xref: /sqlite-3.40.0/src/vdbeapi.c (revision c55b62d4)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 (not possible) */
238      SQLITE_NULL,     /* 0x01 NULL */
239      SQLITE_TEXT,     /* 0x02 TEXT */
240      SQLITE_NULL,     /* 0x03 (not possible) */
241      SQLITE_INTEGER,  /* 0x04 INTEGER */
242      SQLITE_NULL,     /* 0x05 (not possible) */
243      SQLITE_INTEGER,  /* 0x06 INTEGER + TEXT */
244      SQLITE_NULL,     /* 0x07 (not possible) */
245      SQLITE_FLOAT,    /* 0x08 FLOAT */
246      SQLITE_NULL,     /* 0x09 (not possible) */
247      SQLITE_FLOAT,    /* 0x0a FLOAT + TEXT */
248      SQLITE_NULL,     /* 0x0b (not possible) */
249      SQLITE_INTEGER,  /* 0x0c (not possible) */
250      SQLITE_NULL,     /* 0x0d (not possible) */
251      SQLITE_INTEGER,  /* 0x0e (not possible) */
252      SQLITE_NULL,     /* 0x0f (not possible) */
253      SQLITE_BLOB,     /* 0x10 BLOB */
254      SQLITE_NULL,     /* 0x11 (not possible) */
255      SQLITE_TEXT,     /* 0x12 (not possible) */
256      SQLITE_NULL,     /* 0x13 (not possible) */
257      SQLITE_INTEGER,  /* 0x14 INTEGER + BLOB */
258      SQLITE_NULL,     /* 0x15 (not possible) */
259      SQLITE_INTEGER,  /* 0x16 (not possible) */
260      SQLITE_NULL,     /* 0x17 (not possible) */
261      SQLITE_FLOAT,    /* 0x18 FLOAT + BLOB */
262      SQLITE_NULL,     /* 0x19 (not possible) */
263      SQLITE_FLOAT,    /* 0x1a (not possible) */
264      SQLITE_NULL,     /* 0x1b (not possible) */
265      SQLITE_INTEGER,  /* 0x1c (not possible) */
266      SQLITE_NULL,     /* 0x1d (not possible) */
267      SQLITE_INTEGER,  /* 0x1e (not possible) */
268      SQLITE_NULL,     /* 0x1f (not possible) */
269      SQLITE_FLOAT,    /* 0x20 INTREAL */
270      SQLITE_NULL,     /* 0x21 (not possible) */
271      SQLITE_TEXT,     /* 0x22 INTREAL + TEXT */
272      SQLITE_NULL,     /* 0x23 (not possible) */
273      SQLITE_FLOAT,    /* 0x24 (not possible) */
274      SQLITE_NULL,     /* 0x25 (not possible) */
275      SQLITE_FLOAT,    /* 0x26 (not possible) */
276      SQLITE_NULL,     /* 0x27 (not possible) */
277      SQLITE_FLOAT,    /* 0x28 (not possible) */
278      SQLITE_NULL,     /* 0x29 (not possible) */
279      SQLITE_FLOAT,    /* 0x2a (not possible) */
280      SQLITE_NULL,     /* 0x2b (not possible) */
281      SQLITE_FLOAT,    /* 0x2c (not possible) */
282      SQLITE_NULL,     /* 0x2d (not possible) */
283      SQLITE_FLOAT,    /* 0x2e (not possible) */
284      SQLITE_NULL,     /* 0x2f (not possible) */
285      SQLITE_BLOB,     /* 0x30 (not possible) */
286      SQLITE_NULL,     /* 0x31 (not possible) */
287      SQLITE_TEXT,     /* 0x32 (not possible) */
288      SQLITE_NULL,     /* 0x33 (not possible) */
289      SQLITE_FLOAT,    /* 0x34 (not possible) */
290      SQLITE_NULL,     /* 0x35 (not possible) */
291      SQLITE_FLOAT,    /* 0x36 (not possible) */
292      SQLITE_NULL,     /* 0x37 (not possible) */
293      SQLITE_FLOAT,    /* 0x38 (not possible) */
294      SQLITE_NULL,     /* 0x39 (not possible) */
295      SQLITE_FLOAT,    /* 0x3a (not possible) */
296      SQLITE_NULL,     /* 0x3b (not possible) */
297      SQLITE_FLOAT,    /* 0x3c (not possible) */
298      SQLITE_NULL,     /* 0x3d (not possible) */
299      SQLITE_FLOAT,    /* 0x3e (not possible) */
300      SQLITE_NULL,     /* 0x3f (not possible) */
301   };
302 #ifdef SQLITE_DEBUG
303   {
304     int eType = SQLITE_BLOB;
305     if( pVal->flags & MEM_Null ){
306       eType = SQLITE_NULL;
307     }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308       eType = SQLITE_FLOAT;
309     }else if( pVal->flags & MEM_Int ){
310       eType = SQLITE_INTEGER;
311     }else if( pVal->flags & MEM_Str ){
312       eType = SQLITE_TEXT;
313     }
314     assert( eType == aType[pVal->flags&MEM_AffMask] );
315   }
316 #endif
317   return aType[pVal->flags&MEM_AffMask];
318 }
319 
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
323 }
324 
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327   return (pVal->flags&MEM_FromBind)!=0;
328 }
329 
330 /* Make a copy of an sqlite3_value object
331 */
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333   sqlite3_value *pNew;
334   if( pOrig==0 ) return 0;
335   pNew = sqlite3_malloc( sizeof(*pNew) );
336   if( pNew==0 ) return 0;
337   memset(pNew, 0, sizeof(*pNew));
338   memcpy(pNew, pOrig, MEMCELLSIZE);
339   pNew->flags &= ~MEM_Dyn;
340   pNew->db = 0;
341   if( pNew->flags&(MEM_Str|MEM_Blob) ){
342     pNew->flags &= ~(MEM_Static|MEM_Dyn);
343     pNew->flags |= MEM_Ephem;
344     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345       sqlite3ValueFree(pNew);
346       pNew = 0;
347     }
348   }else if( pNew->flags & MEM_Null ){
349     /* Do not duplicate pointer values */
350     pNew->flags &= ~(MEM_Term|MEM_Subtype);
351   }
352   return pNew;
353 }
354 
355 /* Destroy an sqlite3_value object previously obtained from
356 ** sqlite3_value_dup().
357 */
358 void sqlite3_value_free(sqlite3_value *pOld){
359   sqlite3ValueFree(pOld);
360 }
361 
362 
363 /**************************** sqlite3_result_  *******************************
364 ** The following routines are used by user-defined functions to specify
365 ** the function result.
366 **
367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
368 ** result as a string or blob.  Appropriate errors are set if the string/blob
369 ** is too big or if an OOM occurs.
370 **
371 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
372 ** on value P is not going to be used and need to be destroyed.
