1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags |= MEM_Blob; 139 return p->n ? p->z : 0; 140 }else{ 141 return sqlite3_value_text(pVal); 142 } 143 } 144 int sqlite3_value_bytes(sqlite3_value *pVal){ 145 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 146 } 147 int sqlite3_value_bytes16(sqlite3_value *pVal){ 148 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 149 } 150 double sqlite3_value_double(sqlite3_value *pVal){ 151 return sqlite3VdbeRealValue((Mem*)pVal); 152 } 153 int sqlite3_value_int(sqlite3_value *pVal){ 154 return (int)sqlite3VdbeIntValue((Mem*)pVal); 155 } 156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 157 return sqlite3VdbeIntValue((Mem*)pVal); 158 } 159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 160 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 161 } 162 #ifndef SQLITE_OMIT_UTF16 163 const void *sqlite3_value_text16(sqlite3_value* pVal){ 164 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 165 } 166 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 167 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 168 } 169 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 170 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 171 } 172 #endif /* SQLITE_OMIT_UTF16 */ 173 int sqlite3_value_type(sqlite3_value* pVal){ 174 static const u8 aType[] = { 175 SQLITE_BLOB, /* 0x00 */ 176 SQLITE_NULL, /* 0x01 */ 177 SQLITE_TEXT, /* 0x02 */ 178 SQLITE_NULL, /* 0x03 */ 179 SQLITE_INTEGER, /* 0x04 */ 180 SQLITE_NULL, /* 0x05 */ 181 SQLITE_INTEGER, /* 0x06 */ 182 SQLITE_NULL, /* 0x07 */ 183 SQLITE_FLOAT, /* 0x08 */ 184 SQLITE_NULL, /* 0x09 */ 185 SQLITE_FLOAT, /* 0x0a */ 186 SQLITE_NULL, /* 0x0b */ 187 SQLITE_INTEGER, /* 0x0c */ 188 SQLITE_NULL, /* 0x0d */ 189 SQLITE_INTEGER, /* 0x0e */ 190 SQLITE_NULL, /* 0x0f */ 191 SQLITE_BLOB, /* 0x10 */ 192 SQLITE_NULL, /* 0x11 */ 193 SQLITE_TEXT, /* 0x12 */ 194 SQLITE_NULL, /* 0x13 */ 195 SQLITE_INTEGER, /* 0x14 */ 196 SQLITE_NULL, /* 0x15 */ 197 SQLITE_INTEGER, /* 0x16 */ 198 SQLITE_NULL, /* 0x17 */ 199 SQLITE_FLOAT, /* 0x18 */ 200 SQLITE_NULL, /* 0x19 */ 201 SQLITE_FLOAT, /* 0x1a */ 202 SQLITE_NULL, /* 0x1b */ 203 SQLITE_INTEGER, /* 0x1c */ 204 SQLITE_NULL, /* 0x1d */ 205 SQLITE_INTEGER, /* 0x1e */ 206 SQLITE_NULL, /* 0x1f */ 207 }; 208 return aType[pVal->flags&MEM_AffMask]; 209 } 210 211 /**************************** sqlite3_result_ ******************************* 212 ** The following routines are used by user-defined functions to specify 213 ** the function result. 214 ** 215 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 216 ** result as a string or blob but if the string or blob is too large, it 217 ** then sets the error code to SQLITE_TOOBIG 218 ** 219 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 220 ** on value P is not going to be used and need to be destroyed. 221 */ 222 static void setResultStrOrError( 223 sqlite3_context *pCtx, /* Function context */ 224 const char *z, /* String pointer */ 225 int n, /* Bytes in string, or negative */ 226 u8 enc, /* Encoding of z. 0 for BLOBs */ 227 void (*xDel)(void*) /* Destructor function */ 228 ){ 229 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 230 sqlite3_result_error_toobig(pCtx); 231 } 232 } 233 static int invokeValueDestructor( 234 const void *p, /* Value to destroy */ 235 void (*xDel)(void*), /* The destructor */ 236 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 237 ){ 238 assert( xDel!=SQLITE_DYNAMIC ); 239 if( xDel==0 ){ 240 /* noop */ 241 }else if( xDel==SQLITE_TRANSIENT ){ 242 /* noop */ 243 }else{ 244 xDel((void*)p); 245 } 246 if( pCtx ) sqlite3_result_error_toobig(pCtx); 247 return SQLITE_TOOBIG; 248 } 249 void sqlite3_result_blob( 250 sqlite3_context *pCtx, 251 const void *z, 252 int n, 253 void (*xDel)(void *) 254 ){ 255 assert( n>=0 ); 256 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 257 setResultStrOrError(pCtx, z, n, 0, xDel); 258 } 259 void sqlite3_result_blob64( 260 sqlite3_context *pCtx, 261 const void *z, 262 sqlite3_uint64 n, 263 void (*xDel)(void *) 264 ){ 265 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 266 assert( xDel!=SQLITE_DYNAMIC ); 267 if( n>0x7fffffff ){ 268 (void)invokeValueDestructor(z, xDel, pCtx); 269 }else{ 270 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 271 } 272 } 273 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 274 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 275 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 276 } 277 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 278 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 279 pCtx->isError = SQLITE_ERROR; 280 pCtx->fErrorOrAux = 1; 281 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 282 } 283 #ifndef SQLITE_OMIT_UTF16 284 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 285 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 286 pCtx->isError = SQLITE_ERROR; 287 pCtx->fErrorOrAux = 1; 288 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 289 } 290 #endif 291 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 292 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 293 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 294 } 295 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 296 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 297 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 298 } 299 void sqlite3_result_null(sqlite3_context *pCtx){ 300 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 301 sqlite3VdbeMemSetNull(pCtx->pOut); 302 } 303 void sqlite3_result_text( 304 sqlite3_context *pCtx, 305 const char *z, 306 int n, 307 void (*xDel)(void *) 308 ){ 309 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 310 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 311 } 312 void sqlite3_result_text64( 313 sqlite3_context *pCtx, 314 const char *z, 315 sqlite3_uint64 n, 316 void (*xDel)(void *), 317 unsigned char enc 318 ){ 319 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 320 assert( xDel!