xref: /sqlite-3.40.0/src/vdbeapi.c (revision a3628d14)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 **
16 ** $Id: vdbeapi.c,v 1.164 2009/04/27 18:46:06 drh Exp $
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
22 /*
23 ** The following structure contains pointers to the end points of a
24 ** doubly-linked list of all compiled SQL statements that may be holding
25 ** buffers eligible for release when the sqlite3_release_memory() interface is
26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
27 ** mutex.
28 **
29 ** Statements are added to the end of this list when sqlite3_reset() is
30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
31 ** is called. When statements are added to this list, the associated
32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
33 ** can be freed using sqlite3VdbeReleaseMemory().
34 **
35 ** When statements are added or removed from this list, the mutex
36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
39 */
40 struct StatementLruList {
41   Vdbe *pFirst;
42   Vdbe *pLast;
43 };
44 static struct StatementLruList sqlite3LruStatements;
45 
46 /*
47 ** Check that the list looks to be internally consistent. This is used
48 ** as part of an assert() statement as follows:
49 **
50 **   assert( stmtLruCheck() );
51 */
52 #ifndef NDEBUG
53 static int stmtLruCheck(){
54   Vdbe *p;
55   for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
56     assert(p->pLruNext || p==sqlite3LruStatements.pLast);
57     assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
58     assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
59     assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
60   }
61   return 1;
62 }
63 #endif
64 
65 /*
66 ** Add vdbe p to the end of the statement lru list. It is assumed that
67 ** p is not already part of the list when this is called. The lru list
68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
69 */
70 static void stmtLruAdd(Vdbe *p){
71   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
72 
73   if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
74     sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
75     return;
76   }
77 
78   assert( stmtLruCheck() );
79 
80   if( !sqlite3LruStatements.pFirst ){
81     assert( !sqlite3LruStatements.pLast );
82     sqlite3LruStatements.pFirst = p;
83     sqlite3LruStatements.pLast = p;
84   }else{
85     assert( !sqlite3LruStatements.pLast->pLruNext );
86     p->pLruPrev = sqlite3LruStatements.pLast;
87     sqlite3LruStatements.pLast->pLruNext = p;
88     sqlite3LruStatements.pLast = p;
89   }
90 
91   assert( stmtLruCheck() );
92 
93   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
94 }
95 
96 /*
97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
98 ** statement p from the least-recently-used statement list. If the
99 ** statement is not currently part of the list, this call is a no-op.
100 */
101 static void stmtLruRemoveNomutex(Vdbe *p){
102   if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
103     assert( stmtLruCheck() );
104     if( p->pLruNext ){
105       p->pLruNext->pLruPrev = p->pLruPrev;
106     }else{
107       sqlite3LruStatements.pLast = p->pLruPrev;
108     }
109     if( p->pLruPrev ){
110       p->pLruPrev->pLruNext = p->pLruNext;
111     }else{
112       sqlite3LruStatements.pFirst = p->pLruNext;
113     }
114     p->pLruNext = 0;
115     p->pLruPrev = 0;
116     assert( stmtLruCheck() );
117   }
118 }
119 
120 /*
121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
122 ** statement p from the least-recently-used statement list. If the
123 ** statement is not currently part of the list, this call is a no-op.
124 */
125 static void stmtLruRemove(Vdbe *p){
126   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
127   stmtLruRemoveNomutex(p);
128   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
129 }
130 
131 /*
132 ** Try to release n bytes of memory by freeing buffers associated
133 ** with the memory registers of currently unused vdbes.
134 */
135 int sqlite3VdbeReleaseMemory(int n){
136   Vdbe *p;
137   Vdbe *pNext;
138   int nFree = 0;
139 
140   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
141   for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
142     pNext = p->pLruNext;
143 
144     /* For each statement handle in the lru list, attempt to obtain the
145     ** associated database mutex. If it cannot be obtained, continue
146     ** to the next statement handle. It is not possible to block on
147     ** the database mutex - that could cause deadlock.
148     */
149     if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
150       nFree += sqlite3VdbeReleaseBuffers(p);
151       stmtLruRemoveNomutex(p);
152       sqlite3_mutex_leave(p->db->mutex);
153     }
154   }
155   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
156 
157   return nFree;
158 }
159 
160 /*
161 ** Call sqlite3Reprepare() on the statement. Remove it from the
162 ** lru list before doing so, as Reprepare() will free all the
163 ** memory register buffers anyway.
164 */
165 int vdbeReprepare(Vdbe *p){
166   stmtLruRemove(p);
167   return sqlite3Reprepare(p);
168 }
169 
170 #else       /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
171   #define stmtLruRemove(x)
172   #define stmtLruAdd(x)
173   #define vdbeReprepare(x) sqlite3Reprepare(x)
174 #endif
175 
176 
177 #ifndef SQLITE_OMIT_DEPRECATED
178 /*
179 ** Return TRUE (non-zero) of the statement supplied as an argument needs
180 ** to be recompiled.  A statement needs to be recompiled whenever the
181 ** execution environment changes in a way that would alter the program
182 ** that sqlite3_prepare() generates.  For example, if new functions or
183 ** collating sequences are registered or if an authorizer function is
184 ** added or changed.