373 */
374 static void setResultStrOrError(
375   sqlite3_context *pCtx,  /* Function context */
376   const char *z,          /* String pointer */
377   int n,                  /* Bytes in string, or negative */
378   u8 enc,                 /* Encoding of z.  0 for BLOBs */
379   void (*xDel)(void*)     /* Destructor function */
380 ){
381   Mem *pOut = pCtx->pOut;
382   int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
383   if( rc ){
384     if( rc==SQLITE_TOOBIG ){
385       sqlite3_result_error_toobig(pCtx);
386     }else{
387       /* The only errors possible from sqlite3VdbeMemSetStr are
388       ** SQLITE_TOOBIG and SQLITE_NOMEM */
389       assert( rc==SQLITE_NOMEM );
390       sqlite3_result_error_nomem(pCtx);
391     }
392     return;
393   }
394   sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db));
395   if( sqlite3VdbeMemTooBig(pOut) ){
396     sqlite3_result_error_toobig(pCtx);
397   }
398 }
399 static int invokeValueDestructor(
400   const void *p,             /* Value to destroy */
401   void (*xDel)(void*),       /* The destructor */
402   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
403 ){
404   assert( xDel!=SQLITE_DYNAMIC );
405   if( xDel==0 ){
406     /* noop */
407   }else if( xDel==SQLITE_TRANSIENT ){
408     /* noop */
409   }else{
410     xDel((void*)p);
411   }
412   sqlite3_result_error_toobig(pCtx);
413   return SQLITE_TOOBIG;
414 }
415 void sqlite3_result_blob(
416   sqlite3_context *pCtx,
417   const void *z,
418   int n,
419   void (*xDel)(void *)
420 ){
421   assert( n>=0 );
422   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
423   setResultStrOrError(pCtx, z, n, 0, xDel);
424 }
425 void sqlite3_result_blob64(
426   sqlite3_context *pCtx,
427   const void *z,
428   sqlite3_uint64 n,
429   void (*xDel)(void *)
430 ){
431   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
432   assert( xDel!=SQLITE_DYNAMIC );
433   if( n>0x7fffffff ){
434     (void)invokeValueDestructor(z, xDel, pCtx);
435   }else{
436     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
437   }
438 }
439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
440   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
441   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
442 }
443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
444   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
445   pCtx->isError = SQLITE_ERROR;
446   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
447 }
448 #ifndef SQLITE_OMIT_UTF16
449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
450   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
451   pCtx->isError = SQLITE_ERROR;
452   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
453 }
454 #endif
455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
456   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
457   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
458 }
459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
460   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
461   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
462 }
463 void sqlite3_result_null(sqlite3_context *pCtx){
464   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
465   sqlite3VdbeMemSetNull(pCtx->pOut);
466 }
467 void sqlite3_result_pointer(
468   sqlite3_context *pCtx,
469   void *pPtr,
470   const char *zPType,
471   void (*xDestructor)(void*)
472 ){
473   Mem *pOut = pCtx->pOut;
474   assert( sqlite3_mutex_held(pOut->db->mutex) );
475   sqlite3VdbeMemRelease(pOut);
476   pOut->flags = MEM_Null;
477   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
478 }
479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
480   Mem *pOut = pCtx->pOut;
481   assert( sqlite3_mutex_held(pOut->db->mutex) );
482   pOut->eSubtype = eSubtype & 0xff;
483   pOut->flags |= MEM_Subtype;
484 }
485 void sqlite3_result_text(
486   sqlite3_context *pCtx,
487   const char *z,
488   int n,
489   void (*xDel)(void *)
490 ){
491   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
492   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
493 }
494 void sqlite3_result_text64(
495   sqlite3_context *pCtx,
496   const char *z,
497   sqlite3_uint64 n,
498   void (*xDel)(void *),
499   unsigned char enc
500 ){
501   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
502   assert( xDel!=SQLITE_DYNAMIC );
503   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
504   if( n>0x7fffffff ){
505     (void)invokeValueDestructor(z, xDel, pCtx);
506   }else{
507     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
508   }
509 }
510 #ifndef SQLITE_OMIT_UTF16
511 void sqlite3_result_text16(
512   sqlite3_context *pCtx,
513   const void *z,
514   int n,
515   void (*xDel)(void *)
516 ){
517   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
518   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
519 }
520 void sqlite3_result_text16be(
521   sqlite3_context *pCtx,
522   const void *z,
523   int n,
524   void (*xDel)(void *)
525 ){
526   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
527   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
528 }
529 void sqlite3_result_text16le(
530   sqlite3_context *pCtx,
531   const void *z,
532   int n,
533   void (*xDel)(void *)
534 ){
535   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
536   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
537 }
538 #endif /* SQLITE_OMIT_UTF16 */
539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
540   Mem *pOut = pCtx->pOut;
541   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
542   sqlite3VdbeMemCopy(pOut, pValue);
543   sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db));
544   if( sqlite3VdbeMemTooBig(pOut) ){
545     sqlite3_result_error_toobig(pCtx);
546   }
547 }
548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
549   sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
550 }
551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
552   Mem *pOut = pCtx->pOut;
553   assert( sqlite3_mutex_held(pOut->db->mutex) );
554   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
555     sqlite3_result_error_toobig(pCtx);
556     return SQLITE_TOOBIG;
557   }
558 #ifndef SQLITE_OMIT_INCRBLOB
559   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
560   return SQLITE_OK;
561 #else
562   return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
563 #endif
564 }
565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
566   pCtx->isError = errCode ? errCode : -1;
567 #ifdef SQLITE_DEBUG
568   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
569 #endif
570   if( pCtx->pOut->flags & MEM_Null ){
571     setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
572                         SQLITE_STATIC);
573   }
574 }
575 
576 /* Force an SQLITE_TOOBIG error. */
577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
578   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
579   pCtx->isError = SQLITE_TOOBIG;
580   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
581                        SQLITE_UTF8, SQLITE_STATIC);
582 }
583 
584 /* An SQLITE_NOMEM error. */
585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
586   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
587   sqlite3VdbeMemSetNull(pCtx->pOut);
588   pCtx->isError = SQLITE_NOMEM_BKPT;
589   sqlite3OomFault(pCtx->pOut->db);
590 }
591 
592 #ifndef SQLITE_UNTESTABLE
593 /* Force the INT64 value currently stored as the result to be
594 ** a MEM_IntReal value.  See the SQLITE_TESTCTRL_RESULT_INTREAL
595 ** test-control.
596 */
597 void sqlite3ResultIntReal(sqlite3_context *pCtx){
598   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
599   if( pCtx->pOut->flags & MEM_Int ){
600     pCtx->pOut->flags &= ~MEM_Int;
601     pCtx->pOut->flags |= MEM_IntReal;
602   }
603 }
604 #endif
605 
606 
607 /*
608 ** This function is called after a transaction has been committed. It
609 ** invokes callbacks registered with sqlite3_wal_hook() as required.
610 */
611 static int doWalCallbacks(sqlite3 *db){
612   int rc = SQLITE_OK;
613 #ifndef SQLITE_OMIT_WAL
614   int i;
615   for(i=0; i<db->nDb; i++){
616     Btree *pBt = db->aDb[i].pBt;
617     if( pBt ){
618       int nEntry;
619       sqlite3BtreeEnter(pBt);
620       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
621       sqlite3BtreeLeave(pBt);
622       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
623         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
624       }
625     }
626   }
627 #endif
628   return rc;
629 }
630 
631 
632 /*
633 ** Execute the statement pStmt, either until a row of data is ready, the
634 ** statement is completely executed or an error occurs.
635 **
636 ** This routine implements the bulk of the logic behind the sqlite_step()
637 ** API.  The only thing omitted is the automatic recompile if a
638 ** schema change has occurred.  That detail is handled by the
639 ** outer sqlite3_step() wrapper procedure.
640 */
641 static int sqlite3Step(Vdbe *p){
642   sqlite3 *db;
643   int rc;
644 
645   assert(p);
646   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
647     /* We used to require that sqlite3_reset() be called before retrying
648     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
649     ** with version 3.7.0, we changed this so that sqlite3_reset() would
650     ** be called automatically instead of throwing the SQLITE_MISUSE error.
651     ** This "automatic-reset" change is not technically an incompatibility,
652     ** since any application that receives an SQLITE_MISUSE is broken by
653     ** definition.
654     **
655     ** Nevertheless, some published applications that were originally written
656     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
657     ** returns, and those were broken by the automatic-reset change.  As a
658     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
659     ** legacy behavior of returning SQLITE_MISUSE for cases where the
660     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
661     ** or SQLITE_BUSY error.
662     */
663 #ifdef SQLITE_OMIT_AUTORESET
664     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
665       sqlite3_reset((sqlite3_stmt*)p);
666     }else{
667       return SQLITE_MISUSE_BKPT;
668     }
669 #else
670     sqlite3_reset((sqlite3_stmt*)p);
671 #endif
672   }
673 
674   /* Check that malloc() has not failed. If it has, return early. */
675   db = p->db;
676   if( db->mallocFailed ){
677     p->rc = SQLITE_NOMEM;
678     return SQLITE_NOMEM_BKPT;
679   }
680 
681   if( p->pc<0 && p->expired ){
682     p->rc = SQLITE_SCHEMA;
683     rc = SQLITE_ERROR;
684     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
685       /* If this statement was prepared using saved SQL and an
686       ** error has occurred, then return the error code in p->rc to the
687       ** caller. Set the error code in the database handle to the same value.
