xref: /sqlite-3.40.0/src/vdbeapi.c (revision a408adc5)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 #include "os.h"
19 
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 
33 /**************************** sqlite3_value_  *******************************
34 ** The following routines extract information from a Mem or sqlite3_value
35 ** structure.
36 */
37 const void *sqlite3_value_blob(sqlite3_value *pVal){
38   Mem *p = (Mem*)pVal;
39   if( p->flags & (MEM_Blob|MEM_Str) ){
40     sqlite3VdbeMemExpandBlob(p);
41     p->flags &= ~MEM_Str;
42     p->flags |= MEM_Blob;
43     return p->z;
44   }else{
45     return sqlite3_value_text(pVal);
46   }
47 }
48 int sqlite3_value_bytes(sqlite3_value *pVal){
49   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
50 }
51 int sqlite3_value_bytes16(sqlite3_value *pVal){
52   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
53 }
54 double sqlite3_value_double(sqlite3_value *pVal){
55   return sqlite3VdbeRealValue((Mem*)pVal);
56 }
57 int sqlite3_value_int(sqlite3_value *pVal){
58   return sqlite3VdbeIntValue((Mem*)pVal);
59 }
60 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
61   return sqlite3VdbeIntValue((Mem*)pVal);
62 }
63 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
64   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
65 }
66 #ifndef SQLITE_OMIT_UTF16
67 const void *sqlite3_value_text16(sqlite3_value* pVal){
68   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
69 }
70 const void *sqlite3_value_text16be(sqlite3_value *pVal){
71   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
72 }
73 const void *sqlite3_value_text16le(sqlite3_value *pVal){
74   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
75 }
76 #endif /* SQLITE_OMIT_UTF16 */
77 int sqlite3_value_type(sqlite3_value* pVal){
78   return pVal->type;
79 }
80 /* sqlite3_value_numeric_type() defined in vdbe.c */
81 
82 /**************************** sqlite3_result_  *******************************
83 ** The following routines are used by user-defined functions to specify
84 ** the function result.
85 */
86 void sqlite3_result_blob(
87   sqlite3_context *pCtx,
88   const void *z,
89   int n,
90   void (*xDel)(void *)
91 ){
92   assert( n>=0 );
93   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
94 }
95 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
96   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
97 }
98 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
99   pCtx->isError = 1;
100   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
101 }
102 #ifndef SQLITE_OMIT_UTF16
103 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
104   pCtx->isError = 1;
105   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
106 }
107 #endif
108 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
109   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
110 }
111 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
112   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
113 }
114 void sqlite3_result_null(sqlite3_context *pCtx){
115   sqlite3VdbeMemSetNull(&pCtx->s);
116 }
117 void sqlite3_result_text(
118   sqlite3_context *pCtx,
119   const char *z,
120   int n,
121   void (*xDel)(void *)
122 ){
123   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
124 }
125 #ifndef SQLITE_OMIT_UTF16
126 void sqlite3_result_text16(
127   sqlite3_context *pCtx,
128   const void *z,
129   int n,
130   void (*xDel)(void *)
131 ){
132   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
133 }
134 void sqlite3_result_text16be(
135   sqlite3_context *pCtx,
136   const void *z,
137   int n,
138   void (*xDel)(void *)
139 ){
140   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
141 }
142 void sqlite3_result_text16le(
143   sqlite3_context *pCtx,
144   const void *z,
145   int n,
146   void (*xDel)(void *)
147 ){
148   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
149 }
150 #endif /* SQLITE_OMIT_UTF16 */
151 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
152   sqlite3VdbeMemCopy(&pCtx->s, pValue);
153 }
154 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
155   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
156 }
157 
158 /* Force an SQLITE_TOOBIG error. */
159 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
160   sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
161 }
162 
163 
164 /*
165 ** Execute the statement pStmt, either until a row of data is ready, the
166 ** statement is completely executed or an error occurs.
167 **
168 ** This routine implements the bulk of the logic behind the sqlite_step()
169 ** API.  The only thing omitted is the automatic recompile if a
170 ** schema change has occurred.  That detail is handled by the
171 ** outer sqlite3_step() wrapper procedure.
