1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 if( db->xProfile ){ 71 db->xProfile(db->pProfileArg, p->zSql, iElapse); 72 } 73 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 75 } 76 p->startTime = 0; 77 } 78 /* 79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 80 ** is needed, and it invokes the callback if it is needed. 81 */ 82 # define checkProfileCallback(DB,P) \ 83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 84 #else 85 # define checkProfileCallback(DB,P) /*no-op*/ 86 #endif 87 88 /* 89 ** The following routine destroys a virtual machine that is created by 90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 91 ** success/failure code that describes the result of executing the virtual 92 ** machine. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_finalize(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 101 ** pointer is a harmless no-op. */ 102 rc = SQLITE_OK; 103 }else{ 104 Vdbe *v = (Vdbe*)pStmt; 105 sqlite3 *db = v->db; 106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 107 sqlite3_mutex_enter(db->mutex); 108 checkProfileCallback(db, v); 109 rc = sqlite3VdbeFinalize(v); 110 rc = sqlite3ApiExit(db, rc); 111 sqlite3LeaveMutexAndCloseZombie(db); 112 } 113 return rc; 114 } 115 116 /* 117 ** Terminate the current execution of an SQL statement and reset it 118 ** back to its starting state so that it can be reused. A success code from 119 ** the prior execution is returned. 120 ** 121 ** This routine sets the error code and string returned by 122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 123 */ 124 int sqlite3_reset(sqlite3_stmt *pStmt){ 125 int rc; 126 if( pStmt==0 ){ 127 rc = SQLITE_OK; 128 }else{ 129 Vdbe *v = (Vdbe*)pStmt; 130 sqlite3 *db = v->db; 131 sqlite3_mutex_enter(db->mutex); 132 checkProfileCallback(db, v); 133 rc = sqlite3VdbeReset(v); 134 sqlite3VdbeRewind(v); 135 assert( (rc & (db->errMask))==rc ); 136 rc = sqlite3ApiExit(db, rc); 137 sqlite3_mutex_leave(db->mutex); 138 } 139 return rc; 140 } 141 142 /* 143 ** Set all the parameters in the compiled SQL statement to NULL. 144 */ 145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 146 int i; 147 int rc = SQLITE_OK; 148 Vdbe *p = (Vdbe*)pStmt; 149 #if SQLITE_THREADSAFE 150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 151 #endif 152 sqlite3_mutex_enter(mutex); 153 for(i=0; i<p->nVar; i++){ 154 sqlite3VdbeMemRelease(&p->aVar[i]); 155 p->aVar[i].flags = MEM_Null; 156 } 157 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 158 if( p->expmask ){ 159 p->expired = 1; 160 } 161 sqlite3_mutex_leave(mutex); 162 return rc; 163 } 164 165 166 /**************************** sqlite3_value_ ******************************* 167 ** The following routines extract information from a Mem or sqlite3_value 168 ** structure. 169 */ 170 const void *sqlite3_value_blob(sqlite3_value *pVal){ 171 Mem *p = (Mem*)pVal; 172 if( p->flags & (MEM_Blob|MEM_Str) ){ 173 if( ExpandBlob(p)!=SQLITE_OK ){ 174 assert( p->flags==MEM_Null && p->z==0 ); 175 return 0; 176 } 177 p->flags |= MEM_Blob; 178 return p->n ? p->z : 0; 179 }else{ 180 return sqlite3_value_text(pVal); 181 } 182 } 183 int sqlite3_value_bytes(sqlite3_value *pVal){ 184 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 185 } 186 int sqlite3_value_bytes16(sqlite3_value *pVal){ 187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 188 } 189 double sqlite3_value_double(sqlite3_value *pVal){ 190 return sqlite3VdbeRealValue((Mem*)pVal); 191 } 192 int sqlite3_value_int(sqlite3_value *pVal){ 193 return (int)sqlite3VdbeIntValue((Mem*)pVal); 194 } 195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 196 return sqlite3VdbeIntValue((Mem*)pVal); 197 } 198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 199 Mem *pMem = (Mem*)pVal; 200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 201 } 202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 203 Mem *p = (Mem*)pVal; 204 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 205 (MEM_Null|MEM_Term|MEM_Subtype) 206 && zPType!=0 207 && p->eSubtype=='p' 208 && strcmp(p->u.zPType, zPType)==0 209 ){ 210 return (void*)p->z; 211 }else{ 212 return 0; 213 } 214 } 215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 216 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 217 } 218 #ifndef SQLITE_OMIT_UTF16 219 const void *sqlite3_value_text16(sqlite3_value* pVal){ 220 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 221 } 222 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 223 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 224 } 225 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 226 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 227 } 228 #endif /* SQLITE_OMIT_UTF16 */ 229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 231 ** point number string BLOB NULL 232 */ 233 int sqlite3_value_type(sqlite3_value* pVal){ 234 static const u8 aType[] = { 235 SQLITE_BLOB, /* 0x00 */ 236 SQLITE_NULL, /* 0x01 */ 237 SQLITE_TEXT, /* 0x02 */ 238 SQLITE_NULL, /* 0x03 */ 239 SQLITE_INTEGER, /* 0x04 */ 240 SQLITE_NULL, /* 0x05 */ 241 SQLITE_INTEGER, /* 0x06 */ 242 SQLITE_NULL, /* 0x07 */ 243 SQLITE_FLOAT, /* 0x08 */ 244 SQLITE_NULL, /* 0x09 */ 245 SQLITE_FLOAT, /* 0x0a */ 246 SQLITE_NULL, /* 0x0b */ 247 SQLITE_INTEGER, /* 0x0c */ 248 SQLITE_NULL, /* 0x0d */ 249 SQLITE_INTEGER, /* 0x0e */ 250 SQLITE_NULL, /* 0x0f */ 251 SQLITE_BLOB, /* 0x10 */ 252 SQLITE_NULL, /* 0x11 */ 253 SQLITE_TEXT, /* 0x12 */ 254 SQLITE_NULL, /* 0x13 */ 255 SQLITE_INTEGER, /* 0x14 */ 256 SQLITE_NULL, /* 0x15 */ 257 SQLITE_INTEGER, /* 0x16 */ 258 SQLITE_NULL, /* 0x17 */ 259 SQLITE_FLOAT, /* 0x18 */ 260 SQLITE_NULL, /* 0x19 */ 261 SQLITE_FLOAT, /* 0x1a */ 262 SQLITE_NULL, /* 0x1b */ 263 SQLITE_INTEGER, /* 0x1c */ 264 SQLITE_NULL, /* 0x1d */ 265 SQLITE_INTEGER, /* 0x1e */ 266 SQLITE_NULL, /* 0x1f */ 267 }; 268 return aType[pVal->flags&MEM_AffMask]; 269 } 270 271 /* Make a copy of an sqlite3_value object 272 */ 273 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 274 sqlite3_value *pNew; 275 if( pOrig==0 ) return 0; 276 pNew = sqlite3_malloc( sizeof(*pNew) ); 277 if( pNew==0 ) return 0; 278 memset(pNew, 0, sizeof(*pNew)); 279 memcpy(pNew, pOrig, MEMCELLSIZE); 280 pNew->flags &= ~MEM_Dyn; 281 pNew->db = 0; 282 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 283 pNew->flags &= ~(MEM_Static|MEM_Dyn); 284 pNew->flags |= MEM_Ephem; 285 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 286 sqlite3ValueFree(pNew); 287 pNew = 0; 288 } 289 } 290 return pNew; 291 } 292 293 /* Destroy an sqlite3_value object previously obtained from 294 ** sqlite3_value_dup(). 295 */ 296 void sqlite3_value_free(sqlite3_value *pOld){ 297 sqlite3ValueFree(pOld); 298 } 299 300 301 /**************************** sqlite3_result_ ******************************* 302 ** The following routines are used by user-defined functions to specify 303 ** the function result. 304 ** 305 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 306 ** result as a string or blob but if the string or blob is too large, it 307 ** then sets the error code to SQLITE_TOOBIG 308 ** 309 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 310 ** on value P is not going to be used and need to be destroyed. 