688       */
689       rc = sqlite3VdbeTransferError(p);
690     }
691     goto end_of_step;
692   }
693   if( p->pc<0 ){
694     /* If there are no other statements currently running, then
695     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
696     ** from interrupting a statement that has not yet started.
697     */
698     if( db->nVdbeActive==0 ){
699       AtomicStore(&db->u1.isInterrupted, 0);
700     }
701 
702     assert( db->nVdbeWrite>0 || db->autoCommit==0
703         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
704     );
705 
706 #ifndef SQLITE_OMIT_TRACE
707     if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
708         && !db->init.busy && p->zSql ){
709       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
710     }else{
711       assert( p->startTime==0 );
712     }
713 #endif
714 
715     db->nVdbeActive++;
716     if( p->readOnly==0 ) db->nVdbeWrite++;
717     if( p->bIsReader ) db->nVdbeRead++;
718     p->pc = 0;
719   }
720 #ifdef SQLITE_DEBUG
721   p->rcApp = SQLITE_OK;
722 #endif
723 #ifndef SQLITE_OMIT_EXPLAIN
724   if( p->explain ){
725     rc = sqlite3VdbeList(p);
726   }else
727 #endif /* SQLITE_OMIT_EXPLAIN */
728   {
729     db->nVdbeExec++;
730     rc = sqlite3VdbeExec(p);
731     db->nVdbeExec--;
732   }
733 
734   if( rc!=SQLITE_ROW ){
735 #ifndef SQLITE_OMIT_TRACE
736     /* If the statement completed successfully, invoke the profile callback */
737     checkProfileCallback(db, p);
738 #endif
739 
740     if( rc==SQLITE_DONE && db->autoCommit ){
741       assert( p->rc==SQLITE_OK );
742       p->rc = doWalCallbacks(db);
743       if( p->rc!=SQLITE_OK ){
744         rc = SQLITE_ERROR;
745       }
746     }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
747       /* If this statement was prepared using saved SQL and an
748       ** error has occurred, then return the error code in p->rc to the
749       ** caller. Set the error code in the database handle to the same value.
750       */
751       rc = sqlite3VdbeTransferError(p);
752     }
753   }
754 
755   db->errCode = rc;
756   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
757     p->rc = SQLITE_NOMEM_BKPT;
758     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
759   }
760 end_of_step:
761   /* There are only a limited number of result codes allowed from the
762   ** statements prepared using the legacy sqlite3_prepare() interface */
763   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
764        || rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
765        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
766   );
767   return (rc&db->errMask);
768 }
769 
770 /*
771 ** This is the top-level implementation of sqlite3_step().  Call
772 ** sqlite3Step() to do most of the work.  If a schema error occurs,
773 ** call sqlite3Reprepare() and try again.
774 */
775 int sqlite3_step(sqlite3_stmt *pStmt){
776   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
777   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
778   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
779   sqlite3 *db;             /* The database connection */
780 
781   if( vdbeSafetyNotNull(v) ){
782     return SQLITE_MISUSE_BKPT;
783   }
784   db = v->db;
785   sqlite3_mutex_enter(db->mutex);
786   v->doingRerun = 0;
787   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
788          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
789     int savedPc = v->pc;
790     rc = sqlite3Reprepare(v);
791     if( rc!=SQLITE_OK ){
792       /* This case occurs after failing to recompile an sql statement.
793       ** The error message from the SQL compiler has already been loaded
794       ** into the database handle. This block copies the error message
795       ** from the database handle into the statement and sets the statement
796       ** program counter to 0 to ensure that when the statement is
797       ** finalized or reset the parser error message is available via
798       ** sqlite3_errmsg() and sqlite3_errcode().
799       */
800       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
801       sqlite3DbFree(db, v->zErrMsg);
802       if( !db->mallocFailed ){
803         v->zErrMsg = sqlite3DbStrDup(db, zErr);
804         v->rc = rc = sqlite3ApiExit(db, rc);
805       } else {
806         v->zErrMsg = 0;
807         v->rc = rc = SQLITE_NOMEM_BKPT;
808       }
809       break;
810     }
811     sqlite3_reset(pStmt);
812     if( savedPc>=0 ) v->doingRerun = 1;
813     assert( v->expired==0 );
814   }
815   sqlite3_mutex_leave(db->mutex);
816   return rc;
817 }
818 
819 
820 /*
821 ** Extract the user data from a sqlite3_context structure and return a
822 ** pointer to it.
823 */
824 void *sqlite3_user_data(sqlite3_context *p){
825   assert( p && p->pFunc );
826   return p->pFunc->pUserData;
827 }
828 
829 /*
830 ** Extract the user data from a sqlite3_context structure and return a
831 ** pointer to it.
832 **
833 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
834 ** returns a copy of the pointer to the database connection (the 1st
835 ** parameter) of the sqlite3_create_function() and
836 ** sqlite3_create_function16() routines that originally registered the
837 ** application defined function.
838 */
839 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
840   assert( p && p->pOut );
841   return p->pOut->db;
842 }
843 
844 /*
845 ** If this routine is invoked from within an xColumn method of a virtual
846 ** table, then it returns true if and only if the the call is during an
847 ** UPDATE operation and the value of the column will not be modified
848 ** by the UPDATE.
849 **
850 ** If this routine is called from any context other than within the
851 ** xColumn method of a virtual table, then the return value is meaningless
852 ** and arbitrary.
853 **
854 ** Virtual table implements might use this routine to optimize their
855 ** performance by substituting a NULL result, or some other light-weight
856 ** value, as a signal to the xUpdate routine that the column is unchanged.
857 */
858 int sqlite3_vtab_nochange(sqlite3_context *p){
859   assert( p );
860   return sqlite3_value_nochange(p->pOut);
861 }
862 
863 /*
864 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
865 ** sqlite3_vtab_in_next() (if bNext!=0).
866 */
867 static int valueFromValueList(
868   sqlite3_value *pVal,        /* Pointer to the ValueList object */
869   sqlite3_value **ppOut,      /* Store the next value from the list here */
870   int bNext                   /* 1 for _next(). 0 for _first() */
871 ){
872   int rc;
873   ValueList *pRhs;
874 
875   *ppOut = 0;
876   if( pVal==0 ) return SQLITE_MISUSE;
877   pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
878   if( pRhs==0 ) return SQLITE_MISUSE;
879   if( bNext ){
880     rc = sqlite3BtreeNext(pRhs->pCsr, 0);
881   }else{
882     int dummy = 0;
883     rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
884     assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
885     if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
886   }
887   if( rc==SQLITE_OK ){
888     u32 sz;       /* Size of current row in bytes */
889     Mem sMem;     /* Raw content of current row */
890     memset(&sMem, 0, sizeof(sMem));
891     sz = sqlite3BtreePayloadSize(pRhs->pCsr);
892     rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
893     if( rc==SQLITE_OK ){
894       u8 *zBuf = (u8*)sMem.z;
895       u32 iSerial;
896       sqlite3_value *pOut = pRhs->pOut;
897       int iOff = 1 + getVarint32(&zBuf[1], iSerial);
898       sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
899       pOut->enc = ENC(pOut->db);
900       if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
901         rc = SQLITE_NOMEM;
902       }else{
903         *ppOut = pOut;
904       }
905     }
906     sqlite3VdbeMemRelease(&sMem);
907   }
908   return rc;
909 }
910 
911 /*
912 ** Set the iterator value pVal to point to the first value in the set.
913 ** Set (*ppOut) to point to this value before returning.
914 */
915 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
916   return valueFromValueList(pVal, ppOut, 0);
917 }
918 
919 /*
920 ** Set the iterator value pVal to point to the next value in the set.
921 ** Set (*ppOut) to point to this value before returning.
