1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 assert( p->startTime>0 ); 64 assert( db->xProfile!=0 ); 65 assert( db->init.busy==0 ); 66 assert( p->zSql!=0 ); 67 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 68 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 69 p->startTime = 0; 70 } 71 /* 72 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 73 ** is needed, and it invokes the callback if it is needed. 74 */ 75 # define checkProfileCallback(DB,P) \ 76 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 77 #else 78 # define checkProfileCallback(DB,P) /*no-op*/ 79 #endif 80 81 /* 82 ** The following routine destroys a virtual machine that is created by 83 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 84 ** success/failure code that describes the result of executing the virtual 85 ** machine. 86 ** 87 ** This routine sets the error code and string returned by 88 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 89 */ 90 int sqlite3_finalize(sqlite3_stmt *pStmt){ 91 int rc; 92 if( pStmt==0 ){ 93 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 94 ** pointer is a harmless no-op. */ 95 rc = SQLITE_OK; 96 }else{ 97 Vdbe *v = (Vdbe*)pStmt; 98 sqlite3 *db = v->db; 99 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 100 sqlite3_mutex_enter(db->mutex); 101 checkProfileCallback(db, v); 102 rc = sqlite3VdbeFinalize(v); 103 rc = sqlite3ApiExit(db, rc); 104 sqlite3LeaveMutexAndCloseZombie(db); 105 } 106 return rc; 107 } 108 109 /* 110 ** Terminate the current execution of an SQL statement and reset it 111 ** back to its starting state so that it can be reused. A success code from 112 ** the prior execution is returned. 113 ** 114 ** This routine sets the error code and string returned by 115 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 116 */ 117 int sqlite3_reset(sqlite3_stmt *pStmt){ 118 int rc; 119 if( pStmt==0 ){ 120 rc = SQLITE_OK; 121 }else{ 122 Vdbe *v = (Vdbe*)pStmt; 123 sqlite3 *db = v->db; 124 sqlite3_mutex_enter(db->mutex); 125 checkProfileCallback(db, v); 126 rc = sqlite3VdbeReset(v); 127 sqlite3VdbeRewind(v); 128 assert( (rc & (db->errMask))==rc ); 129 rc = sqlite3ApiExit(db, rc); 130 sqlite3_mutex_leave(db->mutex); 131 } 132 return rc; 133 } 134 135 /* 136 ** Set all the parameters in the compiled SQL statement to NULL. 137 */ 138 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 139 int i; 140 int rc = SQLITE_OK; 141 Vdbe *p = (Vdbe*)pStmt; 142 #if SQLITE_THREADSAFE 143 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 144 #endif 145 sqlite3_mutex_enter(mutex); 146 for(i=0; i<p->nVar; i++){ 147 sqlite3VdbeMemRelease(&p->aVar[i]); 148 p->aVar[i].flags = MEM_Null; 149 } 150 if( p->isPrepareV2 && p->expmask ){ 151 p->expired = 1; 152 } 153 sqlite3_mutex_leave(mutex); 154 return rc; 155 } 156 157 158 /**************************** sqlite3_value_ ******************************* 159 ** The following routines extract information from a Mem or sqlite3_value 160 ** structure. 161 */ 162 const void *sqlite3_value_blob(sqlite3_value *pVal){ 163 Mem *p = (Mem*)pVal; 164 if( p->flags & (MEM_Blob|MEM_Str) ){ 165 if( sqlite3VdbeMemExpandBlob(p)!=SQLITE_OK ){ 166 assert( p->flags==MEM_Null && p->z==0 ); 167 return 0; 168 } 169 p->flags |= MEM_Blob; 170 return p->n ? p->z : 0; 171 }else{ 172 return sqlite3_value_text(pVal); 173 } 174 } 175 int sqlite3_value_bytes(sqlite3_value *pVal){ 176 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 177 } 178 int sqlite3_value_bytes16(sqlite3_value *pVal){ 179 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 180 } 181 double sqlite3_value_double(sqlite3_value *pVal){ 182 return sqlite3VdbeRealValue((Mem*)pVal); 183 } 184 int sqlite3_value_int(sqlite3_value *pVal){ 185 return (int)sqlite3VdbeIntValue((Mem*)pVal); 186 } 187 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 188 return sqlite3VdbeIntValue((Mem*)pVal); 189 } 190 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 191 Mem *pMem = (Mem*)pVal; 192 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 193 } 194 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 195 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 196 } 197 #ifndef SQLITE_OMIT_UTF16 198 const void *sqlite3_value_text16(sqlite3_value* pVal){ 199 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 200 } 201 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 202 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 203 } 204 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 205 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 206 } 207 #endif /* SQLITE_OMIT_UTF16 */ 208 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 209 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 210 ** point number string BLOB NULL 211 */ 212 int sqlite3_value_type(sqlite3_value* pVal){ 213 static const u8 aType[] = { 214 SQLITE_BLOB, /* 0x00 */ 215 SQLITE_NULL, /* 0x01 */ 216 SQLITE_TEXT, /* 0x02 */ 217 SQLITE_NULL, /* 0x03 */ 218 SQLITE_INTEGER, /* 0x04 */ 219 SQLITE_NULL, /* 0x05 */ 220 SQLITE_INTEGER, /* 0x06 */ 221 SQLITE_NULL, /* 0x07 */ 222 SQLITE_FLOAT, /* 0x08 */ 223 SQLITE_NULL, /* 0x09 */ 224 SQLITE_FLOAT, /* 0x0a */ 225 SQLITE_NULL, /* 0x0b */ 226 SQLITE_INTEGER, /* 0x0c */ 227 SQLITE_NULL, /* 0x0d */ 228 SQLITE_INTEGER, /* 0x0e */ 229 SQLITE_NULL, /* 0x0f */ 230 SQLITE_BLOB, /* 0x10 */ 231 SQLITE_NULL, /* 0x11 */ 232 SQLITE_TEXT, /* 0x12 */ 233 SQLITE_NULL, /* 0x13 */ 234 SQLITE_INTEGER, /* 0x14 */ 235 SQLITE_NULL, /* 0x15 */ 236 SQLITE_INTEGER, /* 0x16 */ 237 SQLITE_NULL, /* 0x17 */ 238 SQLITE_FLOAT, /* 0x18 */ 239 SQLITE_NULL, /* 0x19 */ 240 SQLITE_FLOAT, /* 0x1a */ 241 SQLITE_NULL, /* 0x1b */ 242 SQLITE_INTEGER, /* 0x1c */ 243 SQLITE_NULL, /* 0x1d */ 244 SQLITE_INTEGER, /* 0x1e */ 245 SQLITE_NULL, /* 0x1f */ 246 }; 247 return aType[pVal->flags&MEM_AffMask]; 248 } 249 250 /* Make a copy of an sqlite3_value object 251 */ 252 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 253 sqlite3_value *pNew; 254 if( pOrig==0 ) return 0; 255 pNew = sqlite3_malloc( sizeof(*pNew) ); 256 if( pNew==0 ) return 0; 257 memset(pNew, 0, sizeof(*pNew)); 258 memcpy(pNew, pOrig, MEMCELLSIZE); 259 pNew->flags &= ~MEM_Dyn; 260 pNew->db = 0; 261 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 262 pNew->flags &= ~(MEM_Static|MEM_Dyn); 263 pNew->flags |= MEM_Ephem; 264 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 265 sqlite3ValueFree(pNew); 266 pNew = 0; 267 } 268 } 269 return pNew; 270 } 271 272 /* Destroy an sqlite3_value object previously obtained from 273 ** sqlite3_value_dup(). 