=SQLITE_DYNAMIC ); 321 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 322 if( n>0x7fffffff ){ 323 (void)invokeValueDestructor(z, xDel, pCtx); 324 }else{ 325 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 326 } 327 } 328 #ifndef SQLITE_OMIT_UTF16 329 void sqlite3_result_text16( 330 sqlite3_context *pCtx, 331 const void *z, 332 int n, 333 void (*xDel)(void *) 334 ){ 335 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 336 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 337 } 338 void sqlite3_result_text16be( 339 sqlite3_context *pCtx, 340 const void *z, 341 int n, 342 void (*xDel)(void *) 343 ){ 344 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 345 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 346 } 347 void sqlite3_result_text16le( 348 sqlite3_context *pCtx, 349 const void *z, 350 int n, 351 void (*xDel)(void *) 352 ){ 353 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 354 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 355 } 356 #endif /* SQLITE_OMIT_UTF16 */ 357 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 358 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 359 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 360 } 361 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 362 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 363 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 364 } 365 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 366 pCtx->isError = errCode; 367 pCtx->fErrorOrAux = 1; 368 if( pCtx->pOut->flags & MEM_Null ){ 369 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 370 SQLITE_UTF8, SQLITE_STATIC); 371 } 372 } 373 374 /* Force an SQLITE_TOOBIG error. */ 375 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 376 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 377 pCtx->isError = SQLITE_TOOBIG; 378 pCtx->fErrorOrAux = 1; 379 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 380 SQLITE_UTF8, SQLITE_STATIC); 381 } 382 383 /* An SQLITE_NOMEM error. */ 384 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 385 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 386 sqlite3VdbeMemSetNull(pCtx->pOut); 387 pCtx->isError = SQLITE_NOMEM; 388 pCtx->fErrorOrAux = 1; 389 pCtx->pOut->db->mallocFailed = 1; 390 } 391 392 /* 393 ** This function is called after a transaction has been committed. It 394 ** invokes callbacks registered with sqlite3_wal_hook() as required. 395 */ 396 static int doWalCallbacks(sqlite3 *db){ 397 int rc = SQLITE_OK; 398 #ifndef SQLITE_OMIT_WAL 399 int i; 400 for(i=0; i<db->nDb; i++){ 401 Btree *pBt = db->aDb[i].pBt; 402 if( pBt ){ 403 int nEntry; 404 sqlite3BtreeEnter(pBt); 405 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 406 sqlite3BtreeLeave(pBt); 407 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 408 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 409 } 410 } 411 } 412 #endif 413 return rc; 414 } 415 416 /* 417 ** Execute the statement pStmt, either until a row of data is ready, the 418 ** statement is completely executed or an error occurs. 419 ** 420 ** This routine implements the bulk of the logic behind the sqlite_step() 421 ** API. The only thing omitted is the automatic recompile if a 422 ** schema change has occurred. That detail is handled by the 423 ** outer sqlite3_step() wrapper procedure. 424 */ 425 static int sqlite3Step(Vdbe *p){ 426 sqlite3 *db; 427 int rc; 428 429 assert(p); 430 if( p->magic!=VDBE_MAGIC_RUN ){ 431 /* We used to require that sqlite3_reset() be called before retrying 432 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 433 ** with version 3.7.0, we changed this so that sqlite3_reset() would 434 ** be called automatically instead of throwing the SQLITE_MISUSE error. 435 ** This "automatic-reset" change is not technically an incompatibility, 436 ** since any application that receives an SQLITE_MISUSE is broken by 437 ** definition. 438 ** 439 ** Nevertheless, some published applications that were originally written 440 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 441 ** returns, and those were broken by the automatic-reset change. As a 442 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 443 ** legacy behavior of returning SQLITE_MISUSE for cases where the 444 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 445 ** or SQLITE_BUSY error. 446 */ 447 #ifdef SQLITE_OMIT_AUTORESET 448 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 449 sqlite3_reset((sqlite3_stmt*)p); 450 }else{ 451 return SQLITE_MISUSE_BKPT; 452 } 453 #else 454 sqlite3_reset((sqlite3_stmt*)p); 455 #endif 456 } 457 458 /* Check that malloc() has not failed. If it has, return early. */ 459 db = p->db; 460 if( db->mallocFailed ){ 461 p->rc = SQLITE_NOMEM; 462 return SQLITE_NOMEM; 463 } 464 465 if( p->pc<=0 && p->expired ){ 466 p->rc = SQLITE_SCHEMA; 467 rc = SQLITE_ERROR; 468 goto end_of_step; 469 } 470 if( p->pc<0 ){ 471 /* If there are no other statements currently running, then 472 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 473 ** from interrupting a statement that has not yet started. 