xref: /sqlite-3.40.0/src/vdbeapi.c (revision 9f8a4b43)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 #include "os.h"
19 
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 
33 /**************************** sqlite3_value_  *******************************
34 ** The following routines extract information from a Mem or sqlite3_value
35 ** structure.
36 */
37 const void *sqlite3_value_blob(sqlite3_value *pVal){
38   Mem *p = (Mem*)pVal;
39   if( p->flags & (MEM_Blob|MEM_Str) ){
40     sqlite3VdbeMemExpandBlob(p);
41     p->flags &= ~MEM_Str;
42     p->flags |= MEM_Blob;
43     return p->z;
44   }else{
45     return sqlite3_value_text(pVal);
46   }
47 }
48 int sqlite3_value_bytes(sqlite3_value *pVal){
49   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
50 }
51 int sqlite3_value_bytes16(sqlite3_value *pVal){
52   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
53 }
54 double sqlite3_value_double(sqlite3_value *pVal){
55   return sqlite3VdbeRealValue((Mem*)pVal);
56 }
57 int sqlite3_value_int(sqlite3_value *pVal){
58   return sqlite3VdbeIntValue((Mem*)pVal);
59 }
60 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
61   return sqlite3VdbeIntValue((Mem*)pVal);
62 }
63 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
64   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
65 }
66 #ifndef SQLITE_OMIT_UTF16
67 const void *sqlite3_value_text16(sqlite3_value* pVal){
68   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
69 }
70 const void *sqlite3_value_text16be(sqlite3_value *pVal){
71   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
72 }
73 const void *sqlite3_value_text16le(sqlite3_value *pVal){
74   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
75 }
76 #endif /* SQLITE_OMIT_UTF16 */
77 int sqlite3_value_type(sqlite3_value* pVal){
78   return pVal->type;
79 }
80 /* sqlite3_value_numeric_type() defined in vdbe.c */
81 
82 /**************************** sqlite3_result_  *******************************
83 ** The following routines are used by user-defined functions to specify
84 ** the function result.
85 */
86 void sqlite3_result_blob(
87   sqlite3_context *pCtx,
88   const void *z,
89   int n,
90   void (*xDel)(void *)
91 ){
92   assert( n>=0 );
93   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
94 }
95 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
96   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
97 }
98 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
99   pCtx->isError = 1;
100   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
101 }
102 #ifndef SQLITE_OMIT_UTF16
103 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
104   pCtx->isError = 1;
105   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
106 }
107 #endif
108 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
109   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
110 }
111 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
112   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
113 }
114 void sqlite3_result_null(sqlite3_context *pCtx){
115   sqlite3VdbeMemSetNull(&pCtx->s);
116 }
117 void sqlite3_result_text(
118   sqlite3_context *pCtx,
119   const char *z,
120   int n,
121   void (*xDel)(void *)
122 ){
123   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
124 }
125 #ifndef SQLITE_OMIT_UTF16
126 void sqlite3_result_text16(
127   sqlite3_context *pCtx,
128   const void *z,
129   int n,
130   void (*xDel)(void *)
131 ){
132   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
133 }
134 void sqlite3_result_text16be(
135   sqlite3_context *pCtx,
136   const void *z,
137   int n,
138   void (*xDel)(void *)
139 ){
140   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
141 }
142 void sqlite3_result_text16le(
143   sqlite3_context *pCtx,
144   const void *z,
145   int n,
146   void (*xDel)(void *)
147 ){
148   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
149 }
150 #endif /* SQLITE_OMIT_UTF16 */
151 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
152   sqlite3VdbeMemCopy(&pCtx->s, pValue);
153 }
154 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
155   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
156 }
157 
158 /* Force an SQLITE_TOOBIG error. */
159 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
160   sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
161 }
162 
163 
164 /*
165 ** Execute the statement pStmt, either until a row of data is ready, the
166 ** statement is completely executed or an error occurs.
