xref: /sqlite-3.40.0/src/vdbeapi.c (revision 999cc5d7)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 /*
20 ** Return TRUE (non-zero) of the statement supplied as an argument needs
21 ** to be recompiled.  A statement needs to be recompiled whenever the
22 ** execution environment changes in a way that would alter the program
23 ** that sqlite3_prepare() generates.  For example, if new functions or
24 ** collating sequences are registered or if an authorizer function is
25 ** added or changed.
26 */
27 int sqlite3_expired(sqlite3_stmt *pStmt){
28   Vdbe *p = (Vdbe*)pStmt;
29   return p==0 || p->expired;
30 }
31 
32 /*
33 ** The following routine destroys a virtual machine that is created by
34 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
35 ** success/failure code that describes the result of executing the virtual
36 ** machine.
37 **
38 ** This routine sets the error code and string returned by
39 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
40 */
41 int sqlite3_finalize(sqlite3_stmt *pStmt){
42   int rc;
43   if( pStmt==0 ){
44     rc = SQLITE_OK;
45   }else{
46     Vdbe *v = (Vdbe*)pStmt;
47     sqlite3_mutex *mutex = v->db->mutex;
48     sqlite3_mutex_enter(mutex);
49     rc = sqlite3VdbeFinalize(v);
50     sqlite3_mutex_leave(mutex);
51   }
52   return rc;
53 }
54 
55 /*
56 ** Terminate the current execution of an SQL statement and reset it
57 ** back to its starting state so that it can be reused. A success code from
58 ** the prior execution is returned.
59 **
60 ** This routine sets the error code and string returned by
61 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
62 */
63 int sqlite3_reset(sqlite3_stmt *pStmt){
64   int rc;
65   if( pStmt==0 ){
66     rc = SQLITE_OK;
67   }else{
68     Vdbe *v = (Vdbe*)pStmt;
69     sqlite3_mutex_enter(v->db->mutex);
70     rc = sqlite3VdbeReset(v);
71     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
72     assert( (rc & (v->db->errMask))==rc );
73     sqlite3_mutex_leave(v->db->mutex);
74   }
75   return rc;
76 }
77 
78 /*
79 ** Set all the parameters in the compiled SQL statement to NULL.
80 */
81 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
82   int i;
83   int rc = SQLITE_OK;
84   Vdbe *v = (Vdbe*)pStmt;
85   sqlite3_mutex_enter(v->db->mutex);
86   for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
87     rc = sqlite3_bind_null(pStmt, i);
88   }
89   sqlite3_mutex_leave(v->db->mutex);
90   return rc;
91 }
92 
93 
94 /**************************** sqlite3_value_  *******************************
95 ** The following routines extract information from a Mem or sqlite3_value
96 ** structure.
97 */
98 const void *sqlite3_value_blob(sqlite3_value *pVal){
99   Mem *p = (Mem*)pVal;
100   if( p->flags & (MEM_Blob|MEM_Str) ){
101     sqlite3VdbeMemExpandBlob(p);
102     p->flags &= ~MEM_Str;
103     p->flags |= MEM_Blob;
104     return p->z;
105   }else{
106     return sqlite3_value_text(pVal);
107   }
108 }
109 int sqlite3_value_bytes(sqlite3_value *pVal){
110   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
111 }
112 int sqlite3_value_bytes16(sqlite3_value *pVal){
113   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
114 }
115 double sqlite3_value_double(sqlite3_value *pVal){
116   return sqlite3VdbeRealValue((Mem*)pVal);
117 }
118 int sqlite3_value_int(sqlite3_value *pVal){
119   return sqlite3VdbeIntValue((Mem*)pVal);
120 }
121 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
122   return sqlite3VdbeIntValue((Mem*)pVal);
123 }
124 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
125   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
126 }
127 #ifndef SQLITE_OMIT_UTF16
128 const void *sqlite3_value_text16(sqlite3_value* pVal){
129   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
130 }
131 const void *sqlite3_value_text16be(sqlite3_value *pVal){
132   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
133 }
134 const void *sqlite3_value_text16le(sqlite3_value *pVal){
135   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
136 }
137 #endif /* SQLITE_OMIT_UTF16 */
138 int sqlite3_value_type(sqlite3_value* pVal){
139   return pVal->type;
140 }
141 
142 /**************************** sqlite3_result_  *******************************
143 ** The following routines are used by user-defined functions to specify
144 ** the function result.
