xref: /sqlite-3.40.0/src/vdbeapi.c (revision bd462bcc)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 */
238      SQLITE_NULL,     /* 0x01 */
239      SQLITE_TEXT,     /* 0x02 */
240      SQLITE_NULL,     /* 0x03 */
241      SQLITE_INTEGER,  /* 0x04 */
242      SQLITE_NULL,     /* 0x05 */
243      SQLITE_INTEGER,  /* 0x06 */
244      SQLITE_NULL,     /* 0x07 */
245      SQLITE_FLOAT,    /* 0x08 */
246      SQLITE_NULL,     /* 0x09 */
247      SQLITE_FLOAT,    /* 0x0a */
248      SQLITE_NULL,     /* 0x0b */
249      SQLITE_INTEGER,  /* 0x0c */
250      SQLITE_NULL,     /* 0x0d */
251      SQLITE_INTEGER,  /* 0x0e */
252      SQLITE_NULL,     /* 0x0f */
253      SQLITE_BLOB,     /* 0x10 */
254      SQLITE_NULL,     /* 0x11 */
255      SQLITE_TEXT,     /* 0x12 */
256      SQLITE_NULL,     /* 0x13 */
257      SQLITE_INTEGER,  /* 0x14 */
258      SQLITE_NULL,     /* 0x15 */
259      SQLITE_INTEGER,  /* 0x16 */
260      SQLITE_NULL,     /* 0x17 */
261      SQLITE_FLOAT,    /* 0x18 */
262      SQLITE_NULL,     /* 0x19 */
263      SQLITE_FLOAT,    /* 0x1a */
264      SQLITE_NULL,     /* 0x1b */
265      SQLITE_INTEGER,  /* 0x1c */
266      SQLITE_NULL,     /* 0x1d */
267      SQLITE_INTEGER,  /* 0x1e */
268      SQLITE_NULL,     /* 0x1f */
269   };
270   return aType[pVal->flags&MEM_AffMask];
271 }
272 
273 /* Return true if a parameter to xUpdate represents an unchanged column */
274 int sqlite3_value_nochange(sqlite3_value *pVal){
275   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
276 }
277 
278 /* Make a copy of an sqlite3_value object
279 */
280 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
281   sqlite3_value *pNew;
282   if( pOrig==0 ) return 0;
283   pNew = sqlite3_malloc( sizeof(*pNew) );
284   if( pNew==0 ) return 0;
285   memset(pNew, 0, sizeof(*pNew));
286   memcpy(pNew, pOrig, MEMCELLSIZE);
287   pNew->flags &= ~MEM_Dyn;
288   pNew->db = 0;
289   if( pNew->flags&(MEM_Str|MEM_Blob) ){
290     pNew->flags &= ~(MEM_Static|MEM_Dyn);
291     pNew->flags |= MEM_Ephem;
292     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
293       sqlite3ValueFree(pNew);
294       pNew = 0;
295     }
296   }
297   return pNew;
298 }
299 
300 /* Destroy an sqlite3_value object previously obtained from
301 ** sqlite3_value_dup().
302 */
303 void sqlite3_value_free(sqlite3_value *pOld){
304   sqlite3ValueFree(pOld);
305 }
306 
307 
308 /**************************** sqlite3_result_  *******************************
309 ** The following routines are used by user-defined functions to specify
310 ** the function result.
311 **
312 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
313 ** result as a string or blob but if the string or blob is too large, it
314 ** then sets the error code to SQLITE_TOOBIG
315 **
316 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
317 ** on value P is not going to be used and need to be destroyed.
318 */
319 static void setResultStrOrError(
320   sqlite3_context *pCtx,  /* Function context */
321   const char *z,          /* String pointer */
322   int n,                  /* Bytes in string, or negative */
323   u8 enc,                 /* Encoding of z.  0 for BLOBs */
324   void (*xDel)(void*)     /* Destructor function */
325 ){
326   if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
327     sqlite3_result_error_toobig(pCtx);
328   }
329 }
330 static int invokeValueDestructor(
331   const void *p,             /* Value to destroy */
332   void (*xDel)(void*),       /* The destructor */
333   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
334 ){
335   assert( xDel!=SQLITE_DYNAMIC );
336   if( xDel==0 ){
337     /* noop */
338   }else if( xDel==SQLITE_TRANSIENT ){
339     /* noop */
340   }else{
341     xDel((void*)p);
342   }
343   if( pCtx ) sqlite3_result_error_toobig(pCtx);
344   return SQLITE_TOOBIG;
345 }
346 void sqlite3_result_blob(
347   sqlite3_context *pCtx,
348   const void *z,
349   int n,
350   void (*xDel)(void *)
351 ){
352   assert( n>=0 );
353   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
354   setResultStrOrError(pCtx, z, n, 0, xDel);
355 }
356 void sqlite3_result_blob64(
357   sqlite3_context *pCtx,
358   const void *z,
359   sqlite3_uint64 n,
360   void (*xDel)(void *)
361 ){
362   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
363   assert( xDel!=SQLITE_DYNAMIC );
364   if( n>0x7fffffff ){
365     (void)invokeValueDestructor(z, xDel, pCtx);
366   }else{
367     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
368   }
369 }
370 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
371   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
372   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
373 }
374 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
375   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
376   pCtx->isError = SQLITE_ERROR;
377   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
378 }
379 #ifndef SQLITE_OMIT_UTF16
380 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
381   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
382   pCtx->isError = SQLITE_ERROR;
383   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
384 }
385 #endif
386 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
387   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
388   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
389 }
390 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
391   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
392   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
393 }
394 void sqlite3_result_null(sqlite3_context *pCtx){
395   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
396   sqlite3VdbeMemSetNull(pCtx->pOut);
397 }
398 void sqlite3_result_pointer(
399   sqlite3_context *pCtx,
400   void *pPtr,
401   const char *zPType,
402   void (*xDestructor)(void*)
403 ){
404   Mem *pOut = pCtx->pOut;
405   assert( sqlite3_mutex_held(pOut->db->mutex) );
406   sqlite3VdbeMemRelease(pOut);
407   pOut->flags = MEM_Null;
408   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
409 }
410 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
411   Mem *pOut = pCtx->pOut;
412   assert( sqlite3_mutex_held(pOut->db->mutex) );
413   pOut->eSubtype = eSubtype & 0xff;
414   pOut->flags |= MEM_Subtype;
415 }
416 void sqlite3_result_text(
417   sqlite3_context *pCtx,
418   const char *z,
419   int n,
420   void (*xDel)(void *)
421 ){
422   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
423   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
424 }
425 void sqlite3_result_text64(
426   sqlite3_context *pCtx,
427   const char *z,
428   sqlite3_uint64 n,
429   void (*xDel)(void *),
430   unsigned char enc
431 ){
432   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
433   assert( xDel!=SQLITE_DYNAMIC );
434   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
435   if( n>0x7fffffff ){
436     (void)invokeValueDestructor(z, xDel, pCtx);
437   }else{
438     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
439   }
440 }
441 #ifndef SQLITE_OMIT_UTF16
442 void sqlite3_result_text16(
443   sqlite3_context *pCtx,
444   const void *z,
445   int n,
446   void (*xDel)(void *)
447 ){
448   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
449   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
450 }
451 void sqlite3_result_text16be(
452   sqlite3_context *pCtx,
453   const void *z,
454   int n,
455   void (*xDel)(void *)
456 ){
457   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
458   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
459 }
460 void sqlite3_result_text16le(
461   sqlite3_context *pCtx,
462   const void *z,
463   int n,
464   void (*xDel)(void *)
465 ){
466   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
467   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
468 }
469 #endif /* SQLITE_OMIT_UTF16 */
470 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
471   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
472   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
473 }
474 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
475   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
476   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
477 }
478 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
479   Mem *pOut = pCtx->pOut;
480   assert( sqlite3_mutex_held(pOut->db->mutex) );
481   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
482     return SQLITE_TOOBIG;
483   }
484   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
485   return SQLITE_OK;
486 }
487 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
488   pCtx->isError = errCode ? errCode : -1;
489 #ifdef SQLITE_DEBUG
490   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
491 #endif
492   if( pCtx->pOut->flags & MEM_Null ){
493     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
494                          SQLITE_UTF8, SQLITE_STATIC);
495   }
496 }
497 
498 /* Force an SQLITE_TOOBIG error. */
499 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
500   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
501   pCtx->isError = SQLITE_TOOBIG;
502   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
503                        SQLITE_UTF8, SQLITE_STATIC);
504 }
505 
506 /* An SQLITE_NOMEM error. */
507 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
508   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
509   sqlite3VdbeMemSetNull(pCtx->pOut);
510   pCtx->isError = SQLITE_NOMEM_BKPT;
511   sqlite3OomFault(pCtx->pOut->db);
512 }
513 
514 /*
515 ** This function is called after a transaction has been committed. It
516 ** invokes callbacks registered with sqlite3_wal_hook() as required.
