1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 }else if( pNew->flags & MEM_Null ){ 349 /* Do not duplicate pointer values */ 350 pNew->flags &= ~(MEM_Term|MEM_Subtype); 351 } 352 return pNew; 353 } 354 355 /* Destroy an sqlite3_value object previously obtained from 356 ** sqlite3_value_dup(). 357 */ 358 void sqlite3_value_free(sqlite3_value *pOld){ 359 sqlite3ValueFree(pOld); 360 } 361 362 363 /**************************** sqlite3_result_ ******************************* 364 ** The following routines are used by user-defined functions to specify 365 ** the function result. 366 ** 367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 368 ** result as a string or blob. Appropriate errors are set if the string/blob 369 ** is too big or if an OOM occurs. 370 ** 371 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 372 ** on value P is not going to be used and need to be destroyed. 373 */ 374 static void setResultStrOrError( 375 sqlite3_context *pCtx, /* Function context */ 376 const char *z, /* String pointer */ 377 int n, /* Bytes in string, or negative */ 378 u8 enc, /* Encoding of z. 0 for BLOBs */ 379 void (*xDel)(void*) /* Destructor function */ 380 ){ 381 Mem *pOut = pCtx->pOut; 382 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 383 if( rc ){ 384 if( rc==SQLITE_TOOBIG ){ 385 sqlite3_result_error_toobig(pCtx); 386 }else{ 387 /* The only errors possible from sqlite3VdbeMemSetStr are 388 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 389 assert( rc==SQLITE_NOMEM ); 390 sqlite3_result_error_nomem(pCtx); 391 } 392 return; 393 } 394 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 395 if( sqlite3VdbeMemTooBig(pOut) ){ 396 sqlite3_result_error_toobig(pCtx); 397 } 398 } 399 static int invokeValueDestructor( 400 const void *p, /* Value to destroy */ 401 void (*xDel)(void*), /* The destructor */ 402 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 403 ){ 404 assert( xDel!=SQLITE_DYNAMIC ); 405 if( xDel==0 ){ 406 /* noop */ 407 }else if( xDel==SQLITE_TRANSIENT ){ 408 /* noop */ 409 }else{ 410 xDel((void*)p); 411 } 412 sqlite3_result_error_toobig(pCtx); 413 return SQLITE_TOOBIG; 414 } 415 void sqlite3_result_blob( 416 sqlite3_context *pCtx, 417 const void *z, 418 int n, 419 void (*xDel)(void *) 420 ){ 421 assert( n>=0 ); 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 setResultStrOrError(pCtx, z, n, 0, xDel); 424 } 425 void sqlite3_result_blob64( 426 sqlite3_context *pCtx, 427 const void *z, 428 sqlite3_uint64 n, 429 void (*xDel)(void *) 430 ){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 assert( xDel!=SQLITE_DYNAMIC ); 433 if( n>0x7fffffff ){ 434 (void)invokeValueDestructor(z, xDel, pCtx); 435 }else{ 436 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 437 } 438 } 439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 441 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 442 } 443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 445 pCtx->isError = SQLITE_ERROR; 446 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 447 } 448 #ifndef SQLITE_OMIT_UTF16 449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 451 pCtx->isError = SQLITE_ERROR; 452 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 453 } 454 #endif 455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 456 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 457 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 458 } 459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 461 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 462 } 463 void sqlite3_result_null(sqlite3_context *pCtx){ 464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 465 sqlite3VdbeMemSetNull(pCtx->pOut); 466 } 467 void sqlite3_result_pointer( 468 sqlite3_context *pCtx, 469 void *pPtr, 470 const char *zPType, 471 void (*xDestructor)(void*) 472 ){ 473 Mem *pOut = pCtx->pOut; 474 assert( sqlite3_mutex_held(pOut->db->mutex) ); 475 sqlite3VdbeMemRelease(pOut); 476 pOut->flags = MEM_Null; 477 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 478 } 479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 480 Mem *pOut = pCtx->pOut; 481 assert( sqlite3_mutex_held(pOut->db->mutex) ); 482 pOut->eSubtype = eSubtype & 0xff; 483 pOut->flags |= MEM_Subtype; 484 } 485 void sqlite3_result_text( 486 sqlite3_context *pCtx, 487 const char *z, 488 int n, 489 void (*xDel)(void *) 490 ){ 491 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 492 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 493 } 494 void sqlite3_result_text64( 495 sqlite3_context *pCtx, 496 const char *z, 497 sqlite3_uint64 n, 498 void (*xDel)(void *), 499 unsigned char enc 500 ){ 501 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 502 assert( xDel!=SQLITE_DYNAMIC ); 503 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 504 if( n>0x7fffffff ){ 505 (void)invokeValueDestructor(z, xDel, pCtx); 506 }else{ 507 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 508 } 509 } 510 #ifndef SQLITE_OMIT_UTF16 511 void sqlite3_result_text16( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 519 } 520 void sqlite3_result_text16be( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 528 } 529 void sqlite3_result_text16le( 530 sqlite3_context *pCtx, 531 const void *z, 532 int n, 533 void (*xDel)(void *) 534 ){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 537 } 538 #endif /* SQLITE_OMIT_UTF16 */ 539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 540 Mem *pOut = pCtx->pOut; 541 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 542 sqlite3VdbeMemCopy(pOut, pValue); 543 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 544 if( sqlite3VdbeMemTooBig(pOut) ){ 545 sqlite3_result_error_toobig(pCtx); 546 } 547 } 548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 549 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 550 } 551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 552 Mem *pOut = pCtx->pOut; 553 assert( sqlite3_mutex_held(pOut->db->mutex) ); 554 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 555 sqlite3_result_error_toobig(pCtx); 556 return SQLITE_TOOBIG; 557 } 558 #ifndef SQLITE_OMIT_INCRBLOB 559 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 560 return SQLITE_OK; 561 #else 562 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 563 #endif 564 } 565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 566 pCtx->isError = errCode ? errCode : -1; 567 #ifdef SQLITE_DEBUG 568 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 569 #endif 570 if( pCtx->pOut->flags & MEM_Null ){ 571 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 572 SQLITE_STATIC); 573 } 574 } 575 576 /* Force an SQLITE_TOOBIG error. */ 577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 578 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 579 pCtx->isError = SQLITE_TOOBIG; 580 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 581 SQLITE_UTF8, SQLITE_STATIC); 582 } 583 584 /* An SQLITE_NOMEM error. */ 585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 586 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 587 sqlite3VdbeMemSetNull(pCtx->pOut); 588 pCtx->isError = SQLITE_NOMEM_BKPT; 589 sqlite3OomFault(pCtx->pOut->db); 590 } 591 592 #ifndef SQLITE_UNTESTABLE 593 /* Force the INT64 value currently stored as the result to be 594 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 595 ** test-control. 