311 */ 312 static void setResultStrOrError( 313 sqlite3_context *pCtx, /* Function context */ 314 const char *z, /* String pointer */ 315 int n, /* Bytes in string, or negative */ 316 u8 enc, /* Encoding of z. 0 for BLOBs */ 317 void (*xDel)(void*) /* Destructor function */ 318 ){ 319 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 320 sqlite3_result_error_toobig(pCtx); 321 } 322 } 323 static int invokeValueDestructor( 324 const void *p, /* Value to destroy */ 325 void (*xDel)(void*), /* The destructor */ 326 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 327 ){ 328 assert( xDel!=SQLITE_DYNAMIC ); 329 if( xDel==0 ){ 330 /* noop */ 331 }else if( xDel==SQLITE_TRANSIENT ){ 332 /* noop */ 333 }else{ 334 xDel((void*)p); 335 } 336 if( pCtx ) sqlite3_result_error_toobig(pCtx); 337 return SQLITE_TOOBIG; 338 } 339 void sqlite3_result_blob( 340 sqlite3_context *pCtx, 341 const void *z, 342 int n, 343 void (*xDel)(void *) 344 ){ 345 assert( n>=0 ); 346 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 347 setResultStrOrError(pCtx, z, n, 0, xDel); 348 } 349 void sqlite3_result_blob64( 350 sqlite3_context *pCtx, 351 const void *z, 352 sqlite3_uint64 n, 353 void (*xDel)(void *) 354 ){ 355 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 356 assert( xDel!=SQLITE_DYNAMIC ); 357 if( n>0x7fffffff ){ 358 (void)invokeValueDestructor(z, xDel, pCtx); 359 }else{ 360 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 361 } 362 } 363 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 364 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 365 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 366 } 367 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 369 pCtx->isError = SQLITE_ERROR; 370 pCtx->fErrorOrAux = 1; 371 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 372 } 373 #ifndef SQLITE_OMIT_UTF16 374 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 375 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 376 pCtx->isError = SQLITE_ERROR; 377 pCtx->fErrorOrAux = 1; 378 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 379 } 380 #endif 381 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 382 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 383 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 384 } 385 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 386 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 387 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 388 } 389 void sqlite3_result_null(sqlite3_context *pCtx){ 390 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 391 sqlite3VdbeMemSetNull(pCtx->pOut); 392 } 393 void sqlite3_result_pointer( 394 sqlite3_context *pCtx, 395 void *pPtr, 396 const char *zPType, 397 void (*xDestructor)(void*) 398 ){ 399 Mem *pOut = pCtx->pOut; 400 assert( sqlite3_mutex_held(pOut->db->mutex) ); 401 sqlite3VdbeMemRelease(pOut); 402 pOut->flags = MEM_Null; 403 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 404 } 405 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 406 Mem *pOut = pCtx->pOut; 407 assert( sqlite3_mutex_held(pOut->db->mutex) ); 408 pOut->eSubtype = eSubtype & 0xff; 409 pOut->flags |= MEM_Subtype; 410 } 411 void sqlite3_result_text( 412 sqlite3_context *pCtx, 413 const char *z, 414 int n, 415 void (*xDel)(void *) 416 ){ 417 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 418 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 419 } 420 void sqlite3_result_text64( 421 sqlite3_context *pCtx, 422 const char *z, 423 sqlite3_uint64 n, 424 void (*xDel)(void *), 425 unsigned char enc 426 ){ 427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 428 assert( xDel!=SQLITE_DYNAMIC ); 429 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 430 if( n>0x7fffffff ){ 431 (void)invokeValueDestructor(z, xDel, pCtx); 432 }else{ 433 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 434 } 435 } 436 #ifndef SQLITE_OMIT_UTF16 437 void sqlite3_result_text16( 438 sqlite3_context *pCtx, 439 const void *z, 440 int n, 441 void (*xDel)(void *) 442 ){ 443 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 444 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 445 } 446 void sqlite3_result_text16be( 447 sqlite3_context *pCtx, 448 const void *z, 449 int n, 450 void (*xDel)(void *) 451 ){ 452 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 453 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 454 } 455 void sqlite3_result_text16le( 456 sqlite3_context *pCtx, 457 const void *z, 458 int n, 459 void (*xDel)(void *) 460 ){ 461 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 462 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 463 } 464 #endif /* SQLITE_OMIT_UTF16 */ 465 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 466 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 467 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 468 } 469 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 470 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 471 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 472 } 473 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 474 Mem *pOut = pCtx->pOut; 475 assert( sqlite3_mutex_held(pOut->db->mutex) ); 476 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 477 return SQLITE_TOOBIG; 478 } 479 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 480 return SQLITE_OK; 481 } 482 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 483 pCtx->isError = errCode; 484 pCtx->fErrorOrAux = 1; 485 #ifdef SQLITE_DEBUG 486 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 487 #endif 488 if( pCtx->pOut->flags & MEM_Null ){ 489 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 490 SQLITE_UTF8, SQLITE_STATIC); 491 } 492 } 493 494 /* Force an SQLITE_TOOBIG error. */ 495 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 496 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 497 pCtx->isError = SQLITE_TOOBIG; 498 pCtx->fErrorOrAux = 1; 499 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 500 SQLITE_UTF8, SQLITE_STATIC); 501 } 502 503 /* An SQLITE_NOMEM error. */ 504 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 505 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 506 sqlite3VdbeMemSetNull(pCtx->pOut); 507 pCtx->isError = SQLITE_NOMEM_BKPT; 508 pCtx->fErrorOrAux = 1; 509 sqlite3OomFault(pCtx->pOut->db); 510 } 511 512 /* 513 ** This function is called after a transaction has been committed. It 514 ** invokes callbacks registered with sqlite3_wal_hook() as required. 515 */ 516 static int doWalCallbacks(sqlite3 *db){ 517 int rc = SQLITE_OK; 518 #ifndef SQLITE_OMIT_WAL 519 int i; 520 for(i=0; i<db->nDb; i++){ 521 Btree *pBt = db->aDb[i].pBt; 522 if( pBt ){ 523 int nEntry; 524 sqlite3BtreeEnter(pBt); 525 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 526 sqlite3BtreeLeave(pBt); 527 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 528 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 529 } 530 } 531 } 532 #endif 533 return rc; 534 } 535 536 537 /* 538 ** Execute the statement pStmt, either until a row of data is ready, the 539 ** statement is completely executed or an error occurs. 540 ** 541 ** This routine implements the bulk of the logic behind the sqlite_step() 542 ** API. The only thing omitted is the automatic recompile if a 543 ** schema change has occurred. That detail is handled by the 544 ** outer sqlite3_step() wrapper procedure. 545 */ 546 static int sqlite3Step(Vdbe *p){ 547 sqlite3 *db; 548 int rc; 549 550 assert(p); 551 if( p->magic!=VDBE_MAGIC_RUN ){ 552 /* We used to require that sqlite3_reset() be called before retrying 553 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 554 ** with version 3.7.0, we changed this so that sqlite3_reset() would 555 ** be called automatically instead of throwing the SQLITE_MISUSE error. 