517 */
518 static int doWalCallbacks(sqlite3 *db){
519   int rc = SQLITE_OK;
520 #ifndef SQLITE_OMIT_WAL
521   int i;
522   for(i=0; i<db->nDb; i++){
523     Btree *pBt = db->aDb[i].pBt;
524     if( pBt ){
525       int nEntry;
526       sqlite3BtreeEnter(pBt);
527       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
528       sqlite3BtreeLeave(pBt);
529       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
530         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
531       }
532     }
533   }
534 #endif
535   return rc;
536 }
537 
538 
539 /*
540 ** Execute the statement pStmt, either until a row of data is ready, the
541 ** statement is completely executed or an error occurs.
542 **
543 ** This routine implements the bulk of the logic behind the sqlite_step()
544 ** API.  The only thing omitted is the automatic recompile if a
545 ** schema change has occurred.  That detail is handled by the
546 ** outer sqlite3_step() wrapper procedure.
547 */
548 static int sqlite3Step(Vdbe *p){
549   sqlite3 *db;
550   int rc;
551 
552   assert(p);
553   if( p->magic!=VDBE_MAGIC_RUN ){
554     /* We used to require that sqlite3_reset() be called before retrying
555     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
556     ** with version 3.7.0, we changed this so that sqlite3_reset() would
557     ** be called automatically instead of throwing the SQLITE_MISUSE error.
558     ** This "automatic-reset" change is not technically an incompatibility,
559     ** since any application that receives an SQLITE_MISUSE is broken by
560     ** definition.
561     **
562     ** Nevertheless, some published applications that were originally written
563     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
564     ** returns, and those were broken by the automatic-reset change.  As a
565     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
566     ** legacy behavior of returning SQLITE_MISUSE for cases where the
567     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
568     ** or SQLITE_BUSY error.
569     */
570 #ifdef SQLITE_OMIT_AUTORESET
571     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
572       sqlite3_reset((sqlite3_stmt*)p);
573     }else{
574       return SQLITE_MISUSE_BKPT;
575     }
576 #else
577     sqlite3_reset((sqlite3_stmt*)p);
578 #endif
579   }
580 
581   /* Check that malloc() has not failed. If it has, return early. */
582   db = p->db;
583   if( db->mallocFailed ){
584     p->rc = SQLITE_NOMEM;
585     return SQLITE_NOMEM_BKPT;
586   }
587 
588   if( p->pc<0 && p->expired ){
589     p->rc = SQLITE_SCHEMA;
590     rc = SQLITE_ERROR;
591     goto end_of_step;
592   }
593   if( p->pc<0 ){
594     /* If there are no other statements currently running, then
595     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
596     ** from interrupting a statement that has not yet started.
597     */
598     if( db->nVdbeActive==0 ){
599       db->u1.isInterrupted = 0;
600     }
601 
602     assert( db->nVdbeWrite>0 || db->autoCommit==0
603         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
604     );
605 
606 #ifndef SQLITE_OMIT_TRACE
607     if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
608         && !db->init.busy && p->zSql ){
609       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
610     }else{
611       assert( p->startTime==0 );
612     }
613 #endif
614 
615     db->nVdbeActive++;
616     if( p->readOnly==0 ) db->nVdbeWrite++;
617     if( p->bIsReader ) db->nVdbeRead++;
618     p->pc = 0;
619   }
620 #ifdef SQLITE_DEBUG
621   p->rcApp = SQLITE_OK;
622 #endif
623 #ifndef SQLITE_OMIT_EXPLAIN
624   if( p->explain ){
625     rc = sqlite3VdbeList(p);
626   }else
627 #endif /* SQLITE_OMIT_EXPLAIN */
628   {
629     db->nVdbeExec++;
630     rc = sqlite3VdbeExec(p);
631     db->nVdbeExec--;
632   }
633 
634   if( rc!=SQLITE_ROW ){
635 #ifndef SQLITE_OMIT_TRACE
636     /* If the statement completed successfully, invoke the profile callback */
637     checkProfileCallback(db, p);
638 #endif
639 
640     if( rc==SQLITE_DONE && db->autoCommit ){
641       assert( p->rc==SQLITE_OK );
642       p->rc = doWalCallbacks(db);
643       if( p->rc!=SQLITE_OK ){
644         rc = SQLITE_ERROR;
645       }
646     }
647   }
648 
649   db->errCode = rc;
650   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
651     p->rc = SQLITE_NOMEM_BKPT;
652   }
653 end_of_step:
654   /* At this point local variable rc holds the value that should be
655   ** returned if this statement was compiled using the legacy
656   ** sqlite3_prepare() interface. According to the docs, this can only
657   ** be one of the values in the first assert() below. Variable p->rc
658   ** contains the value that would be returned if sqlite3_finalize()
659   ** were called on statement p.
660   */
661   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
662        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
663   );
664   assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
665   if( rc!=SQLITE_ROW
666    && rc!=SQLITE_DONE
667    && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
668   ){
669     /* If this statement was prepared using saved SQL and an
670     ** error has occurred, then return the error code in p->rc to the
671     ** caller. Set the error code in the database handle to the same value.