596 */ 597 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 598 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 599 if( pCtx->pOut->flags & MEM_Int ){ 600 pCtx->pOut->flags &= ~MEM_Int; 601 pCtx->pOut->flags |= MEM_IntReal; 602 } 603 } 604 #endif 605 606 607 /* 608 ** This function is called after a transaction has been committed. It 609 ** invokes callbacks registered with sqlite3_wal_hook() as required. 610 */ 611 static int doWalCallbacks(sqlite3 *db){ 612 int rc = SQLITE_OK; 613 #ifndef SQLITE_OMIT_WAL 614 int i; 615 for(i=0; i<db->nDb; i++){ 616 Btree *pBt = db->aDb[i].pBt; 617 if( pBt ){ 618 int nEntry; 619 sqlite3BtreeEnter(pBt); 620 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 621 sqlite3BtreeLeave(pBt); 622 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 623 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 624 } 625 } 626 } 627 #endif 628 return rc; 629 } 630 631 632 /* 633 ** Execute the statement pStmt, either until a row of data is ready, the 634 ** statement is completely executed or an error occurs. 635 ** 636 ** This routine implements the bulk of the logic behind the sqlite_step() 637 ** API. The only thing omitted is the automatic recompile if a 638 ** schema change has occurred. That detail is handled by the 639 ** outer sqlite3_step() wrapper procedure. 640 */ 641 static int sqlite3Step(Vdbe *p){ 642 sqlite3 *db; 643 int rc; 644 645 /* Check that malloc() has not failed. If it has, return early. */ 646 db = p->db; 647 if( db->mallocFailed ){ 648 p->rc = SQLITE_NOMEM; 649 return SQLITE_NOMEM_BKPT; 650 } 651 652 assert(p); 653 if( p->eVdbeState!=VDBE_RUN_STATE ){ 654 restart_step: 655 if( p->eVdbeState==VDBE_READY_STATE ){ 656 if( p->expired ){ 657 p->rc = SQLITE_SCHEMA; 658 rc = SQLITE_ERROR; 659 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 660 /* If this statement was prepared using saved SQL and an 661 ** error has occurred, then return the error code in p->rc to the 662 ** caller. Set the error code in the database handle to the same 663 ** value. 664 */ 665 rc = sqlite3VdbeTransferError(p); 666 } 667 goto end_of_step; 668 } 669 670 /* If there are no other statements currently running, then 671 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 672 ** from interrupting a statement that has not yet started. 673 */ 674 if( db->nVdbeActive==0 ){ 675 AtomicStore(&db->u1.isInterrupted, 0); 676 } 677 678 assert( db->nVdbeWrite>0 || db->autoCommit==0 679 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 680 ); 681 682 #ifndef SQLITE_OMIT_TRACE 683 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 684 && !db->init.busy && p->zSql ){ 685 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 686 }else{ 687 assert( p->startTime==0 ); 688 } 689 #endif 690 691 db->nVdbeActive++; 692 if( p->readOnly==0 ) db->nVdbeWrite++; 693 if( p->bIsReader ) db->nVdbeRead++; 694 p->pc = 0; 695 p->eVdbeState = VDBE_RUN_STATE; 696 }else 697 698 if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){ 699 /* We used to require that sqlite3_reset() be called before retrying 700 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 701 ** with version 3.7.0, we changed this so that sqlite3_reset() would 702 ** be called automatically instead of throwing the SQLITE_MISUSE error. 703 ** This "automatic-reset" change is not technically an incompatibility, 704 ** since any application that receives an SQLITE_MISUSE is broken by 705 ** definition. 706 ** 707 ** Nevertheless, some published applications that were originally written 708 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 709 ** returns, and those were broken by the automatic-reset change. As a 710 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 711 ** legacy behavior of returning SQLITE_MISUSE for cases where the 712 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 713 ** or SQLITE_BUSY error. 714 */ 715 #ifdef SQLITE_OMIT_AUTORESET 716 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 717 sqlite3_reset((sqlite3_stmt*)p); 718 }else{ 719 return SQLITE_MISUSE_BKPT; 720 } 721 #else 722 sqlite3_reset((sqlite3_stmt*)p); 723 #endif 724 assert( p->eVdbeState==VDBE_READY_STATE ); 725 goto restart_step; 726 } 727 } 728 729 #ifdef SQLITE_DEBUG 730 p->rcApp = SQLITE_OK; 731 #endif 732 #ifndef SQLITE_OMIT_EXPLAIN 733 if( p->explain ){ 734 rc = sqlite3VdbeList(p); 735 }else 736 #endif /* SQLITE_OMIT_EXPLAIN */ 737 { 738 db->nVdbeExec++; 739 rc = sqlite3VdbeExec(p); 740 db->nVdbeExec--; 741 } 742 743 if( rc==SQLITE_ROW ){ 744 assert( p->rc==SQLITE_OK ); 745 assert( db->mallocFailed==0 ); 746 db->errCode = SQLITE_ROW; 747 return SQLITE_ROW; 748 }else{ 749 #ifndef SQLITE_OMIT_TRACE 750 /* If the statement completed successfully, invoke the profile callback */ 751 checkProfileCallback(db, p); 752 #endif 753 754 if( rc==SQLITE_DONE && db->autoCommit ){ 755 assert( p->rc==SQLITE_OK ); 756 p->rc = doWalCallbacks(db); 757 if( p->rc!=SQLITE_OK ){ 758 rc = SQLITE_ERROR; 759 } 760 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 761 /* If this statement was prepared using saved SQL and an 762 ** error has occurred, then return the error code in p->rc to the 763 ** caller. Set the error code in the database handle to the same value. 764 */ 765 rc = sqlite3VdbeTransferError(p); 766 } 767 } 768 769 db->errCode = rc; 770 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 771 p->rc = SQLITE_NOMEM_BKPT; 772 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 773 } 774 end_of_step: 775 /* There are only a limited number of result codes allowed from the 776 ** statements prepared using the legacy sqlite3_prepare() interface */ 777 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 778 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 779 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 780 ); 781 return (rc&db->errMask); 782 } 783 784 /* 785 ** This is the top-level implementation of sqlite3_step(). Call 786 ** sqlite3Step() to do most of the work. If a schema error occurs, 787 ** call sqlite3Reprepare() and try again. 788 */ 789 int sqlite3_step(sqlite3_stmt *pStmt){ 790 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 791 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 792 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 793 sqlite3 *db; /* The database connection */ 794 795 if( vdbeSafetyNotNull(v) ){ 796 return SQLITE_MISUSE_BKPT; 797 } 798 db = v->db; 799 sqlite3_mutex_enter(db->mutex); 800 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 801 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 802 int savedPc = v->pc; 803 rc = sqlite3Reprepare(v); 804 if( rc!=SQLITE_OK ){ 805 /* This case occurs after failing to recompile an sql statement. 806 ** The error message from the SQL compiler has already been loaded 807 ** into the database handle. This block copies the error message 808 ** from the database handle into the statement and sets the statement 809 ** program counter to 0 to ensure that when the statement is 810 ** finalized or reset the parser error message is available via 811 ** sqlite3_errmsg() and sqlite3_errcode(). 