172 */
173 static int sqlite3Step(Vdbe *p){
174   sqlite3 *db;
175   int rc;
176 
177   /* Assert that malloc() has not failed */
178   assert( !sqlite3MallocFailed() );
179 
180   if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
181     return SQLITE_MISUSE;
182   }
183   if( p->aborted ){
184     return SQLITE_ABORT;
185   }
186   if( p->pc<=0 && p->expired ){
187     if( p->rc==SQLITE_OK ){
188       p->rc = SQLITE_SCHEMA;
189     }
190     rc = SQLITE_ERROR;
191     goto end_of_step;
192   }
193   db = p->db;
194   if( sqlite3SafetyOn(db) ){
195     p->rc = SQLITE_MISUSE;
196     return SQLITE_MISUSE;
197   }
198   if( p->pc<0 ){
199     /* If there are no other statements currently running, then
200     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
201     ** from interrupting a statement that has not yet started.
202     */
203     if( db->activeVdbeCnt==0 ){
204       db->u1.isInterrupted = 0;
205     }
206 
207 #ifndef SQLITE_OMIT_TRACE
208     /* Invoke the trace callback if there is one
209     */
210     if( db->xTrace && !db->init.busy ){
211       assert( p->nOp>0 );
212       assert( p->aOp[p->nOp-1].opcode==OP_Noop );
213       assert( p->aOp[p->nOp-1].p3!=0 );
214       assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
215       sqlite3SafetyOff(db);
216       db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
217       if( sqlite3SafetyOn(db) ){
218         p->rc = SQLITE_MISUSE;
219         return SQLITE_MISUSE;
220       }
221     }
222     if( db->xProfile && !db->init.busy ){
223       double rNow;
224       sqlite3OsCurrentTime(&rNow);
225       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
226     }
227 #endif
228 
229     /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
230     ** on in debugging mode.
231     */
232 #ifdef SQLITE_DEBUG
233     if( (db->flags & SQLITE_SqlTrace)!=0 ){
234       sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
235     }
236 #endif /* SQLITE_DEBUG */
237 
238     db->activeVdbeCnt++;
239     p->pc = 0;
240   }
241 #ifndef SQLITE_OMIT_EXPLAIN
242   if( p->explain ){
243     rc = sqlite3VdbeList(p);
244   }else
245 #endif /* SQLITE_OMIT_EXPLAIN */
246   {
247     rc = sqlite3VdbeExec(p);
248   }
249 
250   if( sqlite3SafetyOff(db) ){
251     rc = SQLITE_MISUSE;
252   }
253 
254 #ifndef SQLITE_OMIT_TRACE
255   /* Invoke the profile callback if there is one
256   */
257   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
258     double rNow;
259     u64 elapseTime;
260 
261     sqlite3OsCurrentTime(&rNow);
262     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
263     assert( p->nOp>0 );
264     assert( p->aOp[p->nOp-1].opcode==OP_Noop );
265     assert( p->aOp[p->nOp-1].p3!=0 );
266     assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
267     db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
268   }
269 #endif
270 
271   sqlite3Error(p->db, rc, 0);
272   p->rc = sqlite3ApiExit(p->db, p->rc);
273 end_of_step:
274   assert( (rc&0xff)==rc );
275   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
276     /* This behavior occurs if sqlite3_prepare_v2() was used to build
277     ** the prepared statement.  Return error codes directly */
278     return p->rc;
279   }else{
280     /* This is for legacy sqlite3_prepare() builds and when the code
281     ** is SQLITE_ROW or SQLITE_DONE */
282     return rc;
283   }
284 }
285 
286 /*
287 ** This is the top-level implementation of sqlite3_step().  Call
288 ** sqlite3Step() to do most of the work.  If a schema error occurs,
289 ** call sqlite3Reprepare() and try again.
290 */
291 #ifdef SQLITE_OMIT_PARSER
292 int sqlite3_step(sqlite3_stmt *pStmt){
293   return sqlite3Step((Vdbe*)pStmt);
294 }
295 #else
296 int sqlite3_step(sqlite3_stmt *pStmt){
297   int cnt = 0;
298   int rc;
299   Vdbe *v = (Vdbe*)pStmt;
300   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
301          && cnt++ < 5
302          && sqlite3Reprepare(v) ){
303     sqlite3_reset(pStmt);
304     v->expired = 0;
305   }
306   return rc;
307 }
308 #endif
309 
310 /*
311 ** Extract the user data from a sqlite3_context structure and return a
312 ** pointer to it.
313 */
314 void *sqlite3_user_data(sqlite3_context *p){
315   assert( p && p->pFunc );
316   return p->pFunc->pUserData;
317 }
318 
319 /*
320 ** The following is the implementation of an SQL function that always
321 ** fails with an error message stating that the function is used in the
322 ** wrong context.  The sqlite3_overload_function() API might construct
323 ** SQL function that use this routine so that the functions will exist
324 ** for name resolution but are actually overloaded by the xFindFunction
325 ** method of virtual tables.