672     */
673     rc = sqlite3VdbeTransferError(p);
674   }
675   return (rc&db->errMask);
676 }
677 
678 /*
679 ** This is the top-level implementation of sqlite3_step().  Call
680 ** sqlite3Step() to do most of the work.  If a schema error occurs,
681 ** call sqlite3Reprepare() and try again.
682 */
683 int sqlite3_step(sqlite3_stmt *pStmt){
684   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
685   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
686   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
687   sqlite3 *db;             /* The database connection */
688 
689   if( vdbeSafetyNotNull(v) ){
690     return SQLITE_MISUSE_BKPT;
691   }
692   db = v->db;
693   sqlite3_mutex_enter(db->mutex);
694   v->doingRerun = 0;
695   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
696          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
697     int savedPc = v->pc;
698     rc = sqlite3Reprepare(v);
699     if( rc!=SQLITE_OK ){
700       /* This case occurs after failing to recompile an sql statement.
701       ** The error message from the SQL compiler has already been loaded
702       ** into the database handle. This block copies the error message
703       ** from the database handle into the statement and sets the statement
704       ** program counter to 0 to ensure that when the statement is
705       ** finalized or reset the parser error message is available via
706       ** sqlite3_errmsg() and sqlite3_errcode().
707       */
708       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
709       sqlite3DbFree(db, v->zErrMsg);
710       if( !db->mallocFailed ){
711         v->zErrMsg = sqlite3DbStrDup(db, zErr);
712         v->rc = rc = sqlite3ApiExit(db, rc);
713       } else {
714         v->zErrMsg = 0;
715         v->rc = rc = SQLITE_NOMEM_BKPT;
716       }
717       break;
718     }
719     sqlite3_reset(pStmt);
720     if( savedPc>=0 ) v->doingRerun = 1;
721     assert( v->expired==0 );
722   }
723   sqlite3_mutex_leave(db->mutex);
724   return rc;
725 }
726 
727 
728 /*
729 ** Extract the user data from a sqlite3_context structure and return a
730 ** pointer to it.
731 */
732 void *sqlite3_user_data(sqlite3_context *p){
733   assert( p && p->pFunc );
734   return p->pFunc->pUserData;
735 }
736 
737 /*
738 ** Extract the user data from a sqlite3_context structure and return a
739 ** pointer to it.
740 **
741 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
742 ** returns a copy of the pointer to the database connection (the 1st
743 ** parameter) of the sqlite3_create_function() and
744 ** sqlite3_create_function16() routines that originally registered the
745 ** application defined function.
746 */
747 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
748   assert( p && p->pOut );
749   return p->pOut->db;
750 }
751 
752 /*
753 ** If this routine is invoked from within an xColumn method of a virtual
754 ** table, then it returns true if and only if the the call is during an
755 ** UPDATE operation and the value of the column will not be modified
756 ** by the UPDATE.
757 **
758 ** If this routine is called from any context other than within the
759 ** xColumn method of a virtual table, then the return value is meaningless
760 ** and arbitrary.
761 **
762 ** Virtual table implements might use this routine to optimize their
763 ** performance by substituting a NULL result, or some other light-weight
764 ** value, as a signal to the xUpdate routine that the column is unchanged.
765 */
766 int sqlite3_vtab_nochange(sqlite3_context *p){
767   assert( p );
768   return sqlite3_value_nochange(p->pOut);
769 }
770 
771 /*
772 ** Return the current time for a statement.  If the current time
773 ** is requested more than once within the same run of a single prepared
774 ** statement, the exact same time is returned for each invocation regardless
775 ** of the amount of time that elapses between invocations.  In other words,
776 ** the time returned is always the time of the first call.
777 */
778 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
779   int rc;
780 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
781   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
782   assert( p->pVdbe!=0 );
783 #else
784   sqlite3_int64 iTime = 0;
785   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
786 #endif
787   if( *piTime==0 ){
788     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
789     if( rc ) *piTime = 0;
790   }
791   return *piTime;
792 }
793 
794 /*
795 ** Create a new aggregate context for p and return a pointer to
796 ** its pMem->z element.
797 */
798 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
799   Mem *pMem = p->pMem;
800   assert( (pMem->flags & MEM_Agg)==0 );
801   if( nByte<=0 ){
802     sqlite3VdbeMemSetNull(pMem);
803     pMem->z = 0;
804   }else{
805     sqlite3VdbeMemClearAndResize(pMem, nByte);
806     pMem->flags = MEM_Agg;
807     pMem->u.pDef = p->pFunc;
808     if( pMem->z ){
809       memset(pMem->z, 0, nByte);
810     }
811   }
812   return (void*)pMem->z;
813 }
814 
815 /*
816 ** Allocate or return the aggregate context for a user function.  A new
817 ** context is allocated on the first call.  Subsequent calls return the
818 ** same context that was returned on prior calls.
819 */
820 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
821   assert( p && p->pFunc && p->pFunc->xFinalize );
822   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
823   testcase( nByte<0 );
824   if( (p->pMem->flags & MEM_Agg)==0 ){
825     return createAggContext(p, nByte);
826   }else{
827     return (void*)p->pMem->z;
828   }
829 }
830 
831 /*
832 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
833 ** the user-function defined by pCtx.
834 **
835 ** The left-most argument is 0.
836 **
837 ** Undocumented behavior:  If iArg is negative then access a cache of
838 ** auxiliary data pointers that is available to all functions within a
839 ** single prepared statement.  The iArg values must match.
840 */
841 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
842   AuxData *pAuxData;
843 
844   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
845 #if SQLITE_ENABLE_STAT3_OR_STAT4
846   if( pCtx->pVdbe==0 ) return 0;
847 #else
848   assert( pCtx->pVdbe!=0 );
849 #endif
850   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
851     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
852       return pAuxData->pAux;
853     }
854   }
855   return 0;
856 }
857 
858 /*
859 ** Set the auxiliary data pointer and delete function, for the iArg'th
860 ** argument to the user-function defined by pCtx. Any previous value is
861 ** deleted by calling the delete function specified when it was set.
862 **
863 ** The left-most argument is 0.
864 **
865 ** Undocumented behavior:  If iArg is negative then make the data available
866 ** to all functions within the current prepared statement using iArg as an
867 ** access code.
868 */
869 void sqlite3_set_auxdata(
870   sqlite3_context *pCtx,
871   int iArg,
872   void *pAux,
873   void (*xDelete)(void*)
874 ){
875   AuxData *pAuxData;
876   Vdbe *pVdbe = pCtx->pVdbe;
877 
878   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
879 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
880   if( pVdbe==0 ) goto failed;
881 #else
882   assert( pVdbe!=0 );
883 #endif
884 
885   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
886     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
887       break;
888     }
889   }
890   if( pAuxData==0 ){
891     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
892     if( !pAuxData ) goto failed;
893     pAuxData->iAuxOp = pCtx->iOp;
894     pAuxData->iAuxArg = iArg;
895     pAuxData->pNextAux = pVdbe->pAuxData;
896     pVdbe->pAuxData = pAuxData;
897     if( pCtx->isError==0 ) pCtx->isError = -1;
898   }else if( pAuxData->xDeleteAux ){
899     pAuxData->xDeleteAux(pAuxData->pAux);
900   }
901 
902   pAuxData->pAux = pAux;
903   pAuxData->xDeleteAux = xDelete;
904   return;
905 
906 failed:
907   if( xDelete ){
908     xDelete(pAux);
909   }
910 }
911 
912 #ifndef SQLITE_OMIT_DEPRECATED
913 /*
914 ** Return the number of times the Step function of an aggregate has been
915 ** called.