474 */ 475 if( db->nVdbeActive==0 ){ 476 db->u1.isInterrupted = 0; 477 } 478 479 assert( db->nVdbeWrite>0 || db->autoCommit==0 480 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 481 ); 482 483 #ifndef SQLITE_OMIT_TRACE 484 if( db->xProfile && !db->init.busy ){ 485 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 486 } 487 #endif 488 489 db->nVdbeActive++; 490 if( p->readOnly==0 ) db->nVdbeWrite++; 491 if( p->bIsReader ) db->nVdbeRead++; 492 p->pc = 0; 493 } 494 #ifndef SQLITE_OMIT_EXPLAIN 495 if( p->explain ){ 496 rc = sqlite3VdbeList(p); 497 }else 498 #endif /* SQLITE_OMIT_EXPLAIN */ 499 { 500 db->nVdbeExec++; 501 rc = sqlite3VdbeExec(p); 502 db->nVdbeExec--; 503 } 504 505 #ifndef SQLITE_OMIT_TRACE 506 /* Invoke the profile callback if there is one 507 */ 508 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 509 sqlite3_int64 iNow; 510 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 511 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 512 } 513 #endif 514 515 if( rc==SQLITE_DONE ){ 516 assert( p->rc==SQLITE_OK ); 517 p->rc = doWalCallbacks(db); 518 if( p->rc!=SQLITE_OK ){ 519 rc = SQLITE_ERROR; 520 } 521 } 522 523 db->errCode = rc; 524 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 525 p->rc = SQLITE_NOMEM; 526 } 527 end_of_step: 528 /* At this point local variable rc holds the value that should be 529 ** returned if this statement was compiled using the legacy 530 ** sqlite3_prepare() interface. According to the docs, this can only 531 ** be one of the values in the first assert() below. Variable p->rc 532 ** contains the value that would be returned if sqlite3_finalize() 533 ** were called on statement p. 534 */ 535 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 536 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 537 ); 538 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 539 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 540 /* If this statement was prepared using sqlite3_prepare_v2(), and an 541 ** error has occurred, then return the error code in p->rc to the 542 ** caller. Set the error code in the database handle to the same value. 543 */ 544 rc = sqlite3VdbeTransferError(p); 545 } 546 return (rc&db->errMask); 547 } 548 549 /* 550 ** This is the top-level implementation of sqlite3_step(). Call 551 ** sqlite3Step() to do most of the work. If a schema error occurs, 552 ** call sqlite3Reprepare() and try again. 553 */ 554 int sqlite3_step(sqlite3_stmt *pStmt){ 555 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 556 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 557 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 558 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 559 sqlite3 *db; /* The database connection */ 560 561 if( vdbeSafetyNotNull(v) ){ 562 return SQLITE_MISUSE_BKPT; 563 } 564 db = v->db; 565 sqlite3_mutex_enter(db->mutex); 566 v->doingRerun = 0; 567 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 568 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 569 int savedPc = v->pc; 570 rc2 = rc = sqlite3Reprepare(v); 571 if( rc!=SQLITE_OK) break; 572 sqlite3_reset(pStmt); 573 if( savedPc>=0 ) v->doingRerun = 1; 574 assert( v->expired==0 ); 575 } 576 if( rc2!=SQLITE_OK ){ 577 /* This case occurs after failing to recompile an sql statement. 578 ** The error message from the SQL compiler has already been loaded 579 ** into the database handle. This block copies the error message 580 ** from the database handle into the statement and sets the statement 581 ** program counter to 0 to ensure that when the statement is 582 ** finalized or reset the parser error message is available via 583 ** sqlite3_errmsg() and sqlite3_errcode(). 584 */ 585 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 586 sqlite3DbFree(db, v->zErrMsg); 587 if( !db->mallocFailed ){ 588 v->zErrMsg = sqlite3DbStrDup(db, zErr); 589 v->rc = rc2; 590 } else { 591 v->zErrMsg = 0; 592 v->rc = rc = SQLITE_NOMEM; 593 } 594 } 595 rc = sqlite3ApiExit(db, rc); 596 sqlite3_mutex_leave(db->mutex); 597 return rc; 598 } 599 600 601 /* 602 ** Extract the user data from a sqlite3_context structure and return a 603 ** pointer to it. 604 */ 605 void *sqlite3_user_data(sqlite3_context *p){ 606 assert( p && p->pFunc ); 607 return p->pFunc->pUserData; 608 } 609 610 /* 611 ** Extract the user data from a sqlite3_context structure and return a 612 ** pointer to it. 613 ** 614 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 615 ** returns a copy of the pointer to the database connection (the 1st 616 ** parameter) of the sqlite3_create_function() and 617 ** sqlite3_create_function16() routines that originally registered the 618 ** application defined function. 619 */ 620 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 621 assert( p && p->pFunc ); 622 return p->pOut->db; 623 } 624 625 /* 626 ** Return the current time for a statement 627 */ 628 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 629 Vdbe *v = p->pVdbe; 630 int rc; 631 if( v->iCurrentTime==0 ){ 632 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, &v->iCurrentTime); 633 if( rc ) v->iCurrentTime = 0; 634 } 635 return v->iCurrentTime; 636 } 637 638 /* 639 ** The following is the implementation of an SQL function that always 640 ** fails with an error message stating that the function is used in the 641 ** wrong context. The sqlite3_overload_function() API might construct 642 ** SQL function that use this routine so that the functions will exist 643 ** for name resolution but are actually overloaded by the xFindFunction 644 ** method of virtual tables. 