145 */
146 void sqlite3_result_blob(
147   sqlite3_context *pCtx,
148   const void *z,
149   int n,
150   void (*xDel)(void *)
151 ){
152   assert( n>=0 );
153   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
154   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
155 }
156 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
157   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
158   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
159 }
160 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
161   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
162   pCtx->isError = 1;
163   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
164 }
165 #ifndef SQLITE_OMIT_UTF16
166 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
167   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
168   pCtx->isError = 1;
169   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
170 }
171 #endif
172 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
173   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
174   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
175 }
176 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
177   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
178   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
179 }
180 void sqlite3_result_null(sqlite3_context *pCtx){
181   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
182   sqlite3VdbeMemSetNull(&pCtx->s);
183 }
184 void sqlite3_result_text(
185   sqlite3_context *pCtx,
186   const char *z,
187   int n,
188   void (*xDel)(void *)
189 ){
190   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
191   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
192 }
193 #ifndef SQLITE_OMIT_UTF16
194 void sqlite3_result_text16(
195   sqlite3_context *pCtx,
196   const void *z,
197   int n,
198   void (*xDel)(void *)
199 ){
200   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
201   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
202 }
203 void sqlite3_result_text16be(
204   sqlite3_context *pCtx,
205   const void *z,
206   int n,
207   void (*xDel)(void *)
208 ){
209   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
210   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
211 }
212 void sqlite3_result_text16le(
213   sqlite3_context *pCtx,
214   const void *z,
215   int n,
216   void (*xDel)(void *)
217 ){
218   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
220 }
221 #endif /* SQLITE_OMIT_UTF16 */
222 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
223   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
224   sqlite3VdbeMemCopy(&pCtx->s, pValue);
225 }
226 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
227   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
228   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
229 }
230 
231 /* Force an SQLITE_TOOBIG error. */
232 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
233   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
234   sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
235 }
236 
237 /* An SQLITE_NOMEM error. */
238 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
239   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
240   sqlite3VdbeMemSetNull(&pCtx->s);
241   pCtx->isError = 1;
242   pCtx->s.db->mallocFailed = 1;
243 }
244 
245 /*
246 ** Execute the statement pStmt, either until a row of data is ready, the
247 ** statement is completely executed or an error occurs.
248 **
249 ** This routine implements the bulk of the logic behind the sqlite_step()
250 ** API.  The only thing omitted is the automatic recompile if a
251 ** schema change has occurred.  That detail is handled by the
252 ** outer sqlite3_step() wrapper procedure.
253 */
254 static int sqlite3Step(Vdbe *p){
255   sqlite3 *db;
256   int rc;
257 
258   /* Assert that malloc() has not failed */
259   db = p->db;
260   assert( !db->mallocFailed );
261 
262   if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
263     return SQLITE_MISUSE;
264   }
265   if( p->aborted ){
266     return SQLITE_ABORT;
267   }
268   if( p->pc<=0 && p->expired ){
269     if( p->rc==SQLITE_OK ){
270       p->rc = SQLITE_SCHEMA;
271     }
272     rc = SQLITE_ERROR;
273     goto end_of_step;
274   }
275   if( sqlite3SafetyOn(db) ){
276     p->rc = SQLITE_MISUSE;
277     return SQLITE_MISUSE;
278   }
279   if( p->pc<0 ){
280     /* If there are no other statements currently running, then
281     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
282     ** from interrupting a statement that has not yet started.
283     */
284     if( db->activeVdbeCnt==0 ){
285       db->u1.isInterrupted = 0;
286     }
287 
288 #ifndef SQLITE_OMIT_TRACE
289     /* Invoke the trace callback if there is one
290     */
291     if( db->xTrace && !db->init.busy ){
292       assert( p->nOp>0 );
293       assert( p->aOp[p->nOp-1].opcode==OP_Noop );
294       assert( p->aOp[p->nOp-1].p3!=0 );
295       assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
296       sqlite3SafetyOff(db);
297       db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
298       if( sqlite3SafetyOn(db) ){
299         p->rc = SQLITE_MISUSE;
300         return SQLITE_MISUSE;
301       }
302     }
303     if( db->xProfile && !db->init.busy ){
304       double rNow;
305       sqlite3OsCurrentTime(db->pVfs, &rNow);
306       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
307     }
308 #endif
309 
310     /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
311     ** on in debugging mode.