922 */
923 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
924   return valueFromValueList(pVal, ppOut, 1);
925 }
926 
927 /*
928 ** Return the current time for a statement.  If the current time
929 ** is requested more than once within the same run of a single prepared
930 ** statement, the exact same time is returned for each invocation regardless
931 ** of the amount of time that elapses between invocations.  In other words,
932 ** the time returned is always the time of the first call.
933 */
934 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
935   int rc;
936 #ifndef SQLITE_ENABLE_STAT4
937   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
938   assert( p->pVdbe!=0 );
939 #else
940   sqlite3_int64 iTime = 0;
941   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
942 #endif
943   if( *piTime==0 ){
944     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
945     if( rc ) *piTime = 0;
946   }
947   return *piTime;
948 }
949 
950 /*
951 ** Create a new aggregate context for p and return a pointer to
952 ** its pMem->z element.
953 */
954 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
955   Mem *pMem = p->pMem;
956   assert( (pMem->flags & MEM_Agg)==0 );
957   if( nByte<=0 ){
958     sqlite3VdbeMemSetNull(pMem);
959     pMem->z = 0;
960   }else{
961     sqlite3VdbeMemClearAndResize(pMem, nByte);
962     pMem->flags = MEM_Agg;
963     pMem->u.pDef = p->pFunc;
964     if( pMem->z ){
965       memset(pMem->z, 0, nByte);
966     }
967   }
968   return (void*)pMem->z;
969 }
970 
971 /*
972 ** Allocate or return the aggregate context for a user function.  A new
973 ** context is allocated on the first call.  Subsequent calls return the
974 ** same context that was returned on prior calls.
975 */
976 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
977   assert( p && p->pFunc && p->pFunc->xFinalize );
978   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
979   testcase( nByte<0 );
980   if( (p->pMem->flags & MEM_Agg)==0 ){
981     return createAggContext(p, nByte);
982   }else{
983     return (void*)p->pMem->z;
984   }
985 }
986 
987 /*
988 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
989 ** the user-function defined by pCtx.
990 **
991 ** The left-most argument is 0.
992 **
993 ** Undocumented behavior:  If iArg is negative then access a cache of
994 ** auxiliary data pointers that is available to all functions within a
995 ** single prepared statement.  The iArg values must match.
996 */
997 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
998   AuxData *pAuxData;
999 
1000   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1001 #if SQLITE_ENABLE_STAT4
1002   if( pCtx->pVdbe==0 ) return 0;
1003 #else
1004   assert( pCtx->pVdbe!=0 );
1005 #endif
1006   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1007     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1008       return pAuxData->pAux;
1009     }
1010   }
1011   return 0;
1012 }
1013 
1014 /*
1015 ** Set the auxiliary data pointer and delete function, for the iArg'th
1016 ** argument to the user-function defined by pCtx. Any previous value is
1017 ** deleted by calling the delete function specified when it was set.
1018 **
1019 ** The left-most argument is 0.
1020 **
1021 ** Undocumented behavior:  If iArg is negative then make the data available
1022 ** to all functions within the current prepared statement using iArg as an
1023 ** access code.
1024 */
1025 void sqlite3_set_auxdata(
1026   sqlite3_context *pCtx,
1027   int iArg,
1028   void *pAux,
1029   void (*xDelete)(void*)
1030 ){
1031   AuxData *pAuxData;
1032   Vdbe *pVdbe = pCtx->pVdbe;
1033 
1034   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1035 #ifdef SQLITE_ENABLE_STAT4
1036   if( pVdbe==0 ) goto failed;
1037 #else
1038   assert( pVdbe!=0 );
1039 #endif
1040 
1041   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1042     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1043       break;
1044     }
1045   }
1046   if( pAuxData==0 ){
1047     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1048     if( !pAuxData ) goto failed;
1049     pAuxData->iAuxOp = pCtx->iOp;
1050     pAuxData->iAuxArg = iArg;
1051     pAuxData->pNextAux = pVdbe->pAuxData;
1052     pVdbe->pAuxData = pAuxData;
1053     if( pCtx->isError==0 ) pCtx->isError = -1;
1054   }else if( pAuxData->xDeleteAux ){
1055     pAuxData->xDeleteAux(pAuxData->pAux);
1056   }
1057 
1058   pAuxData->pAux = pAux;
1059   pAuxData->xDeleteAux = xDelete;
1060   return;
1061 
1062 failed:
1063   if( xDelete ){
1064     xDelete(pAux);
1065   }
1066 }
1067 
1068 #ifndef SQLITE_OMIT_DEPRECATED
1069 /*
1070 ** Return the number of times the Step function of an aggregate has been
1071 ** called.
1072 **
1073 ** This function is deprecated.  Do not use it for new code.  It is
1074 ** provide only to avoid breaking legacy code.  New aggregate function
1075 ** implementations should keep their own counts within their aggregate
1076 ** context.
1077 */
1078 int sqlite3_aggregate_count(sqlite3_context *p){
1079   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1080   return p->pMem->n;
1081 }
1082 #endif
1083 
1084 /*
1085 ** Return the number of columns in the result set for the statement pStmt.
1086 */
1087 int sqlite3_column_count(sqlite3_stmt *pStmt){
1088   Vdbe *pVm = (Vdbe *)pStmt;
1089   return pVm ? pVm->nResColumn : 0;
1090 }
1091 
1092 /*
1093 ** Return the number of values available from the current row of the
1094 ** currently executing statement pStmt.
1095 */
1096 int sqlite3_data_count(sqlite3_stmt *pStmt){
1097   Vdbe *pVm = (Vdbe *)pStmt;
1098   if( pVm==0 || pVm->pResultSet==0 ) return 0;
1099   return pVm->nResColumn;
1100 }
1101 
1102 /*
1103 ** Return a pointer to static memory containing an SQL NULL value.
1104 */
1105 static const Mem *columnNullValue(void){
1106   /* Even though the Mem structure contains an element
1107   ** of type i64, on certain architectures (x86) with certain compiler
1108   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1109   ** instead of an 8-byte one. This all works fine, except that when
1110   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1111   ** that a Mem structure is located on an 8-byte boundary. To prevent
1112   ** these assert()s from failing, when building with SQLITE_DEBUG defined
1113   ** using gcc, we force nullMem to be 8-byte aligned using the magical
1114   ** __attribute__((aligned(8))) macro.  */
1115   static const Mem nullMem
1116 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1117     __attribute__((aligned(8)))
1118 #endif
1119     = {
1120         /* .u          = */ {0},
1121         /* .z          = */ (char*)0,
1122         /* .n          = */ (int)0,
1123         /* .flags      = */ (u16)MEM_Null,
1124         /* .enc        = */ (u8)0,
1125         /* .eSubtype   = */ (u8)0,
1126         /* .db         = */ (sqlite3*)0,
1127         /* .szMalloc   = */ (int)0,
1128         /* .uTemp      = */ (u32)0,
1129         /* .zMalloc    = */ (char*)0,
1130         /* .xDel       = */ (void(*)(void*))0,
1131 #ifdef SQLITE_DEBUG
1132         /* .pScopyFrom = */ (Mem*)0,
1133         /* .mScopyFlags= */ 0,
1134 #endif
1135       };
1136   return &nullMem;
1137 }
1138 
1139 /*
1140 ** Check to see if column iCol of the given statement is valid.  If
1141 ** it is, return a pointer to the Mem for the value of that column.
1142 ** If iCol is not valid, return a pointer to a Mem which has a value
1143 ** of NULL.
1144 */
1145 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1146   Vdbe *pVm;
1147   Mem *pOut;
1148 
1149   pVm = (Vdbe *)pStmt;
1150   if( pVm==0 ) return (Mem*)columnNullValue();
1151   assert( pVm->db );
1152   sqlite3_mutex_enter(pVm->db->mutex);
1153   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1154     pOut = &pVm->pResultSet[i];
1155   }else{
1156     sqlite3Error(pVm->db, SQLITE_RANGE);
1157     pOut = (Mem*)columnNullValue();
1158   }
1159   return pOut;
1160 }
1161 
1162 /*
1163 ** This function is called after invoking an sqlite3_value_XXX function on a
1164 ** column value (i.e. a value returned by evaluating an SQL expression in the
1165 ** select list of a SELECT statement) that may cause a malloc() failure. If
1166 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1167 ** code of statement pStmt set to SQLITE_NOMEM.
