 return 0; 1856 #else 1857 char *z = 0; 1858 const char *zSql = sqlite3_sql(pStmt); 1859 if( zSql ){ 1860 Vdbe *p = (Vdbe *)pStmt; 1861 sqlite3_mutex_enter(p->db->mutex); 1862 z = sqlite3VdbeExpandSql(p, zSql); 1863 sqlite3_mutex_leave(p->db->mutex); 1864 } 1865 return z; 1866 #endif 1867 } 1868 1869 #ifdef SQLITE_ENABLE_NORMALIZE 1870 /* 1871 ** Return the normalized SQL associated with a prepared statement. 1872 */ 1873 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1874 Vdbe *p = (Vdbe *)pStmt; 1875 if( p==0 ) return 0; 1876 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1877 sqlite3_mutex_enter(p->db->mutex); 1878 p->zNormSql = sqlite3Normalize(p, p->zSql); 1879 sqlite3_mutex_leave(p->db->mutex); 1880 } 1881 return p->zNormSql; 1882 } 1883 #endif /* SQLITE_ENABLE_NORMALIZE */ 1884 1885 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1886 /* 1887 ** Allocate and populate an UnpackedRecord structure based on the serialized 1888 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1889 ** if successful, or a NULL pointer if an OOM error is encountered. 1890 */ 1891 static UnpackedRecord *vdbeUnpackRecord( 1892 KeyInfo *pKeyInfo, 1893 int nKey, 1894 const void *pKey 1895 ){ 1896 UnpackedRecord *pRet; /* Return value */ 1897 1898 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1899 if( pRet ){ 1900 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1901 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1902 } 1903 return pRet; 1904 } 1905 1906 /* 1907 ** This function is called from within a pre-update callback to retrieve 1908 ** a field of the row currently being updated or deleted. 1909 */ 1910 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1911 PreUpdate *p = db->pPreUpdate; 1912 Mem *pMem; 1913 int rc = SQLITE_OK; 1914 1915 /* Test that this call is being made from within an SQLITE_DELETE or 1916 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1917 if( !p || p->op==SQLITE_INSERT ){ 1918 rc = SQLITE_MISUSE_BKPT; 1919 goto preupdate_old_out; 1920 } 1921 if( p->pPk ){ 1922 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1923 } 1924 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1925 rc = SQLITE_RANGE; 1926 goto preupdate_old_out; 1927 } 1928 1929 /* If the old.* record has not yet been loaded into memory, do so now. */ 1930 if( p->pUnpacked==0 ){ 1931 u32 nRec; 1932 u8 *aRec; 1933 1934 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1935 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1936 aRec = sqlite3DbMallocRaw(db, nRec); 1937 if( !aRec ) goto preupdate_old_out; 1938 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1939 if( rc==SQLITE_OK ){ 1940 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1941 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1942 } 1943 if( rc!=SQLITE_OK ){ 1944 sqlite3DbFree(db, aRec); 1945 goto preupdate_old_out; 1946 } 1947 p->aRecord = aRec; 1948 } 1949 1950 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1951 if( iIdx==p->pTab->iPKey ){ 1952 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1953 }else if( iIdx>=p->pUnpacked->nField ){ 1954 *ppValue = (sqlite3_value *)columnNullValue(); 1955 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1956 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1957 testcase( pMem->flags & MEM_Int ); 1958 testcase( pMem->flags & MEM_IntReal ); 1959 sqlite3VdbeMemRealify(pMem); 1960 } 1961 } 1962 1963 preupdate_old_out: 1964 sqlite3Error(db, rc); 1965 return sqlite3ApiExit(db, rc); 1966 } 1967 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1968 1969 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1970 /* 1971 ** This function is called from within a pre-update callback to retrieve 1972 ** the number of columns in the row being updated, deleted or inserted. 1973 */ 1974 int sqlite3_preupdate_count(sqlite3 *db){ 1975 PreUpdate *p = db->pPreUpdate; 1976 return (p ? p->keyinfo.nKeyField : 0); 1977 } 1978 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1979 1980 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1981 /* 1982 ** This function is designed to be called from within a pre-update callback 1983 ** only. It returns zero if the change that caused the callback was made 1984 ** immediately by a user SQL statement. Or, if the change was made by a 1985 ** trigger program, it returns the number of trigger programs currently 1986 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1987 ** top-level trigger etc.). 1988 ** 1989 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1990 ** or SET DEFAULT action is considered a trigger. 