xref: /sqlite-3.40.0/src/vdbeapi.c (revision 9a243e69)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70   if( db->xProfile ){
71     db->xProfile(db->pProfileArg, p->zSql, iElapse);
72   }
73   if( db->mTrace & SQLITE_TRACE_PROFILE ){
74     db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
75   }
76   p->startTime = 0;
77 }
78 /*
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
81 */
82 # define checkProfileCallback(DB,P) \
83    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P)  /*no-op*/
86 #endif
87 
88 /*
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
93 **
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
96 */
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98   int rc;
99   if( pStmt==0 ){
100     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101     ** pointer is a harmless no-op. */
102     rc = SQLITE_OK;
103   }else{
104     Vdbe *v = (Vdbe*)pStmt;
105     sqlite3 *db = v->db;
106     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107     sqlite3_mutex_enter(db->mutex);
108     checkProfileCallback(db, v);
109     rc = sqlite3VdbeFinalize(v);
110     rc = sqlite3ApiExit(db, rc);
111     sqlite3LeaveMutexAndCloseZombie(db);
112   }
113   return rc;
114 }
115 
116 /*
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
120 **
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
123 */
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125   int rc;
126   if( pStmt==0 ){
127     rc = SQLITE_OK;
128   }else{
129     Vdbe *v = (Vdbe*)pStmt;
130     sqlite3 *db = v->db;
131     sqlite3_mutex_enter(db->mutex);
132     checkProfileCallback(db, v);
133     rc = sqlite3VdbeReset(v);
134     sqlite3VdbeRewind(v);
135     assert( (rc & (db->errMask))==rc );
136     rc = sqlite3ApiExit(db, rc);
137     sqlite3_mutex_leave(db->mutex);
138   }
139   return rc;
140 }
141 
142 /*
143 ** Set all the parameters in the compiled SQL statement to NULL.
144 */
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146   int i;
147   int rc = SQLITE_OK;
148   Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152   sqlite3_mutex_enter(mutex);
153   for(i=0; i<p->nVar; i++){
154     sqlite3VdbeMemRelease(&p->aVar[i]);
155     p->aVar[i].flags = MEM_Null;
156   }
157   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
158   if( p->expmask ){
159     p->expired = 1;
160   }
161   sqlite3_mutex_leave(mutex);
162   return rc;
163 }
164 
165 
166 /**************************** sqlite3_value_  *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
168 ** structure.
169 */
170 const void *sqlite3_value_blob(sqlite3_value *pVal){
171   Mem *p = (Mem*)pVal;
172   if( p->flags & (MEM_Blob|MEM_Str) ){
173     if( ExpandBlob(p)!=SQLITE_OK ){
174       assert( p->flags==MEM_Null && p->z==0 );
175       return 0;
176     }
177     p->flags |= MEM_Blob;
178     return p->n ? p->z : 0;
179   }else{
180     return sqlite3_value_text(pVal);
181   }
182 }
183 int sqlite3_value_bytes(sqlite3_value *pVal){
184   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
185 }
186 int sqlite3_value_bytes16(sqlite3_value *pVal){
187   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
188 }
189 double sqlite3_value_double(sqlite3_value *pVal){
190   return sqlite3VdbeRealValue((Mem*)pVal);
191 }
192 int sqlite3_value_int(sqlite3_value *pVal){
193   return (int)sqlite3VdbeIntValue((Mem*)pVal);
194 }
195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
196   return sqlite3VdbeIntValue((Mem*)pVal);
197 }
198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
199   Mem *pMem = (Mem*)pVal;
200   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
201 }
202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
203   Mem *p = (Mem*)pVal;
204   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
205                  (MEM_Null|MEM_Term|MEM_Subtype)
206    && zPType!=0
207    && p->eSubtype=='p'
208    && strcmp(p->u.zPType, zPType)==0
209   ){
210     return (void*)p->z;
211   }else{
212     return 0;
213   }
214 }
215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
216   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
217 }
218 #ifndef SQLITE_OMIT_UTF16
219 const void *sqlite3_value_text16(sqlite3_value* pVal){
220   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
221 }
222 const void *sqlite3_value_text16be(sqlite3_value *pVal){
223   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
224 }
225 const void *sqlite3_value_text16le(sqlite3_value *pVal){
226   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
227 }
228 #endif /* SQLITE_OMIT_UTF16 */
229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
231 ** point number string BLOB NULL
232 */
233 int sqlite3_value_type(sqlite3_value* pVal){
234   static const u8 aType[] = {
235      SQLITE_BLOB,     /* 0x00 */
236      SQLITE_NULL,     /* 0x01 */
237      SQLITE_TEXT,     /* 0x02 */
238      SQLITE_NULL,     /* 0x03 */
239      SQLITE_INTEGER,  /* 0x04 */
240      SQLITE_NULL,     /* 0x05 */
241      SQLITE_INTEGER,  /* 0x06 */
242      SQLITE_NULL,     /* 0x07 */
243      SQLITE_FLOAT,    /* 0x08 */
244      SQLITE_NULL,     /* 0x09 */
245      SQLITE_FLOAT,    /* 0x0a */
246      SQLITE_NULL,     /* 0x0b */
247      SQLITE_INTEGER,  /* 0x0c */
248      SQLITE_NULL,     /* 0x0d */
249      SQLITE_INTEGER,  /* 0x0e */
250      SQLITE_NULL,     /* 0x0f */
251      SQLITE_BLOB,     /* 0x10 */
252      SQLITE_NULL,     /* 0x11 */
253      SQLITE_TEXT,     /* 0x12 */
254      SQLITE_NULL,     /* 0x13 */
255      SQLITE_INTEGER,  /* 0x14 */
256      SQLITE_NULL,     /* 0x15 */
257      SQLITE_INTEGER,  /* 0x16 */
258      SQLITE_NULL,     /* 0x17 */
259      SQLITE_FLOAT,    /* 0x18 */
260      SQLITE_NULL,     /* 0x19 */
261      SQLITE_FLOAT,    /* 0x1a */
262      SQLITE_NULL,     /* 0x1b */
263      SQLITE_INTEGER,  /* 0x1c */
264      SQLITE_NULL,     /* 0x1d */
265      SQLITE_INTEGER,  /* 0x1e */
266      SQLITE_NULL,     /* 0x1f */
267   };
268   return aType[pVal->flags&MEM_AffMask];
269 }
270 
271 /* Make a copy of an sqlite3_value object
272 */
273 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
274   sqlite3_value *pNew;
275   if( pOrig==0 ) return 0;
276   pNew = sqlite3_malloc( sizeof(*pNew) );
277   if( pNew==0 ) return 0;
278   memset(pNew, 0, sizeof(*pNew));
279   memcpy(pNew, pOrig, MEMCELLSIZE);
280   pNew->flags &= ~MEM_Dyn;
281   pNew->db = 0;
282   if( pNew->flags&(MEM_Str|MEM_Blob) ){
283     pNew->flags &= ~(MEM_Static|MEM_Dyn);
284     pNew->flags |= MEM_Ephem;
285     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
286       sqlite3ValueFree(pNew);
287       pNew = 0;
288     }
289   }
290   return pNew;
291 }
292 
293 /* Destroy an sqlite3_value object previously obtained from
294 ** sqlite3_value_dup().
295 */
296 void sqlite3_value_free(sqlite3_value *pOld){
297   sqlite3ValueFree(pOld);
298 }
299 
300 
301 /**************************** sqlite3_result_  *******************************
302 ** The following routines are used by user-defined functions to specify
303 ** the function result.