1168 **
1169 ** Specifically, this is called from within:
1170 **
1171 **     sqlite3_column_int()
1172 **     sqlite3_column_int64()
1173 **     sqlite3_column_text()
1174 **     sqlite3_column_text16()
1175 **     sqlite3_column_real()
1176 **     sqlite3_column_bytes()
1177 **     sqlite3_column_bytes16()
1178 **     sqiite3_column_blob()
1179 */
1180 static void columnMallocFailure(sqlite3_stmt *pStmt)
1181 {
1182   /* If malloc() failed during an encoding conversion within an
1183   ** sqlite3_column_XXX API, then set the return code of the statement to
1184   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1185   ** and _finalize() will return NOMEM.
1186   */
1187   Vdbe *p = (Vdbe *)pStmt;
1188   if( p ){
1189     assert( p->db!=0 );
1190     assert( sqlite3_mutex_held(p->db->mutex) );
1191     p->rc = sqlite3ApiExit(p->db, p->rc);
1192     sqlite3_mutex_leave(p->db->mutex);
1193   }
1194 }
1195 
1196 /**************************** sqlite3_column_  *******************************
1197 ** The following routines are used to access elements of the current row
1198 ** in the result set.
1199 */
1200 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1201   const void *val;
1202   val = sqlite3_value_blob( columnMem(pStmt,i) );
1203   /* Even though there is no encoding conversion, value_blob() might
1204   ** need to call malloc() to expand the result of a zeroblob()
1205   ** expression.
1206   */
1207   columnMallocFailure(pStmt);
1208   return val;
1209 }
1210 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1211   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1212   columnMallocFailure(pStmt);
1213   return val;
1214 }
1215 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1216   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1217   columnMallocFailure(pStmt);
1218   return val;
1219 }
1220 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1221   double val = sqlite3_value_double( columnMem(pStmt,i) );
1222   columnMallocFailure(pStmt);
1223   return val;
1224 }
1225 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1226   int val = sqlite3_value_int( columnMem(pStmt,i) );
1227   columnMallocFailure(pStmt);
1228   return val;
1229 }
1230 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1231   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1232   columnMallocFailure(pStmt);
1233   return val;
1234 }
1235 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1236   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1237   columnMallocFailure(pStmt);
1238   return val;
1239 }
1240 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1241   Mem *pOut = columnMem(pStmt, i);
1242   if( pOut->flags&MEM_Static ){
1243     pOut->flags &= ~MEM_Static;
1244     pOut->flags |= MEM_Ephem;
1245   }
1246   columnMallocFailure(pStmt);
1247   return (sqlite3_value *)pOut;
1248 }
1249 #ifndef SQLITE_OMIT_UTF16
1250 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1251   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1252   columnMallocFailure(pStmt);
1253   return val;
1254 }
1255 #endif /* SQLITE_OMIT_UTF16 */
1256 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1257   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1258   columnMallocFailure(pStmt);
1259   return iType;
1260 }
1261 
1262 /*
1263 ** Convert the N-th element of pStmt->pColName[] into a string using
1264 ** xFunc() then return that string.  If N is out of range, return 0.
1265 **
1266 ** There are up to 5 names for each column.  useType determines which
1267 ** name is returned.  Here are the names:
1268 **
1269 **    0      The column name as it should be displayed for output
1270 **    1      The datatype name for the column
1271 **    2      The name of the database that the column derives from
1272 **    3      The name of the table that the column derives from
1273 **    4      The name of the table column that the result column derives from
1274 **
1275 ** If the result is not a simple column reference (if it is an expression
1276 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1277 */
1278 static const void *columnName(
1279   sqlite3_stmt *pStmt,     /* The statement */
1280   int N,                   /* Which column to get the name for */
1281   int useUtf16,            /* True to return the name as UTF16 */
1282   int useType              /* What type of name */
1283 ){
1284   const void *ret;
1285   Vdbe *p;
1286   int n;
1287   sqlite3 *db;
1288 #ifdef SQLITE_ENABLE_API_ARMOR
1289   if( pStmt==0 ){
1290     (void)SQLITE_MISUSE_BKPT;
1291     return 0;
1292   }
1293 #endif
1294   ret = 0;
1295   p = (Vdbe *)pStmt;
1296   db = p->db;
1297   assert( db!=0 );
1298   n = sqlite3_column_count(pStmt);
1299   if( N<n && N>=0 ){
1300     N += useType*n;
1301     sqlite3_mutex_enter(db->mutex);
1302     assert( db->mallocFailed==0 );
1303 #ifndef SQLITE_OMIT_UTF16
1304     if( useUtf16 ){
1305       ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1306     }else
1307 #endif
1308     {
1309       ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1310     }
1311     /* A malloc may have failed inside of the _text() call. If this
1312     ** is the case, clear the mallocFailed flag and return NULL.
1313     */
1314     if( db->mallocFailed ){
1315       sqlite3OomClear(db);
1316       ret = 0;
1317     }
1318     sqlite3_mutex_leave(db->mutex);
1319   }
1320   return ret;
1321 }
1322 
1323 /*
1324 ** Return the name of the Nth column of the result set returned by SQL
1325 ** statement pStmt.
1326 */
1327 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1328   return columnName(pStmt, N, 0, COLNAME_NAME);
1329 }
1330 #ifndef SQLITE_OMIT_UTF16
1331 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1332   return columnName(pStmt, N, 1, COLNAME_NAME);
1333 }
1334 #endif
1335 
1336 /*
1337 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1338 ** not define OMIT_DECLTYPE.
1339 */
1340 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1341 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1342          and SQLITE_ENABLE_COLUMN_METADATA"
1343 #endif
1344 
1345 #ifndef SQLITE_OMIT_DECLTYPE
1346 /*
1347 ** Return the column declaration type (if applicable) of the 'i'th column
1348 ** of the result set of SQL statement pStmt.
1349 */
1350 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1351   return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1352 }
1353 #ifndef SQLITE_OMIT_UTF16
1354 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1355   return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1356 }
1357 #endif /* SQLITE_OMIT_UTF16 */
1358 #endif /* SQLITE_OMIT_DECLTYPE */
1359 
1360 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1361 /*
1362 ** Return the name of the database from which a result column derives.
1363 ** NULL is returned if the result column is an expression or constant or
1364 ** anything else which is not an unambiguous reference to a database column.
1365 */
1366 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1367   return columnName(pStmt, N, 0, COLNAME_DATABASE);
1368 }
1369 #ifndef SQLITE_OMIT_UTF16
1370 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1371   return columnName(pStmt, N, 1, COLNAME_DATABASE);
1372 }
1373 #endif /* SQLITE_OMIT_UTF16 */
1374 
1375 /*
1376 ** Return the name of the table from which a result column derives.
1377 ** NULL is returned if the result column is an expression or constant or
1378 ** anything else which is not an unambiguous reference to a database column.
1379 */
1380 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1381   return columnName(pStmt, N, 0, COLNAME_TABLE);
1382 }
1383 #ifndef SQLITE_OMIT_UTF16
1384 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1385   return columnName(pStmt, N, 1, COLNAME_TABLE);
1386 }
1387 #endif /* SQLITE_OMIT_UTF16 */
1388 
1389 /*
1390 ** Return the name of the table column from which a result column derives.
1391 ** NULL is returned if the result column is an expression or constant or
1392 ** anything else which is not an unambiguous reference to a database column.
1393 */
1394 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1395   return columnName(pStmt, N, 0, COLNAME_COLUMN);
1396 }
1397 #ifndef SQLITE_OMIT_UTF16
1398 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1399   return columnName(pStmt, N, 1, COLNAME_COLUMN);
1400 }
1401 #endif /* SQLITE_OMIT_UTF16 */
1402 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1403 
1404 
1405 /******************************* sqlite3_bind_  ***************************
1406 **
1407 ** Routines used to attach values to wildcards in a compiled SQL statement.