645 */ 646 void sqlite3InvalidFunction( 647 sqlite3_context *context, /* The function calling context */ 648 int NotUsed, /* Number of arguments to the function */ 649 sqlite3_value **NotUsed2 /* Value of each argument */ 650 ){ 651 const char *zName = context->pFunc->zName; 652 char *zErr; 653 UNUSED_PARAMETER2(NotUsed, NotUsed2); 654 zErr = sqlite3_mprintf( 655 "unable to use function %s in the requested context", zName); 656 sqlite3_result_error(context, zErr, -1); 657 sqlite3_free(zErr); 658 } 659 660 /* 661 ** Create a new aggregate context for p and return a pointer to 662 ** its pMem->z element. 663 */ 664 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 665 Mem *pMem = p->pMem; 666 assert( (pMem->flags & MEM_Agg)==0 ); 667 if( nByte<=0 ){ 668 sqlite3VdbeMemSetNull(pMem); 669 pMem->z = 0; 670 }else{ 671 sqlite3VdbeMemClearAndResize(pMem, nByte); 672 pMem->flags = MEM_Agg; 673 pMem->u.pDef = p->pFunc; 674 if( pMem->z ){ 675 memset(pMem->z, 0, nByte); 676 } 677 } 678 return (void*)pMem->z; 679 } 680 681 /* 682 ** Allocate or return the aggregate context for a user function. A new 683 ** context is allocated on the first call. Subsequent calls return the 684 ** same context that was returned on prior calls. 685 */ 686 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 687 assert( p && p->pFunc && p->pFunc->xStep ); 688 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 689 testcase( nByte<0 ); 690 if( (p->pMem->flags & MEM_Agg)==0 ){ 691 return createAggContext(p, nByte); 692 }else{ 693 return (void*)p->pMem->z; 694 } 695 } 696 697 /* 698 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 699 ** the user-function defined by pCtx. 700 */ 701 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 702 AuxData *pAuxData; 703 704 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 705 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 706 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 707 } 708 709 return (pAuxData ? pAuxData->pAux : 0); 710 } 711 712 /* 713 ** Set the auxiliary data pointer and delete function, for the iArg'th 714 ** argument to the user-function defined by pCtx. Any previous value is 715 ** deleted by calling the delete function specified when it was set. 716 */ 717 void sqlite3_set_auxdata( 718 sqlite3_context *pCtx, 719 int iArg, 720 void *pAux, 721 void (*xDelete)(void*) 722 ){ 723 AuxData *pAuxData; 724 Vdbe *pVdbe = pCtx->pVdbe; 725 726 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 727 if( iArg<0 ) goto failed; 728 729 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 730 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 731 } 732 if( pAuxData==0 ){ 733 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 734 if( !pAuxData ) goto failed; 735 pAuxData->iOp = pCtx->iOp; 736 pAuxData->iArg = iArg; 737 pAuxData->pNext = pVdbe->pAuxData; 738 pVdbe->pAuxData = pAuxData; 739 if( pCtx->fErrorOrAux==0 ){ 740 pCtx->isError = 0; 741 pCtx->fErrorOrAux = 1; 742 } 743 }else if( pAuxData->xDelete ){ 744 pAuxData->xDelete(pAuxData->pAux); 745 } 746 747 pAuxData->pAux = pAux; 748 pAuxData->xDelete = xDelete; 749 return; 750 751 failed: 752 if( xDelete ){ 753 xDelete(pAux); 754 } 755 } 756 757 #ifndef SQLITE_OMIT_DEPRECATED 758 /* 759 ** Return the number of times the Step function of an aggregate has been 760 ** called. 761 ** 762 ** This function is deprecated. Do not use it for new code. It is 763 ** provide only to avoid breaking legacy code. New aggregate function 764 ** implementations should keep their own counts within their aggregate 765 ** context. 766 */ 767 int sqlite3_aggregate_count(sqlite3_context *p){ 768 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 769 return p->pMem->n; 770 } 771 #endif 772 773 /* 774 ** Return the number of columns in the result set for the statement pStmt. 775 */ 776 int sqlite3_column_count(sqlite3_stmt *pStmt){ 777 Vdbe *pVm = (Vdbe *)pStmt; 778 return pVm ? pVm->nResColumn : 0; 779 } 780 781 /* 782 ** Return the number of values available from the current row of the 783 ** currently executing statement pStmt. 784 */ 785 int sqlite3_data_count(sqlite3_stmt *pStmt){ 786 Vdbe *pVm = (Vdbe *)pStmt; 787 if( pVm==0 || pVm->pResultSet==0 ) return 0; 788 return pVm->nResColumn; 789 } 790 791 /* 792 ** Return a pointer to static memory containing an SQL NULL value. 793 */ 794 static const Mem *columnNullValue(void){ 795 /* Even though the Mem structure contains an element 796 ** of type i64, on certain architectures (x86) with certain compiler 797 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 798 ** instead of an 8-byte one. This all works fine, except that when 799 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 800 ** that a Mem structure is located on an 8-byte boundary. To prevent 801 ** these assert()s from failing, when building with SQLITE_DEBUG defined 802 ** using gcc, we force nullMem to be 8-byte aligned using the magical 803 ** __attribute__((aligned(8))) macro. */ 804 static const Mem nullMem 805 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 806 __attribute__((aligned(8))) 807 #endif 808 = { 809 /* .u = */ {0}, 810 /* .flags = */ MEM_Null, 811 /* .enc = */ 0, 812 /* .n = */ 0, 813 /* .z = */ 0, 814 /* .zMalloc = */ 0, 815 /* .szMalloc = */ 0, 816 /* .iPadding1 = */ 0, 817 /* .db = */ 0, 818 /* .xDel = */ 0, 819 #ifdef SQLITE_DEBUG 820 /* .pScopyFrom = */ 0, 821 /* .pFiller = */ 0, 822 #endif 823 }; 824 return &nullMem; 825 } 826 827 /* 828 ** Check to see if column iCol of the given statement is valid. If 829 ** it is, return a pointer to the Mem for the value of that column. 