304 **
305 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
306 ** result as a string or blob but if the string or blob is too large, it
307 ** then sets the error code to SQLITE_TOOBIG
308 **
309 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
310 ** on value P is not going to be used and need to be destroyed.
311 */
312 static void setResultStrOrError(
313   sqlite3_context *pCtx,  /* Function context */
314   const char *z,          /* String pointer */
315   int n,                  /* Bytes in string, or negative */
316   u8 enc,                 /* Encoding of z.  0 for BLOBs */
317   void (*xDel)(void*)     /* Destructor function */
318 ){
319   if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
320     sqlite3_result_error_toobig(pCtx);
321   }
322 }
323 static int invokeValueDestructor(
324   const void *p,             /* Value to destroy */
325   void (*xDel)(void*),       /* The destructor */
326   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
327 ){
328   assert( xDel!=SQLITE_DYNAMIC );
329   if( xDel==0 ){
330     /* noop */
331   }else if( xDel==SQLITE_TRANSIENT ){
332     /* noop */
333   }else{
334     xDel((void*)p);
335   }
336   if( pCtx ) sqlite3_result_error_toobig(pCtx);
337   return SQLITE_TOOBIG;
338 }
339 void sqlite3_result_blob(
340   sqlite3_context *pCtx,
341   const void *z,
342   int n,
343   void (*xDel)(void *)
344 ){
345   assert( n>=0 );
346   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
347   setResultStrOrError(pCtx, z, n, 0, xDel);
348 }
349 void sqlite3_result_blob64(
350   sqlite3_context *pCtx,
351   const void *z,
352   sqlite3_uint64 n,
353   void (*xDel)(void *)
354 ){
355   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
356   assert( xDel!=SQLITE_DYNAMIC );
357   if( n>0x7fffffff ){
358     (void)invokeValueDestructor(z, xDel, pCtx);
359   }else{
360     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
361   }
362 }
363 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
364   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
365   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
366 }
367 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
368   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
369   pCtx->isError = SQLITE_ERROR;
370   pCtx->fErrorOrAux = 1;
371   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
372 }
373 #ifndef SQLITE_OMIT_UTF16
374 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
375   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
376   pCtx->isError = SQLITE_ERROR;
377   pCtx->fErrorOrAux = 1;
378   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
379 }
380 #endif
381 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
382   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
383   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
384 }
385 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
386   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
387   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
388 }
389 void sqlite3_result_null(sqlite3_context *pCtx){
390   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
391   sqlite3VdbeMemSetNull(pCtx->pOut);
392 }
393 void sqlite3_result_pointer(
394   sqlite3_context *pCtx,
395   void *pPtr,
396   const char *zPType,
397   void (*xDestructor)(void*)
398 ){
399   Mem *pOut = pCtx->pOut;
400   assert( sqlite3_mutex_held(pOut->db->mutex) );
401   sqlite3VdbeMemRelease(pOut);
402   pOut->flags = MEM_Null;
403   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
404 }
405 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
406   Mem *pOut = pCtx->pOut;
407   assert( sqlite3_mutex_held(pOut->db->mutex) );
408   pOut->eSubtype = eSubtype & 0xff;
409   pOut->flags |= MEM_Subtype;
410 }
411 void sqlite3_result_text(
412   sqlite3_context *pCtx,
413   const char *z,
414   int n,
415   void (*xDel)(void *)
416 ){
417   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
418   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
419 }
420 void sqlite3_result_text64(
421   sqlite3_context *pCtx,
422   const char *z,
423   sqlite3_uint64 n,
424   void (*xDel)(void *),
425   unsigned char enc
426 ){
427   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428   assert( xDel!=SQLITE_DYNAMIC );
429   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
430   if( n>0x7fffffff ){
431     (void)invokeValueDestructor(z, xDel, pCtx);
432   }else{
433     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
434   }
435 }
436 #ifndef SQLITE_OMIT_UTF16
437 void sqlite3_result_text16(
438   sqlite3_context *pCtx,
439   const void *z,
440   int n,
441   void (*xDel)(void *)
442 ){
443   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
444   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
445 }
446 void sqlite3_result_text16be(
447   sqlite3_context *pCtx,
448   const void *z,
449   int n,
450   void (*xDel)(void *)
451 ){
452   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
453   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
454 }
455 void sqlite3_result_text16le(
456   sqlite3_context *pCtx,
457   const void *z,
458   int n,
459   void (*xDel)(void *)
460 ){
461   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
462   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
463 }
464 #endif /* SQLITE_OMIT_UTF16 */
465 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
466   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
467   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
468 }
469 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
470   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
471   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
472 }
473 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
474   Mem *pOut = pCtx->pOut;
475   assert( sqlite3_mutex_held(pOut->db->mutex) );
476   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
477     return SQLITE_TOOBIG;
478   }
479   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
480   return SQLITE_OK;
481 }
482 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
483   pCtx->isError = errCode;
484   pCtx->fErrorOrAux = 1;
485 #ifdef SQLITE_DEBUG
486   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
487 #endif
488   if( pCtx->pOut->flags & MEM_Null ){
489     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
490                          SQLITE_UTF8, SQLITE_STATIC);
491   }
492 }
493 
494 /* Force an SQLITE_TOOBIG error. */
495 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
496   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
497   pCtx->isError = SQLITE_TOOBIG;
498   pCtx->fErrorOrAux = 1;
499   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
500                        SQLITE_UTF8, SQLITE_STATIC);
501 }
502 
503 /* An SQLITE_NOMEM error. */
504 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
505   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
506   sqlite3VdbeMemSetNull(pCtx->pOut);
507   pCtx->isError = SQLITE_NOMEM_BKPT;
508   pCtx->fErrorOrAux = 1;
509   sqlite3OomFault(pCtx->pOut->db);
510 }
511 
512 /*
513 ** This function is called after a transaction has been committed. It
514 ** invokes callbacks registered with sqlite3_wal_hook() as required.
515 */
516 static int doWalCallbacks(sqlite3 *db){
517   int rc = SQLITE_OK;
518 #ifndef SQLITE_OMIT_WAL
519   int i;
520   for(i=0; i<db->nDb; i++){
521     Btree *pBt = db->aDb[i].pBt;
522     if( pBt ){
523       int nEntry;
524       sqlite3BtreeEnter(pBt);
525       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
526       sqlite3BtreeLeave(pBt);
527       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
528         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
529       }
530     }
531   }
532 #endif
533   return rc;
534 }
535 
536 
537 /*
538 ** Execute the statement pStmt, either until a row of data is ready, the
539 ** statement is completely executed or an error occurs.
540 **
541 ** This routine implements the bulk of the logic behind the sqlite_step()
542 ** API.  The only thing omitted is the automatic recompile if a
543 ** schema change has occurred.  That detail is handled by the
544 ** outer sqlite3_step() wrapper procedure.
545 */
546 static int sqlite3Step(Vdbe *p){
547   sqlite3 *db;
548   int rc;
549 
550   assert(p);
551   if( p->magic!=VDBE_MAGIC_RUN ){
552     /* We used to require that sqlite3_reset() be called before retrying
553     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
554     ** with version 3.7.0, we changed this so that sqlite3_reset() would
555     ** be called automatically instead of throwing the SQLITE_MISUSE error.
556     ** This "automatic-reset" change is not technically an incompatibility,
557     ** since any application that receives an SQLITE_MISUSE is broken by
558     ** definition.
