1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags &= ~MEM_Str; 139 p->flags |= MEM_Blob; 140 return p->n ? p->z : 0; 141 }else{ 142 return sqlite3_value_text(pVal); 143 } 144 } 145 int sqlite3_value_bytes(sqlite3_value *pVal){ 146 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 147 } 148 int sqlite3_value_bytes16(sqlite3_value *pVal){ 149 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 150 } 151 double sqlite3_value_double(sqlite3_value *pVal){ 152 return sqlite3VdbeRealValue((Mem*)pVal); 153 } 154 int sqlite3_value_int(sqlite3_value *pVal){ 155 return (int)sqlite3VdbeIntValue((Mem*)pVal); 156 } 157 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 158 return sqlite3VdbeIntValue((Mem*)pVal); 159 } 160 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 161 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 162 } 163 #ifndef SQLITE_OMIT_UTF16 164 const void *sqlite3_value_text16(sqlite3_value* pVal){ 165 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 166 } 167 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 168 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 169 } 170 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 171 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 172 } 173 #endif /* SQLITE_OMIT_UTF16 */ 174 int sqlite3_value_type(sqlite3_value* pVal){ 175 return pVal->type; 176 } 177 178 /**************************** sqlite3_result_ ******************************* 179 ** The following routines are used by user-defined functions to specify 180 ** the function result. 181 ** 182 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 183 ** result as a string or blob but if the string or blob is too large, it 184 ** then sets the error code to SQLITE_TOOBIG 185 */ 186 static void setResultStrOrError( 187 sqlite3_context *pCtx, /* Function context */ 188 const char *z, /* String pointer */ 189 int n, /* Bytes in string, or negative */ 190 u8 enc, /* Encoding of z. 0 for BLOBs */ 191 void (*xDel)(void*) /* Destructor function */ 192 ){ 193 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 194 sqlite3_result_error_toobig(pCtx); 195 } 196 } 197 void sqlite3_result_blob( 198 sqlite3_context *pCtx, 199 const void *z, 200 int n, 201 void (*xDel)(void *) 202 ){ 203 assert( n>=0 ); 204 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 205 setResultStrOrError(pCtx, z, n, 0, xDel); 206 } 207 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 208 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 209 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 210 } 211 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 212 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 213 pCtx->isError = SQLITE_ERROR; 214 pCtx->fErrorOrAux = 1; 215 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 216 } 217 #ifndef SQLITE_OMIT_UTF16 218 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 219 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 220 pCtx->isError = SQLITE_ERROR; 221 pCtx->fErrorOrAux = 1; 222 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 223 } 224 #endif 225 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 226 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 227 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 228 } 229 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 230 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 231 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 232 } 233 void sqlite3_result_null(sqlite3_context *pCtx){ 234 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 235 sqlite3VdbeMemSetNull(&pCtx->s); 236 } 237 void sqlite3_result_text( 238 sqlite3_context *pCtx, 239 const char *z, 240 int n, 241 void (*xDel)(void *) 242 ){ 243 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 244 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 245 } 246 #ifndef SQLITE_OMIT_UTF16 247 void sqlite3_result_text16( 248 sqlite3_context *pCtx, 249 const void *z, 250 int n, 251 void (*xDel)(void *) 252 ){ 253 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 254 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 255 } 256 void sqlite3_result_text16be( 257 sqlite3_context *pCtx, 258 const void *z, 259 int n, 260 void (*xDel)(void *) 261 ){ 262 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 263 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 264 } 265 void sqlite3_result_text16le( 266 sqlite3_context *pCtx, 267 const void *z, 268 int n, 269 void (*xDel)(void *) 270 ){ 271 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 272 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 273 } 274 #endif /* SQLITE_OMIT_UTF16 */ 275 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 276 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 277 