1408 */
1409 /*
1410 ** Unbind the value bound to variable i in virtual machine p. This is the
1411 ** the same as binding a NULL value to the column. If the "i" parameter is
1412 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1413 **
1414 ** A successful evaluation of this routine acquires the mutex on p.
1415 ** the mutex is released if any kind of error occurs.
1416 **
1417 ** The error code stored in database p->db is overwritten with the return
1418 ** value in any case.
1419 */
1420 static int vdbeUnbind(Vdbe *p, int i){
1421   Mem *pVar;
1422   if( vdbeSafetyNotNull(p) ){
1423     return SQLITE_MISUSE_BKPT;
1424   }
1425   sqlite3_mutex_enter(p->db->mutex);
1426   if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1427     sqlite3Error(p->db, SQLITE_MISUSE);
1428     sqlite3_mutex_leave(p->db->mutex);
1429     sqlite3_log(SQLITE_MISUSE,
1430         "bind on a busy prepared statement: [%s]", p->zSql);
1431     return SQLITE_MISUSE_BKPT;
1432   }
1433   if( i<1 || i>p->nVar ){
1434     sqlite3Error(p->db, SQLITE_RANGE);
1435     sqlite3_mutex_leave(p->db->mutex);
1436     return SQLITE_RANGE;
1437   }
1438   i--;
1439   pVar = &p->aVar[i];
1440   sqlite3VdbeMemRelease(pVar);
1441   pVar->flags = MEM_Null;
1442   p->db->errCode = SQLITE_OK;
1443 
1444   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1445   ** binding a new value to this variable invalidates the current query plan.
1446   **
1447   ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1448   ** parameter in the WHERE clause might influence the choice of query plan
1449   ** for a statement, then the statement will be automatically recompiled,
1450   ** as if there had been a schema change, on the first sqlite3_step() call
1451   ** following any change to the bindings of that parameter.
1452   */
1453   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1454   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1455     p->expired = 1;
1456   }
1457   return SQLITE_OK;
1458 }
1459 
1460 /*
1461 ** Bind a text or BLOB value.
1462 */
1463 static int bindText(
1464   sqlite3_stmt *pStmt,   /* The statement to bind against */
1465   int i,                 /* Index of the parameter to bind */
1466   const void *zData,     /* Pointer to the data to be bound */
1467   i64 nData,             /* Number of bytes of data to be bound */
1468   void (*xDel)(void*),   /* Destructor for the data */
1469   u8 encoding            /* Encoding for the data */
1470 ){
1471   Vdbe *p = (Vdbe *)pStmt;
1472   Mem *pVar;
1473   int rc;
1474 
1475   rc = vdbeUnbind(p, i);
1476   if( rc==SQLITE_OK ){
1477     if( zData!=0 ){
1478       pVar = &p->aVar[i-1];
1479       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1480       if( rc==SQLITE_OK && encoding!=0 ){
1481         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1482       }
1483       if( rc ){
1484         sqlite3Error(p->db, rc);
1485         rc = sqlite3ApiExit(p->db, rc);
1486       }
1487     }
1488     sqlite3_mutex_leave(p->db->mutex);
1489   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1490     xDel((void*)zData);
1491   }
1492   return rc;
1493 }
1494 
1495 
1496 /*
1497 ** Bind a blob value to an SQL statement variable.
1498 */
1499 int sqlite3_bind_blob(
1500   sqlite3_stmt *pStmt,
1501   int i,
1502   const void *zData,
1503   int nData,
1504   void (*xDel)(void*)
1505 ){
1506 #ifdef SQLITE_ENABLE_API_ARMOR
1507   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1508 #endif
1509   return bindText(pStmt, i, zData, nData, xDel, 0);
1510 }
1511 int sqlite3_bind_blob64(
1512   sqlite3_stmt *pStmt,
1513   int i,
1514   const void *zData,
1515   sqlite3_uint64 nData,
1516   void (*xDel)(void*)
1517 ){
1518   assert( xDel!=SQLITE_DYNAMIC );
1519   return bindText(pStmt, i, zData, nData, xDel, 0);
1520 }
1521 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1522   int rc;
1523   Vdbe *p = (Vdbe *)pStmt;
1524   rc = vdbeUnbind(p, i);
1525   if( rc==SQLITE_OK ){
1526     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1527     sqlite3_mutex_leave(p->db->mutex);
1528   }
1529   return rc;
1530 }
1531 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1532   return sqlite3_bind_int64(p, i, (i64)iValue);
1533 }
1534 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1535   int rc;
1536   Vdbe *p = (Vdbe *)pStmt;
1537   rc = vdbeUnbind(p, i);
1538   if( rc==SQLITE_OK ){
1539     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1540     sqlite3_mutex_leave(p->db->mutex);
1541   }
1542   return rc;
1543 }
1544 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1545   int rc;
1546   Vdbe *p = (Vdbe*)pStmt;
1547   rc = vdbeUnbind(p, i);
1548   if( rc==SQLITE_OK ){
1549     sqlite3_mutex_leave(p->db->mutex);
1550   }
1551   return rc;
1552 }
1553 int sqlite3_bind_pointer(
1554   sqlite3_stmt *pStmt,
1555   int i,
1556   void *pPtr,
1557   const char *zPTtype,
1558   void (*xDestructor)(void*)
1559 ){
1560   int rc;
1561   Vdbe *p = (Vdbe*)pStmt;
1562   rc = vdbeUnbind(p, i);
1563   if( rc==SQLITE_OK ){
1564     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1565     sqlite3_mutex_leave(p->db->mutex);
1566   }else if( xDestructor ){
1567     xDestructor(pPtr);
1568   }
1569   return rc;
1570 }
1571 int sqlite3_bind_text(
1572   sqlite3_stmt *pStmt,
1573   int i,
1574   const char *zData,
1575   int nData,
1576   void (*xDel)(void*)
1577 ){
1578   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1579 }
1580 int sqlite3_bind_text64(
1581   sqlite3_stmt *pStmt,
1582   int i,
1583   const char *zData,
1584   sqlite3_uint64 nData,
1585   void (*xDel)(void*),
1586   unsigned char enc
1587 ){
1588   assert( xDel!=SQLITE_DYNAMIC );
1589   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1590   return bindText(pStmt, i, zData, nData, xDel, enc);
1591 }
1592 #ifndef SQLITE_OMIT_UTF16
1593 int sqlite3_bind_text16(
1594   sqlite3_stmt *pStmt,
1595   int i,
1596   const void *zData,
1597   int nData,
1598   void (*xDel)(void*)
1599 ){
1600   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1601 }
1602 #endif /* SQLITE_OMIT_UTF16 */
1603 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1604   int rc;
1605   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1606     case SQLITE_INTEGER: {
1607       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1608       break;
1609     }
1610     case SQLITE_FLOAT: {
1611       assert( pValue->flags & (MEM_Real|MEM_IntReal) );
1612       rc = sqlite3_bind_double(pStmt, i,
1613           (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
1614       );
1615       break;
1616     }
1617     case SQLITE_BLOB: {
1618       if( pValue->flags & MEM_Zero ){
1619         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1620       }else{
1621         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1622       }
1623       break;
1624     }
1625     case SQLITE_TEXT: {
1626       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1627                               pValue->enc);
1628       break;
1629     }
1630     default: {
1631       rc = sqlite3_bind_null(pStmt, i);
1632       break;
1633     }
1634   }
1635   return rc;
1636 }
1637 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1638   int rc;
1639   Vdbe *p = (Vdbe *)pStmt;
1640   rc = vdbeUnbind(p, i);
1641   if( rc==SQLITE_OK ){
1642 #ifndef SQLITE_OMIT_INCRBLOB
1643     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1644 #else
1645     rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1646 #endif
1647     sqlite3_mutex_leave(p->db->mutex);
1648   }
1649   return rc;
1650 }
1651 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1652   int rc;
1653   Vdbe *p = (Vdbe *)pStmt;
1654   sqlite3_mutex_enter(p->db->mutex);
1655   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1656     rc = SQLITE_TOOBIG;
1657   }else{
1658     assert( (n & 0x7FFFFFFF)==n );
1659     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1660   }
1661   rc = sqlite3ApiExit(p->db, rc);
1662   sqlite3_mutex_leave(p->db->mutex);
1663   return rc;
1664 }
1665 
1666 /*
1667 ** Return the number of wildcards that can be potentially bound to.
