1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 }else if( pNew->flags & MEM_Null ){ 349 /* Do not duplicate pointer values */ 350 pNew->flags &= ~(MEM_Term|MEM_Subtype); 351 } 352 return pNew; 353 } 354 355 /* Destroy an sqlite3_value object previously obtained from 356 ** sqlite3_value_dup(). 357 */ 358 void sqlite3_value_free(sqlite3_value *pOld){ 359 sqlite3ValueFree(pOld); 360 } 361 362 363 /**************************** sqlite3_result_ ******************************* 364 ** The following routines are used by user-defined functions to specify 365 ** the function result. 366 ** 367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 368 ** result as a string or blob. Appropriate errors are set if the string/blob 369 ** is too big or if an OOM occurs. 370 ** 371 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 372 ** on value P is not going to be used and need to be destroyed. 373 */ 374 static void setResultStrOrError( 375 sqlite3_context *pCtx, /* Function context */ 376 const char *z, /* String pointer */ 377 int n, /* Bytes in string, or negative */ 378 u8 enc, /* Encoding of z. 0 for BLOBs */ 379 void (*xDel)(void*) /* Destructor function */ 380 ){ 381 Mem *pOut = pCtx->pOut; 382 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 383 if( rc ){ 384 if( rc==SQLITE_TOOBIG ){ 385 sqlite3_result_error_toobig(pCtx); 386 }else{ 387 /* The only errors possible from sqlite3VdbeMemSetStr are 388 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 389 assert( rc==SQLITE_NOMEM ); 390 sqlite3_result_error_nomem(pCtx); 391 } 392 return; 393 } 394 sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db)); 395 if( sqlite3VdbeMemTooBig(pOut) ){ 396 sqlite3_result_error_toobig(pCtx); 397 } 398 } 399 static int invokeValueDestructor( 400 const void *p, /* Value to destroy */ 401 void (*xDel)(void*), /* The destructor */ 402 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 403 ){ 404 assert( xDel!=SQLITE_DYNAMIC ); 405 if( xDel==0 ){ 406 /* noop */ 407 }else if( xDel==SQLITE_TRANSIENT ){ 408 /* noop */ 409 }else{ 410 xDel((void*)p); 411 } 412 sqlite3_result_error_toobig(pCtx); 413 return SQLITE_TOOBIG; 414 } 415 void sqlite3_result_blob( 416 sqlite3_context *pCtx, 417 const void *z, 418 int n, 419 void (*xDel)(void *) 420 ){ 421 assert( n>=0 ); 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 setResultStrOrError(pCtx, z, n, 0, xDel); 424 } 425 void sqlite3_result_blob64( 426 sqlite3_context *pCtx, 427 const void *z, 428 sqlite3_uint64 n, 429 void (*xDel)(void *) 430 ){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 assert( xDel!=SQLITE_DYNAMIC ); 433 if( n>0x7fffffff ){ 434 (void)invokeValueDestructor(z, xDel, pCtx); 435 }else{ 436 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 437 } 438 } 439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 441 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 442 } 443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 445 pCtx->isError = SQLITE_ERROR; 446 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 447 } 448 #ifndef SQLITE_OMIT_UTF16 449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 451 pCtx->isError = SQLITE_ERROR; 452 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 453 } 454 #endif 455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 456 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 457 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 458 } 459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 461 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 462 } 463 void sqlite3_result_null(sqlite3_context *pCtx){ 464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 465 sqlite3VdbeMemSetNull(pCtx->pOut); 466 } 467 void sqlite3_result_pointer( 468 sqlite3_context *pCtx, 469 void *pPtr, 470 const char *zPType, 471 void (*xDestructor)(void*) 472 ){ 473 Mem *pOut = pCtx->pOut; 474 assert( sqlite3_mutex_held(pOut->db->mutex) ); 475 sqlite3VdbeMemRelease(pOut); 476 pOut->flags = MEM_Null; 477 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 478 } 479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 480 Mem *pOut = pCtx->pOut; 481 assert( sqlite3_mutex_held(pOut->db->mutex) ); 482 pOut->eSubtype = eSubtype & 0xff; 483 pOut->flags |= MEM_Subtype; 484 } 485 void sqlite3_result_text( 486 sqlite3_context *pCtx, 487 const char *z, 488 int n, 489 void (*xDel)(void *) 490 ){ 491 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 492 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 493 } 494 void sqlite3_result_text64( 495 sqlite3_context *pCtx, 496 const char *z, 497 sqlite3_uint64 n, 498 void (*xDel)(void *), 499 unsigned char enc 500 ){ 501 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 502 assert( xDel!=SQLITE_DYNAMIC ); 503 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 504 if( n>0x7fffffff ){ 505 (void)invokeValueDestructor(z, xDel, pCtx); 506 }else{ 507 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 508 } 509 } 510 #ifndef SQLITE_OMIT_UTF16 511 void sqlite3_result_text16( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 519 } 520 void sqlite3_result_text16be( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 528 } 529 void sqlite3_result_text16le( 530 sqlite3_context *pCtx, 531 const void *z, 532 int n, 533 void (*xDel)(void *) 534 ){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 537 } 538 #endif /* SQLITE_OMIT_UTF16 */ 539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 540 Mem *pOut = pCtx->pOut; 541 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 542 sqlite3VdbeMemCopy(pOut, pValue); 543 sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db)); 544 if( sqlite3VdbeMemTooBig(pOut) ){ 545 sqlite3_result_error_toobig(pCtx); 546 } 547 } 548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 549 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 550 } 551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 552 Mem *pOut = pCtx->pOut; 553 assert( sqlite3_mutex_held(pOut->db->mutex) ); 554 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 555 sqlite3_result_error_toobig(pCtx); 556 return SQLITE_TOOBIG; 557 } 558 #ifndef SQLITE_OMIT_INCRBLOB 559 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 560 return SQLITE_OK; 561 #else 562 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 563 #endif 564 } 565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 566 pCtx->isError = errCode ? errCode : -1; 567 #ifdef SQLITE_DEBUG 568 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 569 #endif 570 if( pCtx->pOut->flags & MEM_Null ){ 571 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 572 SQLITE_STATIC); 573 } 574 } 575 576 /* Force an SQLITE_TOOBIG error. */ 577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 578 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 579 pCtx->isError = SQLITE_TOOBIG; 580 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 581 SQLITE_UTF8, SQLITE_STATIC); 582 } 583 584 /* An SQLITE_NOMEM error. */ 585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 586 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 587 sqlite3VdbeMemSetNull(pCtx->pOut); 588 pCtx->isError = SQLITE_NOMEM_BKPT; 589 sqlite3OomFault(pCtx->pOut->db); 590 } 591 592 #ifndef SQLITE_UNTESTABLE 593 /* Force the INT64 value currently stored as the result to be 594 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 595 ** test-control. 