sqlite3VdbeMemCopy(&pCtx->s, pValue); 278 } 279 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 280 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 281 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 282 } 283 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 284 pCtx->isError = errCode; 285 pCtx->fErrorOrAux = 1; 286 if( pCtx->s.flags & MEM_Null ){ 287 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 288 SQLITE_UTF8, SQLITE_STATIC); 289 } 290 } 291 292 /* Force an SQLITE_TOOBIG error. */ 293 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 294 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 295 pCtx->isError = SQLITE_TOOBIG; 296 pCtx->fErrorOrAux = 1; 297 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 298 SQLITE_UTF8, SQLITE_STATIC); 299 } 300 301 /* An SQLITE_NOMEM error. */ 302 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 303 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 304 sqlite3VdbeMemSetNull(&pCtx->s); 305 pCtx->isError = SQLITE_NOMEM; 306 pCtx->fErrorOrAux = 1; 307 pCtx->s.db->mallocFailed = 1; 308 } 309 310 /* 311 ** This function is called after a transaction has been committed. It 312 ** invokes callbacks registered with sqlite3_wal_hook() as required. 313 */ 314 static int doWalCallbacks(sqlite3 *db){ 315 int rc = SQLITE_OK; 316 #ifndef SQLITE_OMIT_WAL 317 int i; 318 for(i=0; i<db->nDb; i++){ 319 Btree *pBt = db->aDb[i].pBt; 320 if( pBt ){ 321 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 322 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 323 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 324 } 325 } 326 } 327 #endif 328 return rc; 329 } 330 331 /* 332 ** Execute the statement pStmt, either until a row of data is ready, the 333 ** statement is completely executed or an error occurs. 334 ** 335 ** This routine implements the bulk of the logic behind the sqlite_step() 336 ** API. The only thing omitted is the automatic recompile if a 337 ** schema change has occurred. That detail is handled by the 338 ** outer sqlite3_step() wrapper procedure. 339 */ 340 static int sqlite3Step(Vdbe *p){ 341 sqlite3 *db; 342 int rc; 343 344 assert(p); 345 if( p->magic!=VDBE_MAGIC_RUN ){ 346 /* We used to require that sqlite3_reset() be called before retrying 347 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 348 ** with version 3.7.0, we changed this so that sqlite3_reset() would 349 ** be called automatically instead of throwing the SQLITE_MISUSE error. 350 ** This "automatic-reset" change is not technically an incompatibility, 351 ** since any application that receives an SQLITE_MISUSE is broken by 352 ** definition. 353 ** 354 ** Nevertheless, some published applications that were originally written 355 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 356 ** returns, and those were broken by the automatic-reset change. As a 357 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 358 ** legacy behavior of returning SQLITE_MISUSE for cases where the 359 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 360 ** or SQLITE_BUSY error. 361 */ 362 #ifdef SQLITE_OMIT_AUTORESET 363 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 364 sqlite3_reset((sqlite3_stmt*)p); 365 }else{ 366 return SQLITE_MISUSE_BKPT; 367 } 368 #else 369 sqlite3_reset((sqlite3_stmt*)p); 370 #endif 371 } 372 373 /* Check that malloc() has not failed. If it has, return early. */ 374 db = p->db; 375 if( db->mallocFailed ){ 376 p->rc = SQLITE_NOMEM; 377 return SQLITE_NOMEM; 378 } 379 380 if( p->pc<=0 && p->expired ){ 381 p->rc = SQLITE_SCHEMA; 382 rc = SQLITE_ERROR; 383 goto end_of_step; 384 } 385 if( p->pc<0 ){ 386 /* If there are no other statements currently running, then 387 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 388 ** from interrupting a statement that has not yet started. 389 */ 390 if( db->nVdbeActive==0 ){ 391 db->u1.isInterrupted = 0; 392 } 393 394 assert( db->nVdbeWrite>0 || db->autoCommit==0 395 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 396 ); 397 398 #ifndef SQLITE_OMIT_TRACE 399 if( db->xProfile && !db->init.busy ){ 400 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 401 } 402 #endif 403 404 db->nVdbeActive++; 405 if( p->readOnly==0 ) db->nVdbeWrite++; 406 if( p->bIsReader ) db->nVdbeRead++; 407 p->pc = 0; 408 } 409 #ifndef SQLITE_OMIT_EXPLAIN 410 if( p->explain ){ 411 rc = sqlite3VdbeList(p); 412 }else 413 #endif /* SQLITE_OMIT_EXPLAIN */ 414 { 415 db->nVdbeExec++; 416 rc = sqlite3VdbeExec(p); 417 db->nVdbeExec--; 418 } 419 420 #ifndef SQLITE_OMIT_TRACE 421 /* Invoke the profile callback if there is one 422 */ 423 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 424 sqlite3_int64 iNow; 425 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 426 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 427 } 428 #endif 429 430 if( rc==SQLITE_DONE ){ 431 assert( p->rc==SQLITE_OK ); 432 p->rc = doWalCallbacks(db); 433 if( p->rc!