559     **
560     ** Nevertheless, some published applications that were originally written
561     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
562     ** returns, and those were broken by the automatic-reset change.  As a
563     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
564     ** legacy behavior of returning SQLITE_MISUSE for cases where the
565     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
566     ** or SQLITE_BUSY error.
567     */
568 #ifdef SQLITE_OMIT_AUTORESET
569     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
570       sqlite3_reset((sqlite3_stmt*)p);
571     }else{
572       return SQLITE_MISUSE_BKPT;
573     }
574 #else
575     sqlite3_reset((sqlite3_stmt*)p);
576 #endif
577   }
578 
579   /* Check that malloc() has not failed. If it has, return early. */
580   db = p->db;
581   if( db->mallocFailed ){
582     p->rc = SQLITE_NOMEM;
583     return SQLITE_NOMEM_BKPT;
584   }
585 
586   if( p->pc<=0 && p->expired ){
587     p->rc = SQLITE_SCHEMA;
588     rc = SQLITE_ERROR;
589     goto end_of_step;
590   }
591   if( p->pc<0 ){
592     /* If there are no other statements currently running, then
593     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
594     ** from interrupting a statement that has not yet started.
595     */
596     if( db->nVdbeActive==0 ){
597       db->u1.isInterrupted = 0;
598     }
599 
600     assert( db->nVdbeWrite>0 || db->autoCommit==0
601         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
602     );
603 
604 #ifndef SQLITE_OMIT_TRACE
605     if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
606         && !db->init.busy && p->zSql ){
607       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
608     }else{
609       assert( p->startTime==0 );
610     }
611 #endif
612 
613     db->nVdbeActive++;
614     if( p->readOnly==0 ) db->nVdbeWrite++;
615     if( p->bIsReader ) db->nVdbeRead++;
616     p->pc = 0;
617   }
618 #ifdef SQLITE_DEBUG
619   p->rcApp = SQLITE_OK;
620 #endif
621 #ifndef SQLITE_OMIT_EXPLAIN
622   if( p->explain ){
623     rc = sqlite3VdbeList(p);
624   }else
625 #endif /* SQLITE_OMIT_EXPLAIN */
626   {
627     db->nVdbeExec++;
628     rc = sqlite3VdbeExec(p);
629     db->nVdbeExec--;
630   }
631 
632 #ifndef SQLITE_OMIT_TRACE
633   /* If the statement completed successfully, invoke the profile callback */
634   if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
635 #endif
636 
637   if( rc==SQLITE_DONE && db->autoCommit ){
638     assert( p->rc==SQLITE_OK );
639     p->rc = doWalCallbacks(db);
640     if( p->rc!=SQLITE_OK ){
641       rc = SQLITE_ERROR;
642     }
643   }
644 
645   db->errCode = rc;
646   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
647     p->rc = SQLITE_NOMEM_BKPT;
648   }
649 end_of_step:
650   /* At this point local variable rc holds the value that should be
651   ** returned if this statement was compiled using the legacy
652   ** sqlite3_prepare() interface. According to the docs, this can only
653   ** be one of the values in the first assert() below. Variable p->rc
654   ** contains the value that would be returned if sqlite3_finalize()
655   ** were called on statement p.
656   */
657   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
658        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
659   );
660   assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
661   if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
662    && rc!=SQLITE_ROW
663    && rc!=SQLITE_DONE
664   ){
665     /* If this statement was prepared using saved SQL and an
666     ** error has occurred, then return the error code in p->rc to the
667     ** caller. Set the error code in the database handle to the same value.
668     */
669     rc = sqlite3VdbeTransferError(p);
670   }
671   return (rc&db->errMask);
672 }
673 
674 /*
675 ** This is the top-level implementation of sqlite3_step().  Call
676 ** sqlite3Step() to do most of the work.  If a schema error occurs,
677 ** call sqlite3Reprepare() and try again.
678 */
679 int sqlite3_step(sqlite3_stmt *pStmt){
680   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
681   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
682   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
683   sqlite3 *db;             /* The database connection */
684 
685   if( vdbeSafetyNotNull(v) ){
686     return SQLITE_MISUSE_BKPT;
687   }
688   db = v->db;
689   sqlite3_mutex_enter(db->mutex);
690   v->doingRerun = 0;
691   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
692          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
693     int savedPc = v->pc;
694     rc = sqlite3Reprepare(v);
695     if( rc!=SQLITE_OK ){
696       /* This case occurs after failing to recompile an sql statement.
697       ** The error message from the SQL compiler has already been loaded
698       ** into the database handle. This block copies the error message
699       ** from the database handle into the statement and sets the statement
700       ** program counter to 0 to ensure that when the statement is
701       ** finalized or reset the parser error message is available via
702       ** sqlite3_errmsg() and sqlite3_errcode().
703       */
704       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
705       sqlite3DbFree(db, v->zErrMsg);
706       if( !db->mallocFailed ){
707         v->zErrMsg = sqlite3DbStrDup(db, zErr);
708         v->rc = rc = sqlite3ApiExit(db, rc);
709       } else {
710         v->zErrMsg = 0;
711         v->rc = rc = SQLITE_NOMEM_BKPT;
712       }
713       break;
714     }
715     sqlite3_reset(pStmt);
716     if( savedPc>=0 ) v->doingRerun = 1;
717     assert( v->expired==0 );
718   }
719   sqlite3_mutex_leave(db->mutex);
720   return rc;
721 }
722 
723 
724 /*
725 ** Extract the user data from a sqlite3_context structure and return a
726 ** pointer to it.
727 */
728 void *sqlite3_user_data(sqlite3_context *p){
729   assert( p && p->pFunc );
730   return p->pFunc->pUserData;
731 }
732 
733 /*
734 ** Extract the user data from a sqlite3_context structure and return a
735 ** pointer to it.
736 **
737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
738 ** returns a copy of the pointer to the database connection (the 1st
739 ** parameter) of the sqlite3_create_function() and
740 ** sqlite3_create_function16() routines that originally registered the
741 ** application defined function.
742 */
743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
744   assert( p && p->pOut );
745   return p->pOut->db;
746 }
747 
748 /*
749 ** Return the current time for a statement.  If the current time
750 ** is requested more than once within the same run of a single prepared
751 ** statement, the exact same time is returned for each invocation regardless
752 ** of the amount of time that elapses between invocations.  In other words,
753 ** the time returned is always the time of the first call.
754 */
755 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
756   int rc;
757 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
758   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
759   assert( p->pVdbe!=0 );
760 #else
761   sqlite3_int64 iTime = 0;
762   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
763 #endif
764   if( *piTime==0 ){
765     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
766     if( rc ) *piTime = 0;
767   }
768   return *piTime;
769 }
770 
771 /*
772 ** The following is the implementation of an SQL function that always
773 ** fails with an error message stating that the function is used in the
774 ** wrong context.  The sqlite3_overload_function() API might construct
775 ** SQL function that use this routine so that the functions will exist
776 ** for name resolution but are actually overloaded by the xFindFunction
777 ** method of virtual tables.
778 */
779 void sqlite3InvalidFunction(
780   sqlite3_context *context,  /* The function calling context */
781   int NotUsed,               /* Number of arguments to the function */
782   sqlite3_value **NotUsed2   /* Value of each argument */
783 ){
784   const char *zName = context->pFunc->zName;
785   char *zErr;
786   UNUSED_PARAMETER2(NotUsed, NotUsed2);
787   zErr = sqlite3_mprintf(
788       "unable to use function %s in the requested context", zName);
789   sqlite3_result_error(context, zErr, -1);
790   sqlite3_free(zErr);
791 }
792 
793 /*
794 ** Create a new aggregate context for p and return a pointer to
795 ** its pMem->z element.