274 */ 275 void sqlite3_value_free(sqlite3_value *pOld){ 276 sqlite3ValueFree(pOld); 277 } 278 279 280 /**************************** sqlite3_result_ ******************************* 281 ** The following routines are used by user-defined functions to specify 282 ** the function result. 283 ** 284 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 285 ** result as a string or blob but if the string or blob is too large, it 286 ** then sets the error code to SQLITE_TOOBIG 287 ** 288 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 289 ** on value P is not going to be used and need to be destroyed. 290 */ 291 static void setResultStrOrError( 292 sqlite3_context *pCtx, /* Function context */ 293 const char *z, /* String pointer */ 294 int n, /* Bytes in string, or negative */ 295 u8 enc, /* Encoding of z. 0 for BLOBs */ 296 void (*xDel)(void*) /* Destructor function */ 297 ){ 298 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 299 sqlite3_result_error_toobig(pCtx); 300 } 301 } 302 static int invokeValueDestructor( 303 const void *p, /* Value to destroy */ 304 void (*xDel)(void*), /* The destructor */ 305 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 306 ){ 307 assert( xDel!=SQLITE_DYNAMIC ); 308 if( xDel==0 ){ 309 /* noop */ 310 }else if( xDel==SQLITE_TRANSIENT ){ 311 /* noop */ 312 }else{ 313 xDel((void*)p); 314 } 315 if( pCtx ) sqlite3_result_error_toobig(pCtx); 316 return SQLITE_TOOBIG; 317 } 318 void sqlite3_result_blob( 319 sqlite3_context *pCtx, 320 const void *z, 321 int n, 322 void (*xDel)(void *) 323 ){ 324 assert( n>=0 ); 325 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 326 setResultStrOrError(pCtx, z, n, 0, xDel); 327 } 328 void sqlite3_result_blob64( 329 sqlite3_context *pCtx, 330 const void *z, 331 sqlite3_uint64 n, 332 void (*xDel)(void *) 333 ){ 334 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 335 assert( xDel!=SQLITE_DYNAMIC ); 336 if( n>0x7fffffff ){ 337 (void)invokeValueDestructor(z, xDel, pCtx); 338 }else{ 339 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 340 } 341 } 342 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 343 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 344 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 345 } 346 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 347 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 348 pCtx->isError = SQLITE_ERROR; 349 pCtx->fErrorOrAux = 1; 350 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 351 } 352 #ifndef SQLITE_OMIT_UTF16 353 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 354 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 355 pCtx->isError = SQLITE_ERROR; 356 pCtx->fErrorOrAux = 1; 357 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 358 } 359 #endif 360 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 361 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 362 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 363 } 364 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 365 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 366 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 367 } 368 void sqlite3_result_null(sqlite3_context *pCtx){ 369 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 370 sqlite3VdbeMemSetNull(pCtx->pOut); 371 } 372 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 373 Mem *pOut = pCtx->pOut; 374 assert( sqlite3_mutex_held(pOut->db->mutex) ); 375 pOut->eSubtype = eSubtype & 0xff; 376 pOut->flags |= MEM_Subtype; 377 } 378 void sqlite3_result_text( 379 sqlite3_context *pCtx, 380 const char *z, 381 int n, 382 void (*xDel)(void *) 383 ){ 384 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 385 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 386 } 387 void sqlite3_result_text64( 388 sqlite3_context *pCtx, 389 const char *z, 390 sqlite3_uint64 n, 391 void (*xDel)(void *), 392 unsigned char enc 393 ){ 394 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 395 assert( xDel!=SQLITE_DYNAMIC ); 396 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 397 if( n>0x7fffffff ){ 398 (void)invokeValueDestructor(z, xDel, pCtx); 399 }else{ 400 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 401 } 402 } 403 #ifndef SQLITE_OMIT_UTF16 404 void sqlite3_result_text16( 405 sqlite3_context *pCtx, 406 const void *z, 407 int n, 408 void (*xDel)(void *) 409 ){ 410 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 411 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 412 } 413 void sqlite3_result_text16be( 414 sqlite3_context *pCtx, 415 const void *z, 416 int n, 417 void (*xDel)(void *) 418 ){ 419 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 420 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 421 } 422 void sqlite3_result_text16le( 423 sqlite3_context *pCtx, 424 const void *z, 425 int n, 426 void (*xDel)(void *) 427 ){ 428 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 429 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 430 } 431 #endif /* SQLITE_OMIT_UTF16 */ 432 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 433 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 434 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 435 } 436 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 437 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 438 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 439 } 440 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 441 Mem *pOut = pCtx->pOut; 442 assert( sqlite3_mutex_held(pOut->db->mutex) ); 443 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 444 return SQLITE_TOOBIG; 445 } 446 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 447 return SQLITE_OK; 448 } 449 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 450 pCtx->isError = errCode; 451 pCtx->fErrorOrAux = 1; 452 #ifdef SQLITE_DEBUG 453 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 454 #endif 455 if( pCtx->pOut->flags & MEM_Null ){ 456 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 457 SQLITE_UTF8, SQLITE_STATIC); 458 } 459 } 460 461 /* Force an SQLITE_TOOBIG error. */ 462 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 463 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 464 pCtx->isError = SQLITE_TOOBIG; 465 pCtx->fErrorOrAux = 1; 466 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 467 SQLITE_UTF8, SQLITE_STATIC); 468 } 469 470 /* An SQLITE_NOMEM error. */ 471 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 472 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 473 sqlite3VdbeMemSetNull(pCtx->pOut); 474 pCtx->isError = SQLITE_NOMEM_BKPT; 475 pCtx->fErrorOrAux = 1; 476 sqlite3OomFault(pCtx->pOut->db); 477 } 478 479 /* 480 ** This function is called after a transaction has been committed. It 481 ** invokes callbacks registered with sqlite3_wal_hook() as required. 