1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 /* 20 ** Return TRUE (non-zero) of the statement supplied as an argument needs 21 ** to be recompiled. A statement needs to be recompiled whenever the 22 ** execution environment changes in a way that would alter the program 23 ** that sqlite3_prepare() generates. For example, if new functions or 24 ** collating sequences are registered or if an authorizer function is 25 ** added or changed. 26 */ 27 int sqlite3_expired(sqlite3_stmt *pStmt){ 28 Vdbe *p = (Vdbe*)pStmt; 29 return p==0 || p->expired; 30 } 31 32 /* 33 ** The following routine destroys a virtual machine that is created by 34 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 35 ** success/failure code that describes the result of executing the virtual 36 ** machine. 37 ** 38 ** This routine sets the error code and string returned by 39 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 40 */ 41 int sqlite3_finalize(sqlite3_stmt *pStmt){ 42 int rc; 43 if( pStmt==0 ){ 44 rc = SQLITE_OK; 45 }else{ 46 Vdbe *v = (Vdbe*)pStmt; 47 sqlite3_mutex *mutex = v->db->mutex; 48 sqlite3_mutex_enter(mutex); 49 rc = sqlite3VdbeFinalize(v); 50 sqlite3_mutex_leave(mutex); 51 } 52 return rc; 53 } 54 55 /* 56 ** Terminate the current execution of an SQL statement and reset it 57 ** back to its starting state so that it can be reused. A success code from 58 ** the prior execution is returned. 59 ** 60 ** This routine sets the error code and string returned by 61 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 62 */ 63 int sqlite3_reset(sqlite3_stmt *pStmt){ 64 int rc; 65 if( pStmt==0 ){ 66 rc = SQLITE_OK; 67 }else{ 68 Vdbe *v = (Vdbe*)pStmt; 69 sqlite3_mutex_enter(v->db->mutex); 70 rc = sqlite3VdbeReset(v); 71 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 72 assert( (rc & (v->db->errMask))==rc ); 73 sqlite3_mutex_leave(v->db->mutex); 74 } 75 return rc; 76 } 77 78 /* 79 ** Set all the parameters in the compiled SQL statement to NULL. 80 */ 81 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 82 int i; 83 int rc = SQLITE_OK; 84 Vdbe *v = (Vdbe*)pStmt; 85 sqlite3_mutex_enter(v->db->mutex); 86 for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){ 87 rc = sqlite3_bind_null(pStmt, i); 88 } 89 sqlite3_mutex_leave(v->db->mutex); 90 return rc; 91 } 92 93 94 /**************************** sqlite3_value_ ******************************* 95 ** The following routines extract information from a Mem or sqlite3_value 96 ** structure. 97 */ 98 const void *sqlite3_value_blob(sqlite3_value *pVal){ 99 Mem *p = (Mem*)pVal; 100 if( p->flags & (MEM_Blob|MEM_Str) ){ 101 sqlite3VdbeMemExpandBlob(p); 102 p->flags &= ~MEM_Str; 103 p->flags |= MEM_Blob; 104 return p->z; 105 }else{ 106 return sqlite3_value_text(pVal); 107 } 108 } 109 int sqlite3_value_bytes(sqlite3_value *pVal){ 110 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 111 } 112 int sqlite3_value_bytes16(sqlite3_value *pVal){ 113 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 114 } 115 double sqlite3_value_double(sqlite3_value *pVal){ 116 return sqlite3VdbeRealValue((Mem*)pVal); 117 } 118 int sqlite3_value_int(sqlite3_value *pVal){ 119 return sqlite3VdbeIntValue((Mem*)pVal); 120 } 121 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 122 return sqlite3VdbeIntValue((Mem*)pVal); 123 } 124 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 125 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 126 } 127 #ifndef SQLITE_OMIT_UTF16 128 const void *sqlite3_value_text16(sqlite3_value* pVal){ 129 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 130 } 131 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 132 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 133 } 134 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 135 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 136 } 137 #endif /* SQLITE_OMIT_UTF16 */ 138 int sqlite3_value_type(sqlite3_value* pVal){ 139 return pVal->type; 140 } 141 142 /**************************** sqlite3_result_ ******************************* 143 ** The following routines are used by user-defined functions to specify 144 ** the function result. 