326 */
327 void sqlite3InvalidFunction(
328   sqlite3_context *context,  /* The function calling context */
329   int argc,                  /* Number of arguments to the function */
330   sqlite3_value **argv       /* Value of each argument */
331 ){
332   const char *zName = context->pFunc->zName;
333   char *zErr;
334   zErr = sqlite3MPrintf(
335       "unable to use function %s in the requested context", zName);
336   sqlite3_result_error(context, zErr, -1);
337   sqliteFree(zErr);
338 }
339 
340 /*
341 ** Allocate or return the aggregate context for a user function.  A new
342 ** context is allocated on the first call.  Subsequent calls return the
343 ** same context that was returned on prior calls.
344 */
345 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
346   Mem *pMem = p->pMem;
347   assert( p && p->pFunc && p->pFunc->xStep );
348   if( (pMem->flags & MEM_Agg)==0 ){
349     if( nByte==0 ){
350       assert( pMem->flags==MEM_Null );
351       pMem->z = 0;
352     }else{
353       pMem->flags = MEM_Agg;
354       pMem->xDel = sqlite3FreeX;
355       pMem->u.pDef = p->pFunc;
356       if( nByte<=NBFS ){
357         pMem->z = pMem->zShort;
358         memset(pMem->z, 0, nByte);
359       }else{
360         pMem->z = sqliteMalloc( nByte );
361       }
362     }
363   }
364   return (void*)pMem->z;
365 }
366 
367 /*
368 ** Return the auxilary data pointer, if any, for the iArg'th argument to
369 ** the user-function defined by pCtx.
370 */
371 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
372   VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc;
373   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
374     return 0;
375   }
376   return pVdbeFunc->apAux[iArg].pAux;
377 }
378 
379 /*
380 ** Set the auxilary data pointer and delete function, for the iArg'th
381 ** argument to the user-function defined by pCtx. Any previous value is
382 ** deleted by calling the delete function specified when it was set.
383 */
384 void sqlite3_set_auxdata(
385   sqlite3_context *pCtx,
386   int iArg,
387   void *pAux,
388   void (*xDelete)(void*)
389 ){
390   struct AuxData *pAuxData;
391   VdbeFunc *pVdbeFunc;
392   if( iArg<0 ) return;
393 
394   pVdbeFunc = pCtx->pVdbeFunc;
395   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
396     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
397     pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc);
398     if( !pVdbeFunc ) return;
399     pCtx->pVdbeFunc = pVdbeFunc;
400     memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0,
401              sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux));
402     pVdbeFunc->nAux = iArg+1;
403     pVdbeFunc->pFunc = pCtx->pFunc;
404   }
405 
406   pAuxData = &pVdbeFunc->apAux[iArg];
407   if( pAuxData->pAux && pAuxData->xDelete ){
408     pAuxData->xDelete(pAuxData->pAux);
409   }
410   pAuxData->pAux = pAux;
411   pAuxData->xDelete = xDelete;
412 }
413 
414 /*
415 ** Return the number of times the Step function of a aggregate has been
416 ** called.
417 **
418 ** This function is deprecated.  Do not use it for new code.  It is
419 ** provide only to avoid breaking legacy code.  New aggregate function
420 ** implementations should keep their own counts within their aggregate
421 ** context.
422 */
423 int sqlite3_aggregate_count(sqlite3_context *p){
424   assert( p && p->pFunc && p->pFunc->xStep );
425   return p->pMem->n;
426 }
427 
428 /*
429 ** Return the number of columns in the result set for the statement pStmt.
430 */
431 int sqlite3_column_count(sqlite3_stmt *pStmt){
432   Vdbe *pVm = (Vdbe *)pStmt;
433   return pVm ? pVm->nResColumn : 0;
434 }
435 
436 /*
437 ** Return the number of values available from the current row of the
438 ** currently executing statement pStmt.
439 */
440 int sqlite3_data_count(sqlite3_stmt *pStmt){
441   Vdbe *pVm = (Vdbe *)pStmt;
442   if( pVm==0 || !pVm->resOnStack ) return 0;
443   return pVm->nResColumn;
444 }
445 
446 
447 /*
448 ** Check to see if column iCol of the given statement is valid.  If
449 ** it is, return a pointer to the Mem for the value of that column.