916 **
917 ** This function is deprecated.  Do not use it for new code.  It is
918 ** provide only to avoid breaking legacy code.  New aggregate function
919 ** implementations should keep their own counts within their aggregate
920 ** context.
921 */
922 int sqlite3_aggregate_count(sqlite3_context *p){
923   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
924   return p->pMem->n;
925 }
926 #endif
927 
928 /*
929 ** Return the number of columns in the result set for the statement pStmt.
930 */
931 int sqlite3_column_count(sqlite3_stmt *pStmt){
932   Vdbe *pVm = (Vdbe *)pStmt;
933   return pVm ? pVm->nResColumn : 0;
934 }
935 
936 /*
937 ** Return the number of values available from the current row of the
938 ** currently executing statement pStmt.
939 */
940 int sqlite3_data_count(sqlite3_stmt *pStmt){
941   Vdbe *pVm = (Vdbe *)pStmt;
942   if( pVm==0 || pVm->pResultSet==0 ) return 0;
943   return pVm->nResColumn;
944 }
945 
946 /*
947 ** Return a pointer to static memory containing an SQL NULL value.
948 */
949 static const Mem *columnNullValue(void){
950   /* Even though the Mem structure contains an element
951   ** of type i64, on certain architectures (x86) with certain compiler
952   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
953   ** instead of an 8-byte one. This all works fine, except that when
954   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
955   ** that a Mem structure is located on an 8-byte boundary. To prevent
956   ** these assert()s from failing, when building with SQLITE_DEBUG defined
957   ** using gcc, we force nullMem to be 8-byte aligned using the magical
958   ** __attribute__((aligned(8))) macro.  */
959   static const Mem nullMem
960 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
961     __attribute__((aligned(8)))
962 #endif
963     = {
964         /* .u          = */ {0},
965         /* .flags      = */ (u16)MEM_Null,
966         /* .enc        = */ (u8)0,
967         /* .eSubtype   = */ (u8)0,
968         /* .n          = */ (int)0,
969         /* .z          = */ (char*)0,
970         /* .zMalloc    = */ (char*)0,
971         /* .szMalloc   = */ (int)0,
972         /* .uTemp      = */ (u32)0,
973         /* .db         = */ (sqlite3*)0,
974         /* .xDel       = */ (void(*)(void*))0,
975 #ifdef SQLITE_DEBUG
976         /* .pScopyFrom = */ (Mem*)0,
977         /* .mScopyFlags= */ 0,
978 #endif
979       };
980   return &nullMem;
981 }
982 
983 /*
984 ** Check to see if column iCol of the given statement is valid.  If
985 ** it is, return a pointer to the Mem for the value of that column.
986 ** If iCol is not valid, return a pointer to a Mem which has a value
987 ** of NULL.
988 */
989 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
990   Vdbe *pVm;
991   Mem *pOut;
992 
993   pVm = (Vdbe *)pStmt;
994   if( pVm==0 ) return (Mem*)columnNullValue();
995   assert( pVm->db );
996   sqlite3_mutex_enter(pVm->db->mutex);
997   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
998     pOut = &pVm->pResultSet[i];
999   }else{
1000     sqlite3Error(pVm->db, SQLITE_RANGE);
1001     pOut = (Mem*)columnNullValue();
1002   }
1003   return pOut;
1004 }
1005 
1006 /*
1007 ** This function is called after invoking an sqlite3_value_XXX function on a
1008 ** column value (i.e. a value returned by evaluating an SQL expression in the
1009 ** select list of a SELECT statement) that may cause a malloc() failure. If
1010 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1011 ** code of statement pStmt set to SQLITE_NOMEM.
1012 **
1013 ** Specifically, this is called from within:
1014 **
1015 **     sqlite3_column_int()
1016 **     sqlite3_column_int64()
1017 **     sqlite3_column_text()
1018 **     sqlite3_column_text16()
1019 **     sqlite3_column_real()
1020 **     sqlite3_column_bytes()
1021 **     sqlite3_column_bytes16()
1022 **     sqiite3_column_blob()
1023 */
1024 static void columnMallocFailure(sqlite3_stmt *pStmt)
1025 {
1026   /* If malloc() failed during an encoding conversion within an
1027   ** sqlite3_column_XXX API, then set the return code of the statement to
1028   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1029   ** and _finalize() will return NOMEM.
1030   */
1031   Vdbe *p = (Vdbe *)pStmt;
1032   if( p ){
1033     assert( p->db!=0 );
1034     assert( sqlite3_mutex_held(p->db->mutex) );
1035     p->rc = sqlite3ApiExit(p->db, p->rc);
1036     sqlite3_mutex_leave(p->db->mutex);
1037   }
1038 }
1039 
1040 /**************************** sqlite3_column_  *******************************
1041 ** The following routines are used to access elements of the current row
1042 ** in the result set.
1043 */
1044 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1045   const void *val;
1046   val = sqlite3_value_blob( columnMem(pStmt,i) );
1047   /* Even though there is no encoding conversion, value_blob() might
1048   ** need to call malloc() to expand the result of a zeroblob()
1049   ** expression.
1050   */
1051   columnMallocFailure(pStmt);
1052   return val;
1053 }
1054 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1055   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1056   columnMallocFailure(pStmt);
1057   return val;
1058 }
1059 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1060   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1061   columnMallocFailure(pStmt);
1062   return val;
1063 }
1064 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1065   double val = sqlite3_value_double( columnMem(pStmt,i) );
1066   columnMallocFailure(pStmt);
1067   return val;
1068 }
1069 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1070   int val = sqlite3_value_int( columnMem(pStmt,i) );
1071   columnMallocFailure(pStmt);
1072   return val;
1073 }
1074 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1075   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1076   columnMallocFailure(pStmt);
1077   return val;
1078 }
1079 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1080   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1081   columnMallocFailure(pStmt);
1082   return val;
1083 }
1084 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1085   Mem *pOut = columnMem(pStmt, i);
1086   if( pOut->flags&MEM_Static ){
1087     pOut->flags &= ~MEM_Static;
1088     pOut->flags |= MEM_Ephem;
1089   }
1090   columnMallocFailure(pStmt);
1091   return (sqlite3_value *)pOut;
1092 }
1093 #ifndef SQLITE_OMIT_UTF16
1094 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1095   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1096   columnMallocFailure(pStmt);
1097   return val;
1098 }
1099 #endif /* SQLITE_OMIT_UTF16 */
1100 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1101   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1102   columnMallocFailure(pStmt);
1103   return iType;
1104 }
1105 
1106 /*
1107 ** Convert the N-th element of pStmt->pColName[] into a string using
1108 ** xFunc() then return that string.  If N is out of range, return 0.