596 */ 597 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 598 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 599 if( pCtx->pOut->flags & MEM_Int ){ 600 pCtx->pOut->flags &= ~MEM_Int; 601 pCtx->pOut->flags |= MEM_IntReal; 602 } 603 } 604 #endif 605 606 607 /* 608 ** This function is called after a transaction has been committed. It 609 ** invokes callbacks registered with sqlite3_wal_hook() as required. 610 */ 611 static int doWalCallbacks(sqlite3 *db){ 612 int rc = SQLITE_OK; 613 #ifndef SQLITE_OMIT_WAL 614 int i; 615 for(i=0; i<db->nDb; i++){ 616 Btree *pBt = db->aDb[i].pBt; 617 if( pBt ){ 618 int nEntry; 619 sqlite3BtreeEnter(pBt); 620 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 621 sqlite3BtreeLeave(pBt); 622 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 623 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 624 } 625 } 626 } 627 #endif 628 return rc; 629 } 630 631 632 /* 633 ** Execute the statement pStmt, either until a row of data is ready, the 634 ** statement is completely executed or an error occurs. 635 ** 636 ** This routine implements the bulk of the logic behind the sqlite_step() 637 ** API. The only thing omitted is the automatic recompile if a 638 ** schema change has occurred. That detail is handled by the 639 ** outer sqlite3_step() wrapper procedure. 640 */ 641 static int sqlite3Step(Vdbe *p){ 642 sqlite3 *db; 643 int rc; 644 645 /* Check that malloc() has not failed. If it has, return early. */ 646 db = p->db; 647 if( db->mallocFailed ){ 648 p->rc = SQLITE_NOMEM; 649 return SQLITE_NOMEM_BKPT; 650 } 651 652 assert(p); 653 if( p->eVdbeState!=VDBE_RUN_STATE ){ 654 restart_step: 655 if( p->eVdbeState==VDBE_READY_STATE ){ 656 if( p->expired ){ 657 p->rc = SQLITE_SCHEMA; 658 rc = SQLITE_ERROR; 659 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 660 /* If this statement was prepared using saved SQL and an 661 ** error has occurred, then return the error code in p->rc to the 662 ** caller. Set the error code in the database handle to the same 663 ** value. 664 */ 665 rc = sqlite3VdbeTransferError(p); 666 } 667 goto end_of_step; 668 } 669 670 /* If there are no other statements currently running, then 671 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 672 ** from interrupting a statement that has not yet started. 673 */ 674 if( db->nVdbeActive==0 ){ 675 AtomicStore(&db->u1.isInterrupted, 0); 676 } 677 678 assert( db->nVdbeWrite>0 || db->autoCommit==0 679 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 680 ); 681 682 #ifndef SQLITE_OMIT_TRACE 683 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 684 && !db->init.busy && p->zSql ){ 685 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 686 }else{ 687 assert( p->startTime==0 ); 688 } 689 #endif 690 691 db->nVdbeActive++; 692 if( p->readOnly==0 ) db->nVdbeWrite++; 693 if( p->bIsReader ) db->nVdbeRead++; 694 p->pc = 0; 695 p->eVdbeState = VDBE_RUN_STATE; 696 }else 697 698 if( p->eVdbeState==VDBE_HALT_STATE ){ 699 /* We used to require that sqlite3_reset() be called before retrying 700 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 701 ** with version 3.7.0, we changed this so that sqlite3_reset() would 702 ** be called automatically instead of throwing the SQLITE_MISUSE error. 703 ** This "automatic-reset" change is not technically an incompatibility, 704 ** since any application that receives an SQLITE_MISUSE is broken by 705 ** definition. 706 ** 707 ** Nevertheless, some published applications that were originally written 708 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 709 ** returns, and those were broken by the automatic-reset change. As a 710 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 711 ** legacy behavior of returning SQLITE_MISUSE for cases where the 712 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 713 ** or SQLITE_BUSY error. 714 */ 715 #ifdef SQLITE_OMIT_AUTORESET 716 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 717 sqlite3_reset((sqlite3_stmt*)p); 718 }else{ 719 return SQLITE_MISUSE_BKPT; 720 } 721 #else 722 sqlite3_reset((sqlite3_stmt*)p); 723 #endif 724 assert( p->eVdbeState==VDBE_READY_STATE ); 725 goto restart_step; 726 } 727 } 728 729 #ifdef SQLITE_DEBUG 730 p->rcApp = SQLITE_OK; 731 #endif 732 #ifndef SQLITE_OMIT_EXPLAIN 733 if( p->explain ){ 734 rc = sqlite3VdbeList(p); 735 }else 736 #endif /* SQLITE_OMIT_EXPLAIN */ 737 { 738 db->nVdbeExec++; 739 rc = sqlite3VdbeExec(p); 740 db->nVdbeExec--; 741 } 742 743 if( rc==SQLITE_ROW ){ 744 assert( p->rc==SQLITE_OK ); 745 assert( db->mallocFailed==0 ); 746 db->errCode = SQLITE_ROW; 747 return SQLITE_ROW; 748 }else{ 749 #ifndef SQLITE_OMIT_TRACE 750 /* If the statement completed successfully, invoke the profile callback */ 751 checkProfileCallback(db, p); 752 #endif 753 754 if( rc==SQLITE_DONE && db->autoCommit ){ 755 assert( p->rc==SQLITE_OK ); 756 p->rc = doWalCallbacks(db); 757 if( p->rc!=SQLITE_OK ){ 758 rc = SQLITE_ERROR; 759 } 760 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 761 /* If this statement was prepared using saved SQL and an 762 ** error has occurred, then return the error code in p->rc to the 763 ** caller. Set the error code in the database handle to the same value. 764 */ 765 rc = sqlite3VdbeTransferError(p); 766 } 767 } 768 769 db->errCode = rc; 770 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 771 p->rc = SQLITE_NOMEM_BKPT; 772 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 773 } 774 end_of_step: 775 /* There are only a limited number of result codes allowed from the 776 ** statements prepared using the legacy sqlite3_prepare() interface */ 777 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 778 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 779 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 780 ); 781 return (rc&db->errMask); 782 } 783 784 /* 785 ** This is the top-level implementation of sqlite3_step(). Call 786 ** sqlite3Step() to do most of the work. If a schema error occurs, 787 ** call sqlite3Reprepare() and try again. 788 */ 789 int sqlite3_step(sqlite3_stmt *pStmt){ 790 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 791 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 792 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 793 sqlite3 *db; /* The database connection */ 794 795 if( vdbeSafetyNotNull(v) ){ 796 return SQLITE_MISUSE_BKPT; 797 } 798 db = v->db; 799 sqlite3_mutex_enter(db->mutex); 800 v->doingRerun = 0; 801 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 802 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 803 int savedPc = v->pc; 804 rc = sqlite3Reprepare(v); 805 if( rc!=SQLITE_OK ){ 806 /* This case occurs after failing to recompile an sql statement. 807 ** The error message from the SQL compiler has already been loaded 808 ** into the database handle. This block copies the error message 809 ** from the database handle into the statement and sets the statement 810 ** program counter to 0 to ensure that when the statement is 811 ** finalized or reset the parser error message is available via 812 ** sqlite3_errmsg() and sqlite3_errcode(). 