145 */ 146 void sqlite3_result_blob( 147 sqlite3_context *pCtx, 148 const void *z, 149 int n, 150 void (*xDel)(void *) 151 ){ 152 assert( n>=0 ); 153 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 154 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); 155 } 156 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 157 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 158 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 159 } 160 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 161 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 162 pCtx->isError = 1; 163 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 164 } 165 #ifndef SQLITE_OMIT_UTF16 166 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 167 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 168 pCtx->isError = 1; 169 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 170 } 171 #endif 172 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 173 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 174 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 175 } 176 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 177 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 178 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 179 } 180 void sqlite3_result_null(sqlite3_context *pCtx){ 181 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 182 sqlite3VdbeMemSetNull(&pCtx->s); 183 } 184 void sqlite3_result_text( 185 sqlite3_context *pCtx, 186 const char *z, 187 int n, 188 void (*xDel)(void *) 189 ){ 190 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 191 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); 192 } 193 #ifndef SQLITE_OMIT_UTF16 194 void sqlite3_result_text16( 195 sqlite3_context *pCtx, 196 const void *z, 197 int n, 198 void (*xDel)(void *) 199 ){ 200 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 201 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); 202 } 203 void sqlite3_result_text16be( 204 sqlite3_context *pCtx, 205 const void *z, 206 int n, 207 void (*xDel)(void *) 208 ){ 209 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 210 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); 211 } 212 void sqlite3_result_text16le( 213 sqlite3_context *pCtx, 214 const void *z, 215 int n, 216 void (*xDel)(void *) 217 ){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); 220 } 221 #endif /* SQLITE_OMIT_UTF16 */ 222 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 223 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 224 sqlite3VdbeMemCopy(&pCtx->s, pValue); 225 } 226 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 227 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 228 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 229 } 230 231 /* Force an SQLITE_TOOBIG error. */ 232 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 233 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 234 sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1); 235 } 236 237 /* An SQLITE_NOMEM error. */ 238 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 239 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 240 sqlite3VdbeMemSetNull(&pCtx->s); 241 pCtx->isError = 1; 242 pCtx->s.db->mallocFailed = 1; 243 } 244 245 /* 246 ** Execute the statement pStmt, either until a row of data is ready, the 247 ** statement is completely executed or an error occurs. 248 ** 249 ** This routine implements the bulk of the logic behind the sqlite_step() 250 ** API. The only thing omitted is the automatic recompile if a 251 ** schema change has occurred. That detail is handled by the 252 ** outer sqlite3_step() wrapper procedure. 253 */ 254 static int sqlite3Step(Vdbe *p){ 255 sqlite3 *db; 256 int rc; 257 258 /* Assert that malloc() has not failed */ 259 db = p->db; 260 assert( !db->mallocFailed ); 261 262 if( p==0 || p->magic!