1109 **
1110 ** There are up to 5 names for each column.  useType determines which
1111 ** name is returned.  Here are the names:
1112 **
1113 **    0      The column name as it should be displayed for output
1114 **    1      The datatype name for the column
1115 **    2      The name of the database that the column derives from
1116 **    3      The name of the table that the column derives from
1117 **    4      The name of the table column that the result column derives from
1118 **
1119 ** If the result is not a simple column reference (if it is an expression
1120 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1121 */
1122 static const void *columnName(
1123   sqlite3_stmt *pStmt,
1124   int N,
1125   const void *(*xFunc)(Mem*),
1126   int useType
1127 ){
1128   const void *ret;
1129   Vdbe *p;
1130   int n;
1131   sqlite3 *db;
1132 #ifdef SQLITE_ENABLE_API_ARMOR
1133   if( pStmt==0 ){
1134     (void)SQLITE_MISUSE_BKPT;
1135     return 0;
1136   }
1137 #endif
1138   ret = 0;
1139   p = (Vdbe *)pStmt;
1140   db = p->db;
1141   assert( db!=0 );
1142   n = sqlite3_column_count(pStmt);
1143   if( N<n && N>=0 ){
1144     N += useType*n;
1145     sqlite3_mutex_enter(db->mutex);
1146     assert( db->mallocFailed==0 );
1147     ret = xFunc(&p->aColName[N]);
1148      /* A malloc may have failed inside of the xFunc() call. If this
1149     ** is the case, clear the mallocFailed flag and return NULL.
1150     */
1151     if( db->mallocFailed ){
1152       sqlite3OomClear(db);
1153       ret = 0;
1154     }
1155     sqlite3_mutex_leave(db->mutex);
1156   }
1157   return ret;
1158 }
1159 
1160 /*
1161 ** Return the name of the Nth column of the result set returned by SQL
1162 ** statement pStmt.
1163 */
1164 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1165   return columnName(
1166       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1167 }
1168 #ifndef SQLITE_OMIT_UTF16
1169 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1170   return columnName(
1171       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1172 }
1173 #endif
1174 
1175 /*
1176 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1177 ** not define OMIT_DECLTYPE.
1178 */
1179 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1180 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1181          and SQLITE_ENABLE_COLUMN_METADATA"
1182 #endif
1183 
1184 #ifndef SQLITE_OMIT_DECLTYPE
1185 /*
1186 ** Return the column declaration type (if applicable) of the 'i'th column
1187 ** of the result set of SQL statement pStmt.
1188 */
1189 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1190   return columnName(
1191       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1192 }
1193 #ifndef SQLITE_OMIT_UTF16
1194 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1195   return columnName(
1196       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1197 }
1198 #endif /* SQLITE_OMIT_UTF16 */
1199 #endif /* SQLITE_OMIT_DECLTYPE */
1200 
1201 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1202 /*
1203 ** Return the name of the database from which a result column derives.
1204 ** NULL is returned if the result column is an expression or constant or
1205 ** anything else which is not an unambiguous reference to a database column.
1206 */
1207 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1208   return columnName(
1209       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1210 }
1211 #ifndef SQLITE_OMIT_UTF16
1212 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1213   return columnName(
1214       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1215 }
1216 #endif /* SQLITE_OMIT_UTF16 */
1217 
1218 /*
1219 ** Return the name of the table from which a result column derives.
1220 ** NULL is returned if the result column is an expression or constant or
1221 ** anything else which is not an unambiguous reference to a database column.
1222 */
1223 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1224   return columnName(
1225       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1226 }
1227 #ifndef SQLITE_OMIT_UTF16
1228 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1229   return columnName(
1230       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1231 }
1232 #endif /* SQLITE_OMIT_UTF16 */
1233 
1234 /*
1235 ** Return the name of the table column from which a result column derives.
1236 ** NULL is returned if the result column is an expression or constant or
1237 ** anything else which is not an unambiguous reference to a database column.
1238 */
1239 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1240   return columnName(
1241       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1242 }
1243 #ifndef SQLITE_OMIT_UTF16
1244 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1245   return columnName(
1246       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1247 }
1248 #endif /* SQLITE_OMIT_UTF16 */
1249 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1250 
1251 
1252 /******************************* sqlite3_bind_  ***************************
1253 **
1254 ** Routines used to attach values to wildcards in a compiled SQL statement.
1255 */
1256 /*
1257 ** Unbind the value bound to variable i in virtual machine p. This is the
1258 ** the same as binding a NULL value to the column. If the "i" parameter is
1259 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1260 **
1261 ** A successful evaluation of this routine acquires the mutex on p.
1262 ** the mutex is released if any kind of error occurs.
1263 **
1264 ** The error code stored in database p->db is overwritten with the return
1265 ** value in any case.
1266 */
1267 static int vdbeUnbind(Vdbe *p, int i){
1268   Mem *pVar;
1269   if( vdbeSafetyNotNull(p) ){
1270     return SQLITE_MISUSE_BKPT;
1271   }
1272   sqlite3_mutex_enter(p->db->mutex);
1273   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1274     sqlite3Error(p->db, SQLITE_MISUSE);
1275     sqlite3_mutex_leave(p->db->mutex);
1276     sqlite3_log(SQLITE_MISUSE,
1277         "bind on a busy prepared statement: [%s]", p->zSql);
1278     return SQLITE_MISUSE_BKPT;
1279   }
1280   if( i<1 || i>p->nVar ){
1281     sqlite3Error(p->db, SQLITE_RANGE);
1282     sqlite3_mutex_leave(p->db->mutex);
1283     return SQLITE_RANGE;
1284   }
1285   i--;
1286   pVar = &p->aVar[i];
1287   sqlite3VdbeMemRelease(pVar);
1288   pVar->flags = MEM_Null;
1289   p->db->errCode = SQLITE_OK;
1290 
1291   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1292   ** binding a new value to this variable invalidates the current query plan.
1293   **
1294   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1295   ** parameter in the WHERE clause might influence the choice of query plan
1296   ** for a statement, then the statement will be automatically recompiled,
1297   ** as if there had been a schema change, on the first sqlite3_step() call
1298   ** following any change to the bindings of that parameter.
1299   */
1300   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1301   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1302     p->expired = 1;
1303   }
1304   return SQLITE_OK;
1305 }
1306 
1307 /*
1308 ** Bind a text or BLOB value.