813 */ 814 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 815 sqlite3DbFree(db, v->zErrMsg); 816 if( !db->mallocFailed ){ 817 v->zErrMsg = sqlite3DbStrDup(db, zErr); 818 v->rc = rc = sqlite3ApiExit(db, rc); 819 } else { 820 v->zErrMsg = 0; 821 v->rc = rc = SQLITE_NOMEM_BKPT; 822 } 823 break; 824 } 825 sqlite3_reset(pStmt); 826 if( savedPc>=0 ) v->doingRerun = 1; 827 assert( v->expired==0 ); 828 } 829 sqlite3_mutex_leave(db->mutex); 830 return rc; 831 } 832 833 834 /* 835 ** Extract the user data from a sqlite3_context structure and return a 836 ** pointer to it. 837 */ 838 void *sqlite3_user_data(sqlite3_context *p){ 839 assert( p && p->pFunc ); 840 return p->pFunc->pUserData; 841 } 842 843 /* 844 ** Extract the user data from a sqlite3_context structure and return a 845 ** pointer to it. 846 ** 847 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 848 ** returns a copy of the pointer to the database connection (the 1st 849 ** parameter) of the sqlite3_create_function() and 850 ** sqlite3_create_function16() routines that originally registered the 851 ** application defined function. 852 */ 853 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 854 assert( p && p->pOut ); 855 return p->pOut->db; 856 } 857 858 /* 859 ** If this routine is invoked from within an xColumn method of a virtual 860 ** table, then it returns true if and only if the the call is during an 861 ** UPDATE operation and the value of the column will not be modified 862 ** by the UPDATE. 863 ** 864 ** If this routine is called from any context other than within the 865 ** xColumn method of a virtual table, then the return value is meaningless 866 ** and arbitrary. 867 ** 868 ** Virtual table implements might use this routine to optimize their 869 ** performance by substituting a NULL result, or some other light-weight 870 ** value, as a signal to the xUpdate routine that the column is unchanged. 871 */ 872 int sqlite3_vtab_nochange(sqlite3_context *p){ 873 assert( p ); 874 return sqlite3_value_nochange(p->pOut); 875 } 876 877 /* 878 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 879 ** sqlite3_vtab_in_next() (if bNext!=0). 880 */ 881 static int valueFromValueList( 882 sqlite3_value *pVal, /* Pointer to the ValueList object */ 883 sqlite3_value **ppOut, /* Store the next value from the list here */ 884 int bNext /* 1 for _next(). 0 for _first() */ 885 ){ 886 int rc; 887 ValueList *pRhs; 888 889 *ppOut = 0; 890 if( pVal==0 ) return SQLITE_MISUSE; 891 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList"); 892 if( pRhs==0 ) return SQLITE_MISUSE; 893 if( bNext ){ 894 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 895 }else{ 896 int dummy = 0; 897 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 898 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 899 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 900 } 901 if( rc==SQLITE_OK ){ 902 u32 sz; /* Size of current row in bytes */ 903 Mem sMem; /* Raw content of current row */ 904 memset(&sMem, 0, sizeof(sMem)); 905 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 906 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 907 if( rc==SQLITE_OK ){ 908 u8 *zBuf = (u8*)sMem.z; 909 u32 iSerial; 910 sqlite3_value *pOut = pRhs->pOut; 911 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 912 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 913 pOut->enc = ENC(pOut->db); 914 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 915 rc = SQLITE_NOMEM; 916 }else{ 917 *ppOut = pOut; 918 } 919 } 920 sqlite3VdbeMemRelease(&sMem); 921 } 922 return rc; 923 } 924 925 /* 926 ** Set the iterator value pVal to point to the first value in the set. 927 ** Set (*ppOut) to point to this value before returning. 928 */ 929 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 930 return valueFromValueList(pVal, ppOut, 0); 931 } 932 933 /* 934 ** Set the iterator value pVal to point to the next value in the set. 935 ** Set (*ppOut) to point to this value before returning. 936 */ 937 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 938 return valueFromValueList(pVal, ppOut, 1); 939 } 940 941 /* 942 ** Return the current time for a statement. If the current time 943 ** is requested more than once within the same run of a single prepared 944 ** statement, the exact same time is returned for each invocation regardless 945 ** of the amount of time that elapses between invocations. In other words, 946 ** the time returned is always the time of the first call. 947 */ 948 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 949 int rc; 950 #ifndef SQLITE_ENABLE_STAT4 951 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 952 assert( p->pVdbe!=0 ); 953 #else 954 sqlite3_int64 iTime = 0; 955 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 956 #endif 957 if( *piTime==0 ){ 958 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 959 if( rc ) *piTime = 0; 960 } 961 return *piTime; 962 } 963 964 /* 965 ** Create a new aggregate context for p and return a pointer to 966 ** its pMem->z element. 967 */ 968 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 969 Mem *pMem = p->pMem; 970 assert( (pMem->flags & MEM_Agg)==0 ); 971 if( nByte<=0 ){ 972 sqlite3VdbeMemSetNull(pMem); 973 pMem->z = 0; 974 }else{ 975 sqlite3VdbeMemClearAndResize(pMem, nByte); 976 pMem->flags = MEM_Agg; 977 pMem->u.pDef = p->pFunc; 978 if( pMem->z ){ 979 memset(pMem->z, 0, nByte); 980 } 981 } 982 return (void*)pMem->z; 983 } 984 985 /* 986 ** Allocate or return the aggregate context for a user function. A new 987 ** context is allocated on the first call. Subsequent calls return the 988 ** same context that was returned on prior calls. 989 */ 990 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 991 assert( p && p->pFunc && p->pFunc->xFinalize ); 992 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 993 testcase( nByte<0 ); 994 if( (p->pMem->flags & MEM_Agg)==0 ){ 995 return createAggContext(p, nByte); 996 }else{ 997 return (void*)p->pMem->z; 998 } 999 } 1000 1001 /* 1002 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 1003 ** the user-function defined by pCtx. 1004 ** 1005 ** The left-most argument is 0. 1006 ** 1007 ** Undocumented behavior: If iArg is negative then access a cache of 1008 ** auxiliary data pointers that is available to all functions within a 1009 ** single prepared statement. The iArg values must match. 1010 */ 1011 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 1012 AuxData *pAuxData; 1013 1014 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1015 #if SQLITE_ENABLE_STAT4 1016 if( pCtx->pVdbe==0 ) return 0; 1017 #else 1018 assert( pCtx->pVdbe!=0 ); 1019 #endif 1020 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1021 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1022 return pAuxData->pAux; 1023 } 1024 } 1025 return 0; 1026 } 1027 1028 /* 1029 ** Set the auxiliary data pointer and delete function, for the iArg'th 1030 ** argument to the user-function defined by pCtx. Any previous value is 1031 ** deleted by calling the delete function specified when it was set. 1032 ** 1033 ** The left-most argument is 0. 