=VDBE_MAGIC_RUN ){ 263 return SQLITE_MISUSE; 264 } 265 if( p->aborted ){ 266 return SQLITE_ABORT; 267 } 268 if( p->pc<=0 && p->expired ){ 269 if( p->rc==SQLITE_OK ){ 270 p->rc = SQLITE_SCHEMA; 271 } 272 rc = SQLITE_ERROR; 273 goto end_of_step; 274 } 275 if( sqlite3SafetyOn(db) ){ 276 p->rc = SQLITE_MISUSE; 277 return SQLITE_MISUSE; 278 } 279 if( p->pc<0 ){ 280 /* If there are no other statements currently running, then 281 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 282 ** from interrupting a statement that has not yet started. 283 */ 284 if( db->activeVdbeCnt==0 ){ 285 db->u1.isInterrupted = 0; 286 } 287 288 #ifndef SQLITE_OMIT_TRACE 289 /* Invoke the trace callback if there is one 290 */ 291 if( db->xTrace && !db->init.busy ){ 292 assert( p->nOp>0 ); 293 assert( p->aOp[p->nOp-1].opcode==OP_Noop ); 294 assert( p->aOp[p->nOp-1].p3!=0 ); 295 assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); 296 sqlite3SafetyOff(db); 297 db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3); 298 if( sqlite3SafetyOn(db) ){ 299 p->rc = SQLITE_MISUSE; 300 return SQLITE_MISUSE; 301 } 302 } 303 if( db->xProfile && !db->init.busy ){ 304 double rNow; 305 sqlite3OsCurrentTime(db->pVfs, &rNow); 306 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; 307 } 308 #endif 309 310 /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned 311 ** on in debugging mode. 312 */ 313 #ifdef SQLITE_DEBUG 314 if( (db->flags & SQLITE_SqlTrace)!=0 ){ 315 sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3); 316 } 317 #endif /* SQLITE_DEBUG */ 318 319 db->activeVdbeCnt++; 320 p->pc = 0; 321 } 322 #ifndef SQLITE_OMIT_EXPLAIN 323 if( p->explain ){ 324 rc = sqlite3VdbeList(p); 325 }else 326 #endif /* SQLITE_OMIT_EXPLAIN */ 327 { 328 rc = sqlite3VdbeExec(p); 329 } 330 331 if( sqlite3SafetyOff(db) ){ 332 rc = SQLITE_MISUSE; 333 } 334 335 #ifndef SQLITE_OMIT_TRACE 336 /* Invoke the profile callback if there is one 337 */ 338 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){ 339 double rNow; 340 u64 elapseTime; 341 342 sqlite3OsCurrentTime(db->pVfs, &rNow); 343 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; 344 assert( p->nOp>0 ); 345 assert( p->aOp[p->nOp-1].opcode==OP_Noop ); 346 assert( p->aOp[p->nOp-1].p3!=0 ); 347 assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); 348 db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime); 349 } 350 #endif 351 352 sqlite3Error(p->db, rc, 0); 353 p->rc = sqlite3ApiExit(p->db, p->rc); 354 end_of_step: 355 assert( (rc&0xff)==rc ); 356 if( p->zSql && (rc&0xff)<SQLITE_ROW ){ 357 /* This behavior occurs if sqlite3_prepare_v2() was used to build 358 ** the prepared statement. Return error codes directly */ 359 sqlite3Error(p->db, p->rc, 0); 360 return p->rc; 361 }else{ 362 /* This is for legacy sqlite3_prepare() builds and when the code 363 ** is SQLITE_ROW or SQLITE_DONE */ 364 return rc; 365 } 366 } 367 368 /* 369 ** This is the top-level implementation of sqlite3_step(). Call 370 ** sqlite3Step() to do most of the work. If a schema error occurs, 371 ** call sqlite3Reprepare() and try again. 372 */ 373 #ifdef SQLITE_OMIT_PARSER 374 int sqlite3_step(sqlite3_stmt *pStmt){ 375 int rc; 376 Vdbe *v; 377 v = (Vdbe*)pStmt; 378 sqlite3_mutex_enter(v->db->mutex); 379 rc = sqlite3Step(v); 380 sqlite3_mutex_leave(v->db->mutex); 381 return rc; 382 } 383 #else 384 int sqlite3_step(sqlite3_stmt *pStmt){ 385 int cnt = 0; 386 int rc; 387 Vdbe *v = (Vdbe*)pStmt; 388 sqlite3_mutex_enter(v->db->mutex); 389 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 390 && cnt++ < 5 391 && sqlite3Reprepare(v) ){ 392 sqlite3_reset(pStmt); 393 v->expired = 0; 394 } 395 sqlite3_mutex_leave(v->db->mutex); 396 return rc; 397 } 398 #endif 399 400 /* 401 ** Extract the user data from a sqlite3_context structure and return a 402 ** pointer to it. 403 */ 404 void *sqlite3_user_data(sqlite3_context *p){ 405 assert( p && p->pFunc ); 406 return p->pFunc->pUserData; 407 } 408 409 /* 410 ** The following is the implementation of an SQL function that always 411 ** fails with an error message stating that the function is used in the 412 ** wrong context. The sqlite3_overload_function() API might construct 413 ** SQL function that use this routine so that the functions will exist 414 ** for name resolution but are actually overloaded by the xFindFunction 415 ** method of virtual tables. 