312     */
313 #ifdef SQLITE_DEBUG
314     if( (db->flags & SQLITE_SqlTrace)!=0 ){
315       sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
316     }
317 #endif /* SQLITE_DEBUG */
318 
319     db->activeVdbeCnt++;
320     p->pc = 0;
321   }
322 #ifndef SQLITE_OMIT_EXPLAIN
323   if( p->explain ){
324     rc = sqlite3VdbeList(p);
325   }else
326 #endif /* SQLITE_OMIT_EXPLAIN */
327   {
328     rc = sqlite3VdbeExec(p);
329   }
330 
331   if( sqlite3SafetyOff(db) ){
332     rc = SQLITE_MISUSE;
333   }
334 
335 #ifndef SQLITE_OMIT_TRACE
336   /* Invoke the profile callback if there is one
337   */
338   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
339     double rNow;
340     u64 elapseTime;
341 
342     sqlite3OsCurrentTime(db->pVfs, &rNow);
343     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
344     assert( p->nOp>0 );
345     assert( p->aOp[p->nOp-1].opcode==OP_Noop );
346     assert( p->aOp[p->nOp-1].p3!=0 );
347     assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
348     db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
349   }
350 #endif
351 
352   sqlite3Error(p->db, rc, 0);
353   p->rc = sqlite3ApiExit(p->db, p->rc);
354 end_of_step:
355   assert( (rc&0xff)==rc );
356   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
357     /* This behavior occurs if sqlite3_prepare_v2() was used to build
358     ** the prepared statement.  Return error codes directly */
359     sqlite3Error(p->db, p->rc, 0);
360     return p->rc;
361   }else{
362     /* This is for legacy sqlite3_prepare() builds and when the code
363     ** is SQLITE_ROW or SQLITE_DONE */
364     return rc;
365   }
366 }
367 
368 /*
369 ** This is the top-level implementation of sqlite3_step().  Call
370 ** sqlite3Step() to do most of the work.  If a schema error occurs,
371 ** call sqlite3Reprepare() and try again.
372 */
373 #ifdef SQLITE_OMIT_PARSER
374 int sqlite3_step(sqlite3_stmt *pStmt){
375   int rc;
376   Vdbe *v;
377   v = (Vdbe*)pStmt;
378   sqlite3_mutex_enter(v->db->mutex);
379   rc = sqlite3Step(v);
380   sqlite3_mutex_leave(v->db->mutex);
381   return rc;
382 }
383 #else
384 int sqlite3_step(sqlite3_stmt *pStmt){
385   int cnt = 0;
386   int rc;
387   Vdbe *v = (Vdbe*)pStmt;
388   sqlite3_mutex_enter(v->db->mutex);
389   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
390          && cnt++ < 5
391          && sqlite3Reprepare(v) ){
392     sqlite3_reset(pStmt);
393     v->expired = 0;
394   }
395   sqlite3_mutex_leave(v->db->mutex);
396   return rc;
397 }
398 #endif
399 
400 /*
401 ** Extract the user data from a sqlite3_context structure and return a
402 ** pointer to it.
403 */
404 void *sqlite3_user_data(sqlite3_context *p){
405   assert( p && p->pFunc );
406   return p->pFunc->pUserData;
407 }
408 
409 /*
410 ** The following is the implementation of an SQL function that always
411 ** fails with an error message stating that the function is used in the
412 ** wrong context.  The sqlite3_overload_function() API might construct
413 ** SQL function that use this routine so that the functions will exist
414 ** for name resolution but are actually overloaded by the xFindFunction
415 ** method of virtual tables.
416 */
417 void sqlite3InvalidFunction(
418   sqlite3_context *context,  /* The function calling context */
419   int argc,                  /* Number of arguments to the function */
420   sqlite3_value **argv       /* Value of each argument */
421 ){
422   const char *zName = context->pFunc->zName;
423   char *zErr;
424   zErr = sqlite3MPrintf(0,
425       "unable to use function %s in the requested context", zName);
426   sqlite3_result_error(context, zErr, -1);
427   sqlite3_free(zErr);
428 }
429 
430 /*
431 ** Allocate or return the aggregate context for a user function.  A new
432 ** context is allocated on the first call.  Subsequent calls return the
433 ** same context that was returned on prior calls.