482 */ 483 static int doWalCallbacks(sqlite3 *db){ 484 int rc = SQLITE_OK; 485 #ifndef SQLITE_OMIT_WAL 486 int i; 487 for(i=0; i<db->nDb; i++){ 488 Btree *pBt = db->aDb[i].pBt; 489 if( pBt ){ 490 int nEntry; 491 sqlite3BtreeEnter(pBt); 492 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 493 sqlite3BtreeLeave(pBt); 494 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 495 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 496 } 497 } 498 } 499 #endif 500 return rc; 501 } 502 503 504 /* 505 ** Execute the statement pStmt, either until a row of data is ready, the 506 ** statement is completely executed or an error occurs. 507 ** 508 ** This routine implements the bulk of the logic behind the sqlite_step() 509 ** API. The only thing omitted is the automatic recompile if a 510 ** schema change has occurred. That detail is handled by the 511 ** outer sqlite3_step() wrapper procedure. 512 */ 513 static int sqlite3Step(Vdbe *p){ 514 sqlite3 *db; 515 int rc; 516 517 assert(p); 518 if( p->magic!=VDBE_MAGIC_RUN ){ 519 /* We used to require that sqlite3_reset() be called before retrying 520 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 521 ** with version 3.7.0, we changed this so that sqlite3_reset() would 522 ** be called automatically instead of throwing the SQLITE_MISUSE error. 523 ** This "automatic-reset" change is not technically an incompatibility, 524 ** since any application that receives an SQLITE_MISUSE is broken by 525 ** definition. 526 ** 527 ** Nevertheless, some published applications that were originally written 528 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 529 ** returns, and those were broken by the automatic-reset change. As a 530 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 531 ** legacy behavior of returning SQLITE_MISUSE for cases where the 532 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 533 ** or SQLITE_BUSY error. 534 */ 535 #ifdef SQLITE_OMIT_AUTORESET 536 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 537 sqlite3_reset((sqlite3_stmt*)p); 538 }else{ 539 return SQLITE_MISUSE_BKPT; 540 } 541 #else 542 sqlite3_reset((sqlite3_stmt*)p); 543 #endif 544 } 545 546 /* Check that malloc() has not failed. If it has, return early. */ 547 db = p->db; 548 if( db->mallocFailed ){ 549 p->rc = SQLITE_NOMEM; 550 return SQLITE_NOMEM_BKPT; 551 } 552 553 if( p->pc<=0 && p->expired ){ 554 p->rc = SQLITE_SCHEMA; 555 rc = SQLITE_ERROR; 556 goto end_of_step; 557 } 558 if( p->pc<0 ){ 559 /* If there are no other statements currently running, then 560 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 561 ** from interrupting a statement that has not yet started. 562 */ 563 if( db->nVdbeActive==0 ){ 564 db->u1.isInterrupted = 0; 565 } 566 567 assert( db->nVdbeWrite>0 || db->autoCommit==0 568 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 569 ); 570 571 #ifndef SQLITE_OMIT_TRACE 572 if( db->xProfile && !db->init.busy && p->zSql ){ 573 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 574 }else{ 575 assert( p->startTime==0 ); 576 } 577 #endif 578 579 db->nVdbeActive++; 580 if( p->readOnly==0 ) db->nVdbeWrite++; 581 if( p->bIsReader ) db->nVdbeRead++; 582 p->pc = 0; 583 } 584 #ifdef SQLITE_DEBUG 585 p->rcApp = SQLITE_OK; 586 #endif 587 #ifndef SQLITE_OMIT_EXPLAIN 588 if( p->explain ){ 589 rc = sqlite3VdbeList(p); 590 }else 591 #endif /* SQLITE_OMIT_EXPLAIN */ 592 { 593 db->nVdbeExec++; 594 rc = sqlite3VdbeExec(p); 595 db->nVdbeExec--; 596 } 597 598 #ifndef SQLITE_OMIT_TRACE 599 /* If the statement completed successfully, invoke the profile callback */ 600 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 601 #endif 602 603 if( rc==SQLITE_DONE ){ 604 assert( p->rc==SQLITE_OK ); 605 p->rc = doWalCallbacks(db); 606 if( p->rc!=SQLITE_OK ){ 607 rc = SQLITE_ERROR; 608 } 609 } 610 611 db->errCode = rc; 612 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 613 p->rc = SQLITE_NOMEM_BKPT; 614 } 615 end_of_step: 616 /* At this point local variable rc holds the value that should be 617 ** returned if this statement was compiled using the legacy 618 ** sqlite3_prepare() interface. According to the docs, this can only 619 ** be one of the values in the first assert() below. Variable p->rc 620 ** contains the value that would be returned if sqlite3_finalize() 621 ** were called on statement p. 622 */ 623 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 624 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 625 ); 626 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 627 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 628 /* If this statement was prepared using sqlite3_prepare_v2(), and an 629 ** error has occurred, then return the error code in p->rc to the 630 ** caller. Set the error code in the database handle to the same value. 631 */ 632 rc = sqlite3VdbeTransferError(p); 633 } 634 return (rc&db->errMask); 635 } 636 637 /* 638 ** This is the top-level implementation of sqlite3_step(). Call 639 ** sqlite3Step() to do most of the work. If a schema error occurs, 640 ** call sqlite3Reprepare() and try again. 641 */ 642 int sqlite3_step(sqlite3_stmt *pStmt){ 643 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 644 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 645 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 646 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 647 sqlite3 *db; /* The database connection */ 648 649 if( vdbeSafetyNotNull(v) ){ 650 return SQLITE_MISUSE_BKPT; 651 } 652 db = v->db; 653 sqlite3_mutex_enter(db->mutex); 654 v->doingRerun = 0; 655 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 656 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 657 int savedPc = v->pc; 658 rc2 = rc = sqlite3Reprepare(v); 659 if( rc!