1034 ** 1035 ** Undocumented behavior: If iArg is negative then make the data available 1036 ** to all functions within the current prepared statement using iArg as an 1037 ** access code. 1038 */ 1039 void sqlite3_set_auxdata( 1040 sqlite3_context *pCtx, 1041 int iArg, 1042 void *pAux, 1043 void (*xDelete)(void*) 1044 ){ 1045 AuxData *pAuxData; 1046 Vdbe *pVdbe = pCtx->pVdbe; 1047 1048 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1049 #ifdef SQLITE_ENABLE_STAT4 1050 if( pVdbe==0 ) goto failed; 1051 #else 1052 assert( pVdbe!=0 ); 1053 #endif 1054 1055 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1056 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1057 break; 1058 } 1059 } 1060 if( pAuxData==0 ){ 1061 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 1062 if( !pAuxData ) goto failed; 1063 pAuxData->iAuxOp = pCtx->iOp; 1064 pAuxData->iAuxArg = iArg; 1065 pAuxData->pNextAux = pVdbe->pAuxData; 1066 pVdbe->pAuxData = pAuxData; 1067 if( pCtx->isError==0 ) pCtx->isError = -1; 1068 }else if( pAuxData->xDeleteAux ){ 1069 pAuxData->xDeleteAux(pAuxData->pAux); 1070 } 1071 1072 pAuxData->pAux = pAux; 1073 pAuxData->xDeleteAux = xDelete; 1074 return; 1075 1076 failed: 1077 if( xDelete ){ 1078 xDelete(pAux); 1079 } 1080 } 1081 1082 #ifndef SQLITE_OMIT_DEPRECATED 1083 /* 1084 ** Return the number of times the Step function of an aggregate has been 1085 ** called. 1086 ** 1087 ** This function is deprecated. Do not use it for new code. It is 1088 ** provide only to avoid breaking legacy code. New aggregate function 1089 ** implementations should keep their own counts within their aggregate 1090 ** context. 1091 */ 1092 int sqlite3_aggregate_count(sqlite3_context *p){ 1093 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1094 return p->pMem->n; 1095 } 1096 #endif 1097 1098 /* 1099 ** Return the number of columns in the result set for the statement pStmt. 1100 */ 1101 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1102 Vdbe *pVm = (Vdbe *)pStmt; 1103 return pVm ? pVm->nResColumn : 0; 1104 } 1105 1106 /* 1107 ** Return the number of values available from the current row of the 1108 ** currently executing statement pStmt. 1109 */ 1110 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1111 Vdbe *pVm = (Vdbe *)pStmt; 1112 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1113 return pVm->nResColumn; 1114 } 1115 1116 /* 1117 ** Return a pointer to static memory containing an SQL NULL value. 1118 */ 1119 static const Mem *columnNullValue(void){ 1120 /* Even though the Mem structure contains an element 1121 ** of type i64, on certain architectures (x86) with certain compiler 1122 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1123 ** instead of an 8-byte one. This all works fine, except that when 1124 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1125 ** that a Mem structure is located on an 8-byte boundary. To prevent 1126 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1127 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1128 ** __attribute__((aligned(8))) macro. */ 1129 static const Mem nullMem 1130 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1131 __attribute__((aligned(8))) 1132 #endif 1133 = { 1134 /* .u = */ {0}, 1135 /* .z = */ (char*)0, 1136 /* .n = */ (int)0, 1137 /* .flags = */ (u16)MEM_Null, 1138 /* .enc = */ (u8)0, 1139 /* .eSubtype = */ (u8)0, 1140 /* .db = */ (sqlite3*)0, 1141 /* .szMalloc = */ (int)0, 1142 /* .uTemp = */ (u32)0, 1143 /* .zMalloc = */ (char*)0, 1144 /* .xDel = */ (void(*)(void*))0, 1145 #ifdef SQLITE_DEBUG 1146 /* .pScopyFrom = */ (Mem*)0, 1147 /* .mScopyFlags= */ 0, 1148 #endif 1149 }; 1150 return &nullMem; 1151 } 1152 1153 /* 1154 ** Check to see if column iCol of the given statement is valid. If 1155 ** it is, return a pointer to the Mem for the value of that column. 1156 ** If iCol is not valid, return a pointer to a Mem which has a value 1157 ** of NULL. 1158 */ 1159 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1160 Vdbe *pVm; 1161 Mem *pOut; 1162 1163 pVm = (Vdbe *)pStmt; 1164 if( pVm==0 ) return (Mem*)columnNullValue(); 1165 assert( pVm->db ); 1166 sqlite3_mutex_enter(pVm->db->mutex); 1167 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1168 pOut = &pVm->pResultSet[i]; 1169 }else{ 1170 sqlite3Error(pVm->db, SQLITE_RANGE); 1171 pOut = (Mem*)columnNullValue(); 1172 } 1173 return pOut; 1174 } 1175 1176 /* 1177 ** This function is called after invoking an sqlite3_value_XXX function on a 1178 ** column value (i.e. a value returned by evaluating an SQL expression in the 1179 ** select list of a SELECT statement) that may cause a malloc() failure. If 1180 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1181 ** code of statement pStmt set to SQLITE_NOMEM. 1182 ** 1183 ** Specifically, this is called from within: 1184 ** 1185 ** sqlite3_column_int() 1186 ** sqlite3_column_int64() 1187 ** sqlite3_column_text() 1188 ** sqlite3_column_text16() 1189 ** sqlite3_column_real() 1190 ** sqlite3_column_bytes() 1191 ** sqlite3_column_bytes16() 1192 ** sqiite3_column_blob() 1193 */ 1194 static void columnMallocFailure(sqlite3_stmt *pStmt) 1195 { 1196 /* If malloc() failed during an encoding conversion within an 1197 ** sqlite3_column_XXX API, then set the return code of the statement to 1198 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1199 ** and _finalize() will return NOMEM. 1200 */ 1201 Vdbe *p = (Vdbe *)pStmt; 1202 if( p ){ 1203 assert( p->db!=0 ); 1204 assert( sqlite3_mutex_held(p->db->mutex) ); 1205 p->rc = sqlite3ApiExit(p->db, p->rc); 1206 sqlite3_mutex_leave(p->db->mutex); 1207 } 1208 } 1209 1210 /**************************** sqlite3_column_ ******************************* 1211 ** The following routines are used to access elements of the current row 1212 ** in the result set. 1213 */ 1214 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1215 const void *val; 1216 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1217 /* Even though there is no encoding conversion, value_blob() might 1218 ** need to call malloc() to expand the result of a zeroblob() 1219 ** expression. 1220 */ 1221 columnMallocFailure(pStmt); 1222 return val; 1223 } 1224 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1225 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1226 columnMallocFailure(pStmt); 1227 return val; 1228 } 1229 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1230 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1231 columnMallocFailure(pStmt); 1232 return val; 1233 } 1234 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1235 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1236 columnMallocFailure(pStmt); 1237 return val; 1238 } 1239 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1240 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1241 columnMallocFailure(pStmt); 1242 return val; 1243 } 1244 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1245 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1246 columnMallocFailure(pStmt); 1247 return val; 1248 } 1249 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1250 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1251 columnMallocFailure(pStmt); 1252 return val; 1253 } 1254 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1255 Mem *pOut = columnMem(pStmt, i); 1256 if( pOut->flags&MEM_Static ){ 1257 pOut->flags &= ~MEM_Static; 1258 pOut->flags |= MEM_Ephem; 1259 } 1260 columnMallocFailure(pStmt); 1261 return (sqlite3_value *)pOut; 1262 } 1263 #ifndef SQLITE_OMIT_UTF16 1264 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1265 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1266 columnMallocFailure(pStmt); 1267 return val; 1268 } 1269 #endif /* SQLITE_OMIT_UTF16 */ 1270 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1271 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1272 columnMallocFailure(pStmt); 1273 return iType; 1274 } 1275 1276 /* 1277 ** Convert the N-th element of pStmt->pColName[] into a string using 1278 ** xFunc() then return that string. If N is out of range, return 0. 