434 */
435 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
436   Mem *pMem;
437   assert( p && p->pFunc && p->pFunc->xStep );
438   assert( sqlite3_mutex_held(p->s.db->mutex) );
439   pMem = p->pMem;
440   if( (pMem->flags & MEM_Agg)==0 ){
441     if( nByte==0 ){
442       assert( pMem->flags==MEM_Null );
443       pMem->z = 0;
444     }else{
445       pMem->flags = MEM_Agg;
446       pMem->xDel = sqlite3_free;
447       pMem->u.pDef = p->pFunc;
448       if( nByte<=NBFS ){
449         pMem->z = pMem->zShort;
450         memset(pMem->z, 0, nByte);
451       }else{
452         pMem->z = sqlite3DbMallocZero(p->s.db, nByte);
453       }
454     }
455   }
456   return (void*)pMem->z;
457 }
458 
459 /*
460 ** Return the auxilary data pointer, if any, for the iArg'th argument to
461 ** the user-function defined by pCtx.
462 */
463 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
464   VdbeFunc *pVdbeFunc;
465 
466   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
467   pVdbeFunc = pCtx->pVdbeFunc;
468   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
469     return 0;
470   }
471   return pVdbeFunc->apAux[iArg].pAux;
472 }
473 
474 /*
475 ** Set the auxilary data pointer and delete function, for the iArg'th
476 ** argument to the user-function defined by pCtx. Any previous value is
477 ** deleted by calling the delete function specified when it was set.
478 */
479 void sqlite3_set_auxdata(
480   sqlite3_context *pCtx,
481   int iArg,
482   void *pAux,
483   void (*xDelete)(void*)
484 ){
485   struct AuxData *pAuxData;
486   VdbeFunc *pVdbeFunc;
487   if( iArg<0 ) goto failed;
488 
489   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
490   pVdbeFunc = pCtx->pVdbeFunc;
491   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
492     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
493     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
494     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
495     if( !pVdbeFunc ){
496       goto failed;
497     }
498     pCtx->pVdbeFunc = pVdbeFunc;
499     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
500     pVdbeFunc->nAux = iArg+1;
501     pVdbeFunc->pFunc = pCtx->pFunc;
502   }
503 
504   pAuxData = &pVdbeFunc->apAux[iArg];
505   if( pAuxData->pAux && pAuxData->xDelete ){
506     pAuxData->xDelete(pAuxData->pAux);
507   }
508   pAuxData->pAux = pAux;
509   pAuxData->xDelete = xDelete;
510   return;
511 
512 failed:
513   if( xDelete ){
514     xDelete(pAux);
515   }
516 }
517 
518 /*
519 ** Return the number of times the Step function of a aggregate has been
520 ** called.
521 **
522 ** This function is deprecated.  Do not use it for new code.  It is
523 ** provide only to avoid breaking legacy code.  New aggregate function
524 ** implementations should keep their own counts within their aggregate
525 ** context.
526 */
527 int sqlite3_aggregate_count(sqlite3_context *p){
528   assert( p && p->pFunc && p->pFunc->xStep );
529   return p->pMem->n;
530 }
531 
532 /*
533 ** Return the number of columns in the result set for the statement pStmt.
534 */
535 int sqlite3_column_count(sqlite3_stmt *pStmt){
536   Vdbe *pVm = (Vdbe *)pStmt;
537   return pVm ? pVm->nResColumn : 0;
538 }
539 
540 /*
541 ** Return the number of values available from the current row of the
542 ** currently executing statement pStmt.
543 */
544 int sqlite3_data_count(sqlite3_stmt *pStmt){
545   Vdbe *pVm = (Vdbe *)pStmt;
546   if( pVm==0 || !pVm->resOnStack ) return 0;
547   return pVm->nResColumn;
548 }
549 
550 
551 /*
552 ** Check to see if column iCol of the given statement is valid.  If
553 ** it is, return a pointer to the Mem for the value of that column.
554 ** If iCol is not valid, return a pointer to a Mem which has a value
555 ** of NULL.
556 */
557 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
558   Vdbe *pVm;
559   int vals;
560   Mem *pOut;
561 
562   pVm = (Vdbe *)pStmt;
563   if( pVm && pVm->resOnStack && i<pVm->nResColumn && i>=0 ){
564     sqlite3_mutex_enter(pVm->db->mutex);
565     vals = sqlite3_data_count(pStmt);
566     pOut = &pVm->pTos[(1-vals)+i];
567   }else{
568     static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
569     if( pVm->db ){
570       sqlite3_mutex_enter(pVm->db->mutex);
571       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
572     }
573     pOut = (Mem*)&nullMem;
574   }
575   return pOut;
576 }
577 
578 /*
579 ** This function is called after invoking an sqlite3_value_XXX function on a
580 ** column value (i.e. a value returned by evaluating an SQL expression in the
581 ** select list of a SELECT statement) that may cause a malloc() failure. If
582 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
583 ** code of statement pStmt set to SQLITE_NOMEM.