812 */ 813 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 814 sqlite3DbFree(db, v->zErrMsg); 815 if( !db->mallocFailed ){ 816 v->zErrMsg = sqlite3DbStrDup(db, zErr); 817 v->rc = rc = sqlite3ApiExit(db, rc); 818 } else { 819 v->zErrMsg = 0; 820 v->rc = rc = SQLITE_NOMEM_BKPT; 821 } 822 break; 823 } 824 sqlite3_reset(pStmt); 825 if( savedPc>=0 ){ 826 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and 827 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because one 828 ** should output has already occurred due to SQLITE_SCHEMA. 829 ** tag-20220401a */ 830 v->minWriteFileFormat = 254; 831 } 832 assert( v->expired==0 ); 833 } 834 sqlite3_mutex_leave(db->mutex); 835 return rc; 836 } 837 838 839 /* 840 ** Extract the user data from a sqlite3_context structure and return a 841 ** pointer to it. 842 */ 843 void *sqlite3_user_data(sqlite3_context *p){ 844 assert( p && p->pFunc ); 845 return p->pFunc->pUserData; 846 } 847 848 /* 849 ** Extract the user data from a sqlite3_context structure and return a 850 ** pointer to it. 851 ** 852 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 853 ** returns a copy of the pointer to the database connection (the 1st 854 ** parameter) of the sqlite3_create_function() and 855 ** sqlite3_create_function16() routines that originally registered the 856 ** application defined function. 857 */ 858 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 859 assert( p && p->pOut ); 860 return p->pOut->db; 861 } 862 863 /* 864 ** If this routine is invoked from within an xColumn method of a virtual 865 ** table, then it returns true if and only if the the call is during an 866 ** UPDATE operation and the value of the column will not be modified 867 ** by the UPDATE. 868 ** 869 ** If this routine is called from any context other than within the 870 ** xColumn method of a virtual table, then the return value is meaningless 871 ** and arbitrary. 872 ** 873 ** Virtual table implements might use this routine to optimize their 874 ** performance by substituting a NULL result, or some other light-weight 875 ** value, as a signal to the xUpdate routine that the column is unchanged. 876 */ 877 int sqlite3_vtab_nochange(sqlite3_context *p){ 878 assert( p ); 879 return sqlite3_value_nochange(p->pOut); 880 } 881 882 /* 883 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 884 ** sqlite3_vtab_in_next() (if bNext!=0). 885 */ 886 static int valueFromValueList( 887 sqlite3_value *pVal, /* Pointer to the ValueList object */ 888 sqlite3_value **ppOut, /* Store the next value from the list here */ 889 int bNext /* 1 for _next(). 0 for _first() */ 890 ){ 891 int rc; 892 ValueList *pRhs; 893 894 *ppOut = 0; 895 if( pVal==0 ) return SQLITE_MISUSE; 896 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList"); 897 if( pRhs==0 ) return SQLITE_MISUSE; 898 if( bNext ){ 899 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 900 }else{ 901 int dummy = 0; 902 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 903 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 904 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 905 } 906 if( rc==SQLITE_OK ){ 907 u32 sz; /* Size of current row in bytes */ 908 Mem sMem; /* Raw content of current row */ 909 memset(&sMem, 0, sizeof(sMem)); 910 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 911 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 912 if( rc==SQLITE_OK ){ 913 u8 *zBuf = (u8*)sMem.z; 914 u32 iSerial; 915 sqlite3_value *pOut = pRhs->pOut; 916 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 917 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 918 pOut->enc = ENC(pOut->db); 919 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 920 rc = SQLITE_NOMEM; 921 }else{ 922 *ppOut = pOut; 923 } 924 } 925 sqlite3VdbeMemRelease(&sMem); 926 } 927 return rc; 928 } 929 930 /* 931 ** Set the iterator value pVal to point to the first value in the set. 932 ** Set (*ppOut) to point to this value before returning. 933 */ 934 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 935 return valueFromValueList(pVal, ppOut, 0); 936 } 937 938 /* 939 ** Set the iterator value pVal to point to the next value in the set. 940 ** Set (*ppOut) to point to this value before returning. 941 */ 942 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 943 return valueFromValueList(pVal, ppOut, 1); 944 } 945 946 /* 947 ** Return the current time for a statement. If the current time 948 ** is requested more than once within the same run of a single prepared 949 ** statement, the exact same time is returned for each invocation regardless 950 ** of the amount of time that elapses between invocations. In other words, 951 ** the time returned is always the time of the first call. 952 */ 953 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 954 int rc; 955 #ifndef SQLITE_ENABLE_STAT4 956 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 957 assert( p->pVdbe!=0 ); 958 #else 959 sqlite3_int64 iTime = 0; 960 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 961 #endif 962 if( *piTime==0 ){ 963 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 964 if( rc ) *piTime = 0; 965 } 966 return *piTime; 967 } 968 969 /* 970 ** Create a new aggregate context for p and return a pointer to 971 ** its pMem->z element. 972 */ 973 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 974 Mem *pMem = p->pMem; 975 assert( (pMem->flags & MEM_Agg)==0 ); 976 if( nByte<=0 ){ 977 sqlite3VdbeMemSetNull(pMem); 978 pMem->z = 0; 979 }else{ 980 sqlite3VdbeMemClearAndResize(pMem, nByte); 981 pMem->flags = MEM_Agg; 982 pMem->u.pDef = p->pFunc; 983 if( pMem->z ){ 984 memset(pMem->z, 0, nByte); 985 } 986 } 987 return (void*)pMem->z; 988 } 989 990 /* 991 ** Allocate or return the aggregate context for a user function. A new 992 ** context is allocated on the first call. Subsequent calls return the 993 ** same context that was returned on prior calls. 994 */ 995 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 996 assert( p && p->pFunc && p->pFunc->xFinalize ); 997 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 998 testcase( nByte<0 ); 999 if( (p->pMem->flags & MEM_Agg)==0 ){ 1000 return createAggContext(p, nByte); 1001 }else{ 1002 return (void*)p->pMem->z; 1003 } 1004 } 1005 1006 /* 1007 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 1008 ** the user-function defined by pCtx. 1009 ** 1010 ** The left-most argument is 0. 1011 ** 1012 ** Undocumented behavior: If iArg is negative then access a cache of 1013 ** auxiliary data pointers that is available to all functions within a 1014 ** single prepared statement. The iArg values must match. 1015 */ 1016 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 1017 AuxData *pAuxData; 1018 1019 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1020 #if SQLITE_ENABLE_STAT4 1021 if( pCtx->pVdbe==0 ) return 0; 1022 #else 1023 assert( pCtx->pVdbe!=0 ); 1024 #endif 1025 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1026 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1027 return pAuxData->pAux; 1028 } 1029 } 1030 return 0; 1031 } 1032 1033 /* 1034 ** Set the auxiliary data pointer and delete function, for the iArg'th 1035 ** argument to the user-function defined by pCtx. Any previous value is 1036 ** deleted by calling the delete function specified when it was set. 1037 ** 1038 ** The left-most argument is 0. 