=SQLITE_OK) break; 660 sqlite3_reset(pStmt); 661 if( savedPc>=0 ) v->doingRerun = 1; 662 assert( v->expired==0 ); 663 } 664 if( rc2!=SQLITE_OK ){ 665 /* This case occurs after failing to recompile an sql statement. 666 ** The error message from the SQL compiler has already been loaded 667 ** into the database handle. This block copies the error message 668 ** from the database handle into the statement and sets the statement 669 ** program counter to 0 to ensure that when the statement is 670 ** finalized or reset the parser error message is available via 671 ** sqlite3_errmsg() and sqlite3_errcode(). 672 */ 673 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 674 sqlite3DbFree(db, v->zErrMsg); 675 if( !db->mallocFailed ){ 676 v->zErrMsg = sqlite3DbStrDup(db, zErr); 677 v->rc = rc2; 678 } else { 679 v->zErrMsg = 0; 680 v->rc = rc = SQLITE_NOMEM_BKPT; 681 } 682 } 683 rc = sqlite3ApiExit(db, rc); 684 sqlite3_mutex_leave(db->mutex); 685 return rc; 686 } 687 688 689 /* 690 ** Extract the user data from a sqlite3_context structure and return a 691 ** pointer to it. 692 */ 693 void *sqlite3_user_data(sqlite3_context *p){ 694 assert( p && p->pFunc ); 695 return p->pFunc->pUserData; 696 } 697 698 /* 699 ** Extract the user data from a sqlite3_context structure and return a 700 ** pointer to it. 701 ** 702 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 703 ** returns a copy of the pointer to the database connection (the 1st 704 ** parameter) of the sqlite3_create_function() and 705 ** sqlite3_create_function16() routines that originally registered the 706 ** application defined function. 707 */ 708 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 709 assert( p && p->pOut ); 710 return p->pOut->db; 711 } 712 713 /* 714 ** Return the current time for a statement. If the current time 715 ** is requested more than once within the same run of a single prepared 716 ** statement, the exact same time is returned for each invocation regardless 717 ** of the amount of time that elapses between invocations. In other words, 718 ** the time returned is always the time of the first call. 719 */ 720 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 721 int rc; 722 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 723 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 724 assert( p->pVdbe!=0 ); 725 #else 726 sqlite3_int64 iTime = 0; 727 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 728 #endif 729 if( *piTime==0 ){ 730 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 731 if( rc ) *piTime = 0; 732 } 733 return *piTime; 734 } 735 736 /* 737 ** The following is the implementation of an SQL function that always 738 ** fails with an error message stating that the function is used in the 739 ** wrong context. The sqlite3_overload_function() API might construct 740 ** SQL function that use this routine so that the functions will exist 741 ** for name resolution but are actually overloaded by the xFindFunction 742 ** method of virtual tables. 743 */ 744 void sqlite3InvalidFunction( 745 sqlite3_context *context, /* The function calling context */ 746 int NotUsed, /* Number of arguments to the function */ 747 sqlite3_value **NotUsed2 /* Value of each argument */ 748 ){ 749 const char *zName = context->pFunc->zName; 750 char *zErr; 751 UNUSED_PARAMETER2(NotUsed, NotUsed2); 752 zErr = sqlite3_mprintf( 753 "unable to use function %s in the requested context", zName); 754 sqlite3_result_error(context, zErr, -1); 755 sqlite3_free(zErr); 756 } 757 758 /* 759 ** Create a new aggregate context for p and return a pointer to 760 ** its pMem->z element. 761 */ 762 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 763 Mem *pMem = p->pMem; 764 assert( (pMem->flags & MEM_Agg)==0 ); 765 if( nByte<=0 ){ 766 sqlite3VdbeMemSetNull(pMem); 767 pMem->z = 0; 768 }else{ 769 sqlite3VdbeMemClearAndResize(pMem, nByte); 770 pMem->flags = MEM_Agg; 771 pMem->u.pDef = p->pFunc; 772 if( pMem->z ){ 773 memset(pMem->z, 0, nByte); 774 } 775 } 776 return (void*)pMem->z; 777 } 778 779 /* 780 ** Allocate or return the aggregate context for a user function. A new 781 ** context is allocated on the first call. Subsequent calls return the 782 ** same context that was returned on prior calls. 783 */ 784 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 785 assert( p && p->pFunc && p->pFunc->xFinalize ); 786 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 787 testcase( nByte<0 ); 788 if( (p->pMem->flags & MEM_Agg)==0 ){ 789 return createAggContext(p, nByte); 790 }else{ 791 return (void*)p->pMem->z; 792 } 793 } 794 795 /* 796 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 797 ** the user-function defined by pCtx. 798 */ 799 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 800 AuxData *pAuxData; 801 802 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 803 #if SQLITE_ENABLE_STAT3_OR_STAT4 804 if( pCtx->pVdbe==0 ) return 0; 805 #else 806 assert( pCtx->pVdbe!=0 ); 807 #endif 808 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 809 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 810 } 811 812 return (pAuxData ? pAuxData->pAux : 0); 813 } 814 815 /* 816 ** Set the auxiliary data pointer and delete function, for the iArg'th 817 ** argument to the user-function defined by pCtx. Any previous value is 818 ** deleted by calling the delete function specified when it was set. 819 */ 820 void sqlite3_set_auxdata( 821 sqlite3_context *pCtx, 822 int iArg, 823 void *pAux, 824 void (*xDelete)(void*) 825 ){ 826 AuxData *pAuxData; 827 Vdbe *pVdbe = pCtx->pVdbe; 828 829 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 830 if( iArg<0 ) goto failed; 831 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 832 if( pVdbe==0 ) goto failed; 833 #else 834 assert( pVdbe!=0 ); 835 #endif 836 837 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 838 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 839 } 840 if( pAuxData==0 ){ 841 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 842 if( !pAuxData ) goto failed; 843 pAuxData->iOp = pCtx->iOp; 844 pAuxData->iArg = iArg; 845 pAuxData->pNext = pVdbe->pAuxData; 846 pVdbe->pAuxData = pAuxData; 847 if( pCtx->fErrorOrAux==0 ){ 848 pCtx->isError = 0; 849 pCtx->fErrorOrAux = 1; 850 } 851 }else if( pAuxData->xDelete ){ 852 pAuxData->xDelete(pAuxData->pAux); 853 } 854 855 pAuxData->pAux = pAux; 856 pAuxData->xDelete = xDelete; 857 return; 858 859 failed: 860 if( xDelete ){ 861 xDelete(pAux); 862 } 863 } 864 865 #ifndef SQLITE_OMIT_DEPRECATED 866 /* 867 ** Return the number of times the Step function of an aggregate has been 868 ** called. 