167 **
168 ** This routine implements the bulk of the logic behind the sqlite_step()
169 ** API.  The only thing omitted is the automatic recompile if a
170 ** schema change has occurred.  That detail is handled by the
171 ** outer sqlite3_step() wrapper procedure.
172 */
173 static int sqlite3Step(Vdbe *p){
174   sqlite3 *db;
175   int rc;
176 
177   /* Assert that malloc() has not failed */
178   assert( !sqlite3MallocFailed() );
179 
180   if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
181     return SQLITE_MISUSE;
182   }
183   if( p->aborted ){
184     return SQLITE_ABORT;
185   }
186   if( p->pc<=0 && p->expired ){
187     if( p->rc==SQLITE_OK ){
188       p->rc = SQLITE_SCHEMA;
189     }
190     rc = SQLITE_ERROR;
191     goto end_of_step;
192   }
193   db = p->db;
194   if( sqlite3SafetyOn(db) ){
195     p->rc = SQLITE_MISUSE;
196     return SQLITE_MISUSE;
197   }
198   if( p->pc<0 ){
199     /* If there are no other statements currently running, then
200     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
201     ** from interrupting a statement that has not yet started.
202     */
203     if( db->activeVdbeCnt==0 ){
204       db->u1.isInterrupted = 0;
205     }
206 
207 #ifndef SQLITE_OMIT_TRACE
208     /* Invoke the trace callback if there is one
209     */
210     if( db->xTrace && !db->init.busy ){
211       assert( p->nOp>0 );
212       assert( p->aOp[p->nOp-1].opcode==OP_Noop );
213       assert( p->aOp[p->nOp-1].p3!=0 );
214       assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
215       sqlite3SafetyOff(db);
216       db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
217       if( sqlite3SafetyOn(db) ){
218         p->rc = SQLITE_MISUSE;
219         return SQLITE_MISUSE;
220       }
221     }
222     if( db->xProfile && !db->init.busy ){
223       double rNow;
224       sqlite3OsCurrentTime(&rNow);
225       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
226     }
227 #endif
228 
229     /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
230     ** on in debugging mode.
231     */
232 #ifdef SQLITE_DEBUG
233     if( (db->flags & SQLITE_SqlTrace)!=0 ){
234       sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
235     }
236 #endif /* SQLITE_DEBUG */
237 
238     db->activeVdbeCnt++;
239     p->pc = 0;
240   }
241 #ifndef SQLITE_OMIT_EXPLAIN
242   if( p->explain ){
243     rc = sqlite3VdbeList(p);
244   }else
245 #endif /* SQLITE_OMIT_EXPLAIN */
246   {
247     rc = sqlite3VdbeExec(p);
248   }
249 
250   if( sqlite3SafetyOff(db) ){
251     rc = SQLITE_MISUSE;
252   }
253 
254 #ifndef SQLITE_OMIT_TRACE
255   /* Invoke the profile callback if there is one
256   */
257   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
258     double rNow;
259     u64 elapseTime;
260 
261     sqlite3OsCurrentTime(&rNow);
262     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
263     assert( p->nOp>0 );
264     assert( p->aOp[p->nOp-1].opcode==OP_Noop );
265     assert( p->aOp[p->nOp-1].p3!=0 );
266     assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
267     db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
268   }
269 #endif
270 
271   sqlite3Error(p->db, rc, 0);
272   p->rc = sqlite3ApiExit(p->db, p->rc);
273 end_of_step:
274   assert( (rc&0xff)==rc );
275   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
276     /* This behavior occurs if sqlite3_prepare_v2() was used to build
277     ** the prepared statement.  Return error codes directly */
278     sqlite3Error(p->db, p->rc, 0);
279     return p->rc;
280   }else{
281     /* This is for legacy sqlite3_prepare() builds and when the code
282     ** is SQLITE_ROW or SQLITE_DONE */
283     return rc;
284   }
285 }
286 
287 /*
288 ** This is the top-level implementation of sqlite3_step().  Call
289 ** sqlite3Step() to do most of the work.  If a schema error occurs,
290 ** call sqlite3Reprepare() and try again.