830 ** If iCol is not valid, return a pointer to a Mem which has a value 831 ** of NULL. 832 */ 833 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 834 Vdbe *pVm; 835 Mem *pOut; 836 837 pVm = (Vdbe *)pStmt; 838 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 839 sqlite3_mutex_enter(pVm->db->mutex); 840 pOut = &pVm->pResultSet[i]; 841 }else{ 842 if( pVm && ALWAYS(pVm->db) ){ 843 sqlite3_mutex_enter(pVm->db->mutex); 844 sqlite3Error(pVm->db, SQLITE_RANGE); 845 } 846 pOut = (Mem*)columnNullValue(); 847 } 848 return pOut; 849 } 850 851 /* 852 ** This function is called after invoking an sqlite3_value_XXX function on a 853 ** column value (i.e. a value returned by evaluating an SQL expression in the 854 ** select list of a SELECT statement) that may cause a malloc() failure. If 855 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 856 ** code of statement pStmt set to SQLITE_NOMEM. 857 ** 858 ** Specifically, this is called from within: 859 ** 860 ** sqlite3_column_int() 861 ** sqlite3_column_int64() 862 ** sqlite3_column_text() 863 ** sqlite3_column_text16() 864 ** sqlite3_column_real() 865 ** sqlite3_column_bytes() 866 ** sqlite3_column_bytes16() 867 ** sqiite3_column_blob() 868 */ 869 static void columnMallocFailure(sqlite3_stmt *pStmt) 870 { 871 /* If malloc() failed during an encoding conversion within an 872 ** sqlite3_column_XXX API, then set the return code of the statement to 873 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 874 ** and _finalize() will return NOMEM. 875 */ 876 Vdbe *p = (Vdbe *)pStmt; 877 if( p ){ 878 p->rc = sqlite3ApiExit(p->db, p->rc); 879 sqlite3_mutex_leave(p->db->mutex); 880 } 881 } 882 883 /**************************** sqlite3_column_ ******************************* 884 ** The following routines are used to access elements of the current row 885 ** in the result set. 886 */ 887 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 888 const void *val; 889 val = sqlite3_value_blob( columnMem(pStmt,i) ); 890 /* Even though there is no encoding conversion, value_blob() might 891 ** need to call malloc() to expand the result of a zeroblob() 892 ** expression. 893 */ 894 columnMallocFailure(pStmt); 895 return val; 896 } 897 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 898 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 899 columnMallocFailure(pStmt); 900 return val; 901 } 902 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 903 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 904 columnMallocFailure(pStmt); 905 return val; 906 } 907 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 908 double val = sqlite3_value_double( columnMem(pStmt,i) ); 909 columnMallocFailure(pStmt); 910 return val; 911 } 912 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 913 int val = sqlite3_value_int( columnMem(pStmt,i) ); 914 columnMallocFailure(pStmt); 915 return val; 916 } 917 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 918 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 919 columnMallocFailure(pStmt); 920 return val; 921 } 922 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 923 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 924 columnMallocFailure(pStmt); 925 return val; 926 } 927 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 928 Mem *pOut = columnMem(pStmt, i); 929 if( pOut->flags&MEM_Static ){ 930 pOut->flags &= ~MEM_Static; 931 pOut->flags |= MEM_Ephem; 932 } 933 columnMallocFailure(pStmt); 934 return (sqlite3_value *)pOut; 935 } 936 #ifndef SQLITE_OMIT_UTF16 937 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 938 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 939 columnMallocFailure(pStmt); 940 return val; 941 } 942 #endif /* SQLITE_OMIT_UTF16 */ 943 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 944 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 945 columnMallocFailure(pStmt); 946 return iType; 947 } 948 949 /* 950 ** Convert the N-th element of pStmt->pColName[] into a string using 951 ** xFunc() then return that string. If N is out of range, return 0. 952 ** 953 ** There are up to 5 names for each column. useType determines which 954 ** name is returned. Here are the names: 955 ** 956 ** 0 The column name as it should be displayed for output 957 ** 1 The datatype name for the column 958 ** 2 The name of the database that the column derives from 959 ** 3 The name of the table that the column derives from 960 ** 4 The name of the table column that the result column derives from 961 ** 962 ** If the result is not a simple column reference (if it is an expression 963 ** or a constant) then useTypes 2, 3, and 4 return NULL. 964 */ 965 static const void *columnName( 966 sqlite3_stmt *pStmt, 967 int N, 968 const void *(*xFunc)(Mem*), 969 int useType 970 ){ 971 const void *ret; 972 Vdbe *p; 973 int n; 974 sqlite3 *db; 975 #ifdef SQLITE_ENABLE_API_ARMOR 976 if( pStmt==0 ){ 977 (void)SQLITE_MISUSE_BKPT; 978 return 0; 979 } 980 #endif 981 ret = 0; 982 p = (Vdbe *)pStmt; 983 db = p->db; 984 assert( db!=0 ); 985 n = sqlite3_column_count(pStmt); 986 if( N<n && N>=0 ){ 987 N += useType*n; 988 sqlite3_mutex_enter(db->mutex); 989 assert( db->mallocFailed==0 ); 990 ret = xFunc(&p->aColName[N]); 991 /* A malloc may have failed inside of the xFunc() call. If this 992 ** is the case, clear the mallocFailed flag and return NULL. 993 */ 994 if( db->mallocFailed ){ 995 db->mallocFailed = 0; 996 ret = 0; 997 } 998 sqlite3_mutex_leave(db->mutex); 999 } 1000 return ret; 1001 } 1002 1003 /* 1004 ** Return the name of the Nth column of the result set returned by SQL 1005 ** statement pStmt. 