1668 ** This routine is added to support DBD::SQLite.
1669 */
1670 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1671   Vdbe *p = (Vdbe*)pStmt;
1672   return p ? p->nVar : 0;
1673 }
1674 
1675 /*
1676 ** Return the name of a wildcard parameter.  Return NULL if the index
1677 ** is out of range or if the wildcard is unnamed.
1678 **
1679 ** The result is always UTF-8.
1680 */
1681 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1682   Vdbe *p = (Vdbe*)pStmt;
1683   if( p==0 ) return 0;
1684   return sqlite3VListNumToName(p->pVList, i);
1685 }
1686 
1687 /*
1688 ** Given a wildcard parameter name, return the index of the variable
1689 ** with that name.  If there is no variable with the given name,
1690 ** return 0.
1691 */
1692 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1693   if( p==0 || zName==0 ) return 0;
1694   return sqlite3VListNameToNum(p->pVList, zName, nName);
1695 }
1696 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1697   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1698 }
1699 
1700 /*
1701 ** Transfer all bindings from the first statement over to the second.
1702 */
1703 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1704   Vdbe *pFrom = (Vdbe*)pFromStmt;
1705   Vdbe *pTo = (Vdbe*)pToStmt;
1706   int i;
1707   assert( pTo->db==pFrom->db );
1708   assert( pTo->nVar==pFrom->nVar );
1709   sqlite3_mutex_enter(pTo->db->mutex);
1710   for(i=0; i<pFrom->nVar; i++){
1711     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1712   }
1713   sqlite3_mutex_leave(pTo->db->mutex);
1714   return SQLITE_OK;
1715 }
1716 
1717 #ifndef SQLITE_OMIT_DEPRECATED
1718 /*
1719 ** Deprecated external interface.  Internal/core SQLite code
1720 ** should call sqlite3TransferBindings.
1721 **
1722 ** It is misuse to call this routine with statements from different
1723 ** database connections.  But as this is a deprecated interface, we
1724 ** will not bother to check for that condition.
1725 **
1726 ** If the two statements contain a different number of bindings, then
1727 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1728 ** SQLITE_OK is returned.
1729 */
1730 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1731   Vdbe *pFrom = (Vdbe*)pFromStmt;
1732   Vdbe *pTo = (Vdbe*)pToStmt;
1733   if( pFrom->nVar!=pTo->nVar ){
1734     return SQLITE_ERROR;
1735   }
1736   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1737   if( pTo->expmask ){
1738     pTo->expired = 1;
1739   }
1740   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1741   if( pFrom->expmask ){
1742     pFrom->expired = 1;
1743   }
1744   return sqlite3TransferBindings(pFromStmt, pToStmt);
1745 }
1746 #endif
1747 
1748 /*
1749 ** Return the sqlite3* database handle to which the prepared statement given
1750 ** in the argument belongs.  This is the same database handle that was
1751 ** the first argument to the sqlite3_prepare() that was used to create
1752 ** the statement in the first place.
1753 */
1754 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1755   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1756 }
1757 
1758 /*
1759 ** Return true if the prepared statement is guaranteed to not modify the
1760 ** database.
1761 */
1762 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1763   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1764 }
1765 
1766 /*
1767 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1768 ** statement is an EXPLAIN QUERY PLAN
1769 */
1770 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1771   return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1772 }
1773 
1774 /*
1775 ** Return true if the prepared statement is in need of being reset.
1776 */
1777 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1778   Vdbe *v = (Vdbe*)pStmt;
1779   return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0;
1780 }
1781 
1782 /*
1783 ** Return a pointer to the next prepared statement after pStmt associated
1784 ** with database connection pDb.  If pStmt is NULL, return the first
1785 ** prepared statement for the database connection.  Return NULL if there
1786 ** are no more.
1787 */
1788 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1789   sqlite3_stmt *pNext;
1790 #ifdef SQLITE_ENABLE_API_ARMOR
1791   if( !sqlite3SafetyCheckOk(pDb) ){
1792     (void)SQLITE_MISUSE_BKPT;
1793     return 0;
1794   }
1795 #endif
1796   sqlite3_mutex_enter(pDb->mutex);
1797   if( pStmt==0 ){
1798     pNext = (sqlite3_stmt*)pDb->pVdbe;
1799   }else{
1800     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1801   }
1802   sqlite3_mutex_leave(pDb->mutex);
1803   return pNext;
1804 }
1805 
1806 /*
1807 ** Return the value of a status counter for a prepared statement
1808 */
1809 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1810   Vdbe *pVdbe = (Vdbe*)pStmt;
1811   u32 v;
1812 #ifdef SQLITE_ENABLE_API_ARMOR
1813   if( !pStmt
1814    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1815   ){
1816     (void)SQLITE_MISUSE_BKPT;
1817     return 0;
1818   }
1819 #endif
1820   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1821     sqlite3 *db = pVdbe->db;
1822     sqlite3_mutex_enter(db->mutex);
1823     v = 0;
1824     db->pnBytesFreed = (int*)&v;
1825     sqlite3VdbeClearObject(db, pVdbe);
1826     sqlite3DbFree(db, pVdbe);
1827     db->pnBytesFreed = 0;
1828     sqlite3_mutex_leave(db->mutex);
1829   }else{
1830     v = pVdbe->aCounter[op];
1831     if( resetFlag ) pVdbe->aCounter[op] = 0;
1832   }
1833   return (int)v;
1834 }
1835 
1836 /*
1837 ** Return the SQL associated with a prepared statement
1838 */
1839 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1840   Vdbe *p = (Vdbe *)pStmt;
1841   return p ? p->zSql : 0;
1842 }
1843 
1844 /*
1845 ** Return the SQL associated with a prepared statement with
1846 ** bound parameters expanded.  Space to hold the returned string is
1847 ** obtained from sqlite3_malloc().  The caller is responsible for
1848 ** freeing the returned string by passing it to sqlite3_free().
1849 **
1850 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1851 ** expanded bound parameters.
1852 */
1853 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1854 #ifdef SQLITE_OMIT_TRACE
1855   return 0;
1856 #else
1857   char *z = 0;
1858   const char *zSql = sqlite3_sql(pStmt);
1859   if( zSql ){
1860     Vdbe *p = (Vdbe *)pStmt;
1861     sqlite3_mutex_enter(p->db->mutex);
1862     z = sqlite3VdbeExpandSql(p, zSql);
1863     sqlite3_mutex_leave(p->db->mutex);
1864   }
1865   return z;
1866 #endif
1867 }
1868 
1869 #ifdef SQLITE_ENABLE_NORMALIZE
1870 /*
1871 ** Return the normalized SQL associated with a prepared statement.
1872 */
1873 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1874   Vdbe *p = (Vdbe *)pStmt;
1875   if( p==0 ) return 0;
1876   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1877     sqlite3_mutex_enter(p->db->mutex);
1878     p->zNormSql = sqlite3Normalize(p, p->zSql);
1879     sqlite3_mutex_leave(p->db->mutex);
1880   }
1881   return p->zNormSql;
1882 }
1883 #endif /* SQLITE_ENABLE_NORMALIZE */
1884 
1885 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1886 /*
1887 ** Allocate and populate an UnpackedRecord structure based on the serialized
1888 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1889 ** if successful, or a NULL pointer if an OOM error is encountered.
1890 */
1891 static UnpackedRecord *vdbeUnpackRecord(
1892   KeyInfo *pKeyInfo,
1893   int nKey,
1894   const void *pKey
1895 ){
1896   UnpackedRecord *pRet;           /* Return value */
1897 
1898   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1899   if( pRet ){
1900     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1901     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1902   }
1903   return pRet;
1904 }
1905 
1906 /*
1907 ** This function is called from within a pre-update callback to retrieve
1908 ** a field of the row currently being updated or deleted.