1039 ** 1040 ** Undocumented behavior: If iArg is negative then make the data available 1041 ** to all functions within the current prepared statement using iArg as an 1042 ** access code. 1043 */ 1044 void sqlite3_set_auxdata( 1045 sqlite3_context *pCtx, 1046 int iArg, 1047 void *pAux, 1048 void (*xDelete)(void*) 1049 ){ 1050 AuxData *pAuxData; 1051 Vdbe *pVdbe = pCtx->pVdbe; 1052 1053 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1054 #ifdef SQLITE_ENABLE_STAT4 1055 if( pVdbe==0 ) goto failed; 1056 #else 1057 assert( pVdbe!=0 ); 1058 #endif 1059 1060 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1061 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1062 break; 1063 } 1064 } 1065 if( pAuxData==0 ){ 1066 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 1067 if( !pAuxData ) goto failed; 1068 pAuxData->iAuxOp = pCtx->iOp; 1069 pAuxData->iAuxArg = iArg; 1070 pAuxData->pNextAux = pVdbe->pAuxData; 1071 pVdbe->pAuxData = pAuxData; 1072 if( pCtx->isError==0 ) pCtx->isError = -1; 1073 }else if( pAuxData->xDeleteAux ){ 1074 pAuxData->xDeleteAux(pAuxData->pAux); 1075 } 1076 1077 pAuxData->pAux = pAux; 1078 pAuxData->xDeleteAux = xDelete; 1079 return; 1080 1081 failed: 1082 if( xDelete ){ 1083 xDelete(pAux); 1084 } 1085 } 1086 1087 #ifndef SQLITE_OMIT_DEPRECATED 1088 /* 1089 ** Return the number of times the Step function of an aggregate has been 1090 ** called. 1091 ** 1092 ** This function is deprecated. Do not use it for new code. It is 1093 ** provide only to avoid breaking legacy code. New aggregate function 1094 ** implementations should keep their own counts within their aggregate 1095 ** context. 1096 */ 1097 int sqlite3_aggregate_count(sqlite3_context *p){ 1098 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1099 return p->pMem->n; 1100 } 1101 #endif 1102 1103 /* 1104 ** Return the number of columns in the result set for the statement pStmt. 1105 */ 1106 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1107 Vdbe *pVm = (Vdbe *)pStmt; 1108 return pVm ? pVm->nResColumn : 0; 1109 } 1110 1111 /* 1112 ** Return the number of values available from the current row of the 1113 ** currently executing statement pStmt. 1114 */ 1115 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1116 Vdbe *pVm = (Vdbe *)pStmt; 1117 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1118 return pVm->nResColumn; 1119 } 1120 1121 /* 1122 ** Return a pointer to static memory containing an SQL NULL value. 1123 */ 1124 static const Mem *columnNullValue(void){ 1125 /* Even though the Mem structure contains an element 1126 ** of type i64, on certain architectures (x86) with certain compiler 1127 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1128 ** instead of an 8-byte one. This all works fine, except that when 1129 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1130 ** that a Mem structure is located on an 8-byte boundary. To prevent 1131 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1132 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1133 ** __attribute__((aligned(8))) macro. */ 1134 static const Mem nullMem 1135 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1136 __attribute__((aligned(8))) 1137 #endif 1138 = { 1139 /* .u = */ {0}, 1140 /* .z = */ (char*)0, 1141 /* .n = */ (int)0, 1142 /* .flags = */ (u16)MEM_Null, 1143 /* .enc = */ (u8)0, 1144 /* .eSubtype = */ (u8)0, 1145 /* .db = */ (sqlite3*)0, 1146 /* .szMalloc = */ (int)0, 1147 /* .uTemp = */ (u32)0, 1148 /* .zMalloc = */ (char*)0, 1149 /* .xDel = */ (void(*)(void*))0, 1150 #ifdef SQLITE_DEBUG 1151 /* .pScopyFrom = */ (Mem*)0, 1152 /* .mScopyFlags= */ 0, 1153 #endif 1154 }; 1155 return &nullMem; 1156 } 1157 1158 /* 1159 ** Check to see if column iCol of the given statement is valid. If 1160 ** it is, return a pointer to the Mem for the value of that column. 1161 ** If iCol is not valid, return a pointer to a Mem which has a value 1162 ** of NULL. 1163 */ 1164 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1165 Vdbe *pVm; 1166 Mem *pOut; 1167 1168 pVm = (Vdbe *)pStmt; 1169 if( pVm==0 ) return (Mem*)columnNullValue(); 1170 assert( pVm->db ); 1171 sqlite3_mutex_enter(pVm->db->mutex); 1172 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1173 pOut = &pVm->pResultSet[i]; 1174 }else{ 1175 sqlite3Error(pVm->db, SQLITE_RANGE); 1176 pOut = (Mem*)columnNullValue(); 1177 } 1178 return pOut; 1179 } 1180 1181 /* 1182 ** This function is called after invoking an sqlite3_value_XXX function on a 1183 ** column value (i.e. a value returned by evaluating an SQL expression in the 1184 ** select list of a SELECT statement) that may cause a malloc() failure. If 1185 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1186 ** code of statement pStmt set to SQLITE_NOMEM. 1187 ** 1188 ** Specifically, this is called from within: 1189 ** 1190 ** sqlite3_column_int() 1191 ** sqlite3_column_int64() 1192 ** sqlite3_column_text() 1193 ** sqlite3_column_text16() 1194 ** sqlite3_column_real() 1195 ** sqlite3_column_bytes() 1196 ** sqlite3_column_bytes16() 1197 ** sqiite3_column_blob() 1198 */ 1199 static void columnMallocFailure(sqlite3_stmt *pStmt) 1200 { 1201 /* If malloc() failed during an encoding conversion within an 1202 ** sqlite3_column_XXX API, then set the return code of the statement to 1203 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1204 ** and _finalize() will return NOMEM. 1205 */ 1206 Vdbe *p = (Vdbe *)pStmt; 1207 if( p ){ 1208 assert( p->db!=0 ); 1209 assert( sqlite3_mutex_held(p->db->mutex) ); 1210 p->rc = sqlite3ApiExit(p->db, p->rc); 1211 sqlite3_mutex_leave(p->db->mutex); 1212 } 1213 } 1214 1215 /**************************** sqlite3_column_ ******************************* 1216 ** The following routines are used to access elements of the current row 1217 ** in the result set. 1218 */ 1219 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1220 const void *val; 1221 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1222 /* Even though there is no encoding conversion, value_blob() might 1223 ** need to call malloc() to expand the result of a zeroblob() 1224 ** expression. 