869 ** 870 ** This function is deprecated. Do not use it for new code. It is 871 ** provide only to avoid breaking legacy code. New aggregate function 872 ** implementations should keep their own counts within their aggregate 873 ** context. 874 */ 875 int sqlite3_aggregate_count(sqlite3_context *p){ 876 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 877 return p->pMem->n; 878 } 879 #endif 880 881 /* 882 ** Return the number of columns in the result set for the statement pStmt. 883 */ 884 int sqlite3_column_count(sqlite3_stmt *pStmt){ 885 Vdbe *pVm = (Vdbe *)pStmt; 886 return pVm ? pVm->nResColumn : 0; 887 } 888 889 /* 890 ** Return the number of values available from the current row of the 891 ** currently executing statement pStmt. 892 */ 893 int sqlite3_data_count(sqlite3_stmt *pStmt){ 894 Vdbe *pVm = (Vdbe *)pStmt; 895 if( pVm==0 || pVm->pResultSet==0 ) return 0; 896 return pVm->nResColumn; 897 } 898 899 /* 900 ** Return a pointer to static memory containing an SQL NULL value. 901 */ 902 static const Mem *columnNullValue(void){ 903 /* Even though the Mem structure contains an element 904 ** of type i64, on certain architectures (x86) with certain compiler 905 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 906 ** instead of an 8-byte one. This all works fine, except that when 907 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 908 ** that a Mem structure is located on an 8-byte boundary. To prevent 909 ** these assert()s from failing, when building with SQLITE_DEBUG defined 910 ** using gcc, we force nullMem to be 8-byte aligned using the magical 911 ** __attribute__((aligned(8))) macro. */ 912 static const Mem nullMem 913 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 914 __attribute__((aligned(8))) 915 #endif 916 = { 917 /* .u = */ {0}, 918 /* .flags = */ (u16)MEM_Null, 919 /* .enc = */ (u8)0, 920 /* .eSubtype = */ (u8)0, 921 /* .n = */ (int)0, 922 /* .z = */ (char*)0, 923 /* .zMalloc = */ (char*)0, 924 /* .szMalloc = */ (int)0, 925 /* .uTemp = */ (u32)0, 926 /* .db = */ (sqlite3*)0, 927 /* .xDel = */ (void(*)(void*))0, 928 #ifdef SQLITE_DEBUG 929 /* .pScopyFrom = */ (Mem*)0, 930 /* .pFiller = */ (void*)0, 931 #endif 932 }; 933 return &nullMem; 934 } 935 936 /* 937 ** Check to see if column iCol of the given statement is valid. If 938 ** it is, return a pointer to the Mem for the value of that column. 939 ** If iCol is not valid, return a pointer to a Mem which has a value 940 ** of NULL. 941 */ 942 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 943 Vdbe *pVm; 944 Mem *pOut; 945 946 pVm = (Vdbe *)pStmt; 947 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 948 sqlite3_mutex_enter(pVm->db->mutex); 949 pOut = &pVm->pResultSet[i]; 950 }else{ 951 if( pVm && ALWAYS(pVm->db) ){ 952 sqlite3_mutex_enter(pVm->db->mutex); 953 sqlite3Error(pVm->db, SQLITE_RANGE); 954 } 955 pOut = (Mem*)columnNullValue(); 956 } 957 return pOut; 958 } 959 960 /* 961 ** This function is called after invoking an sqlite3_value_XXX function on a 962 ** column value (i.e. a value returned by evaluating an SQL expression in the 963 ** select list of a SELECT statement) that may cause a malloc() failure. If 964 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 965 ** code of statement pStmt set to SQLITE_NOMEM. 966 ** 967 ** Specifically, this is called from within: 968 ** 969 ** sqlite3_column_int() 970 ** sqlite3_column_int64() 971 ** sqlite3_column_text() 972 ** sqlite3_column_text16() 973 ** sqlite3_column_real() 974 ** sqlite3_column_bytes() 975 ** sqlite3_column_bytes16() 976 ** sqiite3_column_blob() 977 */ 978 static void columnMallocFailure(sqlite3_stmt *pStmt) 979 { 980 /* If malloc() failed during an encoding conversion within an 981 ** sqlite3_column_XXX API, then set the return code of the statement to 982 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 983 ** and _finalize() will return NOMEM. 984 */ 985 Vdbe *p = (Vdbe *)pStmt; 986 if( p ){ 987 p->rc = sqlite3ApiExit(p->db, p->rc); 988 sqlite3_mutex_leave(p->db->mutex); 989 } 990 } 991 992 /**************************** sqlite3_column_ ******************************* 993 ** The following routines are used to access elements of the current row 994 ** in the result set. 995 */ 996 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 997 const void *val; 998 val = sqlite3_value_blob( columnMem(pStmt,i) ); 999 /* Even though there is no encoding conversion, value_blob() might 1000 ** need to call malloc() to expand the result of a zeroblob() 1001 ** expression. 1002 */ 1003 columnMallocFailure(pStmt); 1004 return val; 1005 } 1006 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1007 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1008 columnMallocFailure(pStmt); 1009 return val; 1010 } 1011 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1012 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1013 columnMallocFailure(pStmt); 1014 return val; 1015 } 1016 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1017 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1018 columnMallocFailure(pStmt); 1019 return val; 1020 } 1021 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1022 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1023 columnMallocFailure(pStmt); 1024 return val; 1025 } 1026 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1027 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1028 columnMallocFailure(pStmt); 1029 return val; 1030 } 1031 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1032 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1033 columnMallocFailure(pStmt); 1034 return val; 1035 } 1036 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1037 Mem *pOut = columnMem(pStmt, i); 1038 if( pOut->flags&MEM_Static ){ 1039 pOut->flags &= ~MEM_Static; 1040 pOut->flags |= MEM_Ephem; 1041 } 1042 columnMallocFailure(pStmt); 1043 return (sqlite3_value *)pOut; 1044 } 1045 #ifndef SQLITE_OMIT_UTF16 1046 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1047 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1048 columnMallocFailure(pStmt); 1049 return val; 1050 } 1051 #endif /* SQLITE_OMIT_UTF16 */ 1052 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1053 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1054 columnMallocFailure(pStmt); 1055 return iType; 1056 } 1057 1058 /* 1059 ** Convert the N-th element of pStmt->pColName[] into a string using 1060 ** xFunc() then return that string. If N is out of range, return 0. 