796 */
797 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
798   Mem *pMem = p->pMem;
799   assert( (pMem->flags & MEM_Agg)==0 );
800   if( nByte<=0 ){
801     sqlite3VdbeMemSetNull(pMem);
802     pMem->z = 0;
803   }else{
804     sqlite3VdbeMemClearAndResize(pMem, nByte);
805     pMem->flags = MEM_Agg;
806     pMem->u.pDef = p->pFunc;
807     if( pMem->z ){
808       memset(pMem->z, 0, nByte);
809     }
810   }
811   return (void*)pMem->z;
812 }
813 
814 /*
815 ** Allocate or return the aggregate context for a user function.  A new
816 ** context is allocated on the first call.  Subsequent calls return the
817 ** same context that was returned on prior calls.
818 */
819 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
820   assert( p && p->pFunc && p->pFunc->xFinalize );
821   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
822   testcase( nByte<0 );
823   if( (p->pMem->flags & MEM_Agg)==0 ){
824     return createAggContext(p, nByte);
825   }else{
826     return (void*)p->pMem->z;
827   }
828 }
829 
830 /*
831 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
832 ** the user-function defined by pCtx.
833 **
834 ** The left-most argument is 0.
835 **
836 ** Undocumented behavior:  If iArg is negative then access a cache of
837 ** auxiliary data pointers that is available to all functions within a
838 ** single prepared statement.  The iArg values must match.
839 */
840 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
841   AuxData *pAuxData;
842 
843   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
844 #if SQLITE_ENABLE_STAT3_OR_STAT4
845   if( pCtx->pVdbe==0 ) return 0;
846 #else
847   assert( pCtx->pVdbe!=0 );
848 #endif
849   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
850     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
851       return pAuxData->pAux;
852     }
853   }
854   return 0;
855 }
856 
857 /*
858 ** Set the auxiliary data pointer and delete function, for the iArg'th
859 ** argument to the user-function defined by pCtx. Any previous value is
860 ** deleted by calling the delete function specified when it was set.
861 **
862 ** The left-most argument is 0.
863 **
864 ** Undocumented behavior:  If iArg is negative then make the data available
865 ** to all functions within the current prepared statement using iArg as an
866 ** access code.
867 */
868 void sqlite3_set_auxdata(
869   sqlite3_context *pCtx,
870   int iArg,
871   void *pAux,
872   void (*xDelete)(void*)
873 ){
874   AuxData *pAuxData;
875   Vdbe *pVdbe = pCtx->pVdbe;
876 
877   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
878 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
879   if( pVdbe==0 ) goto failed;
880 #else
881   assert( pVdbe!=0 );
882 #endif
883 
884   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
885     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
886       break;
887     }
888   }
889   if( pAuxData==0 ){
890     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
891     if( !pAuxData ) goto failed;
892     pAuxData->iAuxOp = pCtx->iOp;
893     pAuxData->iAuxArg = iArg;
894     pAuxData->pNextAux = pVdbe->pAuxData;
895     pVdbe->pAuxData = pAuxData;
896     if( pCtx->fErrorOrAux==0 ){
897       pCtx->isError = 0;
898       pCtx->fErrorOrAux = 1;
899     }
900   }else if( pAuxData->xDeleteAux ){
901     pAuxData->xDeleteAux(pAuxData->pAux);
902   }
903 
904   pAuxData->pAux = pAux;
905   pAuxData->xDeleteAux = xDelete;
906   return;
907 
908 failed:
909   if( xDelete ){
910     xDelete(pAux);
911   }
912 }
913 
914 #ifndef SQLITE_OMIT_DEPRECATED
915 /*
916 ** Return the number of times the Step function of an aggregate has been
917 ** called.
918 **
919 ** This function is deprecated.  Do not use it for new code.  It is
920 ** provide only to avoid breaking legacy code.  New aggregate function
921 ** implementations should keep their own counts within their aggregate
922 ** context.
923 */
924 int sqlite3_aggregate_count(sqlite3_context *p){
925   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
926   return p->pMem->n;
927 }
928 #endif
929 
930 /*
931 ** Return the number of columns in the result set for the statement pStmt.
932 */
933 int sqlite3_column_count(sqlite3_stmt *pStmt){
934   Vdbe *pVm = (Vdbe *)pStmt;
935   return pVm ? pVm->nResColumn : 0;
936 }
937 
938 /*
939 ** Return the number of values available from the current row of the
940 ** currently executing statement pStmt.
941 */
942 int sqlite3_data_count(sqlite3_stmt *pStmt){
943   Vdbe *pVm = (Vdbe *)pStmt;
944   if( pVm==0 || pVm->pResultSet==0 ) return 0;
945   return pVm->nResColumn;
946 }
947 
948 /*
949 ** Return a pointer to static memory containing an SQL NULL value.
950 */
951 static const Mem *columnNullValue(void){
952   /* Even though the Mem structure contains an element
953   ** of type i64, on certain architectures (x86) with certain compiler
954   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
955   ** instead of an 8-byte one. This all works fine, except that when
956   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
957   ** that a Mem structure is located on an 8-byte boundary. To prevent
958   ** these assert()s from failing, when building with SQLITE_DEBUG defined
959   ** using gcc, we force nullMem to be 8-byte aligned using the magical
960   ** __attribute__((aligned(8))) macro.  */
961   static const Mem nullMem
962 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
963     __attribute__((aligned(8)))
964 #endif
965     = {
966         /* .u          = */ {0},
967         /* .flags      = */ (u16)MEM_Null,
968         /* .enc        = */ (u8)0,
969         /* .eSubtype   = */ (u8)0,
970         /* .n          = */ (int)0,
971         /* .z          = */ (char*)0,
972         /* .zMalloc    = */ (char*)0,
973         /* .szMalloc   = */ (int)0,
974         /* .uTemp      = */ (u32)0,
975         /* .db         = */ (sqlite3*)0,
976         /* .xDel       = */ (void(*)(void*))0,
977 #ifdef SQLITE_DEBUG
978         /* .pScopyFrom = */ (Mem*)0,
979         /* .pFiller    = */ (void*)0,
980 #endif
981       };
982   return &nullMem;
983 }
984 
985 /*
986 ** Check to see if column iCol of the given statement is valid.  If
987 ** it is, return a pointer to the Mem for the value of that column.
988 ** If iCol is not valid, return a pointer to a Mem which has a value
989 ** of NULL.
990 */
991 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
992   Vdbe *pVm;
993   Mem *pOut;
994 
995   pVm = (Vdbe *)pStmt;
996   if( pVm==0 ) return (Mem*)columnNullValue();
997   assert( pVm->db );
998   sqlite3_mutex_enter(pVm->db->mutex);
999   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1000     pOut = &pVm->pResultSet[i];
1001   }else{
1002     sqlite3Error(pVm->db, SQLITE_RANGE);
1003     pOut = (Mem*)columnNullValue();
1004   }
1005   return pOut;
1006 }
1007 
1008 /*
1009 ** This function is called after invoking an sqlite3_value_XXX function on a
1010 ** column value (i.e. a value returned by evaluating an SQL expression in the
1011 ** select list of a SELECT statement) that may cause a malloc() failure. If
1012 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1013 ** code of statement pStmt set to SQLITE_NOMEM.