1309 */
1310 static int bindText(
1311   sqlite3_stmt *pStmt,   /* The statement to bind against */
1312   int i,                 /* Index of the parameter to bind */
1313   const void *zData,     /* Pointer to the data to be bound */
1314   int nData,             /* Number of bytes of data to be bound */
1315   void (*xDel)(void*),   /* Destructor for the data */
1316   u8 encoding            /* Encoding for the data */
1317 ){
1318   Vdbe *p = (Vdbe *)pStmt;
1319   Mem *pVar;
1320   int rc;
1321 
1322   rc = vdbeUnbind(p, i);
1323   if( rc==SQLITE_OK ){
1324     if( zData!=0 ){
1325       pVar = &p->aVar[i-1];
1326       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1327       if( rc==SQLITE_OK && encoding!=0 ){
1328         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1329       }
1330       if( rc ){
1331         sqlite3Error(p->db, rc);
1332         rc = sqlite3ApiExit(p->db, rc);
1333       }
1334     }
1335     sqlite3_mutex_leave(p->db->mutex);
1336   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1337     xDel((void*)zData);
1338   }
1339   return rc;
1340 }
1341 
1342 
1343 /*
1344 ** Bind a blob value to an SQL statement variable.
1345 */
1346 int sqlite3_bind_blob(
1347   sqlite3_stmt *pStmt,
1348   int i,
1349   const void *zData,
1350   int nData,
1351   void (*xDel)(void*)
1352 ){
1353 #ifdef SQLITE_ENABLE_API_ARMOR
1354   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1355 #endif
1356   return bindText(pStmt, i, zData, nData, xDel, 0);
1357 }
1358 int sqlite3_bind_blob64(
1359   sqlite3_stmt *pStmt,
1360   int i,
1361   const void *zData,
1362   sqlite3_uint64 nData,
1363   void (*xDel)(void*)
1364 ){
1365   assert( xDel!=SQLITE_DYNAMIC );
1366   if( nData>0x7fffffff ){
1367     return invokeValueDestructor(zData, xDel, 0);
1368   }else{
1369     return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1370   }
1371 }
1372 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1373   int rc;
1374   Vdbe *p = (Vdbe *)pStmt;
1375   rc = vdbeUnbind(p, i);
1376   if( rc==SQLITE_OK ){
1377     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1378     sqlite3_mutex_leave(p->db->mutex);
1379   }
1380   return rc;
1381 }
1382 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1383   return sqlite3_bind_int64(p, i, (i64)iValue);
1384 }
1385 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1386   int rc;
1387   Vdbe *p = (Vdbe *)pStmt;
1388   rc = vdbeUnbind(p, i);
1389   if( rc==SQLITE_OK ){
1390     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1391     sqlite3_mutex_leave(p->db->mutex);
1392   }
1393   return rc;
1394 }
1395 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1396   int rc;
1397   Vdbe *p = (Vdbe*)pStmt;
1398   rc = vdbeUnbind(p, i);
1399   if( rc==SQLITE_OK ){
1400     sqlite3_mutex_leave(p->db->mutex);
1401   }
1402   return rc;
1403 }
1404 int sqlite3_bind_pointer(
1405   sqlite3_stmt *pStmt,
1406   int i,
1407   void *pPtr,
1408   const char *zPTtype,
1409   void (*xDestructor)(void*)
1410 ){
1411   int rc;
1412   Vdbe *p = (Vdbe*)pStmt;
1413   rc = vdbeUnbind(p, i);
1414   if( rc==SQLITE_OK ){
1415     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1416     sqlite3_mutex_leave(p->db->mutex);
1417   }else if( xDestructor ){
1418     xDestructor(pPtr);
1419   }
1420   return rc;
1421 }
1422 int sqlite3_bind_text(
1423   sqlite3_stmt *pStmt,
1424   int i,
1425   const char *zData,
1426   int nData,
1427   void (*xDel)(void*)
1428 ){
1429   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1430 }
1431 int sqlite3_bind_text64(
1432   sqlite3_stmt *pStmt,
1433   int i,
1434   const char *zData,
1435   sqlite3_uint64 nData,
1436   void (*xDel)(void*),
1437   unsigned char enc
1438 ){
1439   assert( xDel!=SQLITE_DYNAMIC );
1440   if( nData>0x7fffffff ){
1441     return invokeValueDestructor(zData, xDel, 0);
1442   }else{
1443     if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1444     return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1445   }
1446 }
1447 #ifndef SQLITE_OMIT_UTF16
1448 int sqlite3_bind_text16(
1449   sqlite3_stmt *pStmt,
1450   int i,
1451   const void *zData,
1452   int nData,
1453   void (*xDel)(void*)
1454 ){
1455   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1456 }
1457 #endif /* SQLITE_OMIT_UTF16 */
1458 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1459   int rc;
1460   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1461     case SQLITE_INTEGER: {
1462       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1463       break;
1464     }
1465     case SQLITE_FLOAT: {
1466       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1467       break;
1468     }
1469     case SQLITE_BLOB: {
1470       if( pValue->flags & MEM_Zero ){
1471         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1472       }else{
1473         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1474       }
1475       break;
1476     }
1477     case SQLITE_TEXT: {
1478       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1479                               pValue->enc);
1480       break;
1481     }
1482     default: {
1483       rc = sqlite3_bind_null(pStmt, i);
1484       break;
1485     }
1486   }
1487   return rc;
1488 }
1489 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1490   int rc;
1491   Vdbe *p = (Vdbe *)pStmt;
1492   rc = vdbeUnbind(p, i);
1493   if( rc==SQLITE_OK ){
1494     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1495     sqlite3_mutex_leave(p->db->mutex);
1496   }
1497   return rc;
1498 }
1499 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1500   int rc;
1501   Vdbe *p = (Vdbe *)pStmt;
1502   sqlite3_mutex_enter(p->db->mutex);
1503   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1504     rc = SQLITE_TOOBIG;
1505   }else{
1506     assert( (n & 0x7FFFFFFF)==n );
1507     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1508   }
1509   rc = sqlite3ApiExit(p->db, rc);
1510   sqlite3_mutex_leave(p->db->mutex);
1511   return rc;
1512 }
1513 
1514 /*
1515 ** Return the number of wildcards that can be potentially bound to.
1516 ** This routine is added to support DBD::SQLite.
1517 */
1518 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1519   Vdbe *p = (Vdbe*)pStmt;
1520   return p ? p->nVar : 0;
1521 }
1522 
1523 /*
1524 ** Return the name of a wildcard parameter.  Return NULL if the index
1525 ** is out of range or if the wildcard is unnamed.
1526 **
1527 ** The result is always UTF-8.
1528 */
1529 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1530   Vdbe *p = (Vdbe*)pStmt;
1531   if( p==0 ) return 0;
1532   return sqlite3VListNumToName(p->pVList, i);
1533 }
1534 
1535 /*
1536 ** Given a wildcard parameter name, return the index of the variable
1537 ** with that name.  If there is no variable with the given name,
1538 ** return 0.
1539 */
1540 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1541   if( p==0 || zName==0 ) return 0;
1542   return sqlite3VListNameToNum(p->pVList, zName, nName);
1543 }
1544 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1545   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1546 }
1547 
1548 /*
1549 ** Transfer all bindings from the first statement over to the second.