416 */ 417 void sqlite3InvalidFunction( 418 sqlite3_context *context, /* The function calling context */ 419 int argc, /* Number of arguments to the function */ 420 sqlite3_value **argv /* Value of each argument */ 421 ){ 422 const char *zName = context->pFunc->zName; 423 char *zErr; 424 zErr = sqlite3MPrintf(0, 425 "unable to use function %s in the requested context", zName); 426 sqlite3_result_error(context, zErr, -1); 427 sqlite3_free(zErr); 428 } 429 430 /* 431 ** Allocate or return the aggregate context for a user function. A new 432 ** context is allocated on the first call. Subsequent calls return the 433 ** same context that was returned on prior calls. 434 */ 435 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 436 Mem *pMem; 437 assert( p && p->pFunc && p->pFunc->xStep ); 438 assert( sqlite3_mutex_held(p->s.db->mutex) ); 439 pMem = p->pMem; 440 if( (pMem->flags & MEM_Agg)==0 ){ 441 if( nByte==0 ){ 442 assert( pMem->flags==MEM_Null ); 443 pMem->z = 0; 444 }else{ 445 pMem->flags = MEM_Agg; 446 pMem->xDel = sqlite3_free; 447 pMem->u.pDef = p->pFunc; 448 if( nByte<=NBFS ){ 449 pMem->z = pMem->zShort; 450 memset(pMem->z, 0, nByte); 451 }else{ 452 pMem->z = sqlite3DbMallocZero(p->s.db, nByte); 453 } 454 } 455 } 456 return (void*)pMem->z; 457 } 458 459 /* 460 ** Return the auxilary data pointer, if any, for the iArg'th argument to 461 ** the user-function defined by pCtx. 462 */ 463 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 464 VdbeFunc *pVdbeFunc; 465 466 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 467 pVdbeFunc = pCtx->pVdbeFunc; 468 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 469 return 0; 470 } 471 return pVdbeFunc->apAux[iArg].pAux; 472 } 473 474 /* 475 ** Set the auxilary data pointer and delete function, for the iArg'th 476 ** argument to the user-function defined by pCtx. Any previous value is 477 ** deleted by calling the delete function specified when it was set. 478 */ 479 void sqlite3_set_auxdata( 480 sqlite3_context *pCtx, 481 int iArg, 482 void *pAux, 483 void (*xDelete)(void*) 484 ){ 485 struct AuxData *pAuxData; 486 VdbeFunc *pVdbeFunc; 487 if( iArg<0 ) goto failed; 488 489 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 490 pVdbeFunc = pCtx->pVdbeFunc; 491 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 492 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 493 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 494 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 495 if( !pVdbeFunc ){ 496 goto failed; 497 } 498 pCtx->pVdbeFunc = pVdbeFunc; 499 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 500 pVdbeFunc->nAux = iArg+1; 501 pVdbeFunc->pFunc = pCtx->pFunc; 502 } 503 504 pAuxData = &pVdbeFunc->apAux[iArg]; 505 if( pAuxData->pAux && pAuxData->xDelete ){ 506 pAuxData->xDelete(pAuxData->pAux); 507 } 508 pAuxData->pAux = pAux; 509 pAuxData->xDelete = xDelete; 510 return; 511 512 failed: 513 if( xDelete ){ 514 xDelete(pAux); 515 } 516 } 517 518 /* 519 ** Return the number of times the Step function of a aggregate has been 520 ** called. 521 ** 522 ** This function is deprecated. Do not use it for new code. It is 523 ** provide only to avoid breaking legacy code. New aggregate function 524 ** implementations should keep their own counts within their aggregate 525 ** context. 526 */ 527 int sqlite3_aggregate_count(sqlite3_context *p){ 528 assert( p && p->pFunc && p->pFunc->xStep ); 529 return p->pMem->n; 530 } 531 532 /* 533 ** Return the number of columns in the result set for the statement pStmt. 534 */ 535 int sqlite3_column_count(sqlite3_stmt *pStmt){ 536 Vdbe *pVm = (Vdbe *)pStmt; 537 return pVm ? pVm->nResColumn : 0; 538 } 539 540 /* 541 ** Return the number of values available from the current row of the 542 ** currently executing statement pStmt. 