450 ** If iCol is not valid, return a pointer to a Mem which has a value
451 ** of NULL.
452 */
453 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
454   Vdbe *pVm = (Vdbe *)pStmt;
455   int vals = sqlite3_data_count(pStmt);
456   if( i>=vals || i<0 ){
457     static const Mem nullMem = {{0}, 0.0, "", 0, MEM_Null, SQLITE_NULL };
458     sqlite3Error(pVm->db, SQLITE_RANGE, 0);
459     return (Mem*)&nullMem;
460   }
461   return &pVm->pTos[(1-vals)+i];
462 }
463 
464 /*
465 ** This function is called after invoking an sqlite3_value_XXX function on a
466 ** column value (i.e. a value returned by evaluating an SQL expression in the
467 ** select list of a SELECT statement) that may cause a malloc() failure. If
468 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
469 ** code of statement pStmt set to SQLITE_NOMEM.
470 **
471 ** Specificly, this is called from within:
472 **
473 **     sqlite3_column_int()
474 **     sqlite3_column_int64()
475 **     sqlite3_column_text()
476 **     sqlite3_column_text16()
477 **     sqlite3_column_real()
478 **     sqlite3_column_bytes()
479 **     sqlite3_column_bytes16()
480 **
481 ** But not for sqlite3_column_blob(), which never calls malloc().
482 */
483 static void columnMallocFailure(sqlite3_stmt *pStmt)
484 {
485   /* If malloc() failed during an encoding conversion within an
486   ** sqlite3_column_XXX API, then set the return code of the statement to
487   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
488   ** and _finalize() will return NOMEM.
489   */
490   Vdbe *p = (Vdbe *)pStmt;
491   p->rc = sqlite3ApiExit(0, p->rc);
492 }
493 
494 /**************************** sqlite3_column_  *******************************
495 ** The following routines are used to access elements of the current row
496 ** in the result set.
497 */
498 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
499   const void *val;
500   val = sqlite3_value_blob( columnMem(pStmt,i) );
501   return val;
502 }
503 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
504   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
505   columnMallocFailure(pStmt);
506   return val;
507 }
508 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
509   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
510   columnMallocFailure(pStmt);
511   return val;
512 }
513 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
514   double val = sqlite3_value_double( columnMem(pStmt,i) );
515   columnMallocFailure(pStmt);
516   return val;
517 }
518 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
519   int val = sqlite3_value_int( columnMem(pStmt,i) );
520   columnMallocFailure(pStmt);
521   return val;
522 }
523 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
524   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
525   columnMallocFailure(pStmt);
526   return val;
527 }
528 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
529   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
530   columnMallocFailure(pStmt);
531   return val;
532 }
533 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
534   return columnMem(pStmt, i);
535 }
536 #ifndef SQLITE_OMIT_UTF16
537 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
538   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
539   columnMallocFailure(pStmt);
540   return val;
541 }
542 #endif /* SQLITE_OMIT_UTF16 */
543 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
544   return sqlite3_value_type( columnMem(pStmt,i) );
545 }
546 
547 /* The following function is experimental and subject to change or
548 ** removal */
549 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
550 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
551 **}
552 */
553 
554 /*
555 ** Convert the N-th element of pStmt->pColName[] into a string using
556 ** xFunc() then return that string.  If N is out of range, return 0.
557 **
558 ** There are up to 5 names for each column.  useType determines which
559 ** name is returned.  Here are the names:
560 **
561 **    0      The column name as it should be displayed for output
562 **    1      The datatype name for the column
563 **    2      The name of the database that the column derives from
564 **    3      The name of the table that the column derives from
565 **    4      The name of the table column that the result column derives from
566 **
567 ** If the result is not a simple column reference (if it is an expression
568 ** or a constant) then useTypes 2, 3, and 4 return NULL.
569 */
570 static const void *columnName(
571   sqlite3_stmt *pStmt,
572   int N,
573   const void *(*xFunc)(Mem*),
574   int useType
575 ){
576   const void *ret;
577   Vdbe *p = (Vdbe *)pStmt;
578   int n = sqlite3_column_count(pStmt);
579 
580   if( p==0 || N>=n || N<0 ){
581     return 0;
582   }
583   N += useType*n;
584   ret = xFunc(&p->aColName[N]);
585 
586   /* A malloc may have failed inside of the xFunc() call. If this is the case,
587   ** clear the mallocFailed flag and return NULL.