1061 ** 1062 ** There are up to 5 names for each column. useType determines which 1063 ** name is returned. Here are the names: 1064 ** 1065 ** 0 The column name as it should be displayed for output 1066 ** 1 The datatype name for the column 1067 ** 2 The name of the database that the column derives from 1068 ** 3 The name of the table that the column derives from 1069 ** 4 The name of the table column that the result column derives from 1070 ** 1071 ** If the result is not a simple column reference (if it is an expression 1072 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1073 */ 1074 static const void *columnName( 1075 sqlite3_stmt *pStmt, 1076 int N, 1077 const void *(*xFunc)(Mem*), 1078 int useType 1079 ){ 1080 const void *ret; 1081 Vdbe *p; 1082 int n; 1083 sqlite3 *db; 1084 #ifdef SQLITE_ENABLE_API_ARMOR 1085 if( pStmt==0 ){ 1086 (void)SQLITE_MISUSE_BKPT; 1087 return 0; 1088 } 1089 #endif 1090 ret = 0; 1091 p = (Vdbe *)pStmt; 1092 db = p->db; 1093 assert( db!=0 ); 1094 n = sqlite3_column_count(pStmt); 1095 if( N<n && N>=0 ){ 1096 N += useType*n; 1097 sqlite3_mutex_enter(db->mutex); 1098 assert( db->mallocFailed==0 ); 1099 ret = xFunc(&p->aColName[N]); 1100 /* A malloc may have failed inside of the xFunc() call. If this 1101 ** is the case, clear the mallocFailed flag and return NULL. 1102 */ 1103 if( db->mallocFailed ){ 1104 sqlite3OomClear(db); 1105 ret = 0; 1106 } 1107 sqlite3_mutex_leave(db->mutex); 1108 } 1109 return ret; 1110 } 1111 1112 /* 1113 ** Return the name of the Nth column of the result set returned by SQL 1114 ** statement pStmt. 1115 */ 1116 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1117 return columnName( 1118 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1119 } 1120 #ifndef SQLITE_OMIT_UTF16 1121 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1122 return columnName( 1123 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1124 } 1125 #endif 1126 1127 /* 1128 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1129 ** not define OMIT_DECLTYPE. 1130 */ 1131 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1132 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1133 and SQLITE_ENABLE_COLUMN_METADATA" 1134 #endif 1135 1136 #ifndef SQLITE_OMIT_DECLTYPE 1137 /* 1138 ** Return the column declaration type (if applicable) of the 'i'th column 1139 ** of the result set of SQL statement pStmt. 1140 */ 1141 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1142 return columnName( 1143 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1144 } 1145 #ifndef SQLITE_OMIT_UTF16 1146 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1147 return columnName( 1148 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1149 } 1150 #endif /* SQLITE_OMIT_UTF16 */ 1151 #endif /* SQLITE_OMIT_DECLTYPE */ 1152 1153 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1154 /* 1155 ** Return the name of the database from which a result column derives. 1156 ** NULL is returned if the result column is an expression or constant or 1157 ** anything else which is not an unambiguous reference to a database column. 1158 */ 1159 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1160 return columnName( 1161 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1162 } 1163 #ifndef SQLITE_OMIT_UTF16 1164 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1165 return columnName( 1166 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1167 } 1168 #endif /* SQLITE_OMIT_UTF16 */ 1169 1170 /* 1171 ** Return the name of the table from which a result column derives. 1172 ** NULL is returned if the result column is an expression or constant or 1173 ** anything else which is not an unambiguous reference to a database column. 1174 */ 1175 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1176 return columnName( 1177 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1178 } 1179 #ifndef SQLITE_OMIT_UTF16 1180 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1181 return columnName( 1182 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1183 } 1184 #endif /* SQLITE_OMIT_UTF16 */ 1185 1186 /* 1187 ** Return the name of the table column from which a result column derives. 1188 ** NULL is returned if the result column is an expression or constant or 1189 ** anything else which is not an unambiguous reference to a database column. 1190 */ 1191 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1192 return columnName( 1193 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1194 } 1195 #ifndef SQLITE_OMIT_UTF16 1196 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1197 return columnName( 1198 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1199 } 1200 #endif /* SQLITE_OMIT_UTF16 */ 1201 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1202 1203 1204 /******************************* sqlite3_bind_ *************************** 1205 ** 1206 ** Routines used to attach values to wildcards in a compiled SQL statement. 1207 */ 1208 /* 1209 ** Unbind the value bound to variable i in virtual machine p. This is the 1210 ** the same as binding a NULL value to the column. If the "i" parameter is 1211 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1212 ** 1213 ** A successful evaluation of this routine acquires the mutex on p. 1214 ** the mutex is released if any kind of error occurs. 