1550 */
1551 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1552   Vdbe *pFrom = (Vdbe*)pFromStmt;
1553   Vdbe *pTo = (Vdbe*)pToStmt;
1554   int i;
1555   assert( pTo->db==pFrom->db );
1556   assert( pTo->nVar==pFrom->nVar );
1557   sqlite3_mutex_enter(pTo->db->mutex);
1558   for(i=0; i<pFrom->nVar; i++){
1559     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1560   }
1561   sqlite3_mutex_leave(pTo->db->mutex);
1562   return SQLITE_OK;
1563 }
1564 
1565 #ifndef SQLITE_OMIT_DEPRECATED
1566 /*
1567 ** Deprecated external interface.  Internal/core SQLite code
1568 ** should call sqlite3TransferBindings.
1569 **
1570 ** It is misuse to call this routine with statements from different
1571 ** database connections.  But as this is a deprecated interface, we
1572 ** will not bother to check for that condition.
1573 **
1574 ** If the two statements contain a different number of bindings, then
1575 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1576 ** SQLITE_OK is returned.
1577 */
1578 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1579   Vdbe *pFrom = (Vdbe*)pFromStmt;
1580   Vdbe *pTo = (Vdbe*)pToStmt;
1581   if( pFrom->nVar!=pTo->nVar ){
1582     return SQLITE_ERROR;
1583   }
1584   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1585   if( pTo->expmask ){
1586     pTo->expired = 1;
1587   }
1588   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1589   if( pFrom->expmask ){
1590     pFrom->expired = 1;
1591   }
1592   return sqlite3TransferBindings(pFromStmt, pToStmt);
1593 }
1594 #endif
1595 
1596 /*
1597 ** Return the sqlite3* database handle to which the prepared statement given
1598 ** in the argument belongs.  This is the same database handle that was
1599 ** the first argument to the sqlite3_prepare() that was used to create
1600 ** the statement in the first place.
1601 */
1602 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1603   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1604 }
1605 
1606 /*
1607 ** Return true if the prepared statement is guaranteed to not modify the
1608 ** database.
1609 */
1610 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1611   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1612 }
1613 
1614 /*
1615 ** Return true if the prepared statement is in need of being reset.
1616 */
1617 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1618   Vdbe *v = (Vdbe*)pStmt;
1619   return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1620 }
1621 
1622 /*
1623 ** Return a pointer to the next prepared statement after pStmt associated
1624 ** with database connection pDb.  If pStmt is NULL, return the first
1625 ** prepared statement for the database connection.  Return NULL if there
1626 ** are no more.
1627 */
1628 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1629   sqlite3_stmt *pNext;
1630 #ifdef SQLITE_ENABLE_API_ARMOR
1631   if( !sqlite3SafetyCheckOk(pDb) ){
1632     (void)SQLITE_MISUSE_BKPT;
1633     return 0;
1634   }
1635 #endif
1636   sqlite3_mutex_enter(pDb->mutex);
1637   if( pStmt==0 ){
1638     pNext = (sqlite3_stmt*)pDb->pVdbe;
1639   }else{
1640     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1641   }
1642   sqlite3_mutex_leave(pDb->mutex);
1643   return pNext;
1644 }
1645 
1646 /*
1647 ** Return the value of a status counter for a prepared statement
1648 */
1649 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1650   Vdbe *pVdbe = (Vdbe*)pStmt;
1651   u32 v;
1652 #ifdef SQLITE_ENABLE_API_ARMOR
1653   if( !pStmt
1654    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1655   ){
1656     (void)SQLITE_MISUSE_BKPT;
1657     return 0;
1658   }
1659 #endif
1660   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1661     sqlite3 *db = pVdbe->db;
1662     sqlite3_mutex_enter(db->mutex);
1663     v = 0;
1664     db->pnBytesFreed = (int*)&v;
1665     sqlite3VdbeClearObject(db, pVdbe);
1666     sqlite3DbFree(db, pVdbe);
1667     db->pnBytesFreed = 0;
1668     sqlite3_mutex_leave(db->mutex);
1669   }else{
1670     v = pVdbe->aCounter[op];
1671     if( resetFlag ) pVdbe->aCounter[op] = 0;
1672   }
1673   return (int)v;
1674 }
1675 
1676 /*
1677 ** Return the SQL associated with a prepared statement
1678 */
1679 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1680   Vdbe *p = (Vdbe *)pStmt;
1681   return p ? p->zSql : 0;
1682 }
1683 
1684 /*
1685 ** Return the SQL associated with a prepared statement with
1686 ** bound parameters expanded.  Space to hold the returned string is
1687 ** obtained from sqlite3_malloc().  The caller is responsible for
1688 ** freeing the returned string by passing it to sqlite3_free().
1689 **
1690 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1691 ** expanded bound parameters.
1692 */
1693 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1694 #ifdef SQLITE_OMIT_TRACE
1695   return 0;
1696 #else
1697   char *z = 0;
1698   const char *zSql = sqlite3_sql(pStmt);
1699   if( zSql ){
1700     Vdbe *p = (Vdbe *)pStmt;
1701     sqlite3_mutex_enter(p->db->mutex);
1702     z = sqlite3VdbeExpandSql(p, zSql);
1703     sqlite3_mutex_leave(p->db->mutex);
1704   }
1705   return z;
1706 #endif
1707 }
1708 
1709 #ifdef SQLITE_ENABLE_NORMALIZE
1710 /*
1711 ** Return the normalized SQL associated with a prepared statement.
1712 */
1713 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1714   Vdbe *p = (Vdbe *)pStmt;
1715   if( p==0 ) return 0;
1716   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1717     sqlite3_mutex_enter(p->db->mutex);
1718     p->zNormSql = sqlite3Normalize(p, p->zSql);
1719     sqlite3_mutex_leave(p->db->mutex);
1720   }
1721   return p->zNormSql;
1722 }
1723 #endif /* SQLITE_ENABLE_NORMALIZE */
1724 
1725 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1726 /*
1727 ** Allocate and populate an UnpackedRecord structure based on the serialized
1728 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1729 ** if successful, or a NULL pointer if an OOM error is encountered.
1730 */
1731 static UnpackedRecord *vdbeUnpackRecord(
1732   KeyInfo *pKeyInfo,
1733   int nKey,
1734   const void *pKey
1735 ){
1736   UnpackedRecord *pRet;           /* Return value */
1737 
1738   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1739   if( pRet ){
1740     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1741     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1742   }
1743   return pRet;
1744 }
1745 
1746 /*
1747 ** This function is called from within a pre-update callback to retrieve
1748 ** a field of the row currently being updated or deleted.