1279 ** 1280 ** There are up to 5 names for each column. useType determines which 1281 ** name is returned. Here are the names: 1282 ** 1283 ** 0 The column name as it should be displayed for output 1284 ** 1 The datatype name for the column 1285 ** 2 The name of the database that the column derives from 1286 ** 3 The name of the table that the column derives from 1287 ** 4 The name of the table column that the result column derives from 1288 ** 1289 ** If the result is not a simple column reference (if it is an expression 1290 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1291 */ 1292 static const void *columnName( 1293 sqlite3_stmt *pStmt, /* The statement */ 1294 int N, /* Which column to get the name for */ 1295 int useUtf16, /* True to return the name as UTF16 */ 1296 int useType /* What type of name */ 1297 ){ 1298 const void *ret; 1299 Vdbe *p; 1300 int n; 1301 sqlite3 *db; 1302 #ifdef SQLITE_ENABLE_API_ARMOR 1303 if( pStmt==0 ){ 1304 (void)SQLITE_MISUSE_BKPT; 1305 return 0; 1306 } 1307 #endif 1308 ret = 0; 1309 p = (Vdbe *)pStmt; 1310 db = p->db; 1311 assert( db!=0 ); 1312 n = sqlite3_column_count(pStmt); 1313 if( N<n && N>=0 ){ 1314 N += useType*n; 1315 sqlite3_mutex_enter(db->mutex); 1316 assert( db->mallocFailed==0 ); 1317 #ifndef SQLITE_OMIT_UTF16 1318 if( useUtf16 ){ 1319 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1320 }else 1321 #endif 1322 { 1323 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1324 } 1325 /* A malloc may have failed inside of the _text() call. If this 1326 ** is the case, clear the mallocFailed flag and return NULL. 1327 */ 1328 if( db->mallocFailed ){ 1329 sqlite3OomClear(db); 1330 ret = 0; 1331 } 1332 sqlite3_mutex_leave(db->mutex); 1333 } 1334 return ret; 1335 } 1336 1337 /* 1338 ** Return the name of the Nth column of the result set returned by SQL 1339 ** statement pStmt. 1340 */ 1341 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1342 return columnName(pStmt, N, 0, COLNAME_NAME); 1343 } 1344 #ifndef SQLITE_OMIT_UTF16 1345 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1346 return columnName(pStmt, N, 1, COLNAME_NAME); 1347 } 1348 #endif 1349 1350 /* 1351 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1352 ** not define OMIT_DECLTYPE. 1353 */ 1354 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1355 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1356 and SQLITE_ENABLE_COLUMN_METADATA" 1357 #endif 1358 1359 #ifndef SQLITE_OMIT_DECLTYPE 1360 /* 1361 ** Return the column declaration type (if applicable) of the 'i'th column 1362 ** of the result set of SQL statement pStmt. 1363 */ 1364 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1365 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1366 } 1367 #ifndef SQLITE_OMIT_UTF16 1368 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1369 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1370 } 1371 #endif /* SQLITE_OMIT_UTF16 */ 1372 #endif /* SQLITE_OMIT_DECLTYPE */ 1373 1374 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1375 /* 1376 ** Return the name of the database from which a result column derives. 1377 ** NULL is returned if the result column is an expression or constant or 1378 ** anything else which is not an unambiguous reference to a database column. 1379 */ 1380 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1381 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1382 } 1383 #ifndef SQLITE_OMIT_UTF16 1384 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1385 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1386 } 1387 #endif /* SQLITE_OMIT_UTF16 */ 1388 1389 /* 1390 ** Return the name of the table from which a result column derives. 1391 ** NULL is returned if the result column is an expression or constant or 1392 ** anything else which is not an unambiguous reference to a database column. 1393 */ 1394 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1395 return columnName(pStmt, N, 0, COLNAME_TABLE); 1396 } 1397 #ifndef SQLITE_OMIT_UTF16 1398 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1399 return columnName(pStmt, N, 1, COLNAME_TABLE); 1400 } 1401 #endif /* SQLITE_OMIT_UTF16 */ 1402 1403 /* 1404 ** Return the name of the table column from which a result column derives. 1405 ** NULL is returned if the result column is an expression or constant or 1406 ** anything else which is not an unambiguous reference to a database column. 1407 */ 1408 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1409 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1410 } 1411 #ifndef SQLITE_OMIT_UTF16 1412 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1413 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1414 } 1415 #endif /* SQLITE_OMIT_UTF16 */ 1416 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1417 1418 1419 /******************************* sqlite3_bind_ *************************** 1420 ** 1421 ** Routines used to attach values to wildcards in a compiled SQL statement. 1422 */ 1423 /* 1424 ** Unbind the value bound to variable i in virtual machine p. This is the 1425 ** the same as binding a NULL value to the column. If the "i" parameter is 1426 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1427 ** 1428 ** A successful evaluation of this routine acquires the mutex on p. 1429 ** the mutex is released if any kind of error occurs. 1430 ** 1431 ** The error code stored in database p->db is overwritten with the return 1432 ** value in any case. 1433 */ 1434 static int vdbeUnbind(Vdbe *p, int i){ 1435 Mem *pVar; 1436 if( vdbeSafetyNotNull(p) ){ 1437 return SQLITE_MISUSE_BKPT; 1438 } 1439 sqlite3_mutex_enter(p->db->mutex); 1440 if( p->eVdbeState!=VDBE_READY_STATE ){ 1441 sqlite3Error(p->db, SQLITE_MISUSE); 1442 sqlite3_mutex_leave(p->db->mutex); 1443 sqlite3_log(SQLITE_MISUSE, 1444 "bind on a busy prepared statement: [%s]", p->zSql); 1445 return SQLITE_MISUSE_BKPT; 1446 } 1447 if( i<1 || i>p->nVar ){ 1448 sqlite3Error(p->db, SQLITE_RANGE); 1449 sqlite3_mutex_leave(p->db->mutex); 1450 return SQLITE_RANGE; 1451 } 1452 i--; 1453 pVar = &p->aVar[i]; 1454 sqlite3VdbeMemRelease(pVar); 1455 pVar->flags = MEM_Null; 1456 p->db->errCode = SQLITE_OK; 1457 1458 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1459 ** binding a new value to this variable invalidates the current query plan. 1460 ** 1461 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1462 ** parameter in the WHERE clause might influence the choice of query plan 1463 ** for a statement, then the statement will be automatically recompiled, 1464 ** as if there had been a schema change, on the first sqlite3_step() call 1465 ** following any change to the bindings of that parameter. 