588   */
589   sqlite3ApiExit(0, 0);
590   return ret;
591 }
592 
593 /*
594 ** Return the name of the Nth column of the result set returned by SQL
595 ** statement pStmt.
596 */
597 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
598   return columnName(
599       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
600 }
601 #ifndef SQLITE_OMIT_UTF16
602 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
603   return columnName(
604       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
605 }
606 #endif
607 
608 /*
609 ** Return the column declaration type (if applicable) of the 'i'th column
610 ** of the result set of SQL statement pStmt.
611 */
612 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
613   return columnName(
614       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
615 }
616 #ifndef SQLITE_OMIT_UTF16
617 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
618   return columnName(
619       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
620 }
621 #endif /* SQLITE_OMIT_UTF16 */
622 
623 #ifdef SQLITE_ENABLE_COLUMN_METADATA
624 /*
625 ** Return the name of the database from which a result column derives.
626 ** NULL is returned if the result column is an expression or constant or
627 ** anything else which is not an unabiguous reference to a database column.
628 */
629 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
630   return columnName(
631       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
632 }
633 #ifndef SQLITE_OMIT_UTF16
634 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
635   return columnName(
636       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
637 }
638 #endif /* SQLITE_OMIT_UTF16 */
639 
640 /*
641 ** Return the name of the table from which a result column derives.
642 ** NULL is returned if the result column is an expression or constant or
643 ** anything else which is not an unabiguous reference to a database column.
644 */
645 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
646   return columnName(
647       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
648 }
649 #ifndef SQLITE_OMIT_UTF16
650 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
651   return columnName(
652       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
653 }
654 #endif /* SQLITE_OMIT_UTF16 */
655 
656 /*
657 ** Return the name of the table column from which a result column derives.
658 ** NULL is returned if the result column is an expression or constant or
659 ** anything else which is not an unabiguous reference to a database column.
660 */
661 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
662   return columnName(
663       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
664 }
665 #ifndef SQLITE_OMIT_UTF16
666 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
667   return columnName(
668       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
669 }
670 #endif /* SQLITE_OMIT_UTF16 */
671 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
672 
673 
674 /******************************* sqlite3_bind_  ***************************
675 **
676 ** Routines used to attach values to wildcards in a compiled SQL statement.
677 */
678 /*
679 ** Unbind the value bound to variable i in virtual machine p. This is the
680 ** the same as binding a NULL value to the column. If the "i" parameter is
681 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
682 **
683 ** The error code stored in database p->db is overwritten with the return
684 ** value in any case.
685 */
686 static int vdbeUnbind(Vdbe *p, int i){
687   Mem *pVar;
688   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
689     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
690     return SQLITE_MISUSE;
691   }
692   if( i<1 || i>p->nVar ){
693     sqlite3Error(p->db, SQLITE_RANGE, 0);
694     return SQLITE_RANGE;
695   }
696   i--;
697   pVar = &p->aVar[i];
698   sqlite3VdbeMemRelease(pVar);
699   pVar->flags = MEM_Null;
700   sqlite3Error(p->db, SQLITE_OK, 0);
701   return SQLITE_OK;
702 }
703 
704 /*
705 ** Bind a text or BLOB value.
706 */
707 static int bindText(
708   sqlite3_stmt *pStmt,
709   int i,
710   const void *zData,
711   int nData,
712   void (*xDel)(void*),
713   int encoding
714 ){
715   Vdbe *p = (Vdbe *)pStmt;
716   Mem *pVar;
717   int rc;
718 
719   rc = vdbeUnbind(p, i);
720   if( rc || zData==0 ){
721     return rc;
722   }
723   pVar = &p->aVar[i-1];
724   rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
725   if( rc==SQLITE_OK && encoding!=0 ){
726     rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
727   }
728 
729   sqlite3Error(((Vdbe *)pStmt)->db, rc, 0);
730   return sqlite3ApiExit(((Vdbe *)pStmt)->db, rc);
731 }
732 
733 
734 /*
735 ** Bind a blob value to an SQL statement variable.