=SQLITE_OK ){ 434 rc = SQLITE_ERROR; 435 } 436 } 437 438 db->errCode = rc; 439 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 440 p->rc = SQLITE_NOMEM; 441 } 442 end_of_step: 443 /* At this point local variable rc holds the value that should be 444 ** returned if this statement was compiled using the legacy 445 ** sqlite3_prepare() interface. According to the docs, this can only 446 ** be one of the values in the first assert() below. Variable p->rc 447 ** contains the value that would be returned if sqlite3_finalize() 448 ** were called on statement p. 449 */ 450 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 451 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 452 ); 453 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 454 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 455 /* If this statement was prepared using sqlite3_prepare_v2(), and an 456 ** error has occurred, then return the error code in p->rc to the 457 ** caller. Set the error code in the database handle to the same value. 458 */ 459 rc = sqlite3VdbeTransferError(p); 460 } 461 return (rc&db->errMask); 462 } 463 464 /* 465 ** This is the top-level implementation of sqlite3_step(). Call 466 ** sqlite3Step() to do most of the work. If a schema error occurs, 467 ** call sqlite3Reprepare() and try again. 468 */ 469 int sqlite3_step(sqlite3_stmt *pStmt){ 470 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 471 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 472 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 473 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 474 sqlite3 *db; /* The database connection */ 475 476 if( vdbeSafetyNotNull(v) ){ 477 return SQLITE_MISUSE_BKPT; 478 } 479 db = v->db; 480 sqlite3_mutex_enter(db->mutex); 481 v->doingRerun = 0; 482 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 483 && cnt++ < SQLITE_MAX_SCHEMA_RETRY 484 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 485 sqlite3_reset(pStmt); 486 v->doingRerun = 1; 487 assert( v->expired==0 ); 488 } 489 if( rc2!=SQLITE_OK ){ 490 /* This case occurs after failing to recompile an sql statement. 491 ** The error message from the SQL compiler has already been loaded 492 ** into the database handle. This block copies the error message 493 ** from the database handle into the statement and sets the statement 494 ** program counter to 0 to ensure that when the statement is 495 ** finalized or reset the parser error message is available via 496 ** sqlite3_errmsg() and sqlite3_errcode(). 497 */ 498 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 499 assert( zErr!=0 || db->mallocFailed ); 500 sqlite3DbFree(db, v->zErrMsg); 501 if( !db->mallocFailed ){ 502 v->zErrMsg = sqlite3DbStrDup(db, zErr); 503 v->rc = rc2; 504 } else { 505 v->zErrMsg = 0; 506 v->rc = rc = SQLITE_NOMEM; 507 } 508 } 509 rc = sqlite3ApiExit(db, rc); 510 sqlite3_mutex_leave(db->mutex); 511 return rc; 512 } 513 514 515 /* 516 ** Extract the user data from a sqlite3_context structure and return a 517 ** pointer to it. 518 */ 519 void *sqlite3_user_data(sqlite3_context *p){ 520 assert( p && p->pFunc ); 521 return p->pFunc->pUserData; 522 } 523 524 /* 525 ** Extract the user data from a sqlite3_context structure and return a 526 ** pointer to it. 527 ** 528 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 529 ** returns a copy of the pointer to the database connection (the 1st 530 ** parameter) of the sqlite3_create_function() and 531 ** sqlite3_create_function16() routines that originally registered the 532 ** application defined function. 533 */ 534 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 535 assert( p && p->pFunc ); 536 return p->s.db; 537 } 538 539 /* 540 ** Return the current time for a statement 541 */ 542 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 543 Vdbe *v = p->pVdbe; 544 int rc; 545 if( v->iCurrentTime==0 ){ 546 rc = sqlite3OsCurrentTimeInt64(p->s.db->pVfs, &v->iCurrentTime); 547 if( rc ) v->iCurrentTime = 0; 548 } 549 return v->iCurrentTime; 550 } 551 552 /* 553 ** The following is the implementation of an SQL function that always 554 ** fails with an error message stating that the function is used in the 555 ** wrong context. The sqlite3_overload_function() API might construct 556 ** SQL function that use this routine so that the functions will exist 557 ** for name resolution but are actually overloaded by the xFindFunction 558 ** method of virtual tables. 