1466 */ 1467 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1468 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1469 p->expired = 1; 1470 } 1471 return SQLITE_OK; 1472 } 1473 1474 /* 1475 ** Bind a text or BLOB value. 1476 */ 1477 static int bindText( 1478 sqlite3_stmt *pStmt, /* The statement to bind against */ 1479 int i, /* Index of the parameter to bind */ 1480 const void *zData, /* Pointer to the data to be bound */ 1481 i64 nData, /* Number of bytes of data to be bound */ 1482 void (*xDel)(void*), /* Destructor for the data */ 1483 u8 encoding /* Encoding for the data */ 1484 ){ 1485 Vdbe *p = (Vdbe *)pStmt; 1486 Mem *pVar; 1487 int rc; 1488 1489 rc = vdbeUnbind(p, i); 1490 if( rc==SQLITE_OK ){ 1491 if( zData!=0 ){ 1492 pVar = &p->aVar[i-1]; 1493 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1494 if( rc==SQLITE_OK && encoding!=0 ){ 1495 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1496 } 1497 if( rc ){ 1498 sqlite3Error(p->db, rc); 1499 rc = sqlite3ApiExit(p->db, rc); 1500 } 1501 } 1502 sqlite3_mutex_leave(p->db->mutex); 1503 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1504 xDel((void*)zData); 1505 } 1506 return rc; 1507 } 1508 1509 1510 /* 1511 ** Bind a blob value to an SQL statement variable. 1512 */ 1513 int sqlite3_bind_blob( 1514 sqlite3_stmt *pStmt, 1515 int i, 1516 const void *zData, 1517 int nData, 1518 void (*xDel)(void*) 1519 ){ 1520 #ifdef SQLITE_ENABLE_API_ARMOR 1521 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1522 #endif 1523 return bindText(pStmt, i, zData, nData, xDel, 0); 1524 } 1525 int sqlite3_bind_blob64( 1526 sqlite3_stmt *pStmt, 1527 int i, 1528 const void *zData, 1529 sqlite3_uint64 nData, 1530 void (*xDel)(void*) 1531 ){ 1532 assert( xDel!=SQLITE_DYNAMIC ); 1533 return bindText(pStmt, i, zData, nData, xDel, 0); 1534 } 1535 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1536 int rc; 1537 Vdbe *p = (Vdbe *)pStmt; 1538 rc = vdbeUnbind(p, i); 1539 if( rc==SQLITE_OK ){ 1540 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1541 sqlite3_mutex_leave(p->db->mutex); 1542 } 1543 return rc; 1544 } 1545 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1546 return sqlite3_bind_int64(p, i, (i64)iValue); 1547 } 1548 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1549 int rc; 1550 Vdbe *p = (Vdbe *)pStmt; 1551 rc = vdbeUnbind(p, i); 1552 if( rc==SQLITE_OK ){ 1553 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1554 sqlite3_mutex_leave(p->db->mutex); 1555 } 1556 return rc; 1557 } 1558 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1559 int rc; 1560 Vdbe *p = (Vdbe*)pStmt; 1561 rc = vdbeUnbind(p, i); 1562 if( rc==SQLITE_OK ){ 1563 sqlite3_mutex_leave(p->db->mutex); 1564 } 1565 return rc; 1566 } 1567 int sqlite3_bind_pointer( 1568 sqlite3_stmt *pStmt, 1569 int i, 1570 void *pPtr, 1571 const char *zPTtype, 1572 void (*xDestructor)(void*) 1573 ){ 1574 int rc; 1575 Vdbe *p = (Vdbe*)pStmt; 1576 rc = vdbeUnbind(p, i); 1577 if( rc==SQLITE_OK ){ 1578 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1579 sqlite3_mutex_leave(p->db->mutex); 1580 }else if( xDestructor ){ 1581 xDestructor(pPtr); 1582 } 1583 return rc; 1584 } 1585 int sqlite3_bind_text( 1586 sqlite3_stmt *pStmt, 1587 int i, 1588 const char *zData, 1589 int nData, 1590 void (*xDel)(void*) 1591 ){ 1592 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1593 } 1594 int sqlite3_bind_text64( 1595 sqlite3_stmt *pStmt, 1596 int i, 1597 const char *zData, 1598 sqlite3_uint64 nData, 1599 void (*xDel)(void*), 1600 unsigned char enc 1601 ){ 1602 assert( xDel!=SQLITE_DYNAMIC ); 1603 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1604 return bindText(pStmt, i, zData, nData, xDel, enc); 1605 } 1606 #ifndef SQLITE_OMIT_UTF16 1607 int sqlite3_bind_text16( 1608 sqlite3_stmt *pStmt, 1609 int i, 1610 const void *zData, 1611 int nData, 1612 void (*xDel)(void*) 1613 ){ 1614 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1615 } 1616 #endif /* SQLITE_OMIT_UTF16 */ 1617 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1618 int rc; 1619 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1620 case SQLITE_INTEGER: { 1621 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1622 break; 1623 } 1624 case SQLITE_FLOAT: { 1625 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 1626 rc = sqlite3_bind_double(pStmt, i, 1627 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 1628 ); 1629 break; 1630 } 1631 case SQLITE_BLOB: { 1632 if( pValue->flags & MEM_Zero ){ 1633 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1634 }else{ 1635 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1636 } 1637 break; 1638 } 1639 case SQLITE_TEXT: { 1640 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1641 pValue->enc); 1642 break; 1643 } 1644 default: { 1645 rc = sqlite3_bind_null(pStmt, i); 1646 break; 1647 } 1648 } 1649 return rc; 1650 } 1651 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1652 int rc; 1653 Vdbe *p = (Vdbe *)pStmt; 1654 rc = vdbeUnbind(p, i); 1655 if( rc==SQLITE_OK ){ 1656 #ifndef SQLITE_OMIT_INCRBLOB 1657 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1658 #else 1659 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1660 #endif 1661 sqlite3_mutex_leave(p->db->mutex); 1662 } 1663 return rc; 1664 } 1665 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1666 int rc; 1667 Vdbe *p = (Vdbe *)pStmt; 1668 sqlite3_mutex_enter(p->db->mutex); 1669 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1670 rc = SQLITE_TOOBIG; 1671 }else{ 1672 assert( (n & 0x7FFFFFFF)==n ); 1673 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1674 } 1675 rc = sqlite3ApiExit(p->db, rc); 1676 sqlite3_mutex_leave(p->db->mutex); 1677 return rc; 1678 } 1679 1680 /* 1681 ** Return the number of wildcards that can be potentially bound to. 1682 ** This routine is added to support DBD::SQLite. 1683 */ 1684 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1685 Vdbe *p = (Vdbe*)pStmt; 1686 return p ? p->nVar : 0; 1687 } 1688 1689 /* 1690 ** Return the name of a wildcard parameter. Return NULL if the index 1691 ** is out of range or if the wildcard is unnamed. 1692 ** 1693 ** The result is always UTF-8. 1694 */ 1695 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1696 Vdbe *p = (Vdbe*)pStmt; 1697 if( p==0 ) return 0; 1698 return sqlite3VListNumToName(p->pVList, i); 1699 } 1700 1701 /* 1702 ** Given a wildcard parameter name, return the index of the variable 1703 ** with that name. If there is no variable with the given name, 1704 ** return 0. 1705 */ 1706 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1707 if( p==0 || zName==0 ) return 0; 1708 return sqlite3VListNameToNum(p->pVList, zName, nName); 1709 } 1710 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1711 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1712 } 1713 1714 /* 1715 ** Transfer all bindings from the first statement over to the second. 