736 */
737 int sqlite3_bind_blob(
738   sqlite3_stmt *pStmt,
739   int i,
740   const void *zData,
741   int nData,
742   void (*xDel)(void*)
743 ){
744   return bindText(pStmt, i, zData, nData, xDel, 0);
745 }
746 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
747   int rc;
748   Vdbe *p = (Vdbe *)pStmt;
749   rc = vdbeUnbind(p, i);
750   if( rc==SQLITE_OK ){
751     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
752   }
753   return rc;
754 }
755 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
756   return sqlite3_bind_int64(p, i, (i64)iValue);
757 }
758 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
759   int rc;
760   Vdbe *p = (Vdbe *)pStmt;
761   rc = vdbeUnbind(p, i);
762   if( rc==SQLITE_OK ){
763     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
764   }
765   return rc;
766 }
767 int sqlite3_bind_null(sqlite3_stmt* p, int i){
768   return vdbeUnbind((Vdbe *)p, i);
769 }
770 int sqlite3_bind_text(
771   sqlite3_stmt *pStmt,
772   int i,
773   const char *zData,
774   int nData,
775   void (*xDel)(void*)
776 ){
777   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
778 }
779 #ifndef SQLITE_OMIT_UTF16
780 int sqlite3_bind_text16(
781   sqlite3_stmt *pStmt,
782   int i,
783   const void *zData,
784   int nData,
785   void (*xDel)(void*)
786 ){
787   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
788 }
789 #endif /* SQLITE_OMIT_UTF16 */
790 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
791   int rc;
792   Vdbe *p = (Vdbe *)pStmt;
793   rc = vdbeUnbind(p, i);
794   if( rc==SQLITE_OK ){
795     sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
796   }
797   return rc;
798 }
799 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
800   int rc;
801   Vdbe *p = (Vdbe *)pStmt;
802   rc = vdbeUnbind(p, i);
803   if( rc==SQLITE_OK ){
804     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
805   }
806   return rc;
807 }
808 
809 /*
810 ** Return the number of wildcards that can be potentially bound to.
811 ** This routine is added to support DBD::SQLite.
812 */
813 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
814   Vdbe *p = (Vdbe*)pStmt;
815   return p ? p->nVar : 0;
816 }
817 
818 /*
819 ** Create a mapping from variable numbers to variable names
820 ** in the Vdbe.azVar[] array, if such a mapping does not already
821 ** exist.
822 */
823 static void createVarMap(Vdbe *p){
824   if( !p->okVar ){
825     int j;
826     Op *pOp;
827     for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
828       if( pOp->opcode==OP_Variable ){
829         assert( pOp->p1>0 && pOp->p1<=p->nVar );
830         p->azVar[pOp->p1-1] = pOp->p3;
831       }
832     }
833     p->okVar = 1;
834   }
835 }
836 
837 /*
838 ** Return the name of a wildcard parameter.  Return NULL if the index
839 ** is out of range or if the wildcard is unnamed.
840 **
841 ** The result is always UTF-8.
842 */
843 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
844   Vdbe *p = (Vdbe*)pStmt;
845   if( p==0 || i<1 || i>p->nVar ){
846     return 0;
847   }
848   createVarMap(p);
849   return p->azVar[i-1];
850 }
851 
852 /*
853 ** Given a wildcard parameter name, return the index of the variable
854 ** with that name.  If there is no variable with the given name,
855 ** return 0.
856 */
857 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
858   Vdbe *p = (Vdbe*)pStmt;
859   int i;
860   if( p==0 ){
861     return 0;
862   }
863   createVarMap(p);
864   if( zName ){
865     for(i=0; i<p->nVar; i++){
866       const char *z = p->azVar[i];
867       if( z && strcmp(z,zName)==0 ){
868         return i+1;
869       }
870     }
871   }
872   return 0;
873 }
874 
875 /*
876 ** Transfer all bindings from the first statement over to the second.
877 ** If the two statements contain a different number of bindings, then
878 ** an SQLITE_ERROR is returned.
879 */
880 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
881   Vdbe *pFrom = (Vdbe*)pFromStmt;
882   Vdbe *pTo = (Vdbe*)pToStmt;
883   int i, rc = SQLITE_OK;
884   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
885     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) ){
886     return SQLITE_MISUSE;
887   }
888   if( pFrom->nVar!=pTo->nVar ){
889     return SQLITE_ERROR;
890   }
891   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
892     sqlite3MallocDisallow();
893     rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
894     sqlite3MallocAllow();
895   }
896   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
897   return rc;
898 }
899 
900 /*
901 ** Return the sqlite3* database handle to which the prepared statement given
902 ** in the argument belongs.  This is the same database handle that was
903 ** the first argument to the sqlite3_prepare() that was used to create
904 ** the statement in the first place.
905 */
906 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
907   return pStmt ? ((Vdbe*)pStmt)->db : 0;
908 }
909