1225 */ 1226 columnMallocFailure(pStmt); 1227 return val; 1228 } 1229 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1230 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1231 columnMallocFailure(pStmt); 1232 return val; 1233 } 1234 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1235 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1236 columnMallocFailure(pStmt); 1237 return val; 1238 } 1239 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1240 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1241 columnMallocFailure(pStmt); 1242 return val; 1243 } 1244 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1245 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1246 columnMallocFailure(pStmt); 1247 return val; 1248 } 1249 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1250 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1251 columnMallocFailure(pStmt); 1252 return val; 1253 } 1254 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1255 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1256 columnMallocFailure(pStmt); 1257 return val; 1258 } 1259 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1260 Mem *pOut = columnMem(pStmt, i); 1261 if( pOut->flags&MEM_Static ){ 1262 pOut->flags &= ~MEM_Static; 1263 pOut->flags |= MEM_Ephem; 1264 } 1265 columnMallocFailure(pStmt); 1266 return (sqlite3_value *)pOut; 1267 } 1268 #ifndef SQLITE_OMIT_UTF16 1269 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1270 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1271 columnMallocFailure(pStmt); 1272 return val; 1273 } 1274 #endif /* SQLITE_OMIT_UTF16 */ 1275 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1276 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1277 columnMallocFailure(pStmt); 1278 return iType; 1279 } 1280 1281 /* 1282 ** Convert the N-th element of pStmt->pColName[] into a string using 1283 ** xFunc() then return that string. If N is out of range, return 0. 1284 ** 1285 ** There are up to 5 names for each column. useType determines which 1286 ** name is returned. Here are the names: 1287 ** 1288 ** 0 The column name as it should be displayed for output 1289 ** 1 The datatype name for the column 1290 ** 2 The name of the database that the column derives from 1291 ** 3 The name of the table that the column derives from 1292 ** 4 The name of the table column that the result column derives from 1293 ** 1294 ** If the result is not a simple column reference (if it is an expression 1295 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1296 */ 1297 static const void *columnName( 1298 sqlite3_stmt *pStmt, /* The statement */ 1299 int N, /* Which column to get the name for */ 1300 int useUtf16, /* True to return the name as UTF16 */ 1301 int useType /* What type of name */ 1302 ){ 1303 const void *ret; 1304 Vdbe *p; 1305 int n; 1306 sqlite3 *db; 1307 #ifdef SQLITE_ENABLE_API_ARMOR 1308 if( pStmt==0 ){ 1309 (void)SQLITE_MISUSE_BKPT; 1310 return 0; 1311 } 1312 #endif 1313 ret = 0; 1314 p = (Vdbe *)pStmt; 1315 db = p->db; 1316 assert( db!=0 ); 1317 n = sqlite3_column_count(pStmt); 1318 if( N<n && N>=0 ){ 1319 N += useType*n; 1320 sqlite3_mutex_enter(db->mutex); 1321 assert( db->mallocFailed==0 ); 1322 #ifndef SQLITE_OMIT_UTF16 1323 if( useUtf16 ){ 1324 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1325 }else 1326 #endif 1327 { 1328 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1329 } 1330 /* A malloc may have failed inside of the _text() call. If this 1331 ** is the case, clear the mallocFailed flag and return NULL. 1332 */ 1333 if( db->mallocFailed ){ 1334 sqlite3OomClear(db); 1335 ret = 0; 1336 } 1337 sqlite3_mutex_leave(db->mutex); 1338 } 1339 return ret; 1340 } 1341 1342 /* 1343 ** Return the name of the Nth column of the result set returned by SQL 1344 ** statement pStmt. 1345 */ 1346 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1347 return columnName(pStmt, N, 0, COLNAME_NAME); 1348 } 1349 #ifndef SQLITE_OMIT_UTF16 1350 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1351 return columnName(pStmt, N, 1, COLNAME_NAME); 1352 } 1353 #endif 1354 1355 /* 1356 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1357 ** not define OMIT_DECLTYPE. 1358 */ 1359 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1360 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1361 and SQLITE_ENABLE_COLUMN_METADATA" 1362 #endif 1363 1364 #ifndef SQLITE_OMIT_DECLTYPE 1365 /* 1366 ** Return the column declaration type (if applicable) of the 'i'th column 1367 ** of the result set of SQL statement pStmt. 1368 */ 1369 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1370 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1371 } 1372 #ifndef SQLITE_OMIT_UTF16 1373 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1374 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1375 } 1376 #endif /* SQLITE_OMIT_UTF16 */ 1377 #endif /* SQLITE_OMIT_DECLTYPE */ 1378 1379 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1380 /* 1381 ** Return the name of the database from which a result column derives. 1382 ** NULL is returned if the result column is an expression or constant or 1383 ** anything else which is not an unambiguous reference to a database column. 1384 */ 1385 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1386 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1387 } 1388 #ifndef SQLITE_OMIT_UTF16 1389 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1390 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1391 } 1392 #endif /* SQLITE_OMIT_UTF16 */ 1393 1394 /* 1395 ** Return the name of the table from which a result column derives. 1396 ** NULL is returned if the result column is an expression or constant or 1397 ** anything else which is not an unambiguous reference to a database column. 1398 */ 1399 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1400 return columnName(pStmt, N, 0, COLNAME_TABLE); 1401 } 1402 #ifndef SQLITE_OMIT_UTF16 1403 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1404 return columnName(pStmt, N, 1, COLNAME_TABLE); 1405 } 1406 #endif /* SQLITE_OMIT_UTF16 */ 1407 1408 /* 1409 ** Return the name of the table column from which a result column derives. 1410 ** NULL is returned if the result column is an expression or constant or 1411 ** anything else which is not an unambiguous reference to a database column. 1412 */ 1413 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1414 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1415 } 1416 #ifndef SQLITE_OMIT_UTF16 1417 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1418 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1419 } 1420 #endif /* SQLITE_OMIT_UTF16 */ 1421 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1422 1423 1424 /******************************* sqlite3_bind_ *************************** 1425 ** 1426 ** Routines used to attach values to wildcards in a compiled SQL statement. 1427 */ 1428 /* 1429 ** Unbind the value bound to variable i in virtual machine p. This is the 1430 ** the same as binding a NULL value to the column. If the "i" parameter is 1431 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1432 ** 1433 ** A successful evaluation of this routine acquires the mutex on p. 1434 ** the mutex is released if any kind of error occurs. 1435 ** 1436 ** The error code stored in database p->db is overwritten with the return 1437 ** value in any case. 1438 */ 1439 static int vdbeUnbind(Vdbe *p, int i){ 1440 Mem *pVar; 1441 if( vdbeSafetyNotNull(p) ){ 1442 return SQLITE_MISUSE_BKPT; 1443 } 1444 sqlite3_mutex_enter(p->db->mutex); 1445 if( p->eVdbeState!=VDBE_READY_STATE ){ 1446 sqlite3Error(p->db, SQLITE_MISUSE); 1447 sqlite3_mutex_leave(p->db->mutex); 1448 sqlite3_log(SQLITE_MISUSE, 1449 "bind on a busy prepared statement: [%s]", p->zSql); 1450 return SQLITE_MISUSE_BKPT; 1451 } 1452 if( i<1 || i>p->nVar ){ 1453 sqlite3Error(p->db, SQLITE_RANGE); 1454 sqlite3_mutex_leave(p->db->mutex); 1455 return SQLITE_RANGE; 1456 } 1457 i--; 1458 pVar = &p->aVar[i]; 1459 sqlite3VdbeMemRelease(pVar); 1460 pVar->flags = MEM_Null; 1461 p->db->errCode = SQLITE_OK; 1462 1463 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1464 ** binding a new value to this variable invalidates the current query plan. 1465 ** 1466 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1467 ** parameter in the WHERE clause might influence the choice of query plan 1468 ** for a statement, then the statement will be automatically recompiled, 1469 ** as if there had been a schema change, on the first sqlite3_step() call 1470 ** following any change to the bindings of that parameter. 