1716 */ 1717 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1718 Vdbe *pFrom = (Vdbe*)pFromStmt; 1719 Vdbe *pTo = (Vdbe*)pToStmt; 1720 int i; 1721 assert( pTo->db==pFrom->db ); 1722 assert( pTo->nVar==pFrom->nVar ); 1723 sqlite3_mutex_enter(pTo->db->mutex); 1724 for(i=0; i<pFrom->nVar; i++){ 1725 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1726 } 1727 sqlite3_mutex_leave(pTo->db->mutex); 1728 return SQLITE_OK; 1729 } 1730 1731 #ifndef SQLITE_OMIT_DEPRECATED 1732 /* 1733 ** Deprecated external interface. Internal/core SQLite code 1734 ** should call sqlite3TransferBindings. 1735 ** 1736 ** It is misuse to call this routine with statements from different 1737 ** database connections. But as this is a deprecated interface, we 1738 ** will not bother to check for that condition. 1739 ** 1740 ** If the two statements contain a different number of bindings, then 1741 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1742 ** SQLITE_OK is returned. 1743 */ 1744 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1745 Vdbe *pFrom = (Vdbe*)pFromStmt; 1746 Vdbe *pTo = (Vdbe*)pToStmt; 1747 if( pFrom->nVar!=pTo->nVar ){ 1748 return SQLITE_ERROR; 1749 } 1750 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1751 if( pTo->expmask ){ 1752 pTo->expired = 1; 1753 } 1754 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1755 if( pFrom->expmask ){ 1756 pFrom->expired = 1; 1757 } 1758 return sqlite3TransferBindings(pFromStmt, pToStmt); 1759 } 1760 #endif 1761 1762 /* 1763 ** Return the sqlite3* database handle to which the prepared statement given 1764 ** in the argument belongs. This is the same database handle that was 1765 ** the first argument to the sqlite3_prepare() that was used to create 1766 ** the statement in the first place. 1767 */ 1768 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1769 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1770 } 1771 1772 /* 1773 ** Return true if the prepared statement is guaranteed to not modify the 1774 ** database. 1775 */ 1776 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1777 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1778 } 1779 1780 /* 1781 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1782 ** statement is an EXPLAIN QUERY PLAN 1783 */ 1784 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1785 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1786 } 1787 1788 /* 1789 ** Return true if the prepared statement is in need of being reset. 1790 */ 1791 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1792 Vdbe *v = (Vdbe*)pStmt; 1793 return v!=0 && v->eVdbeState==VDBE_RUN_STATE; 1794 } 1795 1796 /* 1797 ** Return a pointer to the next prepared statement after pStmt associated 1798 ** with database connection pDb. If pStmt is NULL, return the first 1799 ** prepared statement for the database connection. Return NULL if there 1800 ** are no more. 1801 */ 1802 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1803 sqlite3_stmt *pNext; 1804 #ifdef SQLITE_ENABLE_API_ARMOR 1805 if( !sqlite3SafetyCheckOk(pDb) ){ 1806 (void)SQLITE_MISUSE_BKPT; 1807 return 0; 1808 } 1809 #endif 1810 sqlite3_mutex_enter(pDb->mutex); 1811 if( pStmt==0 ){ 1812 pNext = (sqlite3_stmt*)pDb->pVdbe; 1813 }else{ 1814 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1815 } 1816 sqlite3_mutex_leave(pDb->mutex); 1817 return pNext; 1818 } 1819 1820 /* 1821 ** Return the value of a status counter for a prepared statement 1822 */ 1823 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1824 Vdbe *pVdbe = (Vdbe*)pStmt; 1825 u32 v; 1826 #ifdef SQLITE_ENABLE_API_ARMOR 1827 if( !pStmt 1828 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1829 ){ 1830 (void)SQLITE_MISUSE_BKPT; 1831 return 0; 1832 } 1833 #endif 1834 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1835 sqlite3 *db = pVdbe->db; 1836 sqlite3_mutex_enter(db->mutex); 1837 v = 0; 1838 db->pnBytesFreed = (int*)&v; 1839 sqlite3VdbeClearObject(db, pVdbe); 1840 sqlite3DbFree(db, pVdbe); 1841 db->pnBytesFreed = 0; 1842 sqlite3_mutex_leave(db->mutex); 1843 }else{ 1844 v = pVdbe->aCounter[op]; 1845 if( resetFlag ) pVdbe->aCounter[op] = 0; 1846 } 1847 return (int)v; 1848 } 1849 1850 /* 1851 ** Return the SQL associated with a prepared statement 1852 */ 1853 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1854 Vdbe *p = (Vdbe *)pStmt; 1855 return p ? p->zSql : 0; 1856 } 1857 1858 /* 1859 ** Return the SQL associated with a prepared statement with 1860 ** bound parameters expanded. Space to hold the returned string is 1861 ** obtained from sqlite3_malloc(). The caller is responsible for 1862 ** freeing the returned string by passing it to sqlite3_free(). 1863 ** 1864 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1865 ** expanded bound parameters. 1866 */ 1867 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1868 #ifdef SQLITE_OMIT_TRACE 1869 return 0; 1870 #else 1871 char *z = 0; 1872 const char *zSql = sqlite3_sql(pStmt); 1873 if( zSql ){ 1874 Vdbe *p = (Vdbe *)pStmt; 1875 sqlite3_mutex_enter(p->db->mutex); 1876 z = sqlite3VdbeExpandSql(p, zSql); 1877 sqlite3_mutex_leave(p->db->mutex); 1878 } 1879 return z; 1880 #endif 1881 } 1882 1883 #ifdef SQLITE_ENABLE_NORMALIZE 1884 /* 1885 ** Return the normalized SQL associated with a prepared statement. 1886 */ 1887 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1888 Vdbe *p = (Vdbe *)pStmt; 1889 if( p==0 ) return 0; 1890 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1891 sqlite3_mutex_enter(p->db->mutex); 1892 p->zNormSql = sqlite3Normalize(p, p->zSql); 1893 sqlite3_mutex_leave(p->db->mutex); 1894 } 1895 return p->zNormSql; 1896 } 1897 #endif /* SQLITE_ENABLE_NORMALIZE */ 1898 1899 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1900 /* 1901 ** Allocate and populate an UnpackedRecord structure based on the serialized 1902 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1903 ** if successful, or a NULL pointer if an OOM error is encountered. 1904 */ 1905 static UnpackedRecord *vdbeUnpackRecord( 1906 KeyInfo *pKeyInfo, 1907 int nKey, 1908 const void *pKey 1909 ){ 1910 UnpackedRecord *pRet; /* Return value */ 1911 1912 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1913 if( pRet ){ 1914 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1915 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1916 } 1917 return pRet; 1918 } 1919 1920 /* 1921 ** This function is called from within a pre-update callback to retrieve 1922 ** a field of the row currently being updated or deleted. 1923 */ 1924 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1925 PreUpdate *p = db->pPreUpdate; 1926 Mem *pMem; 1927 int rc = SQLITE_OK; 1928 1929 /* Test that this call is being made from within an SQLITE_DELETE or 1930 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1931 if( !p || p->op==SQLITE_INSERT ){ 1932 rc = SQLITE_MISUSE_BKPT; 1933 goto preupdate_old_out; 1934 } 1935 if( p->pPk ){ 1936 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1937 } 1938 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1939 rc = SQLITE_RANGE; 1940 goto preupdate_old_out; 1941 } 1942 1943 /* If the old.