584 **
585 ** Specifically, this is called from within:
586 **
587 **     sqlite3_column_int()
588 **     sqlite3_column_int64()
589 **     sqlite3_column_text()
590 **     sqlite3_column_text16()
591 **     sqlite3_column_real()
592 **     sqlite3_column_bytes()
593 **     sqlite3_column_bytes16()
594 **
595 ** But not for sqlite3_column_blob(), which never calls malloc().
596 */
597 static void columnMallocFailure(sqlite3_stmt *pStmt)
598 {
599   /* If malloc() failed during an encoding conversion within an
600   ** sqlite3_column_XXX API, then set the return code of the statement to
601   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
602   ** and _finalize() will return NOMEM.
603   */
604   Vdbe *p = (Vdbe *)pStmt;
605   if( p ){
606     p->rc = sqlite3ApiExit(p->db, p->rc);
607     sqlite3_mutex_leave(p->db->mutex);
608   }
609 }
610 
611 /**************************** sqlite3_column_  *******************************
612 ** The following routines are used to access elements of the current row
613 ** in the result set.
614 */
615 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
616   const void *val;
617   val = sqlite3_value_blob( columnMem(pStmt,i) );
618   /* Even though there is no encoding conversion, value_blob() might
619   ** need to call malloc() to expand the result of a zeroblob()
620   ** expression.
621   */
622   columnMallocFailure(pStmt);
623   return val;
624 }
625 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
626   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
627   columnMallocFailure(pStmt);
628   return val;
629 }
630 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
631   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
632   columnMallocFailure(pStmt);
633   return val;
634 }
635 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
636   double val = sqlite3_value_double( columnMem(pStmt,i) );
637   columnMallocFailure(pStmt);
638   return val;
639 }
640 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
641   int val = sqlite3_value_int( columnMem(pStmt,i) );
642   columnMallocFailure(pStmt);
643   return val;
644 }
645 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
646   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
647   columnMallocFailure(pStmt);
648   return val;
649 }
650 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
651   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
652   columnMallocFailure(pStmt);
653   return val;
654 }
655 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
656   sqlite3_value *pOut = columnMem(pStmt, i);
657   columnMallocFailure(pStmt);
658   return pOut;
659 }
660 #ifndef SQLITE_OMIT_UTF16
661 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
662   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
663   columnMallocFailure(pStmt);
664   return val;
665 }
666 #endif /* SQLITE_OMIT_UTF16 */
667 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
668   int iType = sqlite3_value_type( columnMem(pStmt,i) );
669   columnMallocFailure(pStmt);
670   return iType;
671 }
672 
673 /* The following function is experimental and subject to change or
674 ** removal */
675 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
676 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
677 **}
678 */
679 
680 /*
681 ** Convert the N-th element of pStmt->pColName[] into a string using
682 ** xFunc() then return that string.  If N is out of range, return 0.
683 **
684 ** There are up to 5 names for each column.  useType determines which
685 ** name is returned.  Here are the names:
686 **
687 **    0      The column name as it should be displayed for output
688 **    1      The datatype name for the column
689 **    2      The name of the database that the column derives from
690 **    3      The name of the table that the column derives from
691 **    4      The name of the table column that the result column derives from
692 **
693 ** If the result is not a simple column reference (if it is an expression
694 ** or a constant) then useTypes 2, 3, and 4 return NULL.
695 */
696 static const void *columnName(
697   sqlite3_stmt *pStmt,
698   int N,
699   const void *(*xFunc)(Mem*),
700   int useType
701 ){
702   const void *ret = 0;
703   Vdbe *p = (Vdbe *)pStmt;
704   int n;
705 
706 
707   if( p!=0 ){
708     n = sqlite3_column_count(pStmt);
709     if( N<n && N>=0 ){
710       N += useType*n;
711       sqlite3_mutex_enter(p->db->mutex);
712       ret = xFunc(&p->aColName[N]);
713 
714       /* A malloc may have failed inside of the xFunc() call. If this
715       ** is the case, clear the mallocFailed flag and return NULL.