1014 **
1015 ** Specifically, this is called from within:
1016 **
1017 **     sqlite3_column_int()
1018 **     sqlite3_column_int64()
1019 **     sqlite3_column_text()
1020 **     sqlite3_column_text16()
1021 **     sqlite3_column_real()
1022 **     sqlite3_column_bytes()
1023 **     sqlite3_column_bytes16()
1024 **     sqiite3_column_blob()
1025 */
1026 static void columnMallocFailure(sqlite3_stmt *pStmt)
1027 {
1028   /* If malloc() failed during an encoding conversion within an
1029   ** sqlite3_column_XXX API, then set the return code of the statement to
1030   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1031   ** and _finalize() will return NOMEM.
1032   */
1033   Vdbe *p = (Vdbe *)pStmt;
1034   if( p ){
1035     assert( p->db!=0 );
1036     assert( sqlite3_mutex_held(p->db->mutex) );
1037     p->rc = sqlite3ApiExit(p->db, p->rc);
1038     sqlite3_mutex_leave(p->db->mutex);
1039   }
1040 }
1041 
1042 /**************************** sqlite3_column_  *******************************
1043 ** The following routines are used to access elements of the current row
1044 ** in the result set.
1045 */
1046 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1047   const void *val;
1048   val = sqlite3_value_blob( columnMem(pStmt,i) );
1049   /* Even though there is no encoding conversion, value_blob() might
1050   ** need to call malloc() to expand the result of a zeroblob()
1051   ** expression.
1052   */
1053   columnMallocFailure(pStmt);
1054   return val;
1055 }
1056 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1057   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1058   columnMallocFailure(pStmt);
1059   return val;
1060 }
1061 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1062   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1063   columnMallocFailure(pStmt);
1064   return val;
1065 }
1066 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1067   double val = sqlite3_value_double( columnMem(pStmt,i) );
1068   columnMallocFailure(pStmt);
1069   return val;
1070 }
1071 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1072   int val = sqlite3_value_int( columnMem(pStmt,i) );
1073   columnMallocFailure(pStmt);
1074   return val;
1075 }
1076 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1077   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1078   columnMallocFailure(pStmt);
1079   return val;
1080 }
1081 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1082   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1083   columnMallocFailure(pStmt);
1084   return val;
1085 }
1086 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1087   Mem *pOut = columnMem(pStmt, i);
1088   if( pOut->flags&MEM_Static ){
1089     pOut->flags &= ~MEM_Static;
1090     pOut->flags |= MEM_Ephem;
1091   }
1092   columnMallocFailure(pStmt);
1093   return (sqlite3_value *)pOut;
1094 }
1095 #ifndef SQLITE_OMIT_UTF16
1096 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1097   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1098   columnMallocFailure(pStmt);
1099   return val;
1100 }
1101 #endif /* SQLITE_OMIT_UTF16 */
1102 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1103   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1104   columnMallocFailure(pStmt);
1105   return iType;
1106 }
1107 
1108 /*
1109 ** Convert the N-th element of pStmt->pColName[] into a string using
1110 ** xFunc() then return that string.  If N is out of range, return 0.
1111 **
1112 ** There are up to 5 names for each column.  useType determines which
1113 ** name is returned.  Here are the names:
1114 **
1115 **    0      The column name as it should be displayed for output
1116 **    1      The datatype name for the column
1117 **    2      The name of the database that the column derives from
1118 **    3      The name of the table that the column derives from
1119 **    4      The name of the table column that the result column derives from
1120 **
1121 ** If the result is not a simple column reference (if it is an expression
1122 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1123 */
1124 static const void *columnName(
1125   sqlite3_stmt *pStmt,
1126   int N,
1127   const void *(*xFunc)(Mem*),
1128   int useType
1129 ){
1130   const void *ret;
1131   Vdbe *p;
1132   int n;
1133   sqlite3 *db;
1134 #ifdef SQLITE_ENABLE_API_ARMOR
1135   if( pStmt==0 ){
1136     (void)SQLITE_MISUSE_BKPT;
1137     return 0;
1138   }
1139 #endif
1140   ret = 0;
1141   p = (Vdbe *)pStmt;
1142   db = p->db;
1143   assert( db!=0 );
1144   n = sqlite3_column_count(pStmt);
1145   if( N<n && N>=0 ){
1146     N += useType*n;
1147     sqlite3_mutex_enter(db->mutex);
1148     assert( db->mallocFailed==0 );
1149     ret = xFunc(&p->aColName[N]);
1150      /* A malloc may have failed inside of the xFunc() call. If this
1151     ** is the case, clear the mallocFailed flag and return NULL.
1152     */
1153     if( db->mallocFailed ){
1154       sqlite3OomClear(db);
1155       ret = 0;
1156     }
1157     sqlite3_mutex_leave(db->mutex);
1158   }
1159   return ret;
1160 }
1161 
1162 /*
1163 ** Return the name of the Nth column of the result set returned by SQL
1164 ** statement pStmt.
1165 */
1166 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1167   return columnName(
1168       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1169 }
1170 #ifndef SQLITE_OMIT_UTF16
1171 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1172   return columnName(
1173       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1174 }
1175 #endif
1176 
1177 /*
1178 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1179 ** not define OMIT_DECLTYPE.
1180 */
1181 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1182 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1183          and SQLITE_ENABLE_COLUMN_METADATA"
1184 #endif
1185 
1186 #ifndef SQLITE_OMIT_DECLTYPE
1187 /*
1188 ** Return the column declaration type (if applicable) of the 'i'th column
1189 ** of the result set of SQL statement pStmt.
1190 */
1191 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1192   return columnName(
1193       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1194 }
1195 #ifndef SQLITE_OMIT_UTF16
1196 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1197   return columnName(
1198       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1199 }
1200 #endif /* SQLITE_OMIT_UTF16 */
1201 #endif /* SQLITE_OMIT_DECLTYPE */
1202 
1203 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1204 /*
1205 ** Return the name of the database from which a result column derives.
1206 ** NULL is returned if the result column is an expression or constant or
1207 ** anything else which is not an unambiguous reference to a database column.
1208 */
1209 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1210   return columnName(
1211       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1212 }
1213 #ifndef SQLITE_OMIT_UTF16
1214 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1215   return columnName(
1216       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1217 }
1218 #endif /* SQLITE_OMIT_UTF16 */
1219 
1220 /*
1221 ** Return the name of the table from which a result column derives.
1222 ** NULL is returned if the result column is an expression or constant or
1223 ** anything else which is not an unambiguous reference to a database column.
1224 */
1225 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1226   return columnName(
1227       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1228 }
1229 #ifndef SQLITE_OMIT_UTF16
1230 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1231   return columnName(
1232       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1233 }
1234 #endif /* SQLITE_OMIT_UTF16 */
1235 
1236 /*
1237 ** Return the name of the table column from which a result column derives.
1238 ** NULL is returned if the result column is an expression or constant or
1239 ** anything else which is not an unambiguous reference to a database column.
1240 */
1241 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1242   return columnName(
1243       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1244 }
1245 #ifndef SQLITE_OMIT_UTF16
1246 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1247   return columnName(
1248       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1249 }
1250 #endif /* SQLITE_OMIT_UTF16 */
1251 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1252 
1253 
1254 /******************************* sqlite3_bind_  ***************************
1255 **
1256 ** Routines used to attach values to wildcards in a compiled SQL statement.
1257 */
1258 /*
1259 ** Unbind the value bound to variable i in virtual machine p. This is the
1260 ** the same as binding a NULL value to the column. If the "i" parameter is
1261 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1262 **
1263 ** A successful evaluation of this routine acquires the mutex on p.