556 ** This "automatic-reset" change is not technically an incompatibility, 557 ** since any application that receives an SQLITE_MISUSE is broken by 558 ** definition. 559 ** 560 ** Nevertheless, some published applications that were originally written 561 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 562 ** returns, and those were broken by the automatic-reset change. As a 563 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 564 ** legacy behavior of returning SQLITE_MISUSE for cases where the 565 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 566 ** or SQLITE_BUSY error. 567 */ 568 #ifdef SQLITE_OMIT_AUTORESET 569 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 570 sqlite3_reset((sqlite3_stmt*)p); 571 }else{ 572 return SQLITE_MISUSE_BKPT; 573 } 574 #else 575 sqlite3_reset((sqlite3_stmt*)p); 576 #endif 577 } 578 579 /* Check that malloc() has not failed. If it has, return early. */ 580 db = p->db; 581 if( db->mallocFailed ){ 582 p->rc = SQLITE_NOMEM; 583 return SQLITE_NOMEM_BKPT; 584 } 585 586 if( p->pc<=0 && p->expired ){ 587 p->rc = SQLITE_SCHEMA; 588 rc = SQLITE_ERROR; 589 goto end_of_step; 590 } 591 if( p->pc<0 ){ 592 /* If there are no other statements currently running, then 593 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 594 ** from interrupting a statement that has not yet started. 595 */ 596 if( db->nVdbeActive==0 ){ 597 db->u1.isInterrupted = 0; 598 } 599 600 assert( db->nVdbeWrite>0 || db->autoCommit==0 601 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 602 ); 603 604 #ifndef SQLITE_OMIT_TRACE 605 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0) 606 && !db->init.busy && p->zSql ){ 607 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 608 }else{ 609 assert( p->startTime==0 ); 610 } 611 #endif 612 613 db->nVdbeActive++; 614 if( p->readOnly==0 ) db->nVdbeWrite++; 615 if( p->bIsReader ) db->nVdbeRead++; 616 p->pc = 0; 617 } 618 #ifdef SQLITE_DEBUG 619 p->rcApp = SQLITE_OK; 620 #endif 621 #ifndef SQLITE_OMIT_EXPLAIN 622 if( p->explain ){ 623 rc = sqlite3VdbeList(p); 624 }else 625 #endif /* SQLITE_OMIT_EXPLAIN */ 626 { 627 db->nVdbeExec++; 628 rc = sqlite3VdbeExec(p); 629 db->nVdbeExec--; 630 } 631 632 #ifndef SQLITE_OMIT_TRACE 633 /* If the statement completed successfully, invoke the profile callback */ 634 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 635 #endif 636 637 if( rc==SQLITE_DONE && db->autoCommit ){ 638 assert( p->rc==SQLITE_OK ); 639 p->rc = doWalCallbacks(db); 640 if( p->rc!=SQLITE_OK ){ 641 rc = SQLITE_ERROR; 642 } 643 } 644 645 db->errCode = rc; 646 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 647 p->rc = SQLITE_NOMEM_BKPT; 648 } 649 end_of_step: 650 /* At this point local variable rc holds the value that should be 651 ** returned if this statement was compiled using the legacy 652 ** sqlite3_prepare() interface. According to the docs, this can only 653 ** be one of the values in the first assert() below. Variable p->rc 654 ** contains the value that would be returned if sqlite3_finalize() 655 ** were called on statement p. 656 */ 657 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 658 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 659 ); 660 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 661 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 662 && rc!=SQLITE_ROW 663 && rc!=SQLITE_DONE 664 ){ 665 /* If this statement was prepared using saved SQL and an 666 ** error has occurred, then return the error code in p->rc to the 667 ** caller. Set the error code in the database handle to the same value. 668 */ 669 rc = sqlite3VdbeTransferError(p); 670 } 671 return (rc&db->errMask); 672 } 673 674 /* 675 ** This is the top-level implementation of sqlite3_step(). Call 676 ** sqlite3Step() to do most of the work. If a schema error occurs, 677 ** call sqlite3Reprepare() and try again. 678 */ 679 int sqlite3_step(sqlite3_stmt *pStmt){ 680 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 681 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 682 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 683 sqlite3 *db; /* The database connection */ 684 685 if( vdbeSafetyNotNull(v) ){ 686 return SQLITE_MISUSE_BKPT; 687 } 688 db = v->db; 689 sqlite3_mutex_enter(db->mutex); 690 v->doingRerun = 0; 691 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 692 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 693 int savedPc = v->pc; 694 rc = sqlite3Reprepare(v); 695 if( rc!=SQLITE_OK ){ 696 /* This case occurs after failing to recompile an sql statement. 697 ** The error message from the SQL compiler has already been loaded 698 ** into the database handle. This block copies the error message 699 ** from the database handle into the statement and sets the statement 700 ** program counter to 0 to ensure that when the statement is 701 ** finalized or reset the parser error message is available via 702 ** sqlite3_errmsg() and sqlite3_errcode(). 703 */ 704 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 705 sqlite3DbFree(db, v->zErrMsg); 706 if( !db->mallocFailed ){ 707 v->zErrMsg = sqlite3DbStrDup(db, zErr); 708 v->rc = rc = sqlite3ApiExit(db, rc); 709 } else { 710 v->zErrMsg = 0; 711 v->rc = rc = SQLITE_NOMEM_BKPT; 712 } 713 break; 714 } 715 sqlite3_reset(pStmt); 716 if( savedPc>=0 ) v->doingRerun = 1; 717 assert( v->expired==0 ); 718 } 719 sqlite3_mutex_leave(db->mutex); 720 return rc; 721 } 722 723 724 /* 725 ** Extract the user data from a sqlite3_context structure and return a 726 ** pointer to it. 727 */ 728 void *sqlite3_user_data(sqlite3_context *p){ 729 assert( p && p->pFunc ); 730 return p->pFunc->pUserData; 731 } 732 733 /* 734 ** Extract the user data from a sqlite3_context structure and return a 735 ** pointer to it. 736 ** 737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 738 ** returns a copy of the pointer to the database connection (the 1st 739 ** parameter) of the sqlite3_create_function() and 740 ** sqlite3_create_function16() routines that originally registered the 741 ** application defined function. 742 */ 743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 744 assert( p && p->pOut ); 745 return p->pOut->db; 746 } 747 748 /* 749 ** Return the current time for a statement. If the current time 750 ** is requested more than once within the same run of a single prepared 751 ** statement, the exact same time is returned for each invocation regardless 752 ** of the amount of time that elapses between invocations. In other words, 753 ** the time returned is always the time of the first call. 754 */ 755 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 756 int rc; 757 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 758 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 759 assert( p->pVdbe!=0 ); 760 #else 761 sqlite3_int64 iTime = 0; 762 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 763 #endif 764 if( *piTime==0 ){ 765 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 766 if( rc ) *piTime = 0; 767 } 768 return *piTime; 769 } 770 771 /* 772 ** The following is the implementation of an SQL function that always 773 ** fails with an error message stating that the function is used in the 774 ** wrong context. The sqlite3_overload_function() API might construct 775 ** SQL function that use this routine so that the functions will exist 776 ** for name resolution but are actually overloaded by the xFindFunction 777 ** method of virtual tables. 