1471 */ 1472 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1473 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1474 p->expired = 1; 1475 } 1476 return SQLITE_OK; 1477 } 1478 1479 /* 1480 ** Bind a text or BLOB value. 1481 */ 1482 static int bindText( 1483 sqlite3_stmt *pStmt, /* The statement to bind against */ 1484 int i, /* Index of the parameter to bind */ 1485 const void *zData, /* Pointer to the data to be bound */ 1486 i64 nData, /* Number of bytes of data to be bound */ 1487 void (*xDel)(void*), /* Destructor for the data */ 1488 u8 encoding /* Encoding for the data */ 1489 ){ 1490 Vdbe *p = (Vdbe *)pStmt; 1491 Mem *pVar; 1492 int rc; 1493 1494 rc = vdbeUnbind(p, i); 1495 if( rc==SQLITE_OK ){ 1496 if( zData!=0 ){ 1497 pVar = &p->aVar[i-1]; 1498 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1499 if( rc==SQLITE_OK && encoding!=0 ){ 1500 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1501 } 1502 if( rc ){ 1503 sqlite3Error(p->db, rc); 1504 rc = sqlite3ApiExit(p->db, rc); 1505 } 1506 } 1507 sqlite3_mutex_leave(p->db->mutex); 1508 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1509 xDel((void*)zData); 1510 } 1511 return rc; 1512 } 1513 1514 1515 /* 1516 ** Bind a blob value to an SQL statement variable. 1517 */ 1518 int sqlite3_bind_blob( 1519 sqlite3_stmt *pStmt, 1520 int i, 1521 const void *zData, 1522 int nData, 1523 void (*xDel)(void*) 1524 ){ 1525 #ifdef SQLITE_ENABLE_API_ARMOR 1526 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1527 #endif 1528 return bindText(pStmt, i, zData, nData, xDel, 0); 1529 } 1530 int sqlite3_bind_blob64( 1531 sqlite3_stmt *pStmt, 1532 int i, 1533 const void *zData, 1534 sqlite3_uint64 nData, 1535 void (*xDel)(void*) 1536 ){ 1537 assert( xDel!=SQLITE_DYNAMIC ); 1538 return bindText(pStmt, i, zData, nData, xDel, 0); 1539 } 1540 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1541 int rc; 1542 Vdbe *p = (Vdbe *)pStmt; 1543 rc = vdbeUnbind(p, i); 1544 if( rc==SQLITE_OK ){ 1545 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1546 sqlite3_mutex_leave(p->db->mutex); 1547 } 1548 return rc; 1549 } 1550 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1551 return sqlite3_bind_int64(p, i, (i64)iValue); 1552 } 1553 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1554 int rc; 1555 Vdbe *p = (Vdbe *)pStmt; 1556 rc = vdbeUnbind(p, i); 1557 if( rc==SQLITE_OK ){ 1558 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1559 sqlite3_mutex_leave(p->db->mutex); 1560 } 1561 return rc; 1562 } 1563 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1564 int rc; 1565 Vdbe *p = (Vdbe*)pStmt; 1566 rc = vdbeUnbind(p, i); 1567 if( rc==SQLITE_OK ){ 1568 sqlite3_mutex_leave(p->db->mutex); 1569 } 1570 return rc; 1571 } 1572 int sqlite3_bind_pointer( 1573 sqlite3_stmt *pStmt, 1574 int i, 1575 void *pPtr, 1576 const char *zPTtype, 1577 void (*xDestructor)(void*) 1578 ){ 1579 int rc; 1580 Vdbe *p = (Vdbe*)pStmt; 1581 rc = vdbeUnbind(p, i); 1582 if( rc==SQLITE_OK ){ 1583 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1584 sqlite3_mutex_leave(p->db->mutex); 1585 }else if( xDestructor ){ 1586 xDestructor(pPtr); 1587 } 1588 return rc; 1589 } 1590 int sqlite3_bind_text( 1591 sqlite3_stmt *pStmt, 1592 int i, 1593 const char *zData, 1594 int nData, 1595 void (*xDel)(void*) 1596 ){ 1597 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1598 } 1599 int sqlite3_bind_text64( 1600 sqlite3_stmt *pStmt, 1601 int i, 1602 const char *zData, 1603 sqlite3_uint64 nData, 1604 void (*xDel)(void*), 1605 unsigned char enc 1606 ){ 1607 assert( xDel!=SQLITE_DYNAMIC ); 1608 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1609 return bindText(pStmt, i, zData, nData, xDel, enc); 1610 } 1611 #ifndef SQLITE_OMIT_UTF16 1612 int sqlite3_bind_text16( 1613 sqlite3_stmt *pStmt, 1614 int i, 1615 const void *zData, 1616 int nData, 1617 void (*xDel)(void*) 1618 ){ 1619 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1620 } 1621 #endif /* SQLITE_OMIT_UTF16 */ 1622 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1623 int rc; 1624 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1625 case SQLITE_INTEGER: { 1626 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1627 break; 1628 } 1629 case SQLITE_FLOAT: { 1630 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 1631 rc = sqlite3_bind_double(pStmt, i, 1632 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 1633 ); 1634 break; 1635 } 1636 case SQLITE_BLOB: { 1637 if( pValue->flags & MEM_Zero ){ 1638 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1639 }else{ 1640 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1641 } 1642 break; 1643 } 1644 case SQLITE_TEXT: { 1645 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1646 pValue->enc); 1647 break; 1648 } 1649 default: { 1650 rc = sqlite3_bind_null(pStmt, i); 1651 break; 1652 } 1653 } 1654 return rc; 1655 } 1656 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1657 int rc; 1658 Vdbe *p = (Vdbe *)pStmt; 1659 rc = vdbeUnbind(p, i); 1660 if( rc==SQLITE_OK ){ 1661 #ifndef SQLITE_OMIT_INCRBLOB 1662 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1663 #else 1664 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1665 #endif 1666 sqlite3_mutex_leave(p->db->mutex); 1667 } 1668 return rc; 1669 } 1670 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1671 int rc; 1672 Vdbe *p = (Vdbe *)pStmt; 1673 sqlite3_mutex_enter(p->db->mutex); 1674 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1675 rc = SQLITE_TOOBIG; 1676 }else{ 1677 assert( (n & 0x7FFFFFFF)==n ); 1678 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1679 } 1680 rc = sqlite3ApiExit(p->db, rc); 1681 sqlite3_mutex_leave(p->db->mutex); 1682 return rc; 1683 } 1684 1685 /* 1686 ** Return the number of wildcards that can be potentially bound to. 1687 ** This routine is added to support DBD::SQLite. 1688 */ 1689 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1690 Vdbe *p = (Vdbe*)pStmt; 1691 return p ? p->nVar : 0; 1692 } 1693 1694 /* 1695 ** Return the name of a wildcard parameter. Return NULL if the index 1696 ** is out of range or if the wildcard is unnamed. 1697 ** 1698 ** The result is always UTF-8. 1699 */ 1700 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1701 Vdbe *p = (Vdbe*)pStmt; 1702 if( p==0 ) return 0; 1703 return sqlite3VListNumToName(p->pVList, i); 1704 } 1705 1706 /* 1707 ** Given a wildcard parameter name, return the index of the variable 1708 ** with that name. If there is no variable with the given name, 1709 ** return 0. 1710 */ 1711 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1712 if( p==0 || zName==0 ) return 0; 1713 return sqlite3VListNameToNum(p->pVList, zName, nName); 1714 } 1715 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1716 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1717 } 1718 1719 /* 1720 ** Transfer all bindings from the first statement over to the second. 