1264 ** the mutex is released if any kind of error occurs.
1265 **
1266 ** The error code stored in database p->db is overwritten with the return
1267 ** value in any case.
1268 */
1269 static int vdbeUnbind(Vdbe *p, int i){
1270   Mem *pVar;
1271   if( vdbeSafetyNotNull(p) ){
1272     return SQLITE_MISUSE_BKPT;
1273   }
1274   sqlite3_mutex_enter(p->db->mutex);
1275   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1276     sqlite3Error(p->db, SQLITE_MISUSE);
1277     sqlite3_mutex_leave(p->db->mutex);
1278     sqlite3_log(SQLITE_MISUSE,
1279         "bind on a busy prepared statement: [%s]", p->zSql);
1280     return SQLITE_MISUSE_BKPT;
1281   }
1282   if( i<1 || i>p->nVar ){
1283     sqlite3Error(p->db, SQLITE_RANGE);
1284     sqlite3_mutex_leave(p->db->mutex);
1285     return SQLITE_RANGE;
1286   }
1287   i--;
1288   pVar = &p->aVar[i];
1289   sqlite3VdbeMemRelease(pVar);
1290   pVar->flags = MEM_Null;
1291   sqlite3Error(p->db, SQLITE_OK);
1292 
1293   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1294   ** binding a new value to this variable invalidates the current query plan.
1295   **
1296   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1297   ** parameter in the WHERE clause might influence the choice of query plan
1298   ** for a statement, then the statement will be automatically recompiled,
1299   ** as if there had been a schema change, on the first sqlite3_step() call
1300   ** following any change to the bindings of that parameter.
1301   */
1302   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1303   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1304     p->expired = 1;
1305   }
1306   return SQLITE_OK;
1307 }
1308 
1309 /*
1310 ** Bind a text or BLOB value.
1311 */
1312 static int bindText(
1313   sqlite3_stmt *pStmt,   /* The statement to bind against */
1314   int i,                 /* Index of the parameter to bind */
1315   const void *zData,     /* Pointer to the data to be bound */
1316   int nData,             /* Number of bytes of data to be bound */
1317   void (*xDel)(void*),   /* Destructor for the data */
1318   u8 encoding            /* Encoding for the data */
1319 ){
1320   Vdbe *p = (Vdbe *)pStmt;
1321   Mem *pVar;
1322   int rc;
1323 
1324   rc = vdbeUnbind(p, i);
1325   if( rc==SQLITE_OK ){
1326     if( zData!=0 ){
1327       pVar = &p->aVar[i-1];
1328       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1329       if( rc==SQLITE_OK && encoding!=0 ){
1330         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1331       }
1332       if( rc ){
1333         sqlite3Error(p->db, rc);
1334         rc = sqlite3ApiExit(p->db, rc);
1335       }
1336     }
1337     sqlite3_mutex_leave(p->db->mutex);
1338   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1339     xDel((void*)zData);
1340   }
1341   return rc;
1342 }
1343 
1344 
1345 /*
1346 ** Bind a blob value to an SQL statement variable.
1347 */
1348 int sqlite3_bind_blob(
1349   sqlite3_stmt *pStmt,
1350   int i,
1351   const void *zData,
1352   int nData,
1353   void (*xDel)(void*)
1354 ){
1355 #ifdef SQLITE_ENABLE_API_ARMOR
1356   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1357 #endif
1358   return bindText(pStmt, i, zData, nData, xDel, 0);
1359 }
1360 int sqlite3_bind_blob64(
1361   sqlite3_stmt *pStmt,
1362   int i,
1363   const void *zData,
1364   sqlite3_uint64 nData,
1365   void (*xDel)(void*)
1366 ){
1367   assert( xDel!=SQLITE_DYNAMIC );
1368   if( nData>0x7fffffff ){
1369     return invokeValueDestructor(zData, xDel, 0);
1370   }else{
1371     return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1372   }
1373 }
1374 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1375   int rc;
1376   Vdbe *p = (Vdbe *)pStmt;
1377   rc = vdbeUnbind(p, i);
1378   if( rc==SQLITE_OK ){
1379     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1380     sqlite3_mutex_leave(p->db->mutex);
1381   }
1382   return rc;
1383 }
1384 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1385   return sqlite3_bind_int64(p, i, (i64)iValue);
1386 }
1387 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1388   int rc;
1389   Vdbe *p = (Vdbe *)pStmt;
1390   rc = vdbeUnbind(p, i);
1391   if( rc==SQLITE_OK ){
1392     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1393     sqlite3_mutex_leave(p->db->mutex);
1394   }
1395   return rc;
1396 }
1397 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1398   int rc;
1399   Vdbe *p = (Vdbe*)pStmt;
1400   rc = vdbeUnbind(p, i);
1401   if( rc==SQLITE_OK ){
1402     sqlite3_mutex_leave(p->db->mutex);
1403   }
1404   return rc;
1405 }
1406 int sqlite3_bind_pointer(
1407   sqlite3_stmt *pStmt,
1408   int i,
1409   void *pPtr,
1410   const char *zPTtype,
1411   void (*xDestructor)(void*)
1412 ){
1413   int rc;
1414   Vdbe *p = (Vdbe*)pStmt;
1415   rc = vdbeUnbind(p, i);
1416   if( rc==SQLITE_OK ){
1417     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1418     sqlite3_mutex_leave(p->db->mutex);
1419   }else if( xDestructor ){
1420     xDestructor(pPtr);
1421   }
1422   return rc;
1423 }
1424 int sqlite3_bind_text(
1425   sqlite3_stmt *pStmt,
1426   int i,
1427   const char *zData,
1428   int nData,
1429   void (*xDel)(void*)
1430 ){
1431   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1432 }
1433 int sqlite3_bind_text64(
1434   sqlite3_stmt *pStmt,
1435   int i,
1436   const char *zData,
1437   sqlite3_uint64 nData,
1438   void (*xDel)(void*),
1439   unsigned char enc
1440 ){
1441   assert( xDel!=SQLITE_DYNAMIC );
1442   if( nData>0x7fffffff ){
1443     return invokeValueDestructor(zData, xDel, 0);
1444   }else{
1445     if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1446     return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1447   }
1448 }
1449 #ifndef SQLITE_OMIT_UTF16
1450 int sqlite3_bind_text16(
1451   sqlite3_stmt *pStmt,
1452   int i,
1453   const void *zData,
1454   int nData,
1455   void (*xDel)(void*)
1456 ){
1457   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1458 }
1459 #endif /* SQLITE_OMIT_UTF16 */
1460 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1461   int rc;
1462   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1463     case SQLITE_INTEGER: {
1464       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1465       break;
1466     }
1467     case SQLITE_FLOAT: {
1468       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1469       break;
1470     }
1471     case SQLITE_BLOB: {
1472       if( pValue->flags & MEM_Zero ){
1473         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1474       }else{
1475         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1476       }
1477       break;
1478     }
1479     case SQLITE_TEXT: {
1480       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1481                               pValue->enc);
1482       break;
1483     }
1484     default: {
1485       rc = sqlite3_bind_null(pStmt, i);
1486       break;
1487     }
1488   }
1489   return rc;
1490 }
1491 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1492   int rc;
1493   Vdbe *p = (Vdbe *)pStmt;
1494   rc = vdbeUnbind(p, i);
1495   if( rc==SQLITE_OK ){
1496     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1497     sqlite3_mutex_leave(p->db->mutex);
1498   }
1499   return rc;
1500 }
1501 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1502   int rc;
1503   Vdbe *p = (Vdbe *)pStmt;
1504   sqlite3_mutex_enter(p->db->mutex);
1505   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1506     rc = SQLITE_TOOBIG;
1507   }else{
1508     assert( (n & 0x7FFFFFFF)==n );
1509     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1510   }
1511   rc = sqlite3ApiExit(p->db, rc);
1512   sqlite3_mutex_leave(p->db->mutex);
1513   return rc;
1514 }
1515 
1516 /*
1517 ** Return the number of wildcards that can be potentially bound to.