543 */ 544 int sqlite3_data_count(sqlite3_stmt *pStmt){ 545 Vdbe *pVm = (Vdbe *)pStmt; 546 if( pVm==0 || !pVm->resOnStack ) return 0; 547 return pVm->nResColumn; 548 } 549 550 551 /* 552 ** Check to see if column iCol of the given statement is valid. If 553 ** it is, return a pointer to the Mem for the value of that column. 554 ** If iCol is not valid, return a pointer to a Mem which has a value 555 ** of NULL. 556 */ 557 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 558 Vdbe *pVm; 559 int vals; 560 Mem *pOut; 561 562 pVm = (Vdbe *)pStmt; 563 if( pVm && pVm->resOnStack && i<pVm->nResColumn && i>=0 ){ 564 sqlite3_mutex_enter(pVm->db->mutex); 565 vals = sqlite3_data_count(pStmt); 566 pOut = &pVm->pTos[(1-vals)+i]; 567 }else{ 568 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL }; 569 if( pVm->db ){ 570 sqlite3_mutex_enter(pVm->db->mutex); 571 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 572 } 573 pOut = (Mem*)&nullMem; 574 } 575 return pOut; 576 } 577 578 /* 579 ** This function is called after invoking an sqlite3_value_XXX function on a 580 ** column value (i.e. a value returned by evaluating an SQL expression in the 581 ** select list of a SELECT statement) that may cause a malloc() failure. If 582 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 583 ** code of statement pStmt set to SQLITE_NOMEM. 584 ** 585 ** Specifically, this is called from within: 586 ** 587 ** sqlite3_column_int() 588 ** sqlite3_column_int64() 589 ** sqlite3_column_text() 590 ** sqlite3_column_text16() 591 ** sqlite3_column_real() 592 ** sqlite3_column_bytes() 593 ** sqlite3_column_bytes16() 594 ** 595 ** But not for sqlite3_column_blob(), which never calls malloc(). 596 */ 597 static void columnMallocFailure(sqlite3_stmt *pStmt) 598 { 599 /* If malloc() failed during an encoding conversion within an 600 ** sqlite3_column_XXX API, then set the return code of the statement to 601 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 602 ** and _finalize() will return NOMEM. 603 */ 604 Vdbe *p = (Vdbe *)pStmt; 605 if( p ){ 606 p->rc = sqlite3ApiExit(p->db, p->rc); 607 sqlite3_mutex_leave(p->db->mutex); 608 } 609 } 610 611 /**************************** sqlite3_column_ ******************************* 612 ** The following routines are used to access elements of the current row 613 ** in the result set. 614 */ 615 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 616 const void *val; 617 val = sqlite3_value_blob( columnMem(pStmt,i) ); 618 /* Even though there is no encoding conversion, value_blob() might 619 ** need to call malloc() to expand the result of a zeroblob() 620 ** expression. 621 */ 622 columnMallocFailure(pStmt); 623 return val; 624 } 625 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 626 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 627 columnMallocFailure(pStmt); 628 return val; 629 } 630 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 631 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 632 columnMallocFailure(pStmt); 633 return val; 634 } 635 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 636 double val = sqlite3_value_double( columnMem(pStmt,i) ); 637 columnMallocFailure(pStmt); 638 return val; 639 } 640 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 641 int val = sqlite3_value_int( columnMem(pStmt,i) ); 642 columnMallocFailure(pStmt); 643 return val; 644 } 645 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 646 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 647 columnMallocFailure(pStmt); 648 return val; 649 } 650 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 651 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 652 columnMallocFailure(pStmt); 653 return val; 654 } 655 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 656 sqlite3_value *pOut = columnMem(pStmt, i); 657 columnMallocFailure(pStmt); 658 return pOut; 659 } 660 #ifndef SQLITE_OMIT_UTF16 661 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 662 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 663 columnMallocFailure(pStmt); 664 return val; 665 } 666 #endif /* SQLITE_OMIT_UTF16 */ 667 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 668 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 669 columnMallocFailure(pStmt); 670 return iType; 671 } 672 673 /* The following function is experimental and subject to change or 674 ** removal */ 675 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 676 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 677 **} 678 */ 679 680 /* 681 ** Convert the N-th element of pStmt->pColName[] into a string using 682 ** xFunc() then return that string. If N is out of range, return 0. 