291 */
292 #ifdef SQLITE_OMIT_PARSER
293 int sqlite3_step(sqlite3_stmt *pStmt){
294   return sqlite3Step((Vdbe*)pStmt);
295 }
296 #else
297 int sqlite3_step(sqlite3_stmt *pStmt){
298   int cnt = 0;
299   int rc;
300   Vdbe *v = (Vdbe*)pStmt;
301   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
302          && cnt++ < 5
303          && sqlite3Reprepare(v) ){
304     sqlite3_reset(pStmt);
305     v->expired = 0;
306   }
307   return rc;
308 }
309 #endif
310 
311 /*
312 ** Extract the user data from a sqlite3_context structure and return a
313 ** pointer to it.
314 */
315 void *sqlite3_user_data(sqlite3_context *p){
316   assert( p && p->pFunc );
317   return p->pFunc->pUserData;
318 }
319 
320 /*
321 ** The following is the implementation of an SQL function that always
322 ** fails with an error message stating that the function is used in the
323 ** wrong context.  The sqlite3_overload_function() API might construct
324 ** SQL function that use this routine so that the functions will exist
325 ** for name resolution but are actually overloaded by the xFindFunction
326 ** method of virtual tables.
327 */
328 void sqlite3InvalidFunction(
329   sqlite3_context *context,  /* The function calling context */
330   int argc,                  /* Number of arguments to the function */
331   sqlite3_value **argv       /* Value of each argument */
332 ){
333   const char *zName = context->pFunc->zName;
334   char *zErr;
335   zErr = sqlite3MPrintf(
336       "unable to use function %s in the requested context", zName);
337   sqlite3_result_error(context, zErr, -1);
338   sqliteFree(zErr);
339 }
340 
341 /*
342 ** Allocate or return the aggregate context for a user function.  A new
343 ** context is allocated on the first call.  Subsequent calls return the
344 ** same context that was returned on prior calls.
345 */
346 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
347   Mem *pMem = p->pMem;
348   assert( p && p->pFunc && p->pFunc->xStep );
349   if( (pMem->flags & MEM_Agg)==0 ){
350     if( nByte==0 ){
351       assert( pMem->flags==MEM_Null );
352       pMem->z = 0;
353     }else{
354       pMem->flags = MEM_Agg;
355       pMem->xDel = sqlite3FreeX;
356       pMem->u.pDef = p->pFunc;
357       if( nByte<=NBFS ){
358         pMem->z = pMem->zShort;
359         memset(pMem->z, 0, nByte);
360       }else{
361         pMem->z = sqliteMalloc( nByte );
362       }
363     }
364   }
365   return (void*)pMem->z;
366 }
367 
368 /*
369 ** Return the auxilary data pointer, if any, for the iArg'th argument to
370 ** the user-function defined by pCtx.
371 */
372 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
373   VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc;
374   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
375     return 0;
376   }
377   return pVdbeFunc->apAux[iArg].pAux;
378 }
379 
380 /*
381 ** Set the auxilary data pointer and delete function, for the iArg'th
382 ** argument to the user-function defined by pCtx. Any previous value is
383 ** deleted by calling the delete function specified when it was set.