1721 */ 1722 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1723 Vdbe *pFrom = (Vdbe*)pFromStmt; 1724 Vdbe *pTo = (Vdbe*)pToStmt; 1725 int i; 1726 assert( pTo->db==pFrom->db ); 1727 assert( pTo->nVar==pFrom->nVar ); 1728 sqlite3_mutex_enter(pTo->db->mutex); 1729 for(i=0; i<pFrom->nVar; i++){ 1730 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1731 } 1732 sqlite3_mutex_leave(pTo->db->mutex); 1733 return SQLITE_OK; 1734 } 1735 1736 #ifndef SQLITE_OMIT_DEPRECATED 1737 /* 1738 ** Deprecated external interface. Internal/core SQLite code 1739 ** should call sqlite3TransferBindings. 1740 ** 1741 ** It is misuse to call this routine with statements from different 1742 ** database connections. But as this is a deprecated interface, we 1743 ** will not bother to check for that condition. 1744 ** 1745 ** If the two statements contain a different number of bindings, then 1746 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1747 ** SQLITE_OK is returned. 1748 */ 1749 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1750 Vdbe *pFrom = (Vdbe*)pFromStmt; 1751 Vdbe *pTo = (Vdbe*)pToStmt; 1752 if( pFrom->nVar!=pTo->nVar ){ 1753 return SQLITE_ERROR; 1754 } 1755 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1756 if( pTo->expmask ){ 1757 pTo->expired = 1; 1758 } 1759 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1760 if( pFrom->expmask ){ 1761 pFrom->expired = 1; 1762 } 1763 return sqlite3TransferBindings(pFromStmt, pToStmt); 1764 } 1765 #endif 1766 1767 /* 1768 ** Return the sqlite3* database handle to which the prepared statement given 1769 ** in the argument belongs. This is the same database handle that was 1770 ** the first argument to the sqlite3_prepare() that was used to create 1771 ** the statement in the first place. 1772 */ 1773 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1774 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1775 } 1776 1777 /* 1778 ** Return true if the prepared statement is guaranteed to not modify the 1779 ** database. 1780 */ 1781 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1782 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1783 } 1784 1785 /* 1786 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1787 ** statement is an EXPLAIN QUERY PLAN 1788 */ 1789 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1790 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1791 } 1792 1793 /* 1794 ** Return true if the prepared statement is in need of being reset. 1795 */ 1796 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1797 Vdbe *v = (Vdbe*)pStmt; 1798 return v!=0 && v->eVdbeState==VDBE_RUN_STATE; 1799 } 1800 1801 /* 1802 ** Return a pointer to the next prepared statement after pStmt associated 1803 ** with database connection pDb. If pStmt is NULL, return the first 1804 ** prepared statement for the database connection. Return NULL if there 1805 ** are no more. 1806 */ 1807 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1808 sqlite3_stmt *pNext; 1809 #ifdef SQLITE_ENABLE_API_ARMOR 1810 if( !sqlite3SafetyCheckOk(pDb) ){ 1811 (void)SQLITE_MISUSE_BKPT; 1812 return 0; 1813 } 1814 #endif 1815 sqlite3_mutex_enter(pDb->mutex); 1816 if( pStmt==0 ){ 1817 pNext = (sqlite3_stmt*)pDb->pVdbe; 1818 }else{ 1819 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1820 } 1821 sqlite3_mutex_leave(pDb->mutex); 1822 return pNext; 1823 } 1824 1825 /* 1826 ** Return the value of a status counter for a prepared statement 1827 */ 1828 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1829 Vdbe *pVdbe = (Vdbe*)pStmt; 1830 u32 v; 1831 #ifdef SQLITE_ENABLE_API_ARMOR 1832 if( !pStmt 1833 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1834 ){ 1835 (void)SQLITE_MISUSE_BKPT; 1836 return 0; 1837 } 1838 #endif 1839 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1840 sqlite3 *db = pVdbe->db; 1841 sqlite3_mutex_enter(db->mutex); 1842 v = 0; 1843 db->pnBytesFreed = (int*)&v; 1844 sqlite3VdbeClearObject(db, pVdbe); 1845 sqlite3DbFree(db, pVdbe); 1846 db->pnBytesFreed = 0; 1847 sqlite3_mutex_leave(db->mutex); 1848 }else{ 1849 v = pVdbe->aCounter[op]; 1850 if( resetFlag ) pVdbe->aCounter[op] = 0; 1851 } 1852 return (int)v; 1853 } 1854 1855 /* 1856 ** Return the SQL associated with a prepared statement 1857 */ 1858 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1859 Vdbe *p = (Vdbe *)pStmt; 1860 return p ? p->zSql : 0; 1861 } 1862 1863 /* 1864 ** Return the SQL associated with a prepared statement with 1865 ** bound parameters expanded. Space to hold the returned string is 1866 ** obtained from sqlite3_malloc(). The caller is responsible for 1867 ** freeing the returned string by passing it to sqlite3_free(). 1868 ** 1869 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1870 ** expanded bound parameters. 1871 */ 1872 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1873 #ifdef SQLITE_OMIT_TRACE 1874 return 0; 1875 #else 1876 char *z = 0; 1877 const char *zSql = sqlite3_sql(pStmt); 1878 if( zSql ){ 1879 Vdbe *p = (Vdbe *)pStmt; 1880 sqlite3_mutex_enter(p->db->mutex); 1881 z = sqlite3VdbeExpandSql(p, zSql); 1882 sqlite3_mutex_leave(p->db->mutex); 1883 } 1884 return z; 1885 #endif 1886 } 1887 1888 #ifdef SQLITE_ENABLE_NORMALIZE 1889 /* 1890 ** Return the normalized SQL associated with a prepared statement. 1891 */ 1892 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1893 Vdbe *p = (Vdbe *)pStmt; 1894 if( p==0 ) return 0; 1895 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1896 sqlite3_mutex_enter(p->db->mutex); 1897 p->zNormSql = sqlite3Normalize(p, p->zSql); 1898 sqlite3_mutex_leave(p->db->mutex); 1899 } 1900 return p->zNormSql; 1901 } 1902 #endif /* SQLITE_ENABLE_NORMALIZE */ 1903 1904 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1905 /* 1906 ** Allocate and populate an UnpackedRecord structure based on the serialized 1907 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1908 ** if successful, or a NULL pointer if an OOM error is encountered. 1909 */ 1910 static UnpackedRecord *vdbeUnpackRecord( 1911 KeyInfo *pKeyInfo, 1912 int nKey, 1913 const void *pKey 1914 ){ 1915 UnpackedRecord *pRet; /* Return value */ 1916 1917 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1918 if( pRet ){ 1919 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1920 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1921 } 1922 return pRet; 1923 } 1924 1925 /* 1926 ** This function is called from within a pre-update callback to retrieve 1927 ** a field of the row currently being updated or deleted. 1928 */ 1929 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1930 PreUpdate *p = db->pPreUpdate; 1931 Mem *pMem; 1932 int rc = SQLITE_OK; 1933 1934 /* Test that this call is being made from within an SQLITE_DELETE or 1935 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1936 if( !p || p->op==SQLITE_INSERT ){ 1937 rc = SQLITE_MISUSE_BKPT; 1938 goto preupdate_old_out; 1939 } 1940 if( p->pPk ){ 1941 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1942 } 1943 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1944 rc = SQLITE_RANGE; 1945 goto preupdate_old_out; 1946 } 1947 1948 /* If the old.