1518 ** This routine is added to support DBD::SQLite.
1519 */
1520 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1521   Vdbe *p = (Vdbe*)pStmt;
1522   return p ? p->nVar : 0;
1523 }
1524 
1525 /*
1526 ** Return the name of a wildcard parameter.  Return NULL if the index
1527 ** is out of range or if the wildcard is unnamed.
1528 **
1529 ** The result is always UTF-8.
1530 */
1531 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1532   Vdbe *p = (Vdbe*)pStmt;
1533   if( p==0 ) return 0;
1534   return sqlite3VListNumToName(p->pVList, i);
1535 }
1536 
1537 /*
1538 ** Given a wildcard parameter name, return the index of the variable
1539 ** with that name.  If there is no variable with the given name,
1540 ** return 0.
1541 */
1542 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1543   if( p==0 || zName==0 ) return 0;
1544   return sqlite3VListNameToNum(p->pVList, zName, nName);
1545 }
1546 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1547   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1548 }
1549 
1550 /*
1551 ** Transfer all bindings from the first statement over to the second.
1552 */
1553 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1554   Vdbe *pFrom = (Vdbe*)pFromStmt;
1555   Vdbe *pTo = (Vdbe*)pToStmt;
1556   int i;
1557   assert( pTo->db==pFrom->db );
1558   assert( pTo->nVar==pFrom->nVar );
1559   sqlite3_mutex_enter(pTo->db->mutex);
1560   for(i=0; i<pFrom->nVar; i++){
1561     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1562   }
1563   sqlite3_mutex_leave(pTo->db->mutex);
1564   return SQLITE_OK;
1565 }
1566 
1567 #ifndef SQLITE_OMIT_DEPRECATED
1568 /*
1569 ** Deprecated external interface.  Internal/core SQLite code
1570 ** should call sqlite3TransferBindings.
1571 **
1572 ** It is misuse to call this routine with statements from different
1573 ** database connections.  But as this is a deprecated interface, we
1574 ** will not bother to check for that condition.
1575 **
1576 ** If the two statements contain a different number of bindings, then
1577 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1578 ** SQLITE_OK is returned.
1579 */
1580 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1581   Vdbe *pFrom = (Vdbe*)pFromStmt;
1582   Vdbe *pTo = (Vdbe*)pToStmt;
1583   if( pFrom->nVar!=pTo->nVar ){
1584     return SQLITE_ERROR;
1585   }
1586   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1587   if( pTo->expmask ){
1588     pTo->expired = 1;
1589   }
1590   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1591   if( pFrom->expmask ){
1592     pFrom->expired = 1;
1593   }
1594   return sqlite3TransferBindings(pFromStmt, pToStmt);
1595 }
1596 #endif
1597 
1598 /*
1599 ** Return the sqlite3* database handle to which the prepared statement given
1600 ** in the argument belongs.  This is the same database handle that was
1601 ** the first argument to the sqlite3_prepare() that was used to create
1602 ** the statement in the first place.
1603 */
1604 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1605   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1606 }
1607 
1608 /*
1609 ** Return true if the prepared statement is guaranteed to not modify the
1610 ** database.
1611 */
1612 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1613   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1614 }
1615 
1616 /*
1617 ** Return true if the prepared statement is in need of being reset.
1618 */
1619 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1620   Vdbe *v = (Vdbe*)pStmt;
1621   return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1622 }
1623 
1624 /*
1625 ** Return a pointer to the next prepared statement after pStmt associated
1626 ** with database connection pDb.  If pStmt is NULL, return the first
1627 ** prepared statement for the database connection.  Return NULL if there
1628 ** are no more.
1629 */
1630 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1631   sqlite3_stmt *pNext;
1632 #ifdef SQLITE_ENABLE_API_ARMOR
1633   if( !sqlite3SafetyCheckOk(pDb) ){
1634     (void)SQLITE_MISUSE_BKPT;
1635     return 0;
1636   }
1637 #endif
1638   sqlite3_mutex_enter(pDb->mutex);
1639   if( pStmt==0 ){
1640     pNext = (sqlite3_stmt*)pDb->pVdbe;
1641   }else{
1642     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1643   }
1644   sqlite3_mutex_leave(pDb->mutex);
1645   return pNext;
1646 }
1647 
1648 /*
1649 ** Return the value of a status counter for a prepared statement
1650 */
1651 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1652   Vdbe *pVdbe = (Vdbe*)pStmt;
1653   u32 v;
1654 #ifdef SQLITE_ENABLE_API_ARMOR
1655   if( !pStmt ){
1656     (void)SQLITE_MISUSE_BKPT;
1657     return 0;
1658   }
1659 #endif
1660   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1661     sqlite3 *db = pVdbe->db;
1662     sqlite3_mutex_enter(db->mutex);
1663     v = 0;
1664     db->pnBytesFreed = (int*)&v;
1665     sqlite3VdbeClearObject(db, pVdbe);
1666     sqlite3DbFree(db, pVdbe);
1667     db->pnBytesFreed = 0;
1668     sqlite3_mutex_leave(db->mutex);
1669   }else{
1670     v = pVdbe->aCounter[op];
1671     if( resetFlag ) pVdbe->aCounter[op] = 0;
1672   }
1673   return (int)v;
1674 }
1675 
1676 /*
1677 ** Return the SQL associated with a prepared statement
1678 */
1679 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1680   Vdbe *p = (Vdbe *)pStmt;
1681   return p ? p->zSql : 0;
1682 }
1683 
1684 /*
1685 ** Return the SQL associated with a prepared statement with
1686 ** bound parameters expanded.  Space to hold the returned string is
1687 ** obtained from sqlite3_malloc().  The caller is responsible for
1688 ** freeing the returned string by passing it to sqlite3_free().
1689 **
1690 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1691 ** expanded bound parameters.
1692 */
1693 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1694 #ifdef SQLITE_OMIT_TRACE
1695   return 0;
1696 #else
1697   char *z = 0;
1698   const char *zSql = sqlite3_sql(pStmt);
1699   if( zSql ){
1700     Vdbe *p = (Vdbe *)pStmt;
1701     sqlite3_mutex_enter(p->db->mutex);
1702     z = sqlite3VdbeExpandSql(p, zSql);
1703     sqlite3_mutex_leave(p->db->mutex);
1704   }
1705   return z;
1706 #endif
1707 }
1708 
1709 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1710 /*
1711 ** Allocate and populate an UnpackedRecord structure based on the serialized
1712 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1713 ** if successful, or a NULL pointer if an OOM error is encountered.
1714 */
1715 static UnpackedRecord *vdbeUnpackRecord(
1716   KeyInfo *pKeyInfo,
1717   int nKey,
1718   const void *pKey
1719 ){
1720   UnpackedRecord *pRet;           /* Return value */
1721 
1722   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1723   if( pRet ){
1724     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1725     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1726   }
1727   return pRet;
1728 }
1729 
1730 /*
1731 ** This function is called from within a pre-update callback to retrieve
1732 ** a field of the row currently being updated or deleted.