185 */
186 int sqlite3_expired(sqlite3_stmt *pStmt){
187   Vdbe *p = (Vdbe*)pStmt;
188   return p==0 || p->expired;
189 }
190 #endif
191 
192 /*
193 ** The following routine destroys a virtual machine that is created by
194 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
195 ** success/failure code that describes the result of executing the virtual
196 ** machine.
197 **
198 ** This routine sets the error code and string returned by
199 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
200 */
201 int sqlite3_finalize(sqlite3_stmt *pStmt){
202   int rc;
203   if( pStmt==0 ){
204     rc = SQLITE_OK;
205   }else{
206     Vdbe *v = (Vdbe*)pStmt;
207     sqlite3 *db = v->db;
208 #if SQLITE_THREADSAFE
209     sqlite3_mutex *mutex = v->db->mutex;
210 #endif
211     sqlite3_mutex_enter(mutex);
212     stmtLruRemove(v);
213     rc = sqlite3VdbeFinalize(v);
214     rc = sqlite3ApiExit(db, rc);
215     sqlite3_mutex_leave(mutex);
216   }
217   return rc;
218 }
219 
220 /*
221 ** Terminate the current execution of an SQL statement and reset it
222 ** back to its starting state so that it can be reused. A success code from
223 ** the prior execution is returned.
224 **
225 ** This routine sets the error code and string returned by
226 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
227 */
228 int sqlite3_reset(sqlite3_stmt *pStmt){
229   int rc;
230   if( pStmt==0 ){
231     rc = SQLITE_OK;
232   }else{
233     Vdbe *v = (Vdbe*)pStmt;
234     sqlite3_mutex_enter(v->db->mutex);
235     rc = sqlite3VdbeReset(v);
236     stmtLruAdd(v);
237     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
238     assert( (rc & (v->db->errMask))==rc );
239     rc = sqlite3ApiExit(v->db, rc);
240     sqlite3_mutex_leave(v->db->mutex);
241   }
242   return rc;
243 }
244 
245 /*
246 ** Set all the parameters in the compiled SQL statement to NULL.
247 */
248 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
249   int i;
250   int rc = SQLITE_OK;
251   Vdbe *p = (Vdbe*)pStmt;
252 #if SQLITE_THREADSAFE
253   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
254 #endif
255   sqlite3_mutex_enter(mutex);
256   for(i=0; i<p->nVar; i++){
257     sqlite3VdbeMemRelease(&p->aVar[i]);
258     p->aVar[i].flags = MEM_Null;
259   }
260   sqlite3_mutex_leave(mutex);
261   return rc;
262 }
263 
264 
265 /**************************** sqlite3_value_  *******************************
266 ** The following routines extract information from a Mem or sqlite3_value
267 ** structure.
268 */
269 const void *sqlite3_value_blob(sqlite3_value *pVal){
270   Mem *p = (Mem*)pVal;
271   if( p->flags & (MEM_Blob|MEM_Str) ){
272     sqlite3VdbeMemExpandBlob(p);
273     p->flags &= ~MEM_Str;
274     p->flags |= MEM_Blob;
275     return p->z;
276   }else{
277     return sqlite3_value_text(pVal);
278   }
279 }
280 int sqlite3_value_bytes(sqlite3_value *pVal){
281   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
282 }
283 int sqlite3_value_bytes16(sqlite3_value *pVal){
284   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
285 }
286 double sqlite3_value_double(sqlite3_value *pVal){
287   return sqlite3VdbeRealValue((Mem*)pVal);
288 }
289 int sqlite3_value_int(sqlite3_value *pVal){
290   return (int)sqlite3VdbeIntValue((Mem*)pVal);
291 }
292 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
293   return sqlite3VdbeIntValue((Mem*)pVal);
294 }
295 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
296   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
297 }
298 #ifndef SQLITE_OMIT_UTF16
299 const void *sqlite3_value_text16(sqlite3_value* pVal){
300   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
301 }
302 const void *sqlite3_value_text16be(sqlite3_value *pVal){
303   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
304 }
305 const void *sqlite3_value_text16le(sqlite3_value *pVal){
306   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
307 }
308 #endif /* SQLITE_OMIT_UTF16 */
309 int sqlite3_value_type(sqlite3_value* pVal){
310   return pVal->type;
311 }
312 
313 /**************************** sqlite3_result_  *******************************
314 ** The following routines are used by user-defined functions to specify
315 ** the function result.