* record has not yet been loaded into memory, do so now. */ 1949 if( p->pUnpacked==0 ){ 1950 u32 nRec; 1951 u8 *aRec; 1952 1953 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1954 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1955 aRec = sqlite3DbMallocRaw(db, nRec); 1956 if( !aRec ) goto preupdate_old_out; 1957 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1958 if( rc==SQLITE_OK ){ 1959 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1960 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1961 } 1962 if( rc!=SQLITE_OK ){ 1963 sqlite3DbFree(db, aRec); 1964 goto preupdate_old_out; 1965 } 1966 p->aRecord = aRec; 1967 } 1968 1969 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1970 if( iIdx==p->pTab->iPKey ){ 1971 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1972 }else if( iIdx>=p->pUnpacked->nField ){ 1973 *ppValue = (sqlite3_value *)columnNullValue(); 1974 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1975 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1976 testcase( pMem->flags & MEM_Int ); 1977 testcase( pMem->flags & MEM_IntReal ); 1978 sqlite3VdbeMemRealify(pMem); 1979 } 1980 } 1981 1982 preupdate_old_out: 1983 sqlite3Error(db, rc); 1984 return sqlite3ApiExit(db, rc); 1985 } 1986 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1987 1988 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1989 /* 1990 ** This function is called from within a pre-update callback to retrieve 1991 ** the number of columns in the row being updated, deleted or inserted. 1992 */ 1993 int sqlite3_preupdate_count(sqlite3 *db){ 1994 PreUpdate *p = db->pPreUpdate; 1995 return (p ? p->keyinfo.nKeyField : 0); 1996 } 1997 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1998 1999 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2000 /* 2001 ** This function is designed to be called from within a pre-update callback 2002 ** only. It returns zero if the change that caused the callback was made 2003 ** immediately by a user SQL statement. Or, if the change was made by a 2004 ** trigger program, it returns the number of trigger programs currently 2005 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 2006 ** top-level trigger etc.). 2007 ** 2008 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 2009 ** or SET DEFAULT action is considered a trigger. 2010 */ 2011 int sqlite3_preupdate_depth(sqlite3 *db){ 2012 PreUpdate *p = db->pPreUpdate; 2013 return (p ? p->v->nFrame : 0); 2014 } 2015 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2016 2017 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2018 /* 2019 ** This function is designed to be called from within a pre-update callback 2020 ** only. 2021 */ 2022 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 2023 PreUpdate *p = db->pPreUpdate; 2024 return (p ? p->iBlobWrite : -1); 2025 } 2026 #endif 2027 2028 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2029 /* 2030 ** This function is called from within a pre-update callback to retrieve 2031 ** a field of the row currently being updated or inserted. 2032 */ 2033 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 2034 PreUpdate *p = db->pPreUpdate; 2035 int rc = SQLITE_OK; 2036 Mem *pMem; 2037 2038 if( !p || p->op==SQLITE_DELETE ){ 2039 rc = SQLITE_MISUSE_BKPT; 2040 goto preupdate_new_out; 2041 } 2042 if( p->pPk && p->op!=SQLITE_UPDATE ){ 2043 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 2044 } 2045 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 2046 rc = SQLITE_RANGE; 2047 goto preupdate_new_out; 2048 } 2049 2050 if( p->op==SQLITE_INSERT ){ 2051 /* For an INSERT, memory cell p->iNewReg contains the serialized record 2052 ** that is being inserted. Deserialize it. */ 2053 UnpackedRecord *pUnpack = p->pNewUnpacked; 2054 if( !pUnpack ){ 2055 Mem *pData = &p->v->aMem[p->iNewReg]; 2056 rc = ExpandBlob(pData); 2057 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2058 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 2059 if( !pUnpack ){ 2060 rc = SQLITE_NOMEM; 2061 goto preupdate_new_out; 2062 } 2063 p->pNewUnpacked = pUnpack; 2064 } 2065 pMem = &pUnpack->aMem[iIdx]; 2066 if( iIdx==p->pTab->iPKey ){ 2067 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2068 }else if( iIdx>=pUnpack->nField ){ 2069 pMem = (sqlite3_value *)columnNullValue(); 2070 } 2071 }else{ 2072 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 2073 ** value. Make a copy of the cell contents and return a pointer to it. 2074 ** It is not safe to return a pointer to the memory cell itself as the 2075 ** caller may modify the value text encoding. 2076 */ 2077 assert( p->op==SQLITE_UPDATE ); 2078 if( !p->aNew ){ 2079 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 2080 if( !p->aNew ){ 2081 rc = SQLITE_NOMEM; 2082 goto preupdate_new_out; 2083 } 2084 } 2085 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 2086 pMem = &p->aNew[iIdx]; 2087 if( pMem->flags==0 ){ 2088 if( iIdx==p->pTab->iPKey ){ 2089 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2090 }else{ 2091 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 2092 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2093 } 2094 } 2095 } 2096 *ppValue = pMem; 2097 2098 preupdate_new_out: 2099 sqlite3Error(db, rc); 2100 return sqlite3ApiExit(db, rc); 2101 } 2102 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2103 2104 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2105 /* 2106 ** Return status data for a single loop within query pStmt. 2107 */ 2108 int sqlite3_stmt_scanstatus( 2109 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2110 int idx, /* Index of loop to report on */ 2111 int iScanStatusOp, /* Which metric to return */ 2112 void *pOut /* OUT: Write the answer here */ 2113 ){ 2114 Vdbe *p = (Vdbe*)pStmt; 2115 ScanStatus *pScan; 2116 if( idx<0 || idx>=p->nScan ) return 1; 2117 pScan = &p->aScan[idx]; 2118 switch( iScanStatusOp ){ 2119 case SQLITE_SCANSTAT_NLOOP: { 2120 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2121 break; 2122 } 2123 case SQLITE_SCANSTAT_NVISIT: { 2124 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2125 break; 2126 } 2127 case SQLITE_SCANSTAT_EST: { 2128 double r = 1.0; 2129 LogEst x = pScan->nEst; 2130 while( x<100 ){ 2131 x += 10; 2132 r *= 0.5; 2133 } 2134 *(double*)pOut = r*sqlite3LogEstToInt(x); 2135 break; 2136 } 2137 case SQLITE_SCANSTAT_NAME: { 2138 *(const char**)pOut = pScan->zName; 2139 break; 2140 } 2141 case SQLITE_SCANSTAT_EXPLAIN: { 2142 if( pScan->addrExplain ){ 2143 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2144 }else{ 2145 *(const char**)pOut = 0; 2146 } 2147 break; 2148 } 2149 case SQLITE_SCANSTAT_SELECTID: { 2150 if( pScan->addrExplain ){ 2151 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2152 }else{ 2153 *(int*)pOut = -1; 2154 } 2155 break; 2156 } 2157 default: { 2158 return 1; 2159 } 2160 } 2161 return 0; 2162 } 2163 2164 /* 2165 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2166 */ 2167 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2168 Vdbe *p = (Vdbe*)pStmt; 2169 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2170 } 2171 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2172