1733 */
1734 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1735   PreUpdate *p = db->pPreUpdate;
1736   Mem *pMem;
1737   int rc = SQLITE_OK;
1738 
1739   /* Test that this call is being made from within an SQLITE_DELETE or
1740   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1741   if( !p || p->op==SQLITE_INSERT ){
1742     rc = SQLITE_MISUSE_BKPT;
1743     goto preupdate_old_out;
1744   }
1745   if( p->pPk ){
1746     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1747   }
1748   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1749     rc = SQLITE_RANGE;
1750     goto preupdate_old_out;
1751   }
1752 
1753   /* If the old.* record has not yet been loaded into memory, do so now. */
1754   if( p->pUnpacked==0 ){
1755     u32 nRec;
1756     u8 *aRec;
1757 
1758     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1759     aRec = sqlite3DbMallocRaw(db, nRec);
1760     if( !aRec ) goto preupdate_old_out;
1761     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1762     if( rc==SQLITE_OK ){
1763       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1764       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1765     }
1766     if( rc!=SQLITE_OK ){
1767       sqlite3DbFree(db, aRec);
1768       goto preupdate_old_out;
1769     }
1770     p->aRecord = aRec;
1771   }
1772 
1773   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1774   if( iIdx==p->pTab->iPKey ){
1775     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1776   }else if( iIdx>=p->pUnpacked->nField ){
1777     *ppValue = (sqlite3_value *)columnNullValue();
1778   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1779     if( pMem->flags & MEM_Int ){
1780       sqlite3VdbeMemRealify(pMem);
1781     }
1782   }
1783 
1784  preupdate_old_out:
1785   sqlite3Error(db, rc);
1786   return sqlite3ApiExit(db, rc);
1787 }
1788 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1789 
1790 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1791 /*
1792 ** This function is called from within a pre-update callback to retrieve
1793 ** the number of columns in the row being updated, deleted or inserted.
1794 */
1795 int sqlite3_preupdate_count(sqlite3 *db){
1796   PreUpdate *p = db->pPreUpdate;
1797   return (p ? p->keyinfo.nKeyField : 0);
1798 }
1799 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1800 
1801 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1802 /*
1803 ** This function is designed to be called from within a pre-update callback
1804 ** only. It returns zero if the change that caused the callback was made
1805 ** immediately by a user SQL statement. Or, if the change was made by a
1806 ** trigger program, it returns the number of trigger programs currently
1807 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1808 ** top-level trigger etc.).
1809 **
1810 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1811 ** or SET DEFAULT action is considered a trigger.
1812 */
1813 int sqlite3_preupdate_depth(sqlite3 *db){
1814   PreUpdate *p = db->pPreUpdate;
1815   return (p ? p->v->nFrame : 0);
1816 }
1817 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1818 
1819 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1820 /*
1821 ** This function is called from within a pre-update callback to retrieve
1822 ** a field of the row currently being updated or inserted.
1823 */
1824 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1825   PreUpdate *p = db->pPreUpdate;
1826   int rc = SQLITE_OK;
1827   Mem *pMem;
1828 
1829   if( !p || p->op==SQLITE_DELETE ){
1830     rc = SQLITE_MISUSE_BKPT;
1831     goto preupdate_new_out;
1832   }
1833   if( p->pPk && p->op!=SQLITE_UPDATE ){
1834     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1835   }
1836   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1837     rc = SQLITE_RANGE;
1838     goto preupdate_new_out;
1839   }
1840 
1841   if( p->op==SQLITE_INSERT ){
1842     /* For an INSERT, memory cell p->iNewReg contains the serialized record
1843     ** that is being inserted. Deserialize it. */
1844     UnpackedRecord *pUnpack = p->pNewUnpacked;
1845     if( !pUnpack ){
1846       Mem *pData = &p->v->aMem[p->iNewReg];
1847       rc = ExpandBlob(pData);
1848       if( rc!=SQLITE_OK ) goto preupdate_new_out;
1849       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1850       if( !pUnpack ){
1851         rc = SQLITE_NOMEM;
1852         goto preupdate_new_out;
1853       }
1854       p->pNewUnpacked = pUnpack;
1855     }
1856     pMem = &pUnpack->aMem[iIdx];
1857     if( iIdx==p->pTab->iPKey ){
1858       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1859     }else if( iIdx>=pUnpack->nField ){
1860       pMem = (sqlite3_value *)columnNullValue();
1861     }
1862   }else{
1863     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1864     ** value. Make a copy of the cell contents and return a pointer to it.
1865     ** It is not safe to return a pointer to the memory cell itself as the
1866     ** caller may modify the value text encoding.
1867     */
1868     assert( p->op==SQLITE_UPDATE );
1869     if( !p->aNew ){
1870       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1871       if( !p->aNew ){
1872         rc = SQLITE_NOMEM;
1873         goto preupdate_new_out;
1874       }
1875     }
1876     assert( iIdx>=0 && iIdx<p->pCsr->nField );
1877     pMem = &p->aNew[iIdx];
1878     if( pMem->flags==0 ){
1879       if( iIdx==p->pTab->iPKey ){
1880         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1881       }else{
1882         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1883         if( rc!=SQLITE_OK ) goto preupdate_new_out;
1884       }
1885     }
1886   }
1887   *ppValue = pMem;
1888 
1889  preupdate_new_out:
1890   sqlite3Error(db, rc);
1891   return sqlite3ApiExit(db, rc);
1892 }
1893 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1894 
1895 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1896 /*
1897 ** Return status data for a single loop within query pStmt.
1898 */
1899 int sqlite3_stmt_scanstatus(
1900   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
1901   int idx,                        /* Index of loop to report on */
1902   int iScanStatusOp,              /* Which metric to return */
1903   void *pOut                      /* OUT: Write the answer here */
1904 ){
1905   Vdbe *p = (Vdbe*)pStmt;
1906   ScanStatus *pScan;
1907   if( idx<0 || idx>=p->nScan ) return 1;
1908   pScan = &p->aScan[idx];
1909   switch( iScanStatusOp ){
1910     case SQLITE_SCANSTAT_NLOOP: {
1911       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1912       break;
1913     }
1914     case SQLITE_SCANSTAT_NVISIT: {
1915       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1916       break;
1917     }
1918     case SQLITE_SCANSTAT_EST: {
1919       double r = 1.0;
1920       LogEst x = pScan->nEst;
1921       while( x<100 ){
1922         x += 10;
1923         r *= 0.5;
1924       }
1925       *(double*)pOut = r*sqlite3LogEstToInt(x);
1926       break;
1927     }
1928     case SQLITE_SCANSTAT_NAME: {
1929       *(const char**)pOut = pScan->zName;
1930       break;
1931     }
1932     case SQLITE_SCANSTAT_EXPLAIN: {
1933       if( pScan->addrExplain ){
1934         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1935       }else{
1936         *(const char**)pOut = 0;
1937       }
1938       break;
1939     }
1940     case SQLITE_SCANSTAT_SELECTID: {
1941       if( pScan->addrExplain ){
1942         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1943       }else{
1944         *(int*)pOut = -1;
1945       }
1946       break;
1947     }
1948     default: {
1949       return 1;
1950     }
1951   }
1952   return 0;
1953 }
1954 
1955 /*
1956 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1957 */
1958 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1959   Vdbe *p = (Vdbe*)pStmt;
1960   memset(p->anExec, 0, p->nOp * sizeof(i64));
1961 }
1962 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
1963