1006 */ 1007 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1008 return columnName( 1009 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1010 } 1011 #ifndef SQLITE_OMIT_UTF16 1012 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1013 return columnName( 1014 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1015 } 1016 #endif 1017 1018 /* 1019 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1020 ** not define OMIT_DECLTYPE. 1021 */ 1022 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1023 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1024 and SQLITE_ENABLE_COLUMN_METADATA" 1025 #endif 1026 1027 #ifndef SQLITE_OMIT_DECLTYPE 1028 /* 1029 ** Return the column declaration type (if applicable) of the 'i'th column 1030 ** of the result set of SQL statement pStmt. 1031 */ 1032 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1033 return columnName( 1034 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1035 } 1036 #ifndef SQLITE_OMIT_UTF16 1037 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1038 return columnName( 1039 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1040 } 1041 #endif /* SQLITE_OMIT_UTF16 */ 1042 #endif /* SQLITE_OMIT_DECLTYPE */ 1043 1044 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1045 /* 1046 ** Return the name of the database from which a result column derives. 1047 ** NULL is returned if the result column is an expression or constant or 1048 ** anything else which is not an unambiguous reference to a database column. 1049 */ 1050 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1051 return columnName( 1052 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1053 } 1054 #ifndef SQLITE_OMIT_UTF16 1055 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1056 return columnName( 1057 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1058 } 1059 #endif /* SQLITE_OMIT_UTF16 */ 1060 1061 /* 1062 ** Return the name of the table from which a result column derives. 1063 ** NULL is returned if the result column is an expression or constant or 1064 ** anything else which is not an unambiguous reference to a database column. 1065 */ 1066 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1067 return columnName( 1068 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1069 } 1070 #ifndef SQLITE_OMIT_UTF16 1071 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1072 return columnName( 1073 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1074 } 1075 #endif /* SQLITE_OMIT_UTF16 */ 1076 1077 /* 1078 ** Return the name of the table column from which a result column derives. 1079 ** NULL is returned if the result column is an expression or constant or 1080 ** anything else which is not an unambiguous reference to a database column. 1081 */ 1082 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1083 return columnName( 1084 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1085 } 1086 #ifndef SQLITE_OMIT_UTF16 1087 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1088 return columnName( 1089 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1090 } 1091 #endif /* SQLITE_OMIT_UTF16 */ 1092 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1093 1094 1095 /******************************* sqlite3_bind_ *************************** 1096 ** 1097 ** Routines used to attach values to wildcards in a compiled SQL statement. 1098 */ 1099 /* 1100 ** Unbind the value bound to variable i in virtual machine p. This is the 1101 ** the same as binding a NULL value to the column. If the "i" parameter is 1102 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1103 ** 1104 ** A successful evaluation of this routine acquires the mutex on p. 1105 ** the mutex is released if any kind of error occurs. 1106 ** 1107 ** The error code stored in database p->db is overwritten with the return 1108 ** value in any case. 1109 */ 1110 static int vdbeUnbind(Vdbe *p, int i){ 1111 Mem *pVar; 1112 if( vdbeSafetyNotNull(p) ){ 1113 return SQLITE_MISUSE_BKPT; 1114 } 1115 sqlite3_mutex_enter(p->db->mutex); 1116 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1117 sqlite3Error(p->db, SQLITE_MISUSE); 1118 sqlite3_mutex_leave(p->db->mutex); 1119 sqlite3_log(SQLITE_MISUSE, 1120 "bind on a busy prepared statement: [%s]", p->zSql); 1121 return SQLITE_MISUSE_BKPT; 1122 } 1123 if( i<1 || i>p->nVar ){ 1124 sqlite3Error(p->db, SQLITE_RANGE); 1125 sqlite3_mutex_leave(p->db->mutex); 1126 return SQLITE_RANGE; 1127 } 1128 i--; 1129 pVar = &p->aVar[i]; 1130 sqlite3VdbeMemRelease(pVar); 1131 pVar->flags = MEM_Null; 1132 sqlite3Error(p->db, SQLITE_OK); 1133 1134 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1135 ** binding a new value to this variable invalidates the current query plan. 1136 ** 1137 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1138 ** parameter in the WHERE clause might influence the choice of query plan 1139 ** for a statement, then the statement will be automatically recompiled, 1140 ** as if there had been a schema change, on the first sqlite3_step() call 1141 ** following any change to the bindings of that parameter. 1142 */ 1143 if( p->isPrepareV2 && 1144 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1145 ){ 1146 p->expired = 1; 1147 } 1148 return SQLITE_OK; 1149 } 1150 1151 /* 1152 ** Bind a text or BLOB value. 