316 */
317 void sqlite3_result_blob(
318   sqlite3_context *pCtx,
319   const void *z,
320   int n,
321   void (*xDel)(void *)
322 ){
323   assert( n>=0 );
324   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
325   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
326 }
327 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
328   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
329   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
330 }
331 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
332   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
333   pCtx->isError = SQLITE_ERROR;
334   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
335 }
336 #ifndef SQLITE_OMIT_UTF16
337 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
338   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
339   pCtx->isError = SQLITE_ERROR;
340   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
341 }
342 #endif
343 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
344   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
345   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
346 }
347 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
348   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
349   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
350 }
351 void sqlite3_result_null(sqlite3_context *pCtx){
352   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
353   sqlite3VdbeMemSetNull(&pCtx->s);
354 }
355 void sqlite3_result_text(
356   sqlite3_context *pCtx,
357   const char *z,
358   int n,
359   void (*xDel)(void *)
360 ){
361   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
362   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
363 }
364 #ifndef SQLITE_OMIT_UTF16
365 void sqlite3_result_text16(
366   sqlite3_context *pCtx,
367   const void *z,
368   int n,
369   void (*xDel)(void *)
370 ){
371   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
372   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
373 }
374 void sqlite3_result_text16be(
375   sqlite3_context *pCtx,
376   const void *z,
377   int n,
378   void (*xDel)(void *)
379 ){
380   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
381   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
382 }
383 void sqlite3_result_text16le(
384   sqlite3_context *pCtx,
385   const void *z,
386   int n,
387   void (*xDel)(void *)
388 ){
389   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
390   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
391 }
392 #endif /* SQLITE_OMIT_UTF16 */
393 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
394   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
395   sqlite3VdbeMemCopy(&pCtx->s, pValue);
396 }
397 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
398   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
399   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
400 }
401 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
402   pCtx->isError = errCode;
403   if( pCtx->s.flags & MEM_Null ){
404     sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
405                          SQLITE_UTF8, SQLITE_STATIC);
406   }
407 }
408 
409 /* Force an SQLITE_TOOBIG error. */
410 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
411   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
412   pCtx->isError = SQLITE_TOOBIG;
413   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
414                        SQLITE_UTF8, SQLITE_STATIC);
415 }
416 
417 /* An SQLITE_NOMEM error. */
418 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
419   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
420   sqlite3VdbeMemSetNull(&pCtx->s);
421   pCtx->isError = SQLITE_NOMEM;
422   pCtx->s.db->mallocFailed = 1;
423 }
424 
425 /*
426 ** Execute the statement pStmt, either until a row of data is ready, the
427 ** statement is completely executed or an error occurs.
428 **
429 ** This routine implements the bulk of the logic behind the sqlite_step()
430 ** API.  The only thing omitted is the automatic recompile if a
431 ** schema change has occurred.  That detail is handled by the
432 ** outer sqlite3_step() wrapper procedure.
433 */
434 static int sqlite3Step(Vdbe *p){
435   sqlite3 *db;
436   int rc;
437 
438   assert(p);
439   if( p->magic!=VDBE_MAGIC_RUN ){
440     return SQLITE_MISUSE;
441   }
442 
443   /* Assert that malloc() has not failed */
444   db = p->db;
445   if( db->mallocFailed ){
446     return SQLITE_NOMEM;
447   }
448 
449   if( p->pc<=0 && p->expired ){
450     if( ALWAYS(p->rc==SQLITE_OK) ){
451       p->rc = SQLITE_SCHEMA;
452     }
453     rc = SQLITE_ERROR;
454     goto end_of_step;
455   }
456   if( sqlite3SafetyOn(db) ){
457     p->rc = SQLITE_MISUSE;
458     return SQLITE_MISUSE;
459   }
460   if( p->pc<0 ){
461     /* If there are no other statements currently running, then
462     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
463     ** from interrupting a statement that has not yet started.
464     */
465     if( db->activeVdbeCnt==0 ){
466       db->u1.isInterrupted = 0;
467     }
468 
469 #ifndef SQLITE_OMIT_TRACE
470     if( db->xProfile && !db->init.busy ){
471       double rNow;
472       sqlite3OsCurrentTime(db->pVfs, &rNow);
473       p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
474     }
475 #endif
476 
477     db->activeVdbeCnt++;
478     if( p->readOnly==0 ) db->writeVdbeCnt++;
479     p->pc = 0;
480     stmtLruRemove(p);
481   }
482 #ifndef SQLITE_OMIT_EXPLAIN
483   if( p->explain ){
484     rc = sqlite3VdbeList(p);
485   }else
486 #endif /* SQLITE_OMIT_EXPLAIN */
487   {
488     rc = sqlite3VdbeExec(p);
489   }
490 
491   if( sqlite3SafetyOff(db) ){
492     rc = SQLITE_MISUSE;
493   }
494 
495 #ifndef SQLITE_OMIT_TRACE
496   /* Invoke the profile callback if there is one
497   */
498   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
499     double rNow;
500     u64 elapseTime;
501 
502     sqlite3OsCurrentTime(db->pVfs, &rNow);
503     elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
504     elapseTime -= p->startTime;
505     db->xProfile(db->pProfileArg, p->zSql, elapseTime);
506   }
507 #endif
508 
509   db->errCode = rc;
510   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
511     p->rc = SQLITE_NOMEM;
512   }
513 end_of_step:
514   /* At this point local variable rc holds the value that should be
515   ** returned if this statement was compiled using the legacy
516   ** sqlite3_prepare() interface. According to the docs, this can only
517   ** be one of the values in the first assert() below. Variable p->rc
518   ** contains the value that would be returned if sqlite3_finalize()
519   ** were called on statement p.
520   */
521   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
522        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
523   );
524   assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
525   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
526     /* If this statement was prepared using sqlite3_prepare_v2(), and an
527     ** error has occured, then return the error code in p->rc to the
528     ** caller. Set the error code in the database handle to the same value.
529     */
530     rc = db->errCode = p->rc;
531   }
532   return (rc&db->errMask);
533 }
534 
535 /*
536 ** This is the top-level implementation of sqlite3_step().  Call
537 ** sqlite3Step() to do most of the work.  If a schema error occurs,
538 ** call sqlite3Reprepare() and try again.