1991 */ 1992 int sqlite3_preupdate_depth(sqlite3 *db){ 1993 PreUpdate *p = db->pPreUpdate; 1994 return (p ? p->v->nFrame : 0); 1995 } 1996 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1997 1998 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1999 /* 2000 ** This function is designed to be called from within a pre-update callback 2001 ** only. 2002 */ 2003 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 2004 PreUpdate *p = db->pPreUpdate; 2005 return (p ? p->iBlobWrite : -1); 2006 } 2007 #endif 2008 2009 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2010 /* 2011 ** This function is called from within a pre-update callback to retrieve 2012 ** a field of the row currently being updated or inserted. 2013 */ 2014 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 2015 PreUpdate *p = db->pPreUpdate; 2016 int rc = SQLITE_OK; 2017 Mem *pMem; 2018 2019 if( !p || p->op==SQLITE_DELETE ){ 2020 rc = SQLITE_MISUSE_BKPT; 2021 goto preupdate_new_out; 2022 } 2023 if( p->pPk && p->op!=SQLITE_UPDATE ){ 2024 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 2025 } 2026 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 2027 rc = SQLITE_RANGE; 2028 goto preupdate_new_out; 2029 } 2030 2031 if( p->op==SQLITE_INSERT ){ 2032 /* For an INSERT, memory cell p->iNewReg contains the serialized record 2033 ** that is being inserted. Deserialize it. */ 2034 UnpackedRecord *pUnpack = p->pNewUnpacked; 2035 if( !pUnpack ){ 2036 Mem *pData = &p->v->aMem[p->iNewReg]; 2037 rc = ExpandBlob(pData); 2038 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2039 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 2040 if( !pUnpack ){ 2041 rc = SQLITE_NOMEM; 2042 goto preupdate_new_out; 2043 } 2044 p->pNewUnpacked = pUnpack; 2045 } 2046 pMem = &pUnpack->aMem[iIdx]; 2047 if( iIdx==p->pTab->iPKey ){ 2048 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2049 }else if( iIdx>=pUnpack->nField ){ 2050 pMem = (sqlite3_value *)columnNullValue(); 2051 } 2052 }else{ 2053 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 2054 ** value. Make a copy of the cell contents and return a pointer to it. 2055 ** It is not safe to return a pointer to the memory cell itself as the 2056 ** caller may modify the value text encoding. 2057 */ 2058 assert( p->op==SQLITE_UPDATE ); 2059 if( !p->aNew ){ 2060 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 2061 if( !p->aNew ){ 2062 rc = SQLITE_NOMEM; 2063 goto preupdate_new_out; 2064 } 2065 } 2066 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 2067 pMem = &p->aNew[iIdx]; 2068 if( pMem->flags==0 ){ 2069 if( iIdx==p->pTab->iPKey ){ 2070 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2071 }else{ 2072 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 2073 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2074 } 2075 } 2076 } 2077 *ppValue = pMem; 2078 2079 preupdate_new_out: 2080 sqlite3Error(db, rc); 2081 return sqlite3ApiExit(db, rc); 2082 } 2083 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2084 2085 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2086 /* 2087 ** Return status data for a single loop within query pStmt. 2088 */ 2089 int sqlite3_stmt_scanstatus( 2090 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2091 int idx, /* Index of loop to report on */ 2092 int iScanStatusOp, /* Which metric to return */ 2093 void *pOut /* OUT: Write the answer here */ 2094 ){ 2095 Vdbe *p = (Vdbe*)pStmt; 2096 ScanStatus *pScan; 2097 if( idx<0 || idx>=p->nScan ) return 1; 2098 pScan = &p->aScan[idx]; 2099 switch( iScanStatusOp ){ 2100 case SQLITE_SCANSTAT_NLOOP: { 2101 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2102 break; 2103 } 2104 case SQLITE_SCANSTAT_NVISIT: { 2105 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2106 break; 2107 } 2108 case SQLITE_SCANSTAT_EST: { 2109 double r = 1.0; 2110 LogEst x = pScan->nEst; 2111 while( x<100 ){ 2112 x += 10; 2113 r *= 0.5; 2114 } 2115 *(double*)pOut = r*sqlite3LogEstToInt(x); 2116 break; 2117 } 2118 case SQLITE_SCANSTAT_NAME: { 2119 *(const char**)pOut = pScan->zName; 2120 break; 2121 } 2122 case SQLITE_SCANSTAT_EXPLAIN: { 2123 if( pScan->addrExplain ){ 2124 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2125 }else{ 2126 *(const char**)pOut = 0; 2127 } 2128 break; 2129 } 2130 case SQLITE_SCANSTAT_SELECTID: { 2131 if( pScan->addrExplain ){ 2132 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2133 }else{ 2134 *(int*)pOut = -1; 2135 } 2136 break; 2137 } 2138 default: { 2139 return 1; 2140 } 2141 } 2142 return 0; 2143 } 2144 2145 /* 2146 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2147 */ 2148 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2149 Vdbe *p = (Vdbe*)pStmt; 2150 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2151 } 2152 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2153