559 */ 560 void sqlite3InvalidFunction( 561 sqlite3_context *context, /* The function calling context */ 562 int NotUsed, /* Number of arguments to the function */ 563 sqlite3_value **NotUsed2 /* Value of each argument */ 564 ){ 565 const char *zName = context->pFunc->zName; 566 char *zErr; 567 UNUSED_PARAMETER2(NotUsed, NotUsed2); 568 zErr = sqlite3_mprintf( 569 "unable to use function %s in the requested context", zName); 570 sqlite3_result_error(context, zErr, -1); 571 sqlite3_free(zErr); 572 } 573 574 /* 575 ** Allocate or return the aggregate context for a user function. A new 576 ** context is allocated on the first call. Subsequent calls return the 577 ** same context that was returned on prior calls. 578 */ 579 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 580 Mem *pMem; 581 assert( p && p->pFunc && p->pFunc->xStep ); 582 assert( sqlite3_mutex_held(p->s.db->mutex) ); 583 pMem = p->pMem; 584 testcase( nByte<0 ); 585 if( (pMem->flags & MEM_Agg)==0 ){ 586 if( nByte<=0 ){ 587 sqlite3VdbeMemReleaseExternal(pMem); 588 pMem->flags = MEM_Null; 589 pMem->z = 0; 590 }else{ 591 sqlite3VdbeMemGrow(pMem, nByte, 0); 592 pMem->flags = MEM_Agg; 593 pMem->u.pDef = p->pFunc; 594 if( pMem->z ){ 595 memset(pMem->z, 0, nByte); 596 } 597 } 598 } 599 return (void*)pMem->z; 600 } 601 602 /* 603 ** Return the auxilary data pointer, if any, for the iArg'th argument to 604 ** the user-function defined by pCtx. 605 */ 606 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 607 AuxData *pAuxData; 608 609 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 610 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 611 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 612 } 613 614 return (pAuxData ? pAuxData->pAux : 0); 615 } 616 617 /* 618 ** Set the auxilary data pointer and delete function, for the iArg'th 619 ** argument to the user-function defined by pCtx. Any previous value is 620 ** deleted by calling the delete function specified when it was set. 621 */ 622 void sqlite3_set_auxdata( 623 sqlite3_context *pCtx, 624 int iArg, 625 void *pAux, 626 void (*xDelete)(void*) 627 ){ 628 AuxData *pAuxData; 629 Vdbe *pVdbe = pCtx->pVdbe; 630 631 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 632 if( iArg<0 ) goto failed; 633 634 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 635 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 636 } 637 if( pAuxData==0 ){ 638 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 639 if( !pAuxData ) goto failed; 640 pAuxData->iOp = pCtx->iOp; 641 pAuxData->iArg = iArg; 642 pAuxData->pNext = pVdbe->pAuxData; 643 pVdbe->pAuxData = pAuxData; 644 if( pCtx->fErrorOrAux==0 ){ 645 pCtx->isError = 0; 646 pCtx->fErrorOrAux = 1; 647 } 648 }else if( pAuxData->xDelete ){ 649 pAuxData->xDelete(pAuxData->pAux); 650 } 651 652 pAuxData->pAux = pAux; 653 pAuxData->xDelete = xDelete; 654 return; 655 656 failed: 657 if( xDelete ){ 658 xDelete(pAux); 659 } 660 } 661 662 #ifndef SQLITE_OMIT_DEPRECATED 663 /* 664 ** Return the number of times the Step function of a aggregate has been 665 ** called. 666 ** 667 ** This function is deprecated. Do not use it for new code. It is 668 ** provide only to avoid breaking legacy code. New aggregate function 669 ** implementations should keep their own counts within their aggregate 670 ** context. 671 */ 672 int sqlite3_aggregate_count(sqlite3_context *p){ 673 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 674 return p->pMem->n; 675 } 676 #endif 677 678 /* 679 ** Return the number of columns in the result set for the statement pStmt. 680 */ 681 int sqlite3_column_count(sqlite3_stmt *pStmt){ 682 Vdbe *pVm = (Vdbe *)pStmt; 683 return pVm ? pVm->nResColumn : 0; 684 } 685 686 /* 687 ** Return the number of values available from the current row of the 688 ** currently executing statement pStmt. 689 */ 690 int sqlite3_data_count(sqlite3_stmt *pStmt){ 691 Vdbe *pVm = (Vdbe *)pStmt; 692 if( pVm==0 || pVm->pResultSet==0 ) return 0; 693 return pVm->nResColumn; 694 } 695 696 697 /* 698 ** Check to see if column iCol of the given statement is valid. If 699 ** it is, return a pointer to the Mem for the value of that column. 700 ** If iCol is not valid, return a pointer to a Mem which has a value 701 ** of NULL. 702 */ 703 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 704 Vdbe *pVm; 705 Mem *pOut; 706 707 pVm = (Vdbe *)pStmt; 708 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 709 sqlite3_mutex_enter(pVm->db->mutex); 710 pOut = &pVm->pResultSet[i]; 711 }else{ 712 /* If the value passed as the second argument is out of range, return 713 ** a pointer to the following static Mem object which contains the 714 ** value SQL NULL. Even though the Mem structure contains an element 715 ** of type i64, on certain architectures (x86) with certain compiler 716 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 717 ** instead of an 8-byte one. This all works fine, except that when 718 