1153 */ 1154 static int bindText( 1155 sqlite3_stmt *pStmt, /* The statement to bind against */ 1156 int i, /* Index of the parameter to bind */ 1157 const void *zData, /* Pointer to the data to be bound */ 1158 int nData, /* Number of bytes of data to be bound */ 1159 void (*xDel)(void*), /* Destructor for the data */ 1160 u8 encoding /* Encoding for the data */ 1161 ){ 1162 Vdbe *p = (Vdbe *)pStmt; 1163 Mem *pVar; 1164 int rc; 1165 1166 rc = vdbeUnbind(p, i); 1167 if( rc==SQLITE_OK ){ 1168 if( zData!=0 ){ 1169 pVar = &p->aVar[i-1]; 1170 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1171 if( rc==SQLITE_OK && encoding!=0 ){ 1172 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1173 } 1174 sqlite3Error(p->db, rc); 1175 rc = sqlite3ApiExit(p->db, rc); 1176 } 1177 sqlite3_mutex_leave(p->db->mutex); 1178 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1179 xDel((void*)zData); 1180 } 1181 return rc; 1182 } 1183 1184 1185 /* 1186 ** Bind a blob value to an SQL statement variable. 1187 */ 1188 int sqlite3_bind_blob( 1189 sqlite3_stmt *pStmt, 1190 int i, 1191 const void *zData, 1192 int nData, 1193 void (*xDel)(void*) 1194 ){ 1195 return bindText(pStmt, i, zData, nData, xDel, 0); 1196 } 1197 int sqlite3_bind_blob64( 1198 sqlite3_stmt *pStmt, 1199 int i, 1200 const void *zData, 1201 sqlite3_uint64 nData, 1202 void (*xDel)(void*) 1203 ){ 1204 assert( xDel!=SQLITE_DYNAMIC ); 1205 if( nData>0x7fffffff ){ 1206 return invokeValueDestructor(zData, xDel, 0); 1207 }else{ 1208 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1209 } 1210 } 1211 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1212 int rc; 1213 Vdbe *p = (Vdbe *)pStmt; 1214 rc = vdbeUnbind(p, i); 1215 if( rc==SQLITE_OK ){ 1216 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1217 sqlite3_mutex_leave(p->db->mutex); 1218 } 1219 return rc; 1220 } 1221 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1222 return sqlite3_bind_int64(p, i, (i64)iValue); 1223 } 1224 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1225 int rc; 1226 Vdbe *p = (Vdbe *)pStmt; 1227 rc = vdbeUnbind(p, i); 1228 if( rc==SQLITE_OK ){ 1229 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1230 sqlite3_mutex_leave(p->db->mutex); 1231 } 1232 return rc; 1233 } 1234 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1235 int rc; 1236 Vdbe *p = (Vdbe*)pStmt; 1237 rc = vdbeUnbind(p, i); 1238 if( rc==SQLITE_OK ){ 1239 sqlite3_mutex_leave(p->db->mutex); 1240 } 1241 return rc; 1242 } 1243 int sqlite3_bind_text( 1244 sqlite3_stmt *pStmt, 1245 int i, 1246 const char *zData, 1247 int nData, 1248 void (*xDel)(void*) 1249 ){ 1250 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1251 } 1252 int sqlite3_bind_text64( 1253 sqlite3_stmt *pStmt, 1254 int i, 1255 const char *zData, 1256 sqlite3_uint64 nData, 1257 void (*xDel)(void*), 1258 unsigned char enc 1259 ){ 1260 assert( xDel!=SQLITE_DYNAMIC ); 1261 if( nData>0x7fffffff ){ 1262 return invokeValueDestructor(zData, xDel, 0); 1263 }else{ 1264 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1265 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1266 } 1267 } 1268 #ifndef SQLITE_OMIT_UTF16 1269 int sqlite3_bind_text16( 1270 sqlite3_stmt *pStmt, 1271 int i, 1272 const void *zData, 1273 int nData, 1274 void (*xDel)(void*) 1275 ){ 1276 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1277 } 1278 #endif /* SQLITE_OMIT_UTF16 */ 1279 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1280 int rc; 1281 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1282 case SQLITE_INTEGER: { 1283 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1284 break; 1285 } 1286 case SQLITE_FLOAT: { 1287 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1288 break; 1289 } 1290 case SQLITE_BLOB: { 1291 if( pValue->flags & MEM_Zero ){ 1292 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1293 }else{ 1294 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1295 } 1296 break; 1297 } 1298 case SQLITE_TEXT: { 1299 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1300 pValue->enc); 1301 break; 1302 } 1303 default: { 1304 rc = sqlite3_bind_null(pStmt, i); 1305 break; 1306 } 1307 } 1308 return rc; 1309 } 1310 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1311 int rc; 1312 Vdbe *p = (Vdbe *)pStmt; 1313 rc = vdbeUnbind(p, i); 1314 if( rc==SQLITE_OK ){ 1315 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1316 sqlite3_mutex_leave(p->db->mutex); 1317 } 1318 return rc; 1319 } 1320 1321 /* 1322 ** Return the number of wildcards that can be potentially bound to. 1323 ** This routine is added to support DBD::SQLite. 1324 */ 1325 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1326 Vdbe *p = (Vdbe*)pStmt; 1327 return p ? p->nVar : 0; 1328 } 1329 1330 /* 1331 ** Return the name of a wildcard parameter. Return NULL if the index 1332 ** is out of range or if the wildcard is unnamed. 1333 ** 1334 ** The result is always UTF-8. 1335 */ 1336 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1337 Vdbe *p = (Vdbe*)pStmt; 1338 if( p==0 || i<1 || i>p->nzVar ){ 1339 return 0; 1340 } 1341 return p->azVar[i-1]; 1342 } 1343 1344 /* 1345 ** Given a wildcard parameter name, return the index of the variable 1346 ** with that name. If there is no variable with the given name, 1347 ** return 0. 1348 */ 1349 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1350 int i; 1351 if( p==0 ){ 1352 return 0; 1353 } 1354 if( zName ){ 1355 for(i=0; i<p->nzVar; i++){ 1356 const char *z = p->azVar[i]; 1357 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1358 return i+1; 1359 } 1360 } 1361 } 1362 return 0; 1363 } 1364 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1365 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1366 } 1367 1368 /* 1369 ** Transfer all bindings from the first statement over to the second. 