384 */
385 void sqlite3_set_auxdata(
386   sqlite3_context *pCtx,
387   int iArg,
388   void *pAux,
389   void (*xDelete)(void*)
390 ){
391   struct AuxData *pAuxData;
392   VdbeFunc *pVdbeFunc;
393   if( iArg<0 ) return;
394 
395   pVdbeFunc = pCtx->pVdbeFunc;
396   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
397     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
398     pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc);
399     if( !pVdbeFunc ) return;
400     pCtx->pVdbeFunc = pVdbeFunc;
401     memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0,
402              sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux));
403     pVdbeFunc->nAux = iArg+1;
404     pVdbeFunc->pFunc = pCtx->pFunc;
405   }
406 
407   pAuxData = &pVdbeFunc->apAux[iArg];
408   if( pAuxData->pAux && pAuxData->xDelete ){
409     pAuxData->xDelete(pAuxData->pAux);
410   }
411   pAuxData->pAux = pAux;
412   pAuxData->xDelete = xDelete;
413 }
414 
415 /*
416 ** Return the number of times the Step function of a aggregate has been
417 ** called.
418 **
419 ** This function is deprecated.  Do not use it for new code.  It is
420 ** provide only to avoid breaking legacy code.  New aggregate function
421 ** implementations should keep their own counts within their aggregate
422 ** context.
423 */
424 int sqlite3_aggregate_count(sqlite3_context *p){
425   assert( p && p->pFunc && p->pFunc->xStep );
426   return p->pMem->n;
427 }
428 
429 /*
430 ** Return the number of columns in the result set for the statement pStmt.
431 */
432 int sqlite3_column_count(sqlite3_stmt *pStmt){
433   Vdbe *pVm = (Vdbe *)pStmt;
434   return pVm ? pVm->nResColumn : 0;
435 }
436 
437 /*
438 ** Return the number of values available from the current row of the
439 ** currently executing statement pStmt.
440 */
441 int sqlite3_data_count(sqlite3_stmt *pStmt){
442   Vdbe *pVm = (Vdbe *)pStmt;
443   if( pVm==0 || !pVm->resOnStack ) return 0;
444   return pVm->nResColumn;
445 }
446 
447 
448 /*
449 ** Check to see if column iCol of the given statement is valid.  If
450 ** it is, return a pointer to the Mem for the value of that column.
451 ** If iCol is not valid, return a pointer to a Mem which has a value
452 ** of NULL.
453 */
454 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
455   Vdbe *pVm = (Vdbe *)pStmt;
456   int vals = sqlite3_data_count(pStmt);
457   if( pVm==0 || pVm->resOnStack==0 || i>=pVm->nResColumn || i<0 ){
458     static const Mem nullMem = {{0}, 0.0, "", 0, MEM_Null, SQLITE_NULL };
459     sqlite3Error(pVm->db, SQLITE_RANGE, 0);
460     return (Mem*)&nullMem;
461   }
462   return &pVm->pTos[(1-vals)+i];
463 }
464 
465 /*
466 ** This function is called after invoking an sqlite3_value_XXX function on a
467 ** column value (i.e. a value returned by evaluating an SQL expression in the
468 ** select list of a SELECT statement) that may cause a malloc() failure. If
469 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
470 ** code of statement pStmt set to SQLITE_NOMEM.
471 **
472 ** Specificly, this is called from within:
473 **
474 **     sqlite3_column_int()
475 **     sqlite3_column_int64()
476 **     sqlite3_column_text()
477 **     sqlite3_column_text16()
478 **     sqlite3_column_real()
479 **     sqlite3_column_bytes()
480 **     sqlite3_column_bytes16()
481 **
482 ** But not for sqlite3_column_blob(), which never calls malloc().
483 */
484 static void columnMallocFailure(sqlite3_stmt *pStmt)
485 {
486   /* If malloc() failed during an encoding conversion within an
487   ** sqlite3_column_XXX API, then set the return code of the statement to
488   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
489   ** and _finalize() will return NOMEM.
490   */
491   Vdbe *p = (Vdbe *)pStmt;
492   p->rc = sqlite3ApiExit(0, p->rc);
493 }
494 
495 /**************************** sqlite3_column_  *******************************
496 ** The following routines are used to access elements of the current row
497 ** in the result set.