683 ** 684 ** There are up to 5 names for each column. useType determines which 685 ** name is returned. Here are the names: 686 ** 687 ** 0 The column name as it should be displayed for output 688 ** 1 The datatype name for the column 689 ** 2 The name of the database that the column derives from 690 ** 3 The name of the table that the column derives from 691 ** 4 The name of the table column that the result column derives from 692 ** 693 ** If the result is not a simple column reference (if it is an expression 694 ** or a constant) then useTypes 2, 3, and 4 return NULL. 695 */ 696 static const void *columnName( 697 sqlite3_stmt *pStmt, 698 int N, 699 const void *(*xFunc)(Mem*), 700 int useType 701 ){ 702 const void *ret = 0; 703 Vdbe *p = (Vdbe *)pStmt; 704 int n; 705 706 707 if( p!=0 ){ 708 n = sqlite3_column_count(pStmt); 709 if( N<n && N>=0 ){ 710 N += useType*n; 711 sqlite3_mutex_enter(p->db->mutex); 712 ret = xFunc(&p->aColName[N]); 713 714 /* A malloc may have failed inside of the xFunc() call. If this 715 ** is the case, clear the mallocFailed flag and return NULL. 716 */ 717 if( p->db && p->db->mallocFailed ){ 718 p->db->mallocFailed = 0; 719 ret = 0; 720 } 721 sqlite3_mutex_leave(p->db->mutex); 722 } 723 } 724 return ret; 725 } 726 727 /* 728 ** Return the name of the Nth column of the result set returned by SQL 729 ** statement pStmt. 730 */ 731 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 732 return columnName( 733 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 734 } 735 #ifndef SQLITE_OMIT_UTF16 736 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 737 return columnName( 738 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 739 } 740 #endif 741 742 /* 743 ** Return the column declaration type (if applicable) of the 'i'th column 744 ** of the result set of SQL statement pStmt. 745 */ 746 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 747 return columnName( 748 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 749 } 750 #ifndef SQLITE_OMIT_UTF16 751 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 752 return columnName( 753 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 754 } 755 #endif /* SQLITE_OMIT_UTF16 */ 756 757 #ifdef SQLITE_ENABLE_COLUMN_METADATA 758 /* 759 ** Return the name of the database from which a result column derives. 760 ** NULL is returned if the result column is an expression or constant or 761 ** anything else which is not an unabiguous reference to a database column. 762 */ 763 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 764 return columnName( 765 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 766 } 767 #ifndef SQLITE_OMIT_UTF16 768 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 769 return columnName( 770 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 771 } 772 #endif /* SQLITE_OMIT_UTF16 */ 773 774 /* 775 ** Return the name of the table from which a result column derives. 776 ** NULL is returned if the result column is an expression or constant or 777 ** anything else which is not an unabiguous reference to a database column. 778 */ 779 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 780 return columnName( 781 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 782 } 783 #ifndef SQLITE_OMIT_UTF16 784 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 785 return columnName( 786 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 787 } 788 #endif /* SQLITE_OMIT_UTF16 */ 789 790 /* 791 ** Return the name of the table column from which a result column derives. 