1909 */
1910 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1911   PreUpdate *p = db->pPreUpdate;
1912   Mem *pMem;
1913   int rc = SQLITE_OK;
1914 
1915   /* Test that this call is being made from within an SQLITE_DELETE or
1916   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1917   if( !p || p->op==SQLITE_INSERT ){
1918     rc = SQLITE_MISUSE_BKPT;
1919     goto preupdate_old_out;
1920   }
1921   if( p->pPk ){
1922     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1923   }
1924   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1925     rc = SQLITE_RANGE;
1926     goto preupdate_old_out;
1927   }
1928 
1929   /* If the old.* record has not yet been loaded into memory, do so now. */
1930   if( p->pUnpacked==0 ){
1931     u32 nRec;
1932     u8 *aRec;
1933 
1934     assert( p->pCsr->eCurType==CURTYPE_BTREE );
1935     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1936     aRec = sqlite3DbMallocRaw(db, nRec);
1937     if( !aRec ) goto preupdate_old_out;
1938     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1939     if( rc==SQLITE_OK ){
1940       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1941       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1942     }
1943     if( rc!=SQLITE_OK ){
1944       sqlite3DbFree(db, aRec);
1945       goto preupdate_old_out;
1946     }
1947     p->aRecord = aRec;
1948   }
1949 
1950   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1951   if( iIdx==p->pTab->iPKey ){
1952     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1953   }else if( iIdx>=p->pUnpacked->nField ){
1954     *ppValue = (sqlite3_value *)columnNullValue();
1955   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1956     if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1957       testcase( pMem->flags & MEM_Int );
1958       testcase( pMem->flags & MEM_IntReal );
1959       sqlite3VdbeMemRealify(pMem);
1960     }
1961   }
1962 
1963  preupdate_old_out:
1964   sqlite3Error(db, rc);
1965   return sqlite3ApiExit(db, rc);
1966 }
1967 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1968 
1969 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1970 /*
1971 ** This function is called from within a pre-update callback to retrieve
1972 ** the number of columns in the row being updated, deleted or inserted.
1973 */
1974 int sqlite3_preupdate_count(sqlite3 *db){
1975   PreUpdate *p = db->pPreUpdate;
1976   return (p ? p->keyinfo.nKeyField : 0);
1977 }
1978 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1979 
1980 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1981 /*
1982 ** This function is designed to be called from within a pre-update callback
1983 ** only. It returns zero if the change that caused the callback was made
1984 ** immediately by a user SQL statement. Or, if the change was made by a
1985 ** trigger program, it returns the number of trigger programs currently
1986 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1987 ** top-level trigger etc.).
1988 **
1989 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1990 ** or SET DEFAULT action is considered a trigger.
1991 */
1992 int sqlite3_preupdate_depth(sqlite3 *db){
1993   PreUpdate *p = db->pPreUpdate;
1994   return (p ? p->v->nFrame : 0);
1995 }
1996 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1997 
1998 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1999 /*
2000 ** This function is designed to be called from within a pre-update callback
2001 ** only.
2002 */
2003 int sqlite3_preupdate_blobwrite(sqlite3 *db){
2004   PreUpdate *p = db->pPreUpdate;
2005   return (p ? p->iBlobWrite : -1);
2006 }
2007 #endif
2008 
2009 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2010 /*
2011 ** This function is called from within a pre-update callback to retrieve
2012 ** a field of the row currently being updated or inserted.
2013 */
2014 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
2015   PreUpdate *p = db->pPreUpdate;
2016   int rc = SQLITE_OK;
2017   Mem *pMem;
2018 
2019   if( !p || p->op==SQLITE_DELETE ){
2020     rc = SQLITE_MISUSE_BKPT;
2021     goto preupdate_new_out;
2022   }
2023   if( p->pPk && p->op!=SQLITE_UPDATE ){
2024     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2025   }
2026   if( iIdx>=p->pCsr->nField || iIdx<0 ){
2027     rc = SQLITE_RANGE;
2028     goto preupdate_new_out;
2029   }
2030 
2031   if( p->op==SQLITE_INSERT ){
2032     /* For an INSERT, memory cell p->iNewReg contains the serialized record
2033     ** that is being inserted. Deserialize it. */
2034     UnpackedRecord *pUnpack = p->pNewUnpacked;
2035     if( !pUnpack ){
2036       Mem *pData = &p->v->aMem[p->iNewReg];
2037       rc = ExpandBlob(pData);
2038       if( rc!=SQLITE_OK ) goto preupdate_new_out;
2039       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2040       if( !pUnpack ){
2041         rc = SQLITE_NOMEM;
2042         goto preupdate_new_out;
2043       }
2044       p->pNewUnpacked = pUnpack;
2045     }
2046     pMem = &pUnpack->aMem[iIdx];
2047     if( iIdx==p->pTab->iPKey ){
2048       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2049     }else if( iIdx>=pUnpack->nField ){
2050       pMem = (sqlite3_value *)columnNullValue();
2051     }
2052   }else{
2053     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2054     ** value. Make a copy of the cell contents and return a pointer to it.
2055     ** It is not safe to return a pointer to the memory cell itself as the
2056     ** caller may modify the value text encoding.
2057     */
2058     assert( p->op==SQLITE_UPDATE );
2059     if( !p->aNew ){
2060       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2061       if( !p->aNew ){
2062         rc = SQLITE_NOMEM;
2063         goto preupdate_new_out;
2064       }
2065     }
2066     assert( iIdx>=0 && iIdx<p->pCsr->nField );
2067     pMem = &p->aNew[iIdx];
2068     if( pMem->flags==0 ){
2069       if( iIdx==p->pTab->iPKey ){
2070         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2071       }else{
2072         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2073         if( rc!=SQLITE_OK ) goto preupdate_new_out;
2074       }
2075     }
2076   }
2077   *ppValue = pMem;
2078 
2079  preupdate_new_out:
2080   sqlite3Error(db, rc);
2081   return sqlite3ApiExit(db, rc);
2082 }
2083 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2084 
2085 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2086 /*
2087 ** Return status data for a single loop within query pStmt.
2088 */
2089 int sqlite3_stmt_scanstatus(
2090   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
2091   int idx,                        /* Index of loop to report on */
2092   int iScanStatusOp,              /* Which metric to return */
2093   void *pOut                      /* OUT: Write the answer here */
2094 ){
2095   Vdbe *p = (Vdbe*)pStmt;
2096   ScanStatus *pScan;
2097   if( idx<0 || idx>=p->nScan ) return 1;
2098   pScan = &p->aScan[idx];
2099   switch( iScanStatusOp ){
2100     case SQLITE_SCANSTAT_NLOOP: {
2101       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2102       break;
2103     }
2104     case SQLITE_SCANSTAT_NVISIT: {
2105       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2106       break;
2107     }
2108     case SQLITE_SCANSTAT_EST: {
2109       double r = 1.0;
2110       LogEst x = pScan->nEst;
2111       while( x<100 ){
2112         x += 10;
2113         r *= 0.5;
2114       }
2115       *(double*)pOut = r*sqlite3LogEstToInt(x);
2116       break;
2117     }
2118     case SQLITE_SCANSTAT_NAME: {
2119       *(const char**)pOut = pScan->zName;
2120       break;
2121     }
2122     case SQLITE_SCANSTAT_EXPLAIN: {
2123       if( pScan->addrExplain ){
2124         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2125       }else{
2126         *(const char**)pOut = 0;
2127       }
2128       break;
2129     }
2130     case SQLITE_SCANSTAT_SELECTID: {
2131       if( pScan->addrExplain ){
2132         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2133       }else{
2134         *(int*)pOut = -1;
2135       }
2136       break;
2137     }
2138     default: {
2139       return 1;
2140     }
2141   }
2142   return 0;
2143 }
2144 
2145 /*
2146 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2147 */
2148 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2149   Vdbe *p = (Vdbe*)pStmt;
2150   memset(p->anExec, 0, p->nOp * sizeof(i64));
2151 }
2152 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
2153