498 */
499 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
500   const void *val;
501   val = sqlite3_value_blob( columnMem(pStmt,i) );
502   /* Even though there is no encoding conversion, value_blob() might
503   ** need to call malloc() to expand the result of a zeroblob()
504   ** expression.
505   */
506   columnMallocFailure(pStmt);
507   return val;
508 }
509 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
510   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
511   columnMallocFailure(pStmt);
512   return val;
513 }
514 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
515   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
516   columnMallocFailure(pStmt);
517   return val;
518 }
519 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
520   double val = sqlite3_value_double( columnMem(pStmt,i) );
521   columnMallocFailure(pStmt);
522   return val;
523 }
524 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
525   int val = sqlite3_value_int( columnMem(pStmt,i) );
526   columnMallocFailure(pStmt);
527   return val;
528 }
529 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
530   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
531   columnMallocFailure(pStmt);
532   return val;
533 }
534 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
535   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
536   columnMallocFailure(pStmt);
537   return val;
538 }
539 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
540   return columnMem(pStmt, i);
541 }
542 #ifndef SQLITE_OMIT_UTF16
543 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
544   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
545   columnMallocFailure(pStmt);
546   return val;
547 }
548 #endif /* SQLITE_OMIT_UTF16 */
549 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
550   return sqlite3_value_type( columnMem(pStmt,i) );
551 }
552 
553 /* The following function is experimental and subject to change or
554 ** removal */
555 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
556 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
557 **}
558 */
559 
560 /*
561 ** Convert the N-th element of pStmt->pColName[] into a string using
562 ** xFunc() then return that string.  If N is out of range, return 0.
563 **
564 ** There are up to 5 names for each column.  useType determines which
565 ** name is returned.  Here are the names:
566 **
567 **    0      The column name as it should be displayed for output
568 **    1      The datatype name for the column
569 **    2      The name of the database that the column derives from
570 **    3      The name of the table that the column derives from
571 **    4      The name of the table column that the result column derives from
572 **
573 ** If the result is not a simple column reference (if it is an expression
574 ** or a constant) then useTypes 2, 3, and 4 return NULL.
575 */
576 static const void *columnName(
577   sqlite3_stmt *pStmt,
578   int N,
579   const void *(*xFunc)(Mem*),
580   int useType
581 ){
582   const void *ret;
583   Vdbe *p = (Vdbe *)pStmt;
584   int n = sqlite3_column_count(pStmt);
585 
586   if( p==0 || N>=n || N<0 ){
587     return 0;
588   }
589   N += useType*n;
590   ret = xFunc(&p->aColName[N]);
591 
592   /* A malloc may have failed inside of the xFunc() call. If this is the case,
593   ** clear the mallocFailed flag and return NULL.
594   */
595   sqlite3ApiExit(0, 0);
596   return ret;
597 }
598 
599 /*
600 ** Return the name of the Nth column of the result set returned by SQL
601 ** statement pStmt.
602 */
603 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
604   return columnName(
605       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
606 }
607 #ifndef SQLITE_OMIT_UTF16
608 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
609   return columnName(
610       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
611 }
612 #endif
613 
614 /*
615 ** Return the column declaration type (if applicable) of the 'i'th column
616 ** of the result set of SQL statement pStmt.
617 */
618 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
619   return columnName(
620       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
621 }
622 #ifndef SQLITE_OMIT_UTF16
623 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
624   return columnName(
625       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
626 }
627 #endif /* SQLITE_OMIT_UTF16 */
628 
629 #ifdef SQLITE_ENABLE_COLUMN_METADATA
630 /*
631 ** Return the name of the database from which a result column derives.
632 ** NULL is returned if the result column is an expression or constant or
633 ** anything else which is not an unabiguous reference to a database column.
634 */
635 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
636   return columnName(
637       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
638 }
639 #ifndef SQLITE_OMIT_UTF16
640 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
641   return columnName(
642       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
643 }
644 #endif /* SQLITE_OMIT_UTF16 */
645 
646 /*
647 ** Return the name of the table from which a result column derives.