792 ** NULL is returned if the result column is an expression or constant or 793 ** anything else which is not an unabiguous reference to a database column. 794 */ 795 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 796 return columnName( 797 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 798 } 799 #ifndef SQLITE_OMIT_UTF16 800 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 801 return columnName( 802 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 803 } 804 #endif /* SQLITE_OMIT_UTF16 */ 805 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 806 807 808 /******************************* sqlite3_bind_ *************************** 809 ** 810 ** Routines used to attach values to wildcards in a compiled SQL statement. 811 */ 812 /* 813 ** Unbind the value bound to variable i in virtual machine p. This is the 814 ** the same as binding a NULL value to the column. If the "i" parameter is 815 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 816 ** 817 ** The error code stored in database p->db is overwritten with the return 818 ** value in any case. 819 */ 820 static int vdbeUnbind(Vdbe *p, int i){ 821 Mem *pVar; 822 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 823 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); 824 return SQLITE_MISUSE; 825 } 826 if( i<1 || i>p->nVar ){ 827 sqlite3Error(p->db, SQLITE_RANGE, 0); 828 return SQLITE_RANGE; 829 } 830 i--; 831 pVar = &p->aVar[i]; 832 sqlite3VdbeMemRelease(pVar); 833 pVar->flags = MEM_Null; 834 sqlite3Error(p->db, SQLITE_OK, 0); 835 return SQLITE_OK; 836 } 837 838 /* 839 ** Bind a text or BLOB value. 840 */ 841 static int bindText( 842 sqlite3_stmt *pStmt, /* The statement to bind against */ 843 int i, /* Index of the parameter to bind */ 844 const void *zData, /* Pointer to the data to be bound */ 845 int nData, /* Number of bytes of data to be bound */ 846 void (*xDel)(void*), /* Destructor for the data */ 847 int encoding /* Encoding for the data */ 848 ){ 849 Vdbe *p = (Vdbe *)pStmt; 850 Mem *pVar; 851 int rc; 852 853 if( p==0 ){ 854 return SQLITE_MISUSE; 855 } 856 sqlite3_mutex_enter(p->db->mutex); 857 rc = vdbeUnbind(p, i); 858 if( rc==SQLITE_OK && zData!=0 ){ 859 pVar = &p->aVar[i-1]; 860 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 861 if( rc==SQLITE_OK && encoding!=0 ){ 862 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 863 } 864 sqlite3Error(p->db, rc, 0); 865 rc = sqlite3ApiExit(p->db, rc); 866 } 867 sqlite3_mutex_leave(p->db->mutex); 868 return rc; 869 } 870 871 872 /* 873 ** Bind a blob value to an SQL statement variable. 874 */ 875 int sqlite3_bind_blob( 876 sqlite3_stmt *pStmt, 877 int i, 878 const void *zData, 879 int nData, 880 void (*xDel)(void*) 881 ){ 882 return bindText(pStmt, i, zData, nData, xDel, 0); 883 } 884 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 885 int rc; 886 Vdbe *p = (Vdbe *)pStmt; 887 sqlite3_mutex_enter(p->db->mutex); 888 rc = vdbeUnbind(p, i); 889 if( rc==SQLITE_OK ){ 890 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 891 } 892 sqlite3_mutex_leave(p->db->mutex); 893 return rc; 894 } 895 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 896 return sqlite3_bind_int64(p, i, (i64)iValue); 897 } 898 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 899 int rc; 900 Vdbe *p = (Vdbe *)pStmt; 901 sqlite3_mutex_enter(p->db->mutex); 902 rc = vdbeUnbind(p, i); 903 if( rc==SQLITE_OK ){ 904 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 905 } 906 sqlite3_mutex_leave(p->db->mutex); 907 return rc; 908 } 909 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 910 int rc; 911 Vdbe *p = (Vdbe*)pStmt; 912 sqlite3_mutex_enter(p->db->mutex); 913 rc = vdbeUnbind(p, i); 914 sqlite3_mutex_leave(p->db->mutex); 915 return rc; 916 } 917 int sqlite3_bind_text( 918 sqlite3_stmt *pStmt, 919 int i, 920 const char *zData, 921 int nData, 922 void (*xDel)(void*) 923 ){ 924 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 