778 */ 779 void sqlite3InvalidFunction( 780 sqlite3_context *context, /* The function calling context */ 781 int NotUsed, /* Number of arguments to the function */ 782 sqlite3_value **NotUsed2 /* Value of each argument */ 783 ){ 784 const char *zName = context->pFunc->zName; 785 char *zErr; 786 UNUSED_PARAMETER2(NotUsed, NotUsed2); 787 zErr = sqlite3_mprintf( 788 "unable to use function %s in the requested context", zName); 789 sqlite3_result_error(context, zErr, -1); 790 sqlite3_free(zErr); 791 } 792 793 /* 794 ** Create a new aggregate context for p and return a pointer to 795 ** its pMem->z element. 796 */ 797 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 798 Mem *pMem = p->pMem; 799 assert( (pMem->flags & MEM_Agg)==0 ); 800 if( nByte<=0 ){ 801 sqlite3VdbeMemSetNull(pMem); 802 pMem->z = 0; 803 }else{ 804 sqlite3VdbeMemClearAndResize(pMem, nByte); 805 pMem->flags = MEM_Agg; 806 pMem->u.pDef = p->pFunc; 807 if( pMem->z ){ 808 memset(pMem->z, 0, nByte); 809 } 810 } 811 return (void*)pMem->z; 812 } 813 814 /* 815 ** Allocate or return the aggregate context for a user function. A new 816 ** context is allocated on the first call. Subsequent calls return the 817 ** same context that was returned on prior calls. 818 */ 819 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 820 assert( p && p->pFunc && p->pFunc->xFinalize ); 821 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 822 testcase( nByte<0 ); 823 if( (p->pMem->flags & MEM_Agg)==0 ){ 824 return createAggContext(p, nByte); 825 }else{ 826 return (void*)p->pMem->z; 827 } 828 } 829 830 /* 831 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 832 ** the user-function defined by pCtx. 833 ** 834 ** The left-most argument is 0. 835 ** 836 ** Undocumented behavior: If iArg is negative then access a cache of 837 ** auxiliary data pointers that is available to all functions within a 838 ** single prepared statement. The iArg values must match. 839 */ 840 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 841 AuxData *pAuxData; 842 843 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 844 #if SQLITE_ENABLE_STAT3_OR_STAT4 845 if( pCtx->pVdbe==0 ) return 0; 846 #else 847 assert( pCtx->pVdbe!=0 ); 848 #endif 849 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 850 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 851 return pAuxData->pAux; 852 } 853 } 854 return 0; 855 } 856 857 /* 858 ** Set the auxiliary data pointer and delete function, for the iArg'th 859 ** argument to the user-function defined by pCtx. Any previous value is 860 ** deleted by calling the delete function specified when it was set. 861 ** 862 ** The left-most argument is 0. 863 ** 864 ** Undocumented behavior: If iArg is negative then make the data available 865 ** to all functions within the current prepared statement using iArg as an 866 ** access code. 867 */ 868 void sqlite3_set_auxdata( 869 sqlite3_context *pCtx, 870 int iArg, 871 void *pAux, 872 void (*xDelete)(void*) 873 ){ 874 AuxData *pAuxData; 875 Vdbe *pVdbe = pCtx->pVdbe; 876 877 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 878 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 879 if( pVdbe==0 ) goto failed; 880 #else 881 assert( pVdbe!=0 ); 882 #endif 883 884 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 885 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 886 break; 887 } 888 } 889 if( pAuxData==0 ){ 890 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 891 if( !pAuxData ) goto failed; 892 pAuxData->iAuxOp = pCtx->iOp; 893 pAuxData->iAuxArg = iArg; 894 pAuxData->pNextAux = pVdbe->pAuxData; 895 pVdbe->pAuxData = pAuxData; 896 if( pCtx->fErrorOrAux==0 ){ 897 pCtx->isError = 0; 898 pCtx->fErrorOrAux = 1; 899 } 900 }else if( pAuxData->xDeleteAux ){ 901 pAuxData->xDeleteAux(pAuxData->pAux); 902 } 903 904 pAuxData->pAux = pAux; 905 pAuxData->xDeleteAux = xDelete; 906 return; 907 908 failed: 909 if( xDelete ){ 910 xDelete(pAux); 911 } 912 } 913 914 #ifndef SQLITE_OMIT_DEPRECATED 915 /* 916 ** Return the number of times the Step function of an aggregate has been 917 ** called. 918 ** 919 ** This function is deprecated. Do not use it for new code. It is 920 ** provide only to avoid breaking legacy code. New aggregate function 921 ** implementations should keep their own counts within their aggregate 922 ** context. 923 */ 924 int sqlite3_aggregate_count(sqlite3_context *p){ 925 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 926 return p->pMem->n; 927 } 928 #endif 929 930 /* 931 ** Return the number of columns in the result set for the statement pStmt. 932 */ 933 int sqlite3_column_count(sqlite3_stmt *pStmt){ 934 Vdbe *pVm = (Vdbe *)pStmt; 935 return pVm ? pVm->nResColumn : 0; 936 } 937 938 /* 939 ** Return the number of values available from the current row of the 940 ** currently executing statement pStmt. 941 */ 942 int sqlite3_data_count(sqlite3_stmt *pStmt){ 943 Vdbe *pVm = (Vdbe *)pStmt; 944 if( pVm==0 || pVm->pResultSet==0 ) return 0; 945 return pVm->nResColumn; 946 } 947 948 /* 949 ** Return a pointer to static memory containing an SQL NULL value. 950 */ 951 static const Mem *columnNullValue(void){ 952 /* Even though the Mem structure contains an element 953 ** of type i64, on certain architectures (x86) with certain compiler 954 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 955 ** instead of an 8-byte one. This all works fine, except that when 956 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 957 ** that a Mem structure is located on an 8-byte boundary. To prevent 958 ** these assert()s from failing, when building with SQLITE_DEBUG defined 959 ** using gcc, we force nullMem to be 8-byte aligned using the magical 960 ** __attribute__((aligned(8))) macro. */ 961 static const Mem nullMem 962 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 963 __attribute__((aligned(8))) 964 #endif 965 = { 966 /* .u = */ {0}, 967 /* .flags = */ (u16)MEM_Null, 968 /* .enc = */ (u8)0, 969 /* .eSubtype = */ (u8)0, 970 /* .n = */ (int)0, 971 /* .z = */ (char*)0, 972 /* .zMalloc = */ (char*)0, 973 /* .szMalloc = */ (int)0, 974 /* .uTemp = */ (u32)0, 975 /* .db = */ (sqlite3*)0, 976 /* .xDel = */ (void(*)(void*))0, 977 #ifdef SQLITE_DEBUG 978 /* .pScopyFrom = */ (Mem*)0, 979 /* .pFiller = */ (void*)0, 980 #endif 981 }; 982 return &nullMem; 983 } 984 985 /* 986 ** Check to see if column iCol of the given statement is valid. If 987 ** it is, return a pointer to the Mem for the value of that column. 988 ** If iCol is not valid, return a pointer to a Mem which has a value 989 ** of NULL. 990 */ 991 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 992 Vdbe *pVm; 993 Mem *pOut; 994 995 pVm = (Vdbe *)pStmt; 996 if( pVm==0 ) return (Mem*)columnNullValue(); 997 assert( pVm->db ); 998 sqlite3_mutex_enter(pVm->db->mutex); 999 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1000 pOut = &pVm->pResultSet[i]; 1001 }else{ 1002 sqlite3Error(pVm->db, SQLITE_RANGE); 1003 pOut = (Mem*)columnNullValue(); 1004 } 1005 return pOut; 1006 } 1007 1008 /* 1009 ** This function is called after invoking an sqlite3_value_XXX function on a 1010 ** column value (i.e. a value returned by evaluating an SQL expression in the 1011 ** select list of a SELECT statement) that may cause a malloc() failure. If 1012 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1013 ** code of statement pStmt set to SQLITE_NOMEM. 