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 719 ** that a Mem structure is located on an 8-byte boundary. To prevent 720 ** these assert()s from failing, when building with SQLITE_DEBUG defined 721 ** using gcc, we force nullMem to be 8-byte aligned using the magical 722 ** __attribute__((aligned(8))) macro. */ 723 static const Mem nullMem 724 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 725 __attribute__((aligned(8))) 726 #endif 727 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, 728 #ifdef SQLITE_DEBUG 729 0, 0, /* pScopyFrom, pFiller */ 730 #endif 731 0, 0 }; 732 733 if( pVm && ALWAYS(pVm->db) ){ 734 sqlite3_mutex_enter(pVm->db->mutex); 735 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 736 } 737 pOut = (Mem*)&nullMem; 738 } 739 return pOut; 740 } 741 742 /* 743 ** This function is called after invoking an sqlite3_value_XXX function on a 744 ** column value (i.e. a value returned by evaluating an SQL expression in the 745 ** select list of a SELECT statement) that may cause a malloc() failure. If 746 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 747 ** code of statement pStmt set to SQLITE_NOMEM. 748 ** 749 ** Specifically, this is called from within: 750 ** 751 ** sqlite3_column_int() 752 ** sqlite3_column_int64() 753 ** sqlite3_column_text() 754 ** sqlite3_column_text16() 755 ** sqlite3_column_real() 756 ** sqlite3_column_bytes() 757 ** sqlite3_column_bytes16() 758 ** sqiite3_column_blob() 759 */ 760 static void columnMallocFailure(sqlite3_stmt *pStmt) 761 { 762 /* If malloc() failed during an encoding conversion within an 763 ** sqlite3_column_XXX API, then set the return code of the statement to 764 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 765 ** and _finalize() will return NOMEM. 766 */ 767 Vdbe *p = (Vdbe *)pStmt; 768 if( p ){ 769 p->rc = sqlite3ApiExit(p->db, p->rc); 770 sqlite3_mutex_leave(p->db->mutex); 771 } 772 } 773 774 /**************************** sqlite3_column_ ******************************* 775 ** The following routines are used to access elements of the current row 776 ** in the result set. 777 */ 778 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 779 const void *val; 780 val = sqlite3_value_blob( columnMem(pStmt,i) ); 781 /* Even though there is no encoding conversion, value_blob() might 782 ** need to call malloc() to expand the result of a zeroblob() 783 ** expression. 784 */ 785 columnMallocFailure(pStmt); 786 return val; 787 } 788 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 789 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 790 columnMallocFailure(pStmt); 791 return val; 792 } 793 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 794 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 795 columnMallocFailure(pStmt); 796 return val; 797 } 798 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 799 double val = sqlite3_value_double( columnMem(pStmt,i) ); 800 columnMallocFailure(pStmt); 801 return val; 802 } 803 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 804 int val = sqlite3_value_int( columnMem(pStmt,i) ); 805 columnMallocFailure(pStmt); 806 return val; 807 } 808 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 809 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 810 columnMallocFailure(pStmt); 811 return val; 812 } 813 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 814 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 815 columnMallocFailure(pStmt); 816 return val; 817 } 818 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 819 Mem *pOut = columnMem(pStmt, i); 820 if( pOut->flags&MEM_Static ){ 821 pOut->flags &= ~MEM_Static; 822 pOut->flags |= MEM_Ephem; 823 } 824 columnMallocFailure(pStmt); 825 return (sqlite3_value *)pOut; 826 } 827 #ifndef SQLITE_OMIT_UTF16 828 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 829 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 830 columnMallocFailure(pStmt); 831 return val; 832 } 833 #endif /* SQLITE_OMIT_UTF16 */ 834 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 835 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 836 columnMallocFailure(pStmt); 837 return iType; 838 } 839 840 /* 841 ** Convert the N-th element of pStmt->pColName[] into a string using 842 ** xFunc() then return that string. If N is out of range, return 0. 843 ** 844 ** There are up to 5 names for each column. useType determines which 845 ** name is returned. Here are the names: 846 ** 847 ** 0 The column name as it should be displayed for output 848 ** 1 The datatype name for the column 849 ** 2 The name of the database that the column derives from 850 ** 3 The name of the table that the column derives from 851 ** 4 The name of the table column that the result column derives from 852 ** 853 ** If the result is not a simple column reference (if it is an expression 854 ** or a constant) then useTypes 2, 3, and 4 return NULL. 855 */ 856 static const void *columnName( 857 sqlite3_stmt *pStmt, 858 int N, 859 const void *(*xFunc)(Mem*), 860 int useType 861 ){ 862 const void *ret = 0; 863 Vdbe *p = (Vdbe *)pStmt; 864 int n; 865 sqlite3 *db = p->db; 866 867 assert( db!