1370 */ 1371 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1372 Vdbe *pFrom = (Vdbe*)pFromStmt; 1373 Vdbe *pTo = (Vdbe*)pToStmt; 1374 int i; 1375 assert( pTo->db==pFrom->db ); 1376 assert( pTo->nVar==pFrom->nVar ); 1377 sqlite3_mutex_enter(pTo->db->mutex); 1378 for(i=0; i<pFrom->nVar; i++){ 1379 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1380 } 1381 sqlite3_mutex_leave(pTo->db->mutex); 1382 return SQLITE_OK; 1383 } 1384 1385 #ifndef SQLITE_OMIT_DEPRECATED 1386 /* 1387 ** Deprecated external interface. Internal/core SQLite code 1388 ** should call sqlite3TransferBindings. 1389 ** 1390 ** It is misuse to call this routine with statements from different 1391 ** database connections. But as this is a deprecated interface, we 1392 ** will not bother to check for that condition. 1393 ** 1394 ** If the two statements contain a different number of bindings, then 1395 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1396 ** SQLITE_OK is returned. 1397 */ 1398 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1399 Vdbe *pFrom = (Vdbe*)pFromStmt; 1400 Vdbe *pTo = (Vdbe*)pToStmt; 1401 if( pFrom->nVar!=pTo->nVar ){ 1402 return SQLITE_ERROR; 1403 } 1404 if( pTo->isPrepareV2 && pTo->expmask ){ 1405 pTo->expired = 1; 1406 } 1407 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1408 pFrom->expired = 1; 1409 } 1410 return sqlite3TransferBindings(pFromStmt, pToStmt); 1411 } 1412 #endif 1413 1414 /* 1415 ** Return the sqlite3* database handle to which the prepared statement given 1416 ** in the argument belongs. This is the same database handle that was 1417 ** the first argument to the sqlite3_prepare() that was used to create 1418 ** the statement in the first place. 1419 */ 1420 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1421 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1422 } 1423 1424 /* 1425 ** Return true if the prepared statement is guaranteed to not modify the 1426 ** database. 1427 */ 1428 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1429 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1430 } 1431 1432 /* 1433 ** Return true if the prepared statement is in need of being reset. 1434 */ 1435 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1436 Vdbe *v = (Vdbe*)pStmt; 1437 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1438 } 1439 1440 /* 1441 ** Return a pointer to the next prepared statement after pStmt associated 1442 ** with database connection pDb. If pStmt is NULL, return the first 1443 ** prepared statement for the database connection. Return NULL if there 1444 ** are no more. 1445 */ 1446 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1447 sqlite3_stmt *pNext; 1448 #ifdef SQLITE_ENABLE_API_ARMOR 1449 if( !sqlite3SafetyCheckOk(pDb) ){ 1450 (void)SQLITE_MISUSE_BKPT; 1451 return 0; 1452 } 1453 #endif 1454 sqlite3_mutex_enter(pDb->mutex); 1455 if( pStmt==0 ){ 1456 pNext = (sqlite3_stmt*)pDb->pVdbe; 1457 }else{ 1458 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1459 } 1460 sqlite3_mutex_leave(pDb->mutex); 1461 return pNext; 1462 } 1463 1464 /* 1465 ** Return the value of a status counter for a prepared statement 1466 */ 1467 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1468 Vdbe *pVdbe = (Vdbe*)pStmt; 1469 u32 v; 1470 #ifdef SQLITE_ENABLE_API_ARMOR 1471 if( !pStmt ){ 1472 (void)SQLITE_MISUSE_BKPT; 1473 return 0; 1474 } 1475 #endif 1476 v = pVdbe->aCounter[op]; 1477 if( resetFlag ) pVdbe->aCounter[op] = 0; 1478 return (int)v; 1479 } 1480 1481 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1482 /* 1483 ** Return status data for a single loop within query pStmt. 1484 */ 1485 int sqlite3_stmt_scanstatus( 1486 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1487 int idx, /* Index of loop to report on */ 1488 int iScanStatusOp, /* Which metric to return */ 1489 void *pOut /* OUT: Write the answer here */ 1490 ){ 1491 Vdbe *p = (Vdbe*)pStmt; 1492 ScanStatus *pScan; 1493 if( idx<0 || idx>=p->nScan ) return 1; 1494 pScan = &p->aScan[idx]; 1495 switch( iScanStatusOp ){ 1496 case SQLITE_SCANSTAT_NLOOP: { 1497 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1498 break; 1499 } 1500 case SQLITE_SCANSTAT_NVISIT: { 1501 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1502 break; 1503 } 1504 case SQLITE_SCANSTAT_EST: { 1505 double r = 1.0; 1506 LogEst x = pScan->nEst; 1507 while( x<100 ){ 1508 x += 10; 1509 r *= 0.5; 1510 } 1511 *(double*)pOut = r*sqlite3LogEstToInt(x); 1512 break; 1513 } 1514 case SQLITE_SCANSTAT_NAME: { 1515 *(const char**)pOut = pScan->zName; 1516 break; 1517 } 1518 case SQLITE_SCANSTAT_EXPLAIN: { 1519 if( pScan->addrExplain ){ 1520 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1521 }else{ 1522 *(const char**)pOut = 0; 1523 } 1524 break; 1525 } 1526 case SQLITE_SCANSTAT_SELECTID: { 1527 if( pScan->addrExplain ){ 1528 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1529 }else{ 1530 *(int*)pOut = -1; 1531 } 1532 break; 1533 } 1534 default: { 1535 return 1; 1536 } 1537 } 1538 return 0; 1539 } 1540 1541 /* 1542 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1543 */ 1544 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1545 Vdbe *p = (Vdbe*)pStmt; 1546 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1547 } 1548 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1549