1014 ** 1015 ** Specifically, this is called from within: 1016 ** 1017 ** sqlite3_column_int() 1018 ** sqlite3_column_int64() 1019 ** sqlite3_column_text() 1020 ** sqlite3_column_text16() 1021 ** sqlite3_column_real() 1022 ** sqlite3_column_bytes() 1023 ** sqlite3_column_bytes16() 1024 ** sqiite3_column_blob() 1025 */ 1026 static void columnMallocFailure(sqlite3_stmt *pStmt) 1027 { 1028 /* If malloc() failed during an encoding conversion within an 1029 ** sqlite3_column_XXX API, then set the return code of the statement to 1030 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1031 ** and _finalize() will return NOMEM. 1032 */ 1033 Vdbe *p = (Vdbe *)pStmt; 1034 if( p ){ 1035 assert( p->db!=0 ); 1036 assert( sqlite3_mutex_held(p->db->mutex) ); 1037 p->rc = sqlite3ApiExit(p->db, p->rc); 1038 sqlite3_mutex_leave(p->db->mutex); 1039 } 1040 } 1041 1042 /**************************** sqlite3_column_ ******************************* 1043 ** The following routines are used to access elements of the current row 1044 ** in the result set. 1045 */ 1046 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1047 const void *val; 1048 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1049 /* Even though there is no encoding conversion, value_blob() might 1050 ** need to call malloc() to expand the result of a zeroblob() 1051 ** expression. 1052 */ 1053 columnMallocFailure(pStmt); 1054 return val; 1055 } 1056 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1057 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1058 columnMallocFailure(pStmt); 1059 return val; 1060 } 1061 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1062 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1063 columnMallocFailure(pStmt); 1064 return val; 1065 } 1066 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1067 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1068 columnMallocFailure(pStmt); 1069 return val; 1070 } 1071 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1072 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1073 columnMallocFailure(pStmt); 1074 return val; 1075 } 1076 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1077 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1078 columnMallocFailure(pStmt); 1079 return val; 1080 } 1081 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1082 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1083 columnMallocFailure(pStmt); 1084 return val; 1085 } 1086 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1087 Mem *pOut = columnMem(pStmt, i); 1088 if( pOut->flags&MEM_Static ){ 1089 pOut->flags &= ~MEM_Static; 1090 pOut->flags |= MEM_Ephem; 1091 } 1092 columnMallocFailure(pStmt); 1093 return (sqlite3_value *)pOut; 1094 } 1095 #ifndef SQLITE_OMIT_UTF16 1096 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1097 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1098 columnMallocFailure(pStmt); 1099 return val; 1100 } 1101 #endif /* SQLITE_OMIT_UTF16 */ 1102 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1103 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1104 columnMallocFailure(pStmt); 1105 return iType; 1106 } 1107 1108 /* 1109 ** Convert the N-th element of pStmt->pColName[] into a string using 1110 ** xFunc() then return that string. If N is out of range, return 0. 1111 ** 1112 ** There are up to 5 names for each column. useType determines which 1113 ** name is returned. Here are the names: 1114 ** 1115 ** 0 The column name as it should be displayed for output 1116 ** 1 The datatype name for the column 1117 ** 2 The name of the database that the column derives from 1118 ** 3 The name of the table that the column derives from 1119 ** 4 The name of the table column that the result column derives from 1120 ** 1121 ** If the result is not a simple column reference (if it is an expression 1122 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1123 */ 1124 static const void *columnName( 1125 sqlite3_stmt *pStmt, 1126 int N, 1127 const void *(*xFunc)(Mem*), 1128 int useType 1129 ){ 1130 const void *ret; 1131 Vdbe *p; 1132 int n; 1133 sqlite3 *db; 1134 #ifdef SQLITE_ENABLE_API_ARMOR 1135 if( pStmt==0 ){ 1136 (void)SQLITE_MISUSE_BKPT; 1137 return 0; 1138 } 1139 #endif 1140 ret = 0; 1141 p = (Vdbe *)pStmt; 1142 db = p->db; 1143 assert( db!=0 ); 1144 n = sqlite3_column_count(pStmt); 1145 if( N<n && N>=0 ){ 1146 N += useType*n; 1147 sqlite3_mutex_enter(db->mutex); 1148 assert( db->mallocFailed==0 ); 1149 ret = xFunc(&p->aColName[N]); 1150 /* A malloc may have failed inside of the xFunc() call. If this 1151 ** is the case, clear the mallocFailed flag and return NULL. 1152 */ 1153 if( db->mallocFailed ){ 1154 sqlite3OomClear(db); 1155 ret = 0; 1156 } 1157 sqlite3_mutex_leave(db->mutex); 1158 } 1159 return ret; 1160 } 1161 1162 /* 1163 ** Return the name of the Nth column of the result set returned by SQL 1164 ** statement pStmt. 1165 */ 1166 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1167 return columnName( 1168 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1169 } 1170 #ifndef SQLITE_OMIT_UTF16 1171 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1172 return columnName( 1173 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1174 } 1175 #endif 1176 1177 /* 1178 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1179 ** not define OMIT_DECLTYPE. 1180 */ 1181 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1182 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1183 and SQLITE_ENABLE_COLUMN_METADATA" 1184 #endif 1185 1186 #ifndef SQLITE_OMIT_DECLTYPE 1187 /* 1188 ** Return the column declaration type (if applicable) of the 'i'th column 1189 ** of the result set of SQL statement pStmt. 1190 */ 1191 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1192 return columnName( 1193 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1194 } 1195 #ifndef SQLITE_OMIT_UTF16 1196 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1197 return columnName( 1198 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1199 } 1200 #endif /* SQLITE_OMIT_UTF16 */ 1201 #endif /* SQLITE_OMIT_DECLTYPE */ 1202 1203 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1204 /* 1205 ** Return the name of the database from which a result column derives. 1206 ** NULL is returned if the result column is an expression or constant or 1207 ** anything else which is not an unambiguous reference to a database column. 1208 */ 1209 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1210 return columnName( 1211 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1212 } 1213 #ifndef SQLITE_OMIT_UTF16 1214 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1215 return columnName( 1216 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1217 } 1218 #endif /* SQLITE_OMIT_UTF16 */ 1219 1220 /* 1221 ** Return the name of the table from which a result column derives. 1222 ** NULL is returned if the result column is an expression or constant or 1223 ** anything else which is not an unambiguous reference to a database column. 1224 */ 1225 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1226 return columnName( 1227 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1228 } 1229 #ifndef SQLITE_OMIT_UTF16 1230 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1231 return columnName( 1232 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1233 } 1234 #endif /* SQLITE_OMIT_UTF16 */ 1235 1236 /* 1237 ** Return the name of the table column from which a result column derives. 