539 */
540 #ifdef SQLITE_OMIT_PARSER
541 int sqlite3_step(sqlite3_stmt *pStmt){
542   int rc = SQLITE_MISUSE;
543   if( pStmt ){
544     Vdbe *v;
545     v = (Vdbe*)pStmt;
546     sqlite3_mutex_enter(v->db->mutex);
547     rc = sqlite3Step(v);
548     sqlite3_mutex_leave(v->db->mutex);
549   }
550   return rc;
551 }
552 #else
553 int sqlite3_step(sqlite3_stmt *pStmt){
554   int rc = SQLITE_MISUSE;
555   if( pStmt ){
556     int cnt = 0;
557     Vdbe *v = (Vdbe*)pStmt;
558     sqlite3 *db = v->db;
559     sqlite3_mutex_enter(db->mutex);
560     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
561            && cnt++ < 5
562            && (rc = vdbeReprepare(v))==SQLITE_OK ){
563       sqlite3_reset(pStmt);
564       v->expired = 0;
565     }
566     if( rc==SQLITE_SCHEMA && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
567       /* This case occurs after failing to recompile an sql statement.
568       ** The error message from the SQL compiler has already been loaded
569       ** into the database handle. This block copies the error message
570       ** from the database handle into the statement and sets the statement
571       ** program counter to 0 to ensure that when the statement is
572       ** finalized or reset the parser error message is available via
573       ** sqlite3_errmsg() and sqlite3_errcode().
574       */
575       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
576       sqlite3DbFree(db, v->zErrMsg);
577       if( !db->mallocFailed ){
578         v->zErrMsg = sqlite3DbStrDup(db, zErr);
579       } else {
580         v->zErrMsg = 0;
581         v->rc = SQLITE_NOMEM;
582       }
583     }
584     rc = sqlite3ApiExit(db, rc);
585     sqlite3_mutex_leave(db->mutex);
586   }
587   return rc;
588 }
589 #endif
590 
591 /*
592 ** Extract the user data from a sqlite3_context structure and return a
593 ** pointer to it.
594 */
595 void *sqlite3_user_data(sqlite3_context *p){
596   assert( p && p->pFunc );
597   return p->pFunc->pUserData;
598 }
599 
600 /*
601 ** Extract the user data from a sqlite3_context structure and return a
602 ** pointer to it.
603 */
604 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
605   assert( p && p->pFunc );
606   return p->s.db;
607 }
608 
609 /*
610 ** The following is the implementation of an SQL function that always
611 ** fails with an error message stating that the function is used in the
612 ** wrong context.  The sqlite3_overload_function() API might construct
613 ** SQL function that use this routine so that the functions will exist
614 ** for name resolution but are actually overloaded by the xFindFunction
615 ** method of virtual tables.
616 */
617 void sqlite3InvalidFunction(
618   sqlite3_context *context,  /* The function calling context */
619   int NotUsed,               /* Number of arguments to the function */
620   sqlite3_value **NotUsed2   /* Value of each argument */
621 ){
622   const char *zName = context->pFunc->zName;
623   char *zErr;
624   UNUSED_PARAMETER2(NotUsed, NotUsed2);
625   zErr = sqlite3_mprintf(
626       "unable to use function %s in the requested context", zName);
627   sqlite3_result_error(context, zErr, -1);
628   sqlite3_free(zErr);
629 }
630 
631 /*
632 ** Allocate or return the aggregate context for a user function.  A new
633 ** context is allocated on the first call.  Subsequent calls return the
634 ** same context that was returned on prior calls.
635 */
636 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
637   Mem *pMem;
638   assert( p && p->pFunc && p->pFunc->xStep );
639   assert( sqlite3_mutex_held(p->s.db->mutex) );
640   pMem = p->pMem;
641   if( (pMem->flags & MEM_Agg)==0 ){
642     if( nByte==0 ){
643       sqlite3VdbeMemReleaseExternal(pMem);
644       pMem->flags = MEM_Null;
645       pMem->z = 0;
646     }else{
647       sqlite3VdbeMemGrow(pMem, nByte, 0);
648       pMem->flags = MEM_Agg;
649       pMem->u.pDef = p->pFunc;
650       if( pMem->z ){
651         memset(pMem->z, 0, nByte);
652       }
653     }
654   }
655   return (void*)pMem->z;
656 }
657 
658 /*
659 ** Return the auxilary data pointer, if any, for the iArg'th argument to
660 ** the user-function defined by pCtx.
661 */
662 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
663   VdbeFunc *pVdbeFunc;
664 
665   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
666   pVdbeFunc = pCtx->pVdbeFunc;
667   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
668     return 0;
669   }
670   return pVdbeFunc->apAux[iArg].pAux;
671 }
672 
673 /*
674 ** Set the auxilary data pointer and delete function, for the iArg'th
675 ** argument to the user-function defined by pCtx. Any previous value is
676 ** deleted by calling the delete function specified when it was set.