=0 ); 868 n = sqlite3_column_count(pStmt); 869 if( N<n && N>=0 ){ 870 N += useType*n; 871 sqlite3_mutex_enter(db->mutex); 872 assert( db->mallocFailed==0 ); 873 ret = xFunc(&p->aColName[N]); 874 /* A malloc may have failed inside of the xFunc() call. If this 875 ** is the case, clear the mallocFailed flag and return NULL. 876 */ 877 if( db->mallocFailed ){ 878 db->mallocFailed = 0; 879 ret = 0; 880 } 881 sqlite3_mutex_leave(db->mutex); 882 } 883 return ret; 884 } 885 886 /* 887 ** Return the name of the Nth column of the result set returned by SQL 888 ** statement pStmt. 889 */ 890 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 891 return columnName( 892 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 893 } 894 #ifndef SQLITE_OMIT_UTF16 895 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 896 return columnName( 897 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 898 } 899 #endif 900 901 /* 902 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 903 ** not define OMIT_DECLTYPE. 904 */ 905 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 906 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 907 and SQLITE_ENABLE_COLUMN_METADATA" 908 #endif 909 910 #ifndef SQLITE_OMIT_DECLTYPE 911 /* 912 ** Return the column declaration type (if applicable) of the 'i'th column 913 ** of the result set of SQL statement pStmt. 914 */ 915 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 916 return columnName( 917 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 918 } 919 #ifndef SQLITE_OMIT_UTF16 920 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 921 return columnName( 922 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 923 } 924 #endif /* SQLITE_OMIT_UTF16 */ 925 #endif /* SQLITE_OMIT_DECLTYPE */ 926 927 #ifdef SQLITE_ENABLE_COLUMN_METADATA 928 /* 929 ** Return the name of the database from which a result column derives. 930 ** NULL is returned if the result column is an expression or constant or 931 ** anything else which is not an unabiguous reference to a database column. 932 */ 933 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 934 return columnName( 935 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 936 } 937 #ifndef SQLITE_OMIT_UTF16 938 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 939 return columnName( 940 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 941 } 942 #endif /* SQLITE_OMIT_UTF16 */ 943 944 /* 945 ** Return the name of the table from which a result column derives. 946 ** NULL is returned if the result column is an expression or constant or 947 ** anything else which is not an unabiguous reference to a database column. 948 */ 949 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 950 return columnName( 951 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 952 } 953 #ifndef SQLITE_OMIT_UTF16 954 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 955 return columnName( 956 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 957 } 958 #endif /* SQLITE_OMIT_UTF16 */ 959 960 /* 961 ** Return the name of the table column from which a result column derives. 962 ** NULL is returned if the result column is an expression or constant or 963 ** anything else which is not an unabiguous reference to a database column. 964 */ 965 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 966 return columnName( 967 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 968 } 969 #ifndef SQLITE_OMIT_UTF16 970 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 971 return columnName( 972 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 973 } 974 #endif /* SQLITE_OMIT_UTF16 */ 975 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 976 977 978 /******************************* sqlite3_bind_ *************************** 979 ** 980 ** Routines used to attach values to wildcards in a compiled SQL statement. 981 */ 982 /* 983 ** Unbind the value bound to variable i in virtual machine p. This is the 984 ** the same as binding a NULL value to the column. If the "i" parameter is 985 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 986 ** 987 ** A successful evaluation of this routine acquires the mutex on p. 988 ** the mutex is released if any kind of error occurs. 