1238 ** NULL is returned if the result column is an expression or constant or 1239 ** anything else which is not an unambiguous reference to a database column. 1240 */ 1241 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1242 return columnName( 1243 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1244 } 1245 #ifndef SQLITE_OMIT_UTF16 1246 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1247 return columnName( 1248 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1249 } 1250 #endif /* SQLITE_OMIT_UTF16 */ 1251 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1252 1253 1254 /******************************* sqlite3_bind_ *************************** 1255 ** 1256 ** Routines used to attach values to wildcards in a compiled SQL statement. 1257 */ 1258 /* 1259 ** Unbind the value bound to variable i in virtual machine p. This is the 1260 ** the same as binding a NULL value to the column. If the "i" parameter is 1261 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1262 ** 1263 ** A successful evaluation of this routine acquires the mutex on p. 1264 ** the mutex is released if any kind of error occurs. 1265 ** 1266 ** The error code stored in database p->db is overwritten with the return 1267 ** value in any case. 1268 */ 1269 static int vdbeUnbind(Vdbe *p, int i){ 1270 Mem *pVar; 1271 if( vdbeSafetyNotNull(p) ){ 1272 return SQLITE_MISUSE_BKPT; 1273 } 1274 sqlite3_mutex_enter(p->db->mutex); 1275 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1276 sqlite3Error(p->db, SQLITE_MISUSE); 1277 sqlite3_mutex_leave(p->db->mutex); 1278 sqlite3_log(SQLITE_MISUSE, 1279 "bind on a busy prepared statement: [%s]", p->zSql); 1280 return SQLITE_MISUSE_BKPT; 1281 } 1282 if( i<1 || i>p->nVar ){ 1283 sqlite3Error(p->db, SQLITE_RANGE); 1284 sqlite3_mutex_leave(p->db->mutex); 1285 return SQLITE_RANGE; 1286 } 1287 i--; 1288 pVar = &p->aVar[i]; 1289 sqlite3VdbeMemRelease(pVar); 1290 pVar->flags = MEM_Null; 1291 sqlite3Error(p->db, SQLITE_OK); 1292 1293 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1294 ** binding a new value to this variable invalidates the current query plan. 1295 ** 1296 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1297 ** parameter in the WHERE clause might influence the choice of query plan 1298 ** for a statement, then the statement will be automatically recompiled, 1299 ** as if there had been a schema change, on the first sqlite3_step() call 1300 ** following any change to the bindings of that parameter. 1301 */ 1302 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1303 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1304 p->expired = 1; 1305 } 1306 return SQLITE_OK; 1307 } 1308 1309 /* 1310 ** Bind a text or BLOB value. 1311 */ 1312 static int bindText( 1313 sqlite3_stmt *pStmt, /* The statement to bind against */ 1314 int i, /* Index of the parameter to bind */ 1315 const void *zData, /* Pointer to the data to be bound */ 1316 int nData, /* Number of bytes of data to be bound */ 1317 void (*xDel)(void*), /* Destructor for the data */ 1318 u8 encoding /* Encoding for the data */ 1319 ){ 1320 Vdbe *p = (Vdbe *)pStmt; 1321 Mem *pVar; 1322 int rc; 1323 1324 rc = vdbeUnbind(p, i); 1325 if( rc==SQLITE_OK ){ 1326 if( zData!=0 ){ 1327 pVar = &p->aVar[i-1]; 1328 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1329 if( rc==SQLITE_OK && encoding!=0 ){ 1330 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1331 } 1332 if( rc ){ 1333 sqlite3Error(p->db, rc); 1334 rc = sqlite3ApiExit(p->db, rc); 1335 } 1336 } 1337 sqlite3_mutex_leave(p->db->mutex); 1338 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1339 xDel((void*)zData); 1340 } 1341 return rc; 1342 } 1343 1344 1345 /* 1346 ** Bind a blob value to an SQL statement variable. 1347 */ 1348 int sqlite3_bind_blob( 1349 sqlite3_stmt *pStmt, 1350 int i, 1351 const void *zData, 1352 int nData, 1353 void (*xDel)(void*) 1354 ){ 1355 #ifdef SQLITE_ENABLE_API_ARMOR 1356 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1357 #endif 1358 return bindText(pStmt, i, zData, nData, xDel, 0); 1359 } 1360 int sqlite3_bind_blob64( 1361 sqlite3_stmt *pStmt, 1362 int i, 1363 const void *zData, 1364 sqlite3_uint64 nData, 1365 void (*xDel)(void*) 1366 ){ 1367 assert( xDel!=SQLITE_DYNAMIC ); 1368 if( nData>0x7fffffff ){ 1369 return invokeValueDestructor(zData, xDel, 0); 1370 }else{ 1371 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1372 } 1373 } 1374 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1375 int rc; 1376 Vdbe *p = (Vdbe *)pStmt; 1377 rc = vdbeUnbind(p, i); 1378 if( rc==SQLITE_OK ){ 1379 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1380 sqlite3_mutex_leave(p->db->mutex); 1381 } 1382 return rc; 1383 } 1384 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1385 return sqlite3_bind_int64(p, i, (i64)iValue); 1386 } 1387 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1388 int rc; 1389 Vdbe *p = (Vdbe *)pStmt; 1390 rc = vdbeUnbind(p, i); 1391 if( rc==SQLITE_OK ){ 1392 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1393 sqlite3_mutex_leave(p->db->mutex); 1394 } 1395 return rc; 1396 } 1397 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1398 int rc; 1399 Vdbe *p = (Vdbe*)pStmt; 1400 rc = vdbeUnbind(p, i); 1401 if( rc==SQLITE_OK ){ 1402 sqlite3_mutex_leave(p->db->mutex); 1403 } 1404 return rc; 1405 } 1406 int sqlite3_bind_pointer( 1407 sqlite3_stmt *pStmt, 1408 int i, 1409 void *pPtr, 1410 const char *zPTtype, 1411 void (*xDestructor)(void*) 1412 ){ 1413 int rc; 1414 Vdbe *p = (Vdbe*)pStmt; 1415 rc = vdbeUnbind(p, i); 1416 if( rc==SQLITE_OK ){ 1417 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1418 sqlite3_mutex_leave(p->db->mutex); 1419 }else if( xDestructor ){ 1420 xDestructor(pPtr); 1421 } 1422 return rc; 1423 } 1424 int sqlite3_bind_text( 1425 sqlite3_stmt *pStmt, 1426 int i, 1427 const char *zData, 1428 int nData, 1429 void (*xDel)(void*) 1430 ){ 1431 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1432 } 1433 int sqlite3_bind_text64( 1434 sqlite3_stmt *pStmt, 1435 int i, 1436 const char *zData, 1437 sqlite3_uint64 nData, 1438 void (*xDel)(void*), 1439 unsigned char enc 1440 ){ 1441 assert( xDel!=SQLITE_DYNAMIC ); 1442 if( nData>0x7fffffff ){ 1443 return invokeValueDestructor(zData, xDel, 0); 1444 }else{ 1445 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1446 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1447 } 1448 } 1449 #ifndef SQLITE_OMIT_UTF16 1450 int sqlite3_bind_text16( 1451 sqlite3_stmt *pStmt, 1452 int i, 1453 const void *zData, 1454 int nData, 1455 void (*xDel)(void*) 1456 ){ 1457 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1458 } 1459 #endif /* SQLITE_OMIT_UTF16 */ 1460 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1461 int rc; 1462 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1463 case SQLITE_INTEGER: { 1464 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1465 break; 1466 } 1467 case SQLITE_FLOAT: { 1468 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1469 break; 1470 } 1471 case SQLITE_BLOB: { 1472 if( pValue->flags & MEM_Zero ){ 1473 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1474 }else{ 1475 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1476 } 1477 break; 1478 } 1479 case SQLITE_TEXT: { 1480 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1481 pValue->enc); 1482 break; 1483 } 1484 default: { 1485 rc = sqlite3_bind_null(pStmt, i); 1486 break; 1487 } 1488 } 1489 return rc; 1490 } 1491 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1492 int rc; 1493 Vdbe *p = (Vdbe *)pStmt; 1494 rc = vdbeUnbind(p, i); 1495 if( rc==SQLITE_OK ){ 1496 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1497 sqlite3_mutex_leave(p->db->mutex); 1498 } 1499 return rc; 1500 } 1501 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1502 int rc; 1503 Vdbe *p = (Vdbe *)pStmt; 1504 sqlite3_mutex_enter(p->db->mutex); 1505 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1506 rc = SQLITE_TOOBIG; 1507 }else{ 1508 assert( (n & 0x7FFFFFFF)==n ); 1509 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1510 } 1511 rc = sqlite3ApiExit(p->db, rc); 1512 sqlite3_mutex_leave(p->db->mutex); 1513 return rc; 1514 } 1515 1516 /* 1517 ** Return the number of wildcards that can be potentially bound to. 1518 ** This routine is added to support DBD::SQLite. 