648 ** NULL is returned if the result column is an expression or constant or
649 ** anything else which is not an unabiguous reference to a database column.
650 */
651 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
652   return columnName(
653       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
654 }
655 #ifndef SQLITE_OMIT_UTF16
656 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
657   return columnName(
658       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
659 }
660 #endif /* SQLITE_OMIT_UTF16 */
661 
662 /*
663 ** Return the name of the table column from which a result column derives.
664 ** NULL is returned if the result column is an expression or constant or
665 ** anything else which is not an unabiguous reference to a database column.
666 */
667 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
668   return columnName(
669       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
670 }
671 #ifndef SQLITE_OMIT_UTF16
672 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
673   return columnName(
674       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
675 }
676 #endif /* SQLITE_OMIT_UTF16 */
677 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
678 
679 
680 /******************************* sqlite3_bind_  ***************************
681 **
682 ** Routines used to attach values to wildcards in a compiled SQL statement.
683 */
684 /*
685 ** Unbind the value bound to variable i in virtual machine p. This is the
686 ** the same as binding a NULL value to the column. If the "i" parameter is
687 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
688 **
689 ** The error code stored in database p->db is overwritten with the return
690 ** value in any case.
691 */
692 static int vdbeUnbind(Vdbe *p, int i){
693   Mem *pVar;
694   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
695     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
696     return SQLITE_MISUSE;
697   }
698   if( i<1 || i>p->nVar ){
699     sqlite3Error(p->db, SQLITE_RANGE, 0);
700     return SQLITE_RANGE;
701   }
702   i--;
703   pVar = &p->aVar[i];
704   sqlite3VdbeMemRelease(pVar);
705   pVar->flags = MEM_Null;
706   sqlite3Error(p->db, SQLITE_OK, 0);
707   return SQLITE_OK;
708 }
709 
710 /*
711 ** Bind a text or BLOB value.
712 */
713 static int bindText(
714   sqlite3_stmt *pStmt,
715   int i,
716   const void *zData,
717   int nData,
718   void (*xDel)(void*),
719   int encoding
720 ){
721   Vdbe *p = (Vdbe *)pStmt;
722   Mem *pVar;
723   int rc;
724 
725   rc = vdbeUnbind(p, i);
726   if( rc || zData==0 ){
727     return rc;
728   }
729   pVar = &p->aVar[i-1];
730   rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
731   if( rc==SQLITE_OK && encoding!=0 ){
732     rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
733   }
734 
735   sqlite3Error(((Vdbe *)pStmt)->db, rc, 0);
736   return sqlite3ApiExit(((Vdbe *)pStmt)->db, rc);
737 }
738 
739 
740 /*
741 ** Bind a blob value to an SQL statement variable.
742 */
743 int sqlite3_bind_blob(
744   sqlite3_stmt *pStmt,
745   int i,
746   const void *zData,
747   int nData,
748   void (*xDel)(void*)
749 ){
750   return bindText(pStmt, i, zData, nData, xDel, 0);
751 }
752 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
753   int rc;
754   Vdbe *p = (Vdbe *)pStmt;
755   rc = vdbeUnbind(p, i);
756   if( rc==SQLITE_OK ){
757     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
758   }
759   return rc;
760 }
761 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
762   return sqlite3_bind_int64(p, i, (i64)iValue);
763 }
764 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
765   int rc;
766   Vdbe *p = (Vdbe *)pStmt;
767   rc = vdbeUnbind(p, i);
768   if( rc==SQLITE_OK ){
769     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
770   }
771   return rc;
772 }
773 int sqlite3_bind_null(sqlite3_stmt* p, int i){
774   return vdbeUnbind((Vdbe *)p, i);
775 }
776 int sqlite3_bind_text(
777   sqlite3_stmt *pStmt,
778   int i,
779   const char *zData,
780   int nData,
781   void (*xDel)(void*)
782 ){
783   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
784 }
785 #ifndef SQLITE_OMIT_UTF16
786 int sqlite3_bind_text16(
787   sqlite3_stmt *pStmt,
788   int i,
789   const void *zData,
790   int nData,
791   void (*xDel)(void*)
792 ){
793   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
794 }
795 #endif /* SQLITE_OMIT_UTF16 */
796 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
797   int rc;
798   Vdbe *p = (Vdbe *)pStmt;
799   rc = vdbeUnbind(p, i);
800   if( rc==SQLITE_OK ){
801     sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
802   }
803   return rc;
804 }
805 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
806   int rc;
807   Vdbe *p = (Vdbe *)pStmt;
808   rc = vdbeUnbind(p, i);
809   if( rc==SQLITE_OK ){
810     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
811   }
812   return rc;
813 }
814 
815 /*
816 ** Return the number of wildcards that can be potentially bound to.