1215 ** 1216 ** The error code stored in database p->db is overwritten with the return 1217 ** value in any case. 1218 */ 1219 static int vdbeUnbind(Vdbe *p, int i){ 1220 Mem *pVar; 1221 if( vdbeSafetyNotNull(p) ){ 1222 return SQLITE_MISUSE_BKPT; 1223 } 1224 sqlite3_mutex_enter(p->db->mutex); 1225 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1226 sqlite3Error(p->db, SQLITE_MISUSE); 1227 sqlite3_mutex_leave(p->db->mutex); 1228 sqlite3_log(SQLITE_MISUSE, 1229 "bind on a busy prepared statement: [%s]", p->zSql); 1230 return SQLITE_MISUSE_BKPT; 1231 } 1232 if( i<1 || i>p->nVar ){ 1233 sqlite3Error(p->db, SQLITE_RANGE); 1234 sqlite3_mutex_leave(p->db->mutex); 1235 return SQLITE_RANGE; 1236 } 1237 i--; 1238 pVar = &p->aVar[i]; 1239 sqlite3VdbeMemRelease(pVar); 1240 pVar->flags = MEM_Null; 1241 sqlite3Error(p->db, SQLITE_OK); 1242 1243 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1244 ** binding a new value to this variable invalidates the current query plan. 1245 ** 1246 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1247 ** parameter in the WHERE clause might influence the choice of query plan 1248 ** for a statement, then the statement will be automatically recompiled, 1249 ** as if there had been a schema change, on the first sqlite3_step() call 1250 ** following any change to the bindings of that parameter. 1251 */ 1252 if( p->isPrepareV2 && 1253 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1254 ){ 1255 p->expired = 1; 1256 } 1257 return SQLITE_OK; 1258 } 1259 1260 /* 1261 ** Bind a text or BLOB value. 1262 */ 1263 static int bindText( 1264 sqlite3_stmt *pStmt, /* The statement to bind against */ 1265 int i, /* Index of the parameter to bind */ 1266 const void *zData, /* Pointer to the data to be bound */ 1267 int nData, /* Number of bytes of data to be bound */ 1268 void (*xDel)(void*), /* Destructor for the data */ 1269 u8 encoding /* Encoding for the data */ 1270 ){ 1271 Vdbe *p = (Vdbe *)pStmt; 1272 Mem *pVar; 1273 int rc; 1274 1275 rc = vdbeUnbind(p, i); 1276 if( rc==SQLITE_OK ){ 1277 if( zData!=0 ){ 1278 pVar = &p->aVar[i-1]; 1279 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1280 if( rc==SQLITE_OK && encoding!=0 ){ 1281 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1282 } 1283 sqlite3Error(p->db, rc); 1284 rc = sqlite3ApiExit(p->db, rc); 1285 } 1286 sqlite3_mutex_leave(p->db->mutex); 1287 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1288 xDel((void*)zData); 1289 } 1290 return rc; 1291 } 1292 1293 1294 /* 1295 ** Bind a blob value to an SQL statement variable. 1296 */ 1297 int sqlite3_bind_blob( 1298 sqlite3_stmt *pStmt, 1299 int i, 1300 const void *zData, 1301 int nData, 1302 void (*xDel)(void*) 1303 ){ 1304 #ifdef SQLITE_ENABLE_API_ARMOR 1305 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1306 #endif 1307 return bindText(pStmt, i, zData, nData, xDel, 0); 1308 } 1309 int sqlite3_bind_blob64( 1310 sqlite3_stmt *pStmt, 1311 int i, 1312 const void *zData, 1313 sqlite3_uint64 nData, 1314 void (*xDel)(void*) 1315 ){ 1316 assert( xDel!=SQLITE_DYNAMIC ); 1317 if( nData>0x7fffffff ){ 1318 return invokeValueDestructor(zData, xDel, 0); 1319 }else{ 1320 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1321 } 1322 } 1323 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1324 int rc; 1325 Vdbe *p = (Vdbe *)pStmt; 1326 rc = vdbeUnbind(p, i); 1327 if( rc==SQLITE_OK ){ 1328 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1329 sqlite3_mutex_leave(p->db->mutex); 1330 } 1331 return rc; 1332 } 1333 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1334 return sqlite3_bind_int64(p, i, (i64)iValue); 1335 } 1336 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1337 int rc; 1338 Vdbe *p = (Vdbe *)pStmt; 1339 rc = vdbeUnbind(p, i); 1340 if( rc==SQLITE_OK ){ 1341 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1342 sqlite3_mutex_leave(p->db->mutex); 1343 } 1344 return rc; 1345 } 1346 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1347 int rc; 1348 Vdbe *p = (Vdbe*)pStmt; 1349 rc = vdbeUnbind(p, i); 1350 if( rc==SQLITE_OK ){ 1351 sqlite3_mutex_leave(p->db->mutex); 1352 } 1353 return rc; 1354 } 1355 int sqlite3_bind_text( 1356 sqlite3_stmt *pStmt, 1357 int i, 1358 const char *zData, 1359 int nData, 1360 void (*xDel)(void*) 1361 ){ 1362 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1363 } 1364 int sqlite3_bind_text64( 1365 sqlite3_stmt *pStmt, 1366 int i, 1367 const char *zData, 1368 sqlite3_uint64 nData, 1369 void (*xDel)(void*), 1370 unsigned char enc 1371 ){ 1372 assert( xDel!=SQLITE_DYNAMIC ); 1373 if( nData>0x7fffffff ){ 1374 return invokeValueDestructor(zData, xDel, 0); 1375 }else{ 1376 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1377 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1378 } 1379 } 1380 #ifndef SQLITE_OMIT_UTF16 1381 int sqlite3_bind_text16( 1382 sqlite3_stmt *pStmt, 1383 int i, 1384 const void *zData, 1385 int nData, 1386 void (*xDel)(void*) 1387 ){ 1388 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1389 } 1390 #endif /* SQLITE_OMIT_UTF16 */ 1391 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1392 int rc; 1393 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1394 case SQLITE_INTEGER: { 1395 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1396 break; 1397 } 1398 case SQLITE_FLOAT: { 1399 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1400 break; 1401 } 1402 case SQLITE_BLOB: { 1403 if( pValue->flags & MEM_Zero ){ 1404 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1405 }else{ 1406 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1407 } 1408 break; 1409 } 1410 case SQLITE_TEXT: { 1411 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1412 pValue->enc); 1413 break; 1414 } 1415 default: { 1416 rc = sqlite3_bind_null(pStmt, i); 1417 break; 1418 } 1419 } 1420 return rc; 1421 } 1422 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1423 int rc; 1424 Vdbe *p = (Vdbe *)pStmt; 1425 rc = vdbeUnbind(p, i); 1426 if( rc==SQLITE_OK ){ 1427 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1428 sqlite3_mutex_leave(p->db->mutex); 1429 } 1430 return rc; 1431 } 1432 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1433 int rc; 1434 Vdbe *p = (Vdbe *)pStmt; 1435 sqlite3_mutex_enter(p->db->mutex); 1436 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1437 rc = SQLITE_TOOBIG; 1438 }else{ 1439 assert( (n & 0x7FFFFFFF)==n ); 1440 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1441 } 1442 rc = sqlite3ApiExit(p->db, rc); 1443 sqlite3_mutex_leave(p->db->mutex); 1444 return rc; 1445 } 1446 1447 /* 1448 ** Return the number of wildcards that can be potentially bound to. 1449 ** This routine is added to support DBD::SQLite. 1450 */ 1451 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1452 Vdbe *p = (Vdbe*)pStmt; 1453 return p ? p->nVar : 0; 1454 } 1455 1456 /* 1457 ** Return the name of a wildcard parameter. Return NULL if the index 1458 ** is out of range or if the wildcard is unnamed. 