1519 */ 1520 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1521 Vdbe *p = (Vdbe*)pStmt; 1522 return p ? p->nVar : 0; 1523 } 1524 1525 /* 1526 ** Return the name of a wildcard parameter. Return NULL if the index 1527 ** is out of range or if the wildcard is unnamed. 1528 ** 1529 ** The result is always UTF-8. 1530 */ 1531 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1532 Vdbe *p = (Vdbe*)pStmt; 1533 if( p==0 ) return 0; 1534 return sqlite3VListNumToName(p->pVList, i); 1535 } 1536 1537 /* 1538 ** Given a wildcard parameter name, return the index of the variable 1539 ** with that name. If there is no variable with the given name, 1540 ** return 0. 1541 */ 1542 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1543 if( p==0 || zName==0 ) return 0; 1544 return sqlite3VListNameToNum(p->pVList, zName, nName); 1545 } 1546 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1547 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1548 } 1549 1550 /* 1551 ** Transfer all bindings from the first statement over to the second. 1552 */ 1553 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1554 Vdbe *pFrom = (Vdbe*)pFromStmt; 1555 Vdbe *pTo = (Vdbe*)pToStmt; 1556 int i; 1557 assert( pTo->db==pFrom->db ); 1558 assert( pTo->nVar==pFrom->nVar ); 1559 sqlite3_mutex_enter(pTo->db->mutex); 1560 for(i=0; i<pFrom->nVar; i++){ 1561 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1562 } 1563 sqlite3_mutex_leave(pTo->db->mutex); 1564 return SQLITE_OK; 1565 } 1566 1567 #ifndef SQLITE_OMIT_DEPRECATED 1568 /* 1569 ** Deprecated external interface. Internal/core SQLite code 1570 ** should call sqlite3TransferBindings. 1571 ** 1572 ** It is misuse to call this routine with statements from different 1573 ** database connections. But as this is a deprecated interface, we 1574 ** will not bother to check for that condition. 1575 ** 1576 ** If the two statements contain a different number of bindings, then 1577 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1578 ** SQLITE_OK is returned. 1579 */ 1580 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1581 Vdbe *pFrom = (Vdbe*)pFromStmt; 1582 Vdbe *pTo = (Vdbe*)pToStmt; 1583 if( pFrom->nVar!=pTo->nVar ){ 1584 return SQLITE_ERROR; 1585 } 1586 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1587 if( pTo->expmask ){ 1588 pTo->expired = 1; 1589 } 1590 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1591 if( pFrom->expmask ){ 1592 pFrom->expired = 1; 1593 } 1594 return sqlite3TransferBindings(pFromStmt, pToStmt); 1595 } 1596 #endif 1597 1598 /* 1599 ** Return the sqlite3* database handle to which the prepared statement given 1600 ** in the argument belongs. This is the same database handle that was 1601 ** the first argument to the sqlite3_prepare() that was used to create 1602 ** the statement in the first place. 1603 */ 1604 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1605 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1606 } 1607 1608 /* 1609 ** Return true if the prepared statement is guaranteed to not modify the 1610 ** database. 1611 */ 1612 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1613 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1614 } 1615 1616 /* 1617 ** Return true if the prepared statement is in need of being reset. 1618 */ 1619 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1620 Vdbe *v = (Vdbe*)pStmt; 1621 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1622 } 1623 1624 /* 1625 ** Return a pointer to the next prepared statement after pStmt associated 1626 ** with database connection pDb. If pStmt is NULL, return the first 1627 ** prepared statement for the database connection. Return NULL if there 1628 ** are no more. 1629 */ 1630 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1631 sqlite3_stmt *pNext; 1632 #ifdef SQLITE_ENABLE_API_ARMOR 1633 if( !sqlite3SafetyCheckOk(pDb) ){ 1634 (void)SQLITE_MISUSE_BKPT; 1635 return 0; 1636 } 1637 #endif 1638 sqlite3_mutex_enter(pDb->mutex); 1639 if( pStmt==0 ){ 1640 pNext = (sqlite3_stmt*)pDb->pVdbe; 1641 }else{ 1642 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1643 } 1644 sqlite3_mutex_leave(pDb->mutex); 1645 return pNext; 1646 } 1647 1648 /* 1649 ** Return the value of a status counter for a prepared statement 1650 */ 1651 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1652 Vdbe *pVdbe = (Vdbe*)pStmt; 1653 u32 v; 1654 #ifdef SQLITE_ENABLE_API_ARMOR 1655 if( !pStmt ){ 1656 (void)SQLITE_MISUSE_BKPT; 1657 return 0; 1658 } 1659 #endif 1660 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1661 sqlite3 *db = pVdbe->db; 1662 sqlite3_mutex_enter(db->mutex); 1663 v = 0; 1664 db->pnBytesFreed = (int*)&v; 1665 sqlite3VdbeClearObject(db, pVdbe); 1666 sqlite3DbFree(db, pVdbe); 1667 db->pnBytesFreed = 0; 1668 sqlite3_mutex_leave(db->mutex); 1669 }else{ 1670 v = pVdbe->aCounter[op]; 1671 if( resetFlag ) pVdbe->aCounter[op] = 0; 1672 } 1673 return (int)v; 1674 } 1675 1676 /* 1677 ** Return the SQL associated with a prepared statement 1678 */ 1679 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1680 Vdbe *p = (Vdbe *)pStmt; 1681 return p ? p->zSql : 0; 1682 } 1683 1684 /* 1685 ** Return the SQL associated with a prepared statement with 1686 ** bound parameters expanded. Space to hold the returned string is 1687 ** obtained from sqlite3_malloc(). The caller is responsible for 1688 ** freeing the returned string by passing it to sqlite3_free(). 1689 ** 1690 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1691 ** expanded bound parameters. 1692 */ 1693 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1694 #ifdef SQLITE_OMIT_TRACE 1695 return 0; 1696 #else 1697 char *z = 0; 1698 const char *zSql = sqlite3_sql(pStmt); 1699 if( zSql ){ 1700 Vdbe *p = (Vdbe *)pStmt; 1701 sqlite3_mutex_enter(p->db->mutex); 1702 z = sqlite3VdbeExpandSql(p, zSql); 1703 sqlite3_mutex_leave(p->db->mutex); 1704 } 1705 return z; 1706 #endif 1707 } 1708 1709 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1710 /* 1711 ** Allocate and populate an UnpackedRecord structure based on the serialized 1712 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1713 ** if successful, or a NULL pointer if an OOM error is encountered. 1714 */ 1715 static UnpackedRecord *vdbeUnpackRecord( 1716 KeyInfo *pKeyInfo, 1717 int nKey, 1718 const void *pKey 1719 ){ 1720 UnpackedRecord *pRet; /* Return value */ 1721 1722 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1723 if( pRet ){ 1724 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1725 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1726 } 1727 return pRet; 1728 } 1729 1730 /* 1731 ** This function is called from within a pre-update callback to retrieve 1732 ** a field of the row currently being updated or deleted. 