925 } 926 #ifndef SQLITE_OMIT_UTF16 927 int sqlite3_bind_text16( 928 sqlite3_stmt *pStmt, 929 int i, 930 const void *zData, 931 int nData, 932 void (*xDel)(void*) 933 ){ 934 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 935 } 936 #endif /* SQLITE_OMIT_UTF16 */ 937 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 938 int rc; 939 Vdbe *p = (Vdbe *)pStmt; 940 sqlite3_mutex_enter(p->db->mutex); 941 rc = vdbeUnbind(p, i); 942 if( rc==SQLITE_OK ){ 943 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); 944 } 945 sqlite3_mutex_leave(p->db->mutex); 946 return rc; 947 } 948 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 949 int rc; 950 Vdbe *p = (Vdbe *)pStmt; 951 sqlite3_mutex_enter(p->db->mutex); 952 rc = vdbeUnbind(p, i); 953 if( rc==SQLITE_OK ){ 954 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 955 } 956 sqlite3_mutex_leave(p->db->mutex); 957 return rc; 958 } 959 960 /* 961 ** Return the number of wildcards that can be potentially bound to. 962 ** This routine is added to support DBD::SQLite. 963 */ 964 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 965 Vdbe *p = (Vdbe*)pStmt; 966 return p ? p->nVar : 0; 967 } 968 969 /* 970 ** Create a mapping from variable numbers to variable names 971 ** in the Vdbe.azVar[] array, if such a mapping does not already 972 ** exist. 973 */ 974 static void createVarMap(Vdbe *p){ 975 if( !p->okVar ){ 976 sqlite3_mutex_enter(p->db->mutex); 977 if( !p->okVar ){ 978 int j; 979 Op *pOp; 980 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 981 if( pOp->opcode==OP_Variable ){ 982 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 983 p->azVar[pOp->p1-1] = pOp->p3; 984 } 985 } 986 p->okVar = 1; 987 } 988 sqlite3_mutex_leave(p->db->mutex); 989 } 990 } 991 992 /* 993 ** Return the name of a wildcard parameter. Return NULL if the index 994 ** is out of range or if the wildcard is unnamed. 995 ** 996 ** The result is always UTF-8. 997 */ 998 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 999 Vdbe *p = (Vdbe*)pStmt; 1000 if( p==0 || i<1 || i>p->nVar ){ 1001 return 0; 1002 } 1003 createVarMap(p); 1004 return p->azVar[i-1]; 1005 } 1006 1007 /* 1008 ** Given a wildcard parameter name, return the index of the variable 1009 ** with that name. If there is no variable with the given name, 1010 ** return 0. 1011 */ 1012 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1013 Vdbe *p = (Vdbe*)pStmt; 1014 int i; 1015 if( p==0 ){ 1016 return 0; 1017 } 1018 createVarMap(p); 1019 if( zName ){ 1020 for(i=0; i<p->nVar; i++){ 1021 const char *z = p->azVar[i]; 1022 if( z && strcmp(z,zName)==0 ){ 1023 return i+1; 1024 } 1025 } 1026 } 1027 return 0; 1028 } 1029 1030 /* 1031 ** Transfer all bindings from the first statement over to the second. 1032 ** If the two statements contain a different number of bindings, then 1033 ** an SQLITE_ERROR is returned. 1034 */ 1035 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1036 Vdbe *pFrom = (Vdbe*)pFromStmt; 1037 Vdbe *pTo = (Vdbe*)pToStmt; 1038 int i, rc = SQLITE_OK; 1039 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) 1040 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) 1041 || pTo->db!=pFrom->db ){ 1042 return SQLITE_MISUSE; 1043 } 1044 if( pFrom->nVar!=pTo->nVar ){ 1045 return SQLITE_ERROR; 1046 } 1047 sqlite3_mutex_enter(pTo->db->mutex); 1048 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ 1049 sqlite3MallocDisallow(); 1050 rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1051 sqlite3MallocAllow(); 1052 } 1053 sqlite3_mutex_leave(pTo->db->mutex); 1054 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1055 return rc; 1056 } 1057 1058 /* 1059 ** Return the sqlite3* database handle to which the prepared statement given 1060 ** in the argument belongs. This is the same database handle that was 1061 ** the first argument to the sqlite3_prepare() that was used to create 1062 ** the statement in the first place. 1063 */ 1064 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1065 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1066 } 1067