1459 ** 1460 ** The result is always UTF-8. 1461 */ 1462 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1463 Vdbe *p = (Vdbe*)pStmt; 1464 if( p==0 || i<1 || i>p->nzVar ){ 1465 return 0; 1466 } 1467 return p->azVar[i-1]; 1468 } 1469 1470 /* 1471 ** Given a wildcard parameter name, return the index of the variable 1472 ** with that name. If there is no variable with the given name, 1473 ** return 0. 1474 */ 1475 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1476 int i; 1477 if( p==0 ){ 1478 return 0; 1479 } 1480 if( zName ){ 1481 for(i=0; i<p->nzVar; i++){ 1482 const char *z = p->azVar[i]; 1483 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1484 return i+1; 1485 } 1486 } 1487 } 1488 return 0; 1489 } 1490 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1491 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1492 } 1493 1494 /* 1495 ** Transfer all bindings from the first statement over to the second. 1496 */ 1497 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1498 Vdbe *pFrom = (Vdbe*)pFromStmt; 1499 Vdbe *pTo = (Vdbe*)pToStmt; 1500 int i; 1501 assert( pTo->db==pFrom->db ); 1502 assert( pTo->nVar==pFrom->nVar ); 1503 sqlite3_mutex_enter(pTo->db->mutex); 1504 for(i=0; i<pFrom->nVar; i++){ 1505 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1506 } 1507 sqlite3_mutex_leave(pTo->db->mutex); 1508 return SQLITE_OK; 1509 } 1510 1511 #ifndef SQLITE_OMIT_DEPRECATED 1512 /* 1513 ** Deprecated external interface. Internal/core SQLite code 1514 ** should call sqlite3TransferBindings. 1515 ** 1516 ** It is misuse to call this routine with statements from different 1517 ** database connections. But as this is a deprecated interface, we 1518 ** will not bother to check for that condition. 1519 ** 1520 ** If the two statements contain a different number of bindings, then 1521 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1522 ** SQLITE_OK is returned. 1523 */ 1524 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1525 Vdbe *pFrom = (Vdbe*)pFromStmt; 1526 Vdbe *pTo = (Vdbe*)pToStmt; 1527 if( pFrom->nVar!=pTo->nVar ){ 1528 return SQLITE_ERROR; 1529 } 1530 if( pTo->isPrepareV2 && pTo->expmask ){ 1531 pTo->expired = 1; 1532 } 1533 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1534 pFrom->expired = 1; 1535 } 1536 return sqlite3TransferBindings(pFromStmt, pToStmt); 1537 } 1538 #endif 1539 1540 /* 1541 ** Return the sqlite3* database handle to which the prepared statement given 1542 ** in the argument belongs. This is the same database handle that was 1543 ** the first argument to the sqlite3_prepare() that was used to create 1544 ** the statement in the first place. 1545 */ 1546 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1547 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1548 } 1549 1550 /* 1551 ** Return true if the prepared statement is guaranteed to not modify the 1552 ** database. 1553 */ 1554 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1555 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1556 } 1557 1558 /* 1559 ** Return true if the prepared statement is in need of being reset. 1560 */ 1561 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1562 Vdbe *v = (Vdbe*)pStmt; 1563 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1564 } 1565 1566 /* 1567 ** Return a pointer to the next prepared statement after pStmt associated 1568 ** with database connection pDb. If pStmt is NULL, return the first 1569 ** prepared statement for the database connection. Return NULL if there 1570 ** are no more. 1571 */ 1572 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1573 sqlite3_stmt *pNext; 1574 #ifdef SQLITE_ENABLE_API_ARMOR 1575 if( !sqlite3SafetyCheckOk(pDb) ){ 1576 (void)SQLITE_MISUSE_BKPT; 1577 return 0; 1578 } 1579 #endif 1580 sqlite3_mutex_enter(pDb->mutex); 1581 if( pStmt==0 ){ 1582 pNext = (sqlite3_stmt*)pDb->pVdbe; 1583 }else{ 1584 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1585 } 1586 sqlite3_mutex_leave(pDb->mutex); 1587 return pNext; 1588 } 1589 1590 /* 1591 ** Return the value of a status counter for a prepared statement 1592 */ 1593 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1594 Vdbe *pVdbe = (Vdbe*)pStmt; 1595 u32 v; 1596 #ifdef SQLITE_ENABLE_API_ARMOR 1597 if( !pStmt ){ 1598 (void)SQLITE_MISUSE_BKPT; 1599 return 0; 1600 } 1601 #endif 1602 v = pVdbe->aCounter[op]; 1603 if( resetFlag ) pVdbe->aCounter[op] = 0; 1604 return (int)v; 1605 } 1606 1607 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1608 /* 1609 ** Return status data for a single loop within query pStmt. 1610 */ 1611 int sqlite3_stmt_scanstatus( 1612 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1613 int idx, /* Index of loop to report on */ 1614 int iScanStatusOp, /* Which metric to return */ 1615 void *pOut /* OUT: Write the answer here */ 1616 ){ 1617 Vdbe *p = (Vdbe*)pStmt; 1618 ScanStatus *pScan; 1619 if( idx<0 || idx>=p->nScan ) return 1; 1620 pScan = &p->aScan[idx]; 1621 switch( iScanStatusOp ){ 1622 case SQLITE_SCANSTAT_NLOOP: { 1623 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1624 break; 1625 } 1626 case SQLITE_SCANSTAT_NVISIT: { 1627 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1628 break; 1629 } 1630 case SQLITE_SCANSTAT_EST: { 1631 double r = 1.0; 1632 LogEst x = pScan->nEst; 1633 while( x<100 ){ 1634 x += 10; 1635 r *= 0.5; 1636 } 1637 *(double*)pOut = r*sqlite3LogEstToInt(x); 1638 break; 1639 } 1640 case SQLITE_SCANSTAT_NAME: { 1641 *(const char**)pOut = pScan->zName; 1642 break; 1643 } 1644 case SQLITE_SCANSTAT_EXPLAIN: { 1645 if( pScan->addrExplain ){ 1646 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1647 }else{ 1648 *(const char**)pOut = 0; 1649 } 1650 break; 1651 } 1652 case SQLITE_SCANSTAT_SELECTID: { 1653 if( pScan->addrExplain ){ 1654 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1655 }else{ 1656 *(int*)pOut = -1; 1657 } 1658 break; 1659 } 1660 default: { 1661 return 1; 1662 } 1663 } 1664 return 0; 1665 } 1666 1667 /* 1668 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1669 */ 1670 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1671 Vdbe *p = (Vdbe*)pStmt; 1672 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1673 } 1674 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1675