677 */
678 void sqlite3_set_auxdata(
679   sqlite3_context *pCtx,
680   int iArg,
681   void *pAux,
682   void (*xDelete)(void*)
683 ){
684   struct AuxData *pAuxData;
685   VdbeFunc *pVdbeFunc;
686   if( iArg<0 ) goto failed;
687 
688   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
689   pVdbeFunc = pCtx->pVdbeFunc;
690   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
691     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
692     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
693     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
694     if( !pVdbeFunc ){
695       goto failed;
696     }
697     pCtx->pVdbeFunc = pVdbeFunc;
698     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
699     pVdbeFunc->nAux = iArg+1;
700     pVdbeFunc->pFunc = pCtx->pFunc;
701   }
702 
703   pAuxData = &pVdbeFunc->apAux[iArg];
704   if( pAuxData->pAux && pAuxData->xDelete ){
705     pAuxData->xDelete(pAuxData->pAux);
706   }
707   pAuxData->pAux = pAux;
708   pAuxData->xDelete = xDelete;
709   return;
710 
711 failed:
712   if( xDelete ){
713     xDelete(pAux);
714   }
715 }
716 
717 #ifndef SQLITE_OMIT_DEPRECATED
718 /*
719 ** Return the number of times the Step function of a aggregate has been
720 ** called.
721 **
722 ** This function is deprecated.  Do not use it for new code.  It is
723 ** provide only to avoid breaking legacy code.  New aggregate function
724 ** implementations should keep their own counts within their aggregate
725 ** context.
726 */
727 int sqlite3_aggregate_count(sqlite3_context *p){
728   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
729   return p->pMem->n;
730 }
731 #endif
732 
733 /*
734 ** Return the number of columns in the result set for the statement pStmt.
735 */
736 int sqlite3_column_count(sqlite3_stmt *pStmt){
737   Vdbe *pVm = (Vdbe *)pStmt;
738   return pVm ? pVm->nResColumn : 0;
739 }
740 
741 /*
742 ** Return the number of values available from the current row of the
743 ** currently executing statement pStmt.
744 */
745 int sqlite3_data_count(sqlite3_stmt *pStmt){
746   Vdbe *pVm = (Vdbe *)pStmt;
747   if( pVm==0 || pVm->pResultSet==0 ) return 0;
748   return pVm->nResColumn;
749 }
750 
751 
752 /*
753 ** Check to see if column iCol of the given statement is valid.  If
754 ** it is, return a pointer to the Mem for the value of that column.
755 ** If iCol is not valid, return a pointer to a Mem which has a value
756 ** of NULL.
757 */
758 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
759   Vdbe *pVm;
760   int vals;
761   Mem *pOut;
762 
763   pVm = (Vdbe *)pStmt;
764   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
765     sqlite3_mutex_enter(pVm->db->mutex);
766     vals = sqlite3_data_count(pStmt);
767     pOut = &pVm->pResultSet[i];
768   }else{
769     /* ((double)0) In case of SQLITE_OMIT_FLOATING_POINT... */
770     static const Mem nullMem = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
771     if( pVm && ALWAYS(pVm->db) ){
772       sqlite3_mutex_enter(pVm->db->mutex);
773       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
774     }
775     pOut = (Mem*)&nullMem;
776   }
777   return pOut;
778 }
779 
780 /*
781 ** This function is called after invoking an sqlite3_value_XXX function on a
782 ** column value (i.e. a value returned by evaluating an SQL expression in the
783 ** select list of a SELECT statement) that may cause a malloc() failure. If
784 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
785 ** code of statement pStmt set to SQLITE_NOMEM.
786 **
787 ** Specifically, this is called from within:
788 **
789 **     sqlite3_column_int()
790 **     sqlite3_column_int64()
791 **     sqlite3_column_text()
792 **     sqlite3_column_text16()
793 **     sqlite3_column_real()
794 **     sqlite3_column_bytes()
795 **     sqlite3_column_bytes16()
796 **
797 ** But not for sqlite3_column_blob(), which never calls malloc().
798 */
799 static void columnMallocFailure(sqlite3_stmt *pStmt)
800 {
801   /* If malloc() failed during an encoding conversion within an
802   ** sqlite3_column_XXX API, then set the return code of the statement to
803   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
804   ** and _finalize() will return NOMEM.
805   */
806   Vdbe *p = (Vdbe *)pStmt;
807   if( p ){
808     p->rc = sqlite3ApiExit(p->db, p->rc);
809     sqlite3_mutex_leave(p->db->mutex);
810   }
811 }
812 
813 /**************************** sqlite3_column_  *******************************
814 ** The following routines are used to access elements of the current row
815 ** in the result set.
816 */
817 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
818   const void *val;
819   val = sqlite3_value_blob( columnMem(pStmt,i) );
820   /* Even though there is no encoding conversion, value_blob() might
821   ** need to call malloc() to expand the result of a zeroblob()
822   ** expression.