817 ** This routine is added to support DBD::SQLite.
818 */
819 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
820   Vdbe *p = (Vdbe*)pStmt;
821   return p ? p->nVar : 0;
822 }
823 
824 /*
825 ** Create a mapping from variable numbers to variable names
826 ** in the Vdbe.azVar[] array, if such a mapping does not already
827 ** exist.
828 */
829 static void createVarMap(Vdbe *p){
830   if( !p->okVar ){
831     int j;
832     Op *pOp;
833     for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
834       if( pOp->opcode==OP_Variable ){
835         assert( pOp->p1>0 && pOp->p1<=p->nVar );
836         p->azVar[pOp->p1-1] = pOp->p3;
837       }
838     }
839     p->okVar = 1;
840   }
841 }
842 
843 /*
844 ** Return the name of a wildcard parameter.  Return NULL if the index
845 ** is out of range or if the wildcard is unnamed.
846 **
847 ** The result is always UTF-8.
848 */
849 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
850   Vdbe *p = (Vdbe*)pStmt;
851   if( p==0 || i<1 || i>p->nVar ){
852     return 0;
853   }
854   createVarMap(p);
855   return p->azVar[i-1];
856 }
857 
858 /*
859 ** Given a wildcard parameter name, return the index of the variable
860 ** with that name.  If there is no variable with the given name,
861 ** return 0.
862 */
863 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
864   Vdbe *p = (Vdbe*)pStmt;
865   int i;
866   if( p==0 ){
867     return 0;
868   }
869   createVarMap(p);
870   if( zName ){
871     for(i=0; i<p->nVar; i++){
872       const char *z = p->azVar[i];
873       if( z && strcmp(z,zName)==0 ){
874         return i+1;
875       }
876     }
877   }
878   return 0;
879 }
880 
881 /*
882 ** Transfer all bindings from the first statement over to the second.
883 ** If the two statements contain a different number of bindings, then
884 ** an SQLITE_ERROR is returned.
885 */
886 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
887   Vdbe *pFrom = (Vdbe*)pFromStmt;
888   Vdbe *pTo = (Vdbe*)pToStmt;
889   int i, rc = SQLITE_OK;
890   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
891     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) ){
892     return SQLITE_MISUSE;
893   }
894   if( pFrom->nVar!=pTo->nVar ){
895     return SQLITE_ERROR;
896   }
897   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
898     sqlite3MallocDisallow();
899     rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
900     sqlite3MallocAllow();
901   }
902   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
903   return rc;
904 }
905 
906 /*
907 ** Return the sqlite3* database handle to which the prepared statement given
908 ** in the argument belongs.  This is the same database handle that was
909 ** the first argument to the sqlite3_prepare() that was used to create
910 ** the statement in the first place.
911 */
912 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
913   return pStmt ? ((Vdbe*)pStmt)->db : 0;
914 }
915