1733 */ 1734 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1735 PreUpdate *p = db->pPreUpdate; 1736 Mem *pMem; 1737 int rc = SQLITE_OK; 1738 1739 /* Test that this call is being made from within an SQLITE_DELETE or 1740 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1741 if( !p || p->op==SQLITE_INSERT ){ 1742 rc = SQLITE_MISUSE_BKPT; 1743 goto preupdate_old_out; 1744 } 1745 if( p->pPk ){ 1746 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1747 } 1748 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1749 rc = SQLITE_RANGE; 1750 goto preupdate_old_out; 1751 } 1752 1753 /* If the old.* record has not yet been loaded into memory, do so now. */ 1754 if( p->pUnpacked==0 ){ 1755 u32 nRec; 1756 u8 *aRec; 1757 1758 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1759 aRec = sqlite3DbMallocRaw(db, nRec); 1760 if( !aRec ) goto preupdate_old_out; 1761 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1762 if( rc==SQLITE_OK ){ 1763 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1764 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1765 } 1766 if( rc!=SQLITE_OK ){ 1767 sqlite3DbFree(db, aRec); 1768 goto preupdate_old_out; 1769 } 1770 p->aRecord = aRec; 1771 } 1772 1773 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1774 if( iIdx==p->pTab->iPKey ){ 1775 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1776 }else if( iIdx>=p->pUnpacked->nField ){ 1777 *ppValue = (sqlite3_value *)columnNullValue(); 1778 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1779 if( pMem->flags & MEM_Int ){ 1780 sqlite3VdbeMemRealify(pMem); 1781 } 1782 } 1783 1784 preupdate_old_out: 1785 sqlite3Error(db, rc); 1786 return sqlite3ApiExit(db, rc); 1787 } 1788 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1789 1790 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1791 /* 1792 ** This function is called from within a pre-update callback to retrieve 1793 ** the number of columns in the row being updated, deleted or inserted. 1794 */ 1795 int sqlite3_preupdate_count(sqlite3 *db){ 1796 PreUpdate *p = db->pPreUpdate; 1797 return (p ? p->keyinfo.nKeyField : 0); 1798 } 1799 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1800 1801 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1802 /* 1803 ** This function is designed to be called from within a pre-update callback 1804 ** only. It returns zero if the change that caused the callback was made 1805 ** immediately by a user SQL statement. Or, if the change was made by a 1806 ** trigger program, it returns the number of trigger programs currently 1807 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1808 ** top-level trigger etc.). 1809 ** 1810 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1811 ** or SET DEFAULT action is considered a trigger. 1812 */ 1813 int sqlite3_preupdate_depth(sqlite3 *db){ 1814 PreUpdate *p = db->pPreUpdate; 1815 return (p ? p->v->nFrame : 0); 1816 } 1817 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1818 1819 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1820 /* 1821 ** This function is called from within a pre-update callback to retrieve 1822 ** a field of the row currently being updated or inserted. 1823 */ 1824 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1825 PreUpdate *p = db->pPreUpdate; 1826 int rc = SQLITE_OK; 1827 Mem *pMem; 1828 1829 if( !p || p->op==SQLITE_DELETE ){ 1830 rc = SQLITE_MISUSE_BKPT; 1831 goto preupdate_new_out; 1832 } 1833 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1834 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1835 } 1836 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1837 rc = SQLITE_RANGE; 1838 goto preupdate_new_out; 1839 } 1840 1841 if( p->op==SQLITE_INSERT ){ 1842 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1843 ** that is being inserted. Deserialize it. */ 1844 UnpackedRecord *pUnpack = p->pNewUnpacked; 1845 if( !pUnpack ){ 1846 Mem *pData = &p->v->aMem[p->iNewReg]; 1847 rc = ExpandBlob(pData); 1848 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1849 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1850 if( !pUnpack ){ 1851 rc = SQLITE_NOMEM; 1852 goto preupdate_new_out; 1853 } 1854 p->pNewUnpacked = pUnpack; 1855 } 1856 pMem = &pUnpack->aMem[iIdx]; 1857 if( iIdx==p->pTab->iPKey ){ 1858 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1859 }else if( iIdx>=pUnpack->nField ){ 1860 pMem = (sqlite3_value *)columnNullValue(); 1861 } 1862 }else{ 1863 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1864 ** value. Make a copy of the cell contents and return a pointer to it. 1865 ** It is not safe to return a pointer to the memory cell itself as the 1866 ** caller may modify the value text encoding. 1867 */ 1868 assert( p->op==SQLITE_UPDATE ); 1869 if( !p->aNew ){ 1870 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1871 if( !p->aNew ){ 1872 rc = SQLITE_NOMEM; 1873 goto preupdate_new_out; 1874 } 1875 } 1876 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1877 pMem = &p->aNew[iIdx]; 1878 if( pMem->flags==0 ){ 1879 if( iIdx==p->pTab->iPKey ){ 1880 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1881 }else{ 1882 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1883 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1884 } 1885 } 1886 } 1887 *ppValue = pMem; 1888 1889 preupdate_new_out: 1890 sqlite3Error(db, rc); 1891 return sqlite3ApiExit(db, rc); 1892 } 1893 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1894 1895 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1896 /* 1897 ** Return status data for a single loop within query pStmt. 1898 */ 1899 int sqlite3_stmt_scanstatus( 1900 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1901 int idx, /* Index of loop to report on */ 1902 int iScanStatusOp, /* Which metric to return */ 1903 void *pOut /* OUT: Write the answer here */ 1904 ){ 1905 Vdbe *p = (Vdbe*)pStmt; 1906 ScanStatus *pScan; 1907 if( idx<0 || idx>=p->nScan ) return 1; 1908 pScan = &p->aScan[idx]; 1909 switch( iScanStatusOp ){ 1910 case SQLITE_SCANSTAT_NLOOP: { 1911 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1912 break; 1913 } 1914 case SQLITE_SCANSTAT_NVISIT: { 1915 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1916 break; 1917 } 1918 case SQLITE_SCANSTAT_EST: { 1919 double r = 1.0; 1920 LogEst x = pScan->nEst; 1921 while( x<100 ){ 1922 x += 10; 1923 r *= 0.5; 1924 } 1925 *(double*)pOut = r*sqlite3LogEstToInt(x); 1926 break; 1927 } 1928 case SQLITE_SCANSTAT_NAME: { 1929 *(const char**)pOut = pScan->zName; 1930 break; 1931 } 1932 case SQLITE_SCANSTAT_EXPLAIN: { 1933 if( pScan->addrExplain ){ 1934 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1935 }else{ 1936 *(const char**)pOut = 0; 1937 } 1938 break; 1939 } 1940 case SQLITE_SCANSTAT_SELECTID: { 1941 if( pScan->addrExplain ){ 1942 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1943 }else{ 1944 *(int*)pOut = -1; 1945 } 1946 break; 1947 } 1948 default: { 1949 return 1; 1950 } 1951 } 1952 return 0; 1953 } 1954 1955 /* 1956 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1957 */ 1958 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1959 Vdbe *p = (Vdbe*)pStmt; 1960 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1961 } 1962 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1963