823   */
824   columnMallocFailure(pStmt);
825   return val;
826 }
827 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
828   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
829   columnMallocFailure(pStmt);
830   return val;
831 }
832 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
833   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
834   columnMallocFailure(pStmt);
835   return val;
836 }
837 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
838   double val = sqlite3_value_double( columnMem(pStmt,i) );
839   columnMallocFailure(pStmt);
840   return val;
841 }
842 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
843   int val = sqlite3_value_int( columnMem(pStmt,i) );
844   columnMallocFailure(pStmt);
845   return val;
846 }
847 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
848   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
849   columnMallocFailure(pStmt);
850   return val;
851 }
852 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
853   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
854   columnMallocFailure(pStmt);
855   return val;
856 }
857 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
858   Mem *pOut = columnMem(pStmt, i);
859   if( pOut->flags&MEM_Static ){
860     pOut->flags &= ~MEM_Static;
861     pOut->flags |= MEM_Ephem;
862   }
863   columnMallocFailure(pStmt);
864   return (sqlite3_value *)pOut;
865 }
866 #ifndef SQLITE_OMIT_UTF16
867 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
868   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
869   columnMallocFailure(pStmt);
870   return val;
871 }
872 #endif /* SQLITE_OMIT_UTF16 */
873 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
874   int iType = sqlite3_value_type( columnMem(pStmt,i) );
875   columnMallocFailure(pStmt);
876   return iType;
877 }
878 
879 /* The following function is experimental and subject to change or
880 ** removal */
881 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
882 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
883 **}
884 */
885 
886 /*
887 ** Convert the N-th element of pStmt->pColName[] into a string using
888 ** xFunc() then return that string.  If N is out of range, return 0.
889 **
890 ** There are up to 5 names for each column.  useType determines which
891 ** name is returned.  Here are the names:
892 **
893 **    0      The column name as it should be displayed for output
894 **    1      The datatype name for the column
895 **    2      The name of the database that the column derives from
896 **    3      The name of the table that the column derives from
897 **    4      The name of the table column that the result column derives from
898 **
899 ** If the result is not a simple column reference (if it is an expression
900 ** or a constant) then useTypes 2, 3, and 4 return NULL.
901 */
902 static const void *columnName(
903   sqlite3_stmt *pStmt,
904   int N,
905   const void *(*xFunc)(Mem*),
906   int useType
907 ){
908   const void *ret = 0;
909   Vdbe *p = (Vdbe *)pStmt;
910   int n;
911   sqlite3 *db = p->db;
912 
913   assert( db!=0 );
914   n = sqlite3_column_count(pStmt);
915   if( N<n && N>=0 ){
916     N += useType*n;
917     sqlite3_mutex_enter(db->mutex);
918     assert( db->mallocFailed==0 );
919     ret = xFunc(&p->aColName[N]);
920      /* A malloc may have failed inside of the xFunc() call. If this
921     ** is the case, clear the mallocFailed flag and return NULL.
922     */
923     if( db->mallocFailed ){
924       db->mallocFailed = 0;
925       ret = 0;
926     }
927     sqlite3_mutex_leave(db->mutex);
928   }
929   return ret;
930 }
931 
932 /*
933 ** Return the name of the Nth column of the result set returned by SQL
934 ** statement pStmt.
935 */
936 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
937   return columnName(
938       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
939 }
940 #ifndef SQLITE_OMIT_UTF16
941 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
942   return columnName(
943       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
944 }
945 #endif
946 
947 /*
948 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
949 ** not define OMIT_DECLTYPE.
950 */
951 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
952 # error "Must not define both SQLITE_OMIT_DECLTYPE \
953          and SQLITE_ENABLE_COLUMN_METADATA"
954 #endif
955 
956 #ifndef SQLITE_OMIT_DECLTYPE
957 /*
958 ** Return the column declaration type (if applicable) of the 'i'th column
959 ** of the result set of SQL statement pStmt.
960 */
961 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
962   return columnName(
963       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
964 }
965 #ifndef SQLITE_OMIT_UTF16
966 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
967   return columnName(
968       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
969 }
970 #endif /* SQLITE_OMIT_UTF16 */
971 #endif /* SQLITE_OMIT_DECLTYPE */
972 
973 #ifdef SQLITE_ENABLE_COLUMN_METADATA
974 /*
975 ** Return the name of the database from which a result column derives.
976 ** NULL is returned if the result column is an expression or constant or
977 ** anything else which is not an unabiguous reference to a database column.
978 */
979 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
980   return columnName(
981       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
982 }
983 #ifndef SQLITE_OMIT_UTF16
984 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
985   return columnName(
986       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
987 }
988 #endif /* SQLITE_OMIT_UTF16 */
989 
990 /*
991 ** Return the name of the table from which a result column derives.
992 ** NULL is returned if the result column is an expression or constant or
993 ** anything else which is not an unabiguous reference to a database column.
994 */
995 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
996   return columnName(
997       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
998 }
999 #ifndef SQLITE_OMIT_UTF16
1000 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1001   return columnName(
1002       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1003 }
1004 #endif /* SQLITE_OMIT_UTF16 */
1005 
1006 /*
1007 ** Return the name of the table column from which a result column derives.
1008 ** NULL is returned if the result column is an expression or constant or
1009 ** anything else which is not an unabiguous reference to a database column.
1010 */
1011 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1012   return columnName(
1013       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1014 }
1015 #ifndef SQLITE_OMIT_UTF16
1016 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1017   return columnName(
1018       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1019 }
1020 #endif /* SQLITE_OMIT_UTF16 */
1021 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1022 
1023 
1024 /******************************* sqlite3_bind_  ***************************
1025 **
1026 ** Routines used to attach values to wildcards in a compiled SQL statement.
1027 */
1028 /*
1029 ** Unbind the value bound to variable i in virtual machine p. This is the
1030 ** the same as binding a NULL value to the column. If the "i" parameter is
1031 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1032 **
1033 ** A successful evaluation of this routine acquires the mutex on p.