* record has not yet been loaded into memory, do so now. */ 1944 if( p->pUnpacked==0 ){ 1945 u32 nRec; 1946 u8 *aRec; 1947 1948 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1949 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1950 aRec = sqlite3DbMallocRaw(db, nRec); 1951 if( !aRec ) goto preupdate_old_out; 1952 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1953 if( rc==SQLITE_OK ){ 1954 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1955 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1956 } 1957 if( rc!=SQLITE_OK ){ 1958 sqlite3DbFree(db, aRec); 1959 goto preupdate_old_out; 1960 } 1961 p->aRecord = aRec; 1962 } 1963 1964 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1965 if( iIdx==p->pTab->iPKey ){ 1966 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1967 }else if( iIdx>=p->pUnpacked->nField ){ 1968 *ppValue = (sqlite3_value *)columnNullValue(); 1969 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1970 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1971 testcase( pMem->flags & MEM_Int ); 1972 testcase( pMem->flags & MEM_IntReal ); 1973 sqlite3VdbeMemRealify(pMem); 1974 } 1975 } 1976 1977 preupdate_old_out: 1978 sqlite3Error(db, rc); 1979 return sqlite3ApiExit(db, rc); 1980 } 1981 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1982 1983 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1984 /* 1985 ** This function is called from within a pre-update callback to retrieve 1986 ** the number of columns in the row being updated, deleted or inserted. 1987 */ 1988 int sqlite3_preupdate_count(sqlite3 *db){ 1989 PreUpdate *p = db->pPreUpdate; 1990 return (p ? p->keyinfo.nKeyField : 0); 1991 } 1992 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1993 1994 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1995 /* 1996 ** This function is designed to be called from within a pre-update callback 1997 ** only. It returns zero if the change that caused the callback was made 1998 ** immediately by a user SQL statement. Or, if the change was made by a 1999 ** trigger program, it returns the number of trigger programs currently 2000 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 2001 ** top-level trigger etc.). 2002 ** 2003 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 2004 ** or SET DEFAULT action is considered a trigger. 2005 */ 2006 int sqlite3_preupdate_depth(sqlite3 *db){ 2007 PreUpdate *p = db->pPreUpdate; 2008 return (p ? p->v->nFrame : 0); 2009 } 2010 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2011 2012 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2013 /* 2014 ** This function is designed to be called from within a pre-update callback 2015 ** only. 2016 */ 2017 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 2018 PreUpdate *p = db->pPreUpdate; 2019 return (p ? p->iBlobWrite : -1); 2020 } 2021 #endif 2022 2023 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2024 /* 2025 ** This function is called from within a pre-update callback to retrieve 2026 ** a field of the row currently being updated or inserted. 2027 */ 2028 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 2029 PreUpdate *p = db->pPreUpdate; 2030 int rc = SQLITE_OK; 2031 Mem *pMem; 2032 2033 if( !p || p->op==SQLITE_DELETE ){ 2034 rc = SQLITE_MISUSE_BKPT; 2035 goto preupdate_new_out; 2036 } 2037 if( p->pPk && p->op!=SQLITE_UPDATE ){ 2038 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 2039 } 2040 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 2041 rc = SQLITE_RANGE; 2042 goto preupdate_new_out; 2043 } 2044 2045 if( p->op==SQLITE_INSERT ){ 2046 /* For an INSERT, memory cell p->iNewReg contains the serialized record 2047 ** that is being inserted. Deserialize it. */ 2048 UnpackedRecord *pUnpack = p->pNewUnpacked; 2049 if( !pUnpack ){ 2050 Mem *pData = &p->v->aMem[p->iNewReg]; 2051 rc = ExpandBlob(pData); 2052 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2053 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 2054 if( !pUnpack ){ 2055 rc = SQLITE_NOMEM; 2056 goto preupdate_new_out; 2057 } 2058 p->pNewUnpacked = pUnpack; 2059 } 2060 pMem = &pUnpack->aMem[iIdx]; 2061 if( iIdx==p->pTab->iPKey ){ 2062 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2063 }else if( iIdx>=pUnpack->nField ){ 2064 pMem = (sqlite3_value *)columnNullValue(); 2065 } 2066 }else{ 2067 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 2068 ** value. Make a copy of the cell contents and return a pointer to it. 2069 ** It is not safe to return a pointer to the memory cell itself as the 2070 ** caller may modify the value text encoding. 2071 */ 2072 assert( p->op==SQLITE_UPDATE ); 2073 if( !p->aNew ){ 2074 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 2075 if( !p->aNew ){ 2076 rc = SQLITE_NOMEM; 2077 goto preupdate_new_out; 2078 } 2079 } 2080 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 2081 pMem = &p->aNew[iIdx]; 2082 if( pMem->flags==0 ){ 2083 if( iIdx==p->pTab->iPKey ){ 2084 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2085 }else{ 2086 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 2087 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2088 } 2089 } 2090 } 2091 *ppValue = pMem; 2092 2093 preupdate_new_out: 2094 sqlite3Error(db, rc); 2095 return sqlite3ApiExit(db, rc); 2096 } 2097 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2098 2099 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2100 /* 2101 ** Return status data for a single loop within query pStmt. 2102 */ 2103 int sqlite3_stmt_scanstatus( 2104 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2105 int idx, /* Index of loop to report on */ 2106 int iScanStatusOp, /* Which metric to return */ 2107 void *pOut /* OUT: Write the answer here */ 2108 ){ 2109 Vdbe *p = (Vdbe*)pStmt; 2110 ScanStatus *pScan; 2111 if( idx<0 || idx>=p->nScan ) return 1; 2112 pScan = &p->aScan[idx]; 2113 switch( iScanStatusOp ){ 2114 case SQLITE_SCANSTAT_NLOOP: { 2115 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2116 break; 2117 } 2118 case SQLITE_SCANSTAT_NVISIT: { 2119 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2120 break; 2121 } 2122 case SQLITE_SCANSTAT_EST: { 2123 double r = 1.0; 2124 LogEst x = pScan->nEst; 2125 while( x<100 ){ 2126 x += 10; 2127 r *= 0.5; 2128 } 2129 *(double*)pOut = r*sqlite3LogEstToInt(x); 2130 break; 2131 } 2132 case SQLITE_SCANSTAT_NAME: { 2133 *(const char**)pOut = pScan->zName; 2134 break; 2135 } 2136 case SQLITE_SCANSTAT_EXPLAIN: { 2137 if( pScan->addrExplain ){ 2138 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2139 }else{ 2140 *(const char**)pOut = 0; 2141 } 2142 break; 2143 } 2144 case SQLITE_SCANSTAT_SELECTID: { 2145 if( pScan->addrExplain ){ 2146 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2147 }else{ 2148 *(int*)pOut = -1; 2149 } 2150 break; 2151 } 2152 default: { 2153 return 1; 2154 } 2155 } 2156 return 0; 2157 } 2158 2159 /* 2160 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2161 */ 2162 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2163 Vdbe *p = (Vdbe*)pStmt; 2164 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2165 } 2166 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2167