989 ** 990 ** The error code stored in database p->db is overwritten with the return 991 ** value in any case. 992 */ 993 static int vdbeUnbind(Vdbe *p, int i){ 994 Mem *pVar; 995 if( vdbeSafetyNotNull(p) ){ 996 return SQLITE_MISUSE_BKPT; 997 } 998 sqlite3_mutex_enter(p->db->mutex); 999 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1000 sqlite3Error(p->db, SQLITE_MISUSE, 0); 1001 sqlite3_mutex_leave(p->db->mutex); 1002 sqlite3_log(SQLITE_MISUSE, 1003 "bind on a busy prepared statement: [%s]", p->zSql); 1004 return SQLITE_MISUSE_BKPT; 1005 } 1006 if( i<1 || i>p->nVar ){ 1007 sqlite3Error(p->db, SQLITE_RANGE, 0); 1008 sqlite3_mutex_leave(p->db->mutex); 1009 return SQLITE_RANGE; 1010 } 1011 i--; 1012 pVar = &p->aVar[i]; 1013 sqlite3VdbeMemRelease(pVar); 1014 pVar->flags = MEM_Null; 1015 sqlite3Error(p->db, SQLITE_OK, 0); 1016 1017 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1018 ** binding a new value to this variable invalidates the current query plan. 1019 ** 1020 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1021 ** parameter in the WHERE clause might influence the choice of query plan 1022 ** for a statement, then the statement will be automatically recompiled, 1023 ** as if there had been a schema change, on the first sqlite3_step() call 1024 ** following any change to the bindings of that parameter. 1025 */ 1026 if( p->isPrepareV2 && 1027 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1028 ){ 1029 p->expired = 1; 1030 } 1031 return SQLITE_OK; 1032 } 1033 1034 /* 1035 ** Bind a text or BLOB value. 1036 */ 1037 static int bindText( 1038 sqlite3_stmt *pStmt, /* The statement to bind against */ 1039 int i, /* Index of the parameter to bind */ 1040 const void *zData, /* Pointer to the data to be bound */ 1041 int nData, /* Number of bytes of data to be bound */ 1042 void (*xDel)(void*), /* Destructor for the data */ 1043 u8 encoding /* Encoding for the data */ 1044 ){ 1045 Vdbe *p = (Vdbe *)pStmt; 1046 Mem *pVar; 1047 int rc; 1048 1049 rc = vdbeUnbind(p, i); 1050 if( rc==SQLITE_OK ){ 1051 if( zData!=0 ){ 1052 pVar = &p->aVar[i-1]; 1053 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1054 if( rc==SQLITE_OK && encoding!=0 ){ 1055 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1056 } 1057 sqlite3Error(p->db, rc, 0); 1058 rc = sqlite3ApiExit(p->db, rc); 1059 } 1060 sqlite3_mutex_leave(p->db->mutex); 1061 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1062 xDel((void*)zData); 1063 } 1064 return rc; 1065 } 1066 1067 1068 /* 1069 ** Bind a blob value to an SQL statement variable. 1070 */ 1071 int sqlite3_bind_blob( 1072 sqlite3_stmt *pStmt, 1073 int i, 1074 const void *zData, 1075 int nData, 1076 void (*xDel)(void*) 1077 ){ 1078 return bindText(pStmt, i, zData, nData, xDel, 0); 1079 } 1080 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1081 int rc; 1082 Vdbe *p = (Vdbe *)pStmt; 1083 rc = vdbeUnbind(p, i); 1084 if( rc==SQLITE_OK ){ 1085 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1086 sqlite3_mutex_leave(p->db->mutex); 1087 } 1088 return rc; 1089 } 1090 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1091 return sqlite3_bind_int64(p, i, (i64)iValue); 1092 } 1093 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1094 int rc; 1095 Vdbe *p = (Vdbe *)pStmt; 1096 rc = vdbeUnbind(p, i); 1097 if( rc==SQLITE_OK ){ 1098 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1099 sqlite3_mutex_leave(p->db->mutex); 1100 } 1101 return rc; 1102 } 1103 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1104 int rc; 1105 Vdbe *p = (Vdbe*)pStmt; 1106 rc = vdbeUnbind(p, i); 1107 if( rc==SQLITE_OK ){ 1108 sqlite3_mutex_leave(p->db->mutex); 1109 } 1110 return rc; 1111 } 1112 int sqlite3_bind_text( 1113 sqlite3_stmt *pStmt, 1114 int i, 1115 const char *zData, 1116 int nData, 1117 void (*xDel)(void*) 1118 ){ 1119 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1120 } 1121 #ifndef SQLITE_OMIT_UTF16 1122 int sqlite3_bind_text16( 1123 sqlite3_stmt *pStmt, 1124 int i, 1125 const void *zData, 1126 int nData, 1127 void (*xDel)(void*) 1128 ){ 1129 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1130 } 1131 #endif /* SQLITE_OMIT_UTF16 */ 1132 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1133 int rc; 1134 switch( pValue->type ){ 1135 case SQLITE_INTEGER: { 1136 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1137 break; 1138 } 1139 case SQLITE_FLOAT: { 1140 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1141 break; 1142 } 1143 case SQLITE_BLOB: { 1144 if( pValue->flags & MEM_Zero ){ 1145 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1146 }else{ 1147 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1148 } 1149 break; 1150 } 1151 case SQLITE_TEXT: { 1152 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1153 pValue->enc); 1154 break; 1155 } 1156 default: { 1157 rc = sqlite3_bind_null(pStmt, i); 1158 break; 1159 } 1160 } 1161 return rc; 1162 } 1163 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1164 int rc; 1165 Vdbe *p = (Vdbe *)pStmt; 1166 rc = vdbeUnbind(p, i); 1167 if( rc==SQLITE_OK ){ 1168 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1169 sqlite3_mutex_leave(p->db->mutex); 1170 } 1171 return rc; 1172 } 1173 1174 /* 1175 ** Return the number of wildcards that can be potentially bound to. 1176 ** This routine is added to support DBD::SQLite. 