1034 ** the mutex is released if any kind of error occurs.
1035 **
1036 ** The error code stored in database p->db is overwritten with the return
1037 ** value in any case.
1038 */
1039 static int vdbeUnbind(Vdbe *p, int i){
1040   Mem *pVar;
1041   if( p==0 ) return SQLITE_MISUSE;
1042   sqlite3_mutex_enter(p->db->mutex);
1043   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1044     sqlite3Error(p->db, SQLITE_MISUSE, 0);
1045     sqlite3_mutex_leave(p->db->mutex);
1046     return SQLITE_MISUSE;
1047   }
1048   if( i<1 || i>p->nVar ){
1049     sqlite3Error(p->db, SQLITE_RANGE, 0);
1050     sqlite3_mutex_leave(p->db->mutex);
1051     return SQLITE_RANGE;
1052   }
1053   i--;
1054   pVar = &p->aVar[i];
1055   sqlite3VdbeMemRelease(pVar);
1056   pVar->flags = MEM_Null;
1057   sqlite3Error(p->db, SQLITE_OK, 0);
1058   return SQLITE_OK;
1059 }
1060 
1061 /*
1062 ** Bind a text or BLOB value.
1063 */
1064 static int bindText(
1065   sqlite3_stmt *pStmt,   /* The statement to bind against */
1066   int i,                 /* Index of the parameter to bind */
1067   const void *zData,     /* Pointer to the data to be bound */
1068   int nData,             /* Number of bytes of data to be bound */
1069   void (*xDel)(void*),   /* Destructor for the data */
1070   u8 encoding            /* Encoding for the data */
1071 ){
1072   Vdbe *p = (Vdbe *)pStmt;
1073   Mem *pVar;
1074   int rc;
1075 
1076   rc = vdbeUnbind(p, i);
1077   if( rc==SQLITE_OK ){
1078     if( zData!=0 ){
1079       pVar = &p->aVar[i-1];
1080       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1081       if( rc==SQLITE_OK && encoding!=0 ){
1082         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1083       }
1084       sqlite3Error(p->db, rc, 0);
1085       rc = sqlite3ApiExit(p->db, rc);
1086     }
1087     sqlite3_mutex_leave(p->db->mutex);
1088   }
1089   return rc;
1090 }
1091 
1092 
1093 /*
1094 ** Bind a blob value to an SQL statement variable.
1095 */
1096 int sqlite3_bind_blob(
1097   sqlite3_stmt *pStmt,
1098   int i,
1099   const void *zData,
1100   int nData,
1101   void (*xDel)(void*)
1102 ){
1103   return bindText(pStmt, i, zData, nData, xDel, 0);
1104 }
1105 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1106   int rc;
1107   Vdbe *p = (Vdbe *)pStmt;
1108   rc = vdbeUnbind(p, i);
1109   if( rc==SQLITE_OK ){
1110     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1111     sqlite3_mutex_leave(p->db->mutex);
1112   }
1113   return rc;
1114 }
1115 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1116   return sqlite3_bind_int64(p, i, (i64)iValue);
1117 }
1118 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1119   int rc;
1120   Vdbe *p = (Vdbe *)pStmt;
1121   rc = vdbeUnbind(p, i);
1122   if( rc==SQLITE_OK ){
1123     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1124     sqlite3_mutex_leave(p->db->mutex);
1125   }
1126   return rc;
1127 }
1128 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1129   int rc;
1130   Vdbe *p = (Vdbe*)pStmt;
1131   rc = vdbeUnbind(p, i);
1132   if( rc==SQLITE_OK ){
1133     sqlite3_mutex_leave(p->db->mutex);
1134   }
1135   return rc;
1136 }
1137 int sqlite3_bind_text(
1138   sqlite3_stmt *pStmt,
1139   int i,
1140   const char *zData,
1141   int nData,
1142   void (*xDel)(void*)
1143 ){
1144   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1145 }
1146 #ifndef SQLITE_OMIT_UTF16
1147 int sqlite3_bind_text16(
1148   sqlite3_stmt *pStmt,
1149   int i,
1150   const void *zData,
1151   int nData,
1152   void (*xDel)(void*)
1153 ){
1154   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1155 }
1156 #endif /* SQLITE_OMIT_UTF16 */
1157 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1158   int rc;
1159   switch( pValue->type ){
1160     case SQLITE_INTEGER: {
1161       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1162       break;
1163     }
1164     case SQLITE_FLOAT: {
1165       rc = sqlite3_bind_double(pStmt, i, pValue->r);
1166       break;
1167     }
1168     case SQLITE_BLOB: {
1169       if( pValue->flags & MEM_Zero ){
1170         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1171       }else{
1172         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1173       }
1174       break;
1175     }
1176     case SQLITE_TEXT: {
1177       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1178                               pValue->enc);
1179       break;
1180     }
1181     default: {
1182       rc = sqlite3_bind_null(pStmt, i);
1183       break;
1184     }
1185   }
1186   return rc;
1187 }
1188 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1189   int rc;
1190   Vdbe *p = (Vdbe *)pStmt;
1191   rc = vdbeUnbind(p, i);
1192   if( rc==SQLITE_OK ){
1193     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1194     sqlite3_mutex_leave(p->db->mutex);
1195   }
1196   return rc;
1197 }
1198 
1199 /*
1200 ** Return the number of wildcards that can be potentially bound to.