1749 */
1750 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1751   PreUpdate *p = db->pPreUpdate;
1752   Mem *pMem;
1753   int rc = SQLITE_OK;
1754 
1755   /* Test that this call is being made from within an SQLITE_DELETE or
1756   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1757   if( !p || p->op==SQLITE_INSERT ){
1758     rc = SQLITE_MISUSE_BKPT;
1759     goto preupdate_old_out;
1760   }
1761   if( p->pPk ){
1762     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1763   }
1764   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1765     rc = SQLITE_RANGE;
1766     goto preupdate_old_out;
1767   }
1768 
1769   /* If the old.* record has not yet been loaded into memory, do so now. */
1770   if( p->pUnpacked==0 ){
1771     u32 nRec;
1772     u8 *aRec;
1773 
1774     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1775     aRec = sqlite3DbMallocRaw(db, nRec);
1776     if( !aRec ) goto preupdate_old_out;
1777     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1778     if( rc==SQLITE_OK ){
1779       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1780       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1781     }
1782     if( rc!=SQLITE_OK ){
1783       sqlite3DbFree(db, aRec);
1784       goto preupdate_old_out;
1785     }
1786     p->aRecord = aRec;
1787   }
1788 
1789   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1790   if( iIdx==p->pTab->iPKey ){
1791     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1792   }else if( iIdx>=p->pUnpacked->nField ){
1793     *ppValue = (sqlite3_value *)columnNullValue();
1794   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1795     if( pMem->flags & MEM_Int ){
1796       sqlite3VdbeMemRealify(pMem);
1797     }
1798   }
1799 
1800  preupdate_old_out:
1801   sqlite3Error(db, rc);
1802   return sqlite3ApiExit(db, rc);
1803 }
1804 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1805 
1806 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1807 /*
1808 ** This function is called from within a pre-update callback to retrieve
1809 ** the number of columns in the row being updated, deleted or inserted.
1810 */
1811 int sqlite3_preupdate_count(sqlite3 *db){
1812   PreUpdate *p = db->pPreUpdate;
1813   return (p ? p->keyinfo.nKeyField : 0);
1814 }
1815 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1816 
1817 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1818 /*
1819 ** This function is designed to be called from within a pre-update callback
1820 ** only. It returns zero if the change that caused the callback was made
1821 ** immediately by a user SQL statement. Or, if the change was made by a
1822 ** trigger program, it returns the number of trigger programs currently
1823 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1824 ** top-level trigger etc.).
1825 **
1826 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1827 ** or SET DEFAULT action is considered a trigger.
1828 */
1829 int sqlite3_preupdate_depth(sqlite3 *db){
1830   PreUpdate *p = db->pPreUpdate;
1831   return (p ? p->v->nFrame : 0);
1832 }
1833 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1834 
1835 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1836 /*
1837 ** This function is called from within a pre-update callback to retrieve
1838 ** a field of the row currently being updated or inserted.
1839 */
1840 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1841   PreUpdate *p = db->pPreUpdate;
1842   int rc = SQLITE_OK;
1843   Mem *pMem;
1844 
1845   if( !p || p->op==SQLITE_DELETE ){
1846     rc = SQLITE_MISUSE_BKPT;
1847     goto preupdate_new_out;
1848   }
1849   if( p->pPk && p->op!=SQLITE_UPDATE ){
1850     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1851   }
1852   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1853     rc = SQLITE_RANGE;
1854     goto preupdate_new_out;
1855   }
1856 
1857   if( p->op==SQLITE_INSERT ){
1858     /* For an INSERT, memory cell p->iNewReg contains the serialized record
1859     ** that is being inserted. Deserialize it. */
1860     UnpackedRecord *pUnpack = p->pNewUnpacked;
1861     if( !pUnpack ){
1862       Mem *pData = &p->v->aMem[p->iNewReg];
1863       rc = ExpandBlob(pData);
1864       if( rc!=SQLITE_OK ) goto preupdate_new_out;
1865       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1866       if( !pUnpack ){
1867         rc = SQLITE_NOMEM;
1868         goto preupdate_new_out;
1869       }
1870       p->pNewUnpacked = pUnpack;
1871     }
1872     pMem = &pUnpack->aMem[iIdx];
1873     if( iIdx==p->pTab->iPKey ){
1874       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1875     }else if( iIdx>=pUnpack->nField ){
1876       pMem = (sqlite3_value *)columnNullValue();
1877     }
1878   }else{
1879     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1880     ** value. Make a copy of the cell contents and return a pointer to it.
1881     ** It is not safe to return a pointer to the memory cell itself as the
1882     ** caller may modify the value text encoding.
1883     */
1884     assert( p->op==SQLITE_UPDATE );
1885     if( !p->aNew ){
1886       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1887       if( !p->aNew ){
1888         rc = SQLITE_NOMEM;
1889         goto preupdate_new_out;
1890       }
1891     }
1892     assert( iIdx>=0 && iIdx<p->pCsr->nField );
1893     pMem = &p->aNew[iIdx];
1894     if( pMem->flags==0 ){
1895       if( iIdx==p->pTab->iPKey ){
1896         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1897       }else{
1898         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1899         if( rc!=SQLITE_OK ) goto preupdate_new_out;
1900       }
1901     }
1902   }
1903   *ppValue = pMem;
1904 
1905  preupdate_new_out:
1906   sqlite3Error(db, rc);
1907   return sqlite3ApiExit(db, rc);
1908 }
1909 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1910 
1911 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1912 /*
1913 ** Return status data for a single loop within query pStmt.
1914 */
1915 int sqlite3_stmt_scanstatus(
1916   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
1917   int idx,                        /* Index of loop to report on */
1918   int iScanStatusOp,              /* Which metric to return */
1919   void *pOut                      /* OUT: Write the answer here */
1920 ){
1921   Vdbe *p = (Vdbe*)pStmt;
1922   ScanStatus *pScan;
1923   if( idx<0 || idx>=p->nScan ) return 1;
1924   pScan = &p->aScan[idx];
1925   switch( iScanStatusOp ){
1926     case SQLITE_SCANSTAT_NLOOP: {
1927       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1928       break;
1929     }
1930     case SQLITE_SCANSTAT_NVISIT: {
1931       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1932       break;
1933     }
1934     case SQLITE_SCANSTAT_EST: {
1935       double r = 1.0;
1936       LogEst x = pScan->nEst;
1937       while( x<100 ){
1938         x += 10;
1939         r *= 0.5;
1940       }
1941       *(double*)pOut = r*sqlite3LogEstToInt(x);
1942       break;
1943     }
1944     case SQLITE_SCANSTAT_NAME: {
1945       *(const char**)pOut = pScan->zName;
1946       break;
1947     }
1948     case SQLITE_SCANSTAT_EXPLAIN: {
1949       if( pScan->addrExplain ){
1950         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1951       }else{
1952         *(const char**)pOut = 0;
1953       }
1954       break;
1955     }
1956     case SQLITE_SCANSTAT_SELECTID: {
1957       if( pScan->addrExplain ){
1958         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1959       }else{
1960         *(int*)pOut = -1;
1961       }
1962       break;
1963     }
1964     default: {
1965       return 1;
1966     }
1967   }
1968   return 0;
1969 }
1970 
1971 /*
1972 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1973 */
1974 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1975   Vdbe *p = (Vdbe*)pStmt;
1976   memset(p->anExec, 0, p->nOp * sizeof(i64));
1977 }
1978 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
1979