1177 */ 1178 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1179 Vdbe *p = (Vdbe*)pStmt; 1180 return p ? p->nVar : 0; 1181 } 1182 1183 /* 1184 ** Return the name of a wildcard parameter. Return NULL if the index 1185 ** is out of range or if the wildcard is unnamed. 1186 ** 1187 ** The result is always UTF-8. 1188 */ 1189 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1190 Vdbe *p = (Vdbe*)pStmt; 1191 if( p==0 || i<1 || i>p->nzVar ){ 1192 return 0; 1193 } 1194 return p->azVar[i-1]; 1195 } 1196 1197 /* 1198 ** Given a wildcard parameter name, return the index of the variable 1199 ** with that name. If there is no variable with the given name, 1200 ** return 0. 1201 */ 1202 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1203 int i; 1204 if( p==0 ){ 1205 return 0; 1206 } 1207 if( zName ){ 1208 for(i=0; i<p->nzVar; i++){ 1209 const char *z = p->azVar[i]; 1210 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1211 return i+1; 1212 } 1213 } 1214 } 1215 return 0; 1216 } 1217 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1218 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1219 } 1220 1221 /* 1222 ** Transfer all bindings from the first statement over to the second. 1223 */ 1224 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1225 Vdbe *pFrom = (Vdbe*)pFromStmt; 1226 Vdbe *pTo = (Vdbe*)pToStmt; 1227 int i; 1228 assert( pTo->db==pFrom->db ); 1229 assert( pTo->nVar==pFrom->nVar ); 1230 sqlite3_mutex_enter(pTo->db->mutex); 1231 for(i=0; i<pFrom->nVar; i++){ 1232 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1233 } 1234 sqlite3_mutex_leave(pTo->db->mutex); 1235 return SQLITE_OK; 1236 } 1237 1238 #ifndef SQLITE_OMIT_DEPRECATED 1239 /* 1240 ** Deprecated external interface. Internal/core SQLite code 1241 ** should call sqlite3TransferBindings. 1242 ** 1243 ** Is is misuse to call this routine with statements from different 1244 ** database connections. But as this is a deprecated interface, we 1245 ** will not bother to check for that condition. 1246 ** 1247 ** If the two statements contain a different number of bindings, then 1248 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1249 ** SQLITE_OK is returned. 1250 */ 1251 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1252 Vdbe *pFrom = (Vdbe*)pFromStmt; 1253 Vdbe *pTo = (Vdbe*)pToStmt; 1254 if( pFrom->nVar!=pTo->nVar ){ 1255 return SQLITE_ERROR; 1256 } 1257 if( pTo->isPrepareV2 && pTo->expmask ){ 1258 pTo->expired = 1; 1259 } 1260 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1261 pFrom->expired = 1; 1262 } 1263 return sqlite3TransferBindings(pFromStmt, pToStmt); 1264 } 1265 #endif 1266 1267 /* 1268 ** Return the sqlite3* database handle to which the prepared statement given 1269 ** in the argument belongs. This is the same database handle that was 1270 ** the first argument to the sqlite3_prepare() that was used to create 1271 ** the statement in the first place. 1272 */ 1273 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1274 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1275 } 1276 1277 /* 1278 ** Return true if the prepared statement is guaranteed to not modify the 1279 ** database. 1280 */ 1281 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1282 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1283 } 1284 1285 /* 1286 ** Return true if the prepared statement is in need of being reset. 1287 */ 1288 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1289 Vdbe *v = (Vdbe*)pStmt; 1290 return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN; 1291 } 1292 1293 /* 1294 ** Return a pointer to the next prepared statement after pStmt associated 1295 ** with database connection pDb. If pStmt is NULL, return the first 1296 ** prepared statement for the database connection. Return NULL if there 1297 ** are no more. 1298 */ 1299 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1300 sqlite3_stmt *pNext; 1301 sqlite3_mutex_enter(pDb->mutex); 1302 if( pStmt==0 ){ 1303 pNext = (sqlite3_stmt*)pDb->pVdbe; 1304 }else{ 1305 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1306 } 1307 sqlite3_mutex_leave(pDb->mutex); 1308 return pNext; 1309 } 1310 1311 /* 1312 ** Return the value of a status counter for a prepared statement 1313 */ 1314 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1315 Vdbe *pVdbe = (Vdbe*)pStmt; 1316 u32 v = pVdbe->aCounter[op]; 1317 if( resetFlag ) pVdbe->aCounter[op] = 0; 1318 return (int)v; 1319 } 1320