1201 ** This routine is added to support DBD::SQLite.
1202 */
1203 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1204   Vdbe *p = (Vdbe*)pStmt;
1205   return p ? p->nVar : 0;
1206 }
1207 
1208 /*
1209 ** Create a mapping from variable numbers to variable names
1210 ** in the Vdbe.azVar[] array, if such a mapping does not already
1211 ** exist.
1212 */
1213 static void createVarMap(Vdbe *p){
1214   if( !p->okVar ){
1215     int j;
1216     Op *pOp;
1217     sqlite3_mutex_enter(p->db->mutex);
1218     /* The race condition here is harmless.  If two threads call this
1219     ** routine on the same Vdbe at the same time, they both might end
1220     ** up initializing the Vdbe.azVar[] array.  That is a little extra
1221     ** work but it results in the same answer.
1222     */
1223     for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1224       if( pOp->opcode==OP_Variable ){
1225         assert( pOp->p1>0 && pOp->p1<=p->nVar );
1226         p->azVar[pOp->p1-1] = pOp->p4.z;
1227       }
1228     }
1229     p->okVar = 1;
1230     sqlite3_mutex_leave(p->db->mutex);
1231   }
1232 }
1233 
1234 /*
1235 ** Return the name of a wildcard parameter.  Return NULL if the index
1236 ** is out of range or if the wildcard is unnamed.
1237 **
1238 ** The result is always UTF-8.
1239 */
1240 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1241   Vdbe *p = (Vdbe*)pStmt;
1242   if( p==0 || i<1 || i>p->nVar ){
1243     return 0;
1244   }
1245   createVarMap(p);
1246   return p->azVar[i-1];
1247 }
1248 
1249 /*
1250 ** Given a wildcard parameter name, return the index of the variable
1251 ** with that name.  If there is no variable with the given name,
1252 ** return 0.
1253 */
1254 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1255   Vdbe *p = (Vdbe*)pStmt;
1256   int i;
1257   if( p==0 ){
1258     return 0;
1259   }
1260   createVarMap(p);
1261   if( zName ){
1262     for(i=0; i<p->nVar; i++){
1263       const char *z = p->azVar[i];
1264       if( z && strcmp(z,zName)==0 ){
1265         return i+1;
1266       }
1267     }
1268   }
1269   return 0;
1270 }
1271 
1272 /*
1273 ** Transfer all bindings from the first statement over to the second.
1274 */
1275 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1276   Vdbe *pFrom = (Vdbe*)pFromStmt;
1277   Vdbe *pTo = (Vdbe*)pToStmt;
1278   int i;
1279   assert( pTo->db==pFrom->db );
1280   assert( pTo->nVar==pFrom->nVar );
1281   sqlite3_mutex_enter(pTo->db->mutex);
1282   for(i=0; i<pFrom->nVar; i++){
1283     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1284   }
1285   sqlite3_mutex_leave(pTo->db->mutex);
1286   return SQLITE_OK;
1287 }
1288 
1289 #ifndef SQLITE_OMIT_DEPRECATED
1290 /*
1291 ** Deprecated external interface.  Internal/core SQLite code
1292 ** should call sqlite3TransferBindings.
1293 **
1294 ** Is is misuse to call this routine with statements from different
1295 ** database connections.  But as this is a deprecated interface, we
1296 ** will not bother to check for that condition.
1297 **
1298 ** If the two statements contain a different number of bindings, then
1299 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1300 ** SQLITE_OK is returned.
1301 */
1302 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1303   Vdbe *pFrom = (Vdbe*)pFromStmt;
1304   Vdbe *pTo = (Vdbe*)pToStmt;
1305   if( pFrom->nVar!=pTo->nVar ){
1306     return SQLITE_ERROR;
1307   }
1308   return sqlite3TransferBindings(pFromStmt, pToStmt);
1309 }
1310 #endif
1311 
1312 /*
1313 ** Return the sqlite3* database handle to which the prepared statement given
1314 ** in the argument belongs.  This is the same database handle that was
1315 ** the first argument to the sqlite3_prepare() that was used to create
1316 ** the statement in the first place.
1317 */
1318 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1319   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1320 }
1321 
1322 /*
1323 ** Return a pointer to the next prepared statement after pStmt associated
1324 ** with database connection pDb.  If pStmt is NULL, return the first
1325 ** prepared statement for the database connection.  Return NULL if there
1326 ** are no more.
1327 */
1328 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1329   sqlite3_stmt *pNext;
1330   sqlite3_mutex_enter(pDb->mutex);
1331   if( pStmt==0 ){
1332     pNext = (sqlite3_stmt*)pDb->pVdbe;
1333   }else{
1334     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1335   }
1336   sqlite3_mutex_leave(pDb->mutex);
1337   return pNext;
1338 }
1339 
1340 /*
1341 ** Return the value of a status counter for a prepared statement
1342 */
1343 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1344   Vdbe *pVdbe = (Vdbe*)pStmt;
1345   int v = pVdbe->aCounter[op-1];
1346   if( resetFlag ) pVdbe->aCounter[op-1] = 0;
1347   return v;
1348 }
1349