716       */
717       if( p->db && p->db->mallocFailed ){
718         p->db->mallocFailed = 0;
719         ret = 0;
720       }
721       sqlite3_mutex_leave(p->db->mutex);
722     }
723   }
724   return ret;
725 }
726 
727 /*
728 ** Return the name of the Nth column of the result set returned by SQL
729 ** statement pStmt.
730 */
731 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
732   return columnName(
733       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
734 }
735 #ifndef SQLITE_OMIT_UTF16
736 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
737   return columnName(
738       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
739 }
740 #endif
741 
742 /*
743 ** Return the column declaration type (if applicable) of the 'i'th column
744 ** of the result set of SQL statement pStmt.
745 */
746 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
747   return columnName(
748       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
749 }
750 #ifndef SQLITE_OMIT_UTF16
751 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
752   return columnName(
753       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
754 }
755 #endif /* SQLITE_OMIT_UTF16 */
756 
757 #ifdef SQLITE_ENABLE_COLUMN_METADATA
758 /*
759 ** Return the name of the database from which a result column derives.
760 ** NULL is returned if the result column is an expression or constant or
761 ** anything else which is not an unabiguous reference to a database column.
762 */
763 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
764   return columnName(
765       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
766 }
767 #ifndef SQLITE_OMIT_UTF16
768 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
769   return columnName(
770       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
771 }
772 #endif /* SQLITE_OMIT_UTF16 */
773 
774 /*
775 ** Return the name of the table from which a result column derives.
776 ** NULL is returned if the result column is an expression or constant or
777 ** anything else which is not an unabiguous reference to a database column.
778 */
779 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
780   return columnName(
781       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
782 }
783 #ifndef SQLITE_OMIT_UTF16
784 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
785   return columnName(
786       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
787 }
788 #endif /* SQLITE_OMIT_UTF16 */
789 
790 /*
791 ** Return the name of the table column from which a result column derives.
792 ** NULL is returned if the result column is an expression or constant or
793 ** anything else which is not an unabiguous reference to a database column.
794 */
795 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
796   return columnName(
797       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
798 }
799 #ifndef SQLITE_OMIT_UTF16
800 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
801   return columnName(
802       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
803 }
804 #endif /* SQLITE_OMIT_UTF16 */
805 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
806 
807 
808 /******************************* sqlite3_bind_  ***************************
809 **
810 ** Routines used to attach values to wildcards in a compiled SQL statement.
811 */
812 /*
813 ** Unbind the value bound to variable i in virtual machine p. This is the
814 ** the same as binding a NULL value to the column. If the "i" parameter is
815 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
816 **
817 ** The error code stored in database p->db is overwritten with the return
818 ** value in any case.
819 */
820 static int vdbeUnbind(Vdbe *p, int i){
821   Mem *pVar;
822   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
823     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
824     return SQLITE_MISUSE;
825   }
826   if( i<1 || i>p->nVar ){
827     sqlite3Error(p->db, SQLITE_RANGE, 0);
828     return SQLITE_RANGE;
829   }
830   i--;
831   pVar = &p->aVar[i];
832   sqlite3VdbeMemRelease(pVar);
833   pVar->flags = MEM_Null;
834   sqlite3Error(p->db, SQLITE_OK, 0);
835   return SQLITE_OK;
836 }
837 
838 /*
839 ** Bind a text or BLOB value.
840 */
841 static int bindText(
842   sqlite3_stmt *pStmt,   /* The statement to bind against */
843   int i,                 /* Index of the parameter to bind */
844   const void *zData,     /* Pointer to the data to be bound */
845   int nData,             /* Number of bytes of data to be bound */
846   void (*xDel)(void*),   /* Destructor for the data */
847   int encoding           /* Encoding for the data */
848 ){
849   Vdbe *p = (Vdbe *)pStmt;
850   Mem *pVar;
851   int rc;
852 
853   if( p==0 ){
854     return SQLITE_MISUSE;
855   }
856   sqlite3_mutex_enter(p->db->mutex);
857   rc = vdbeUnbind(p, i);
858   if( rc==SQLITE_OK && zData!=0 ){
859     pVar = &p->aVar[i-1];
860     rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
861     if( rc==SQLITE_OK && encoding!=0 ){
862       rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
863     }
864     sqlite3Error(p->db, rc, 0);
865     rc = sqlite3ApiExit(p->db, rc);
866   }
867   sqlite3_mutex_leave(p->db->mutex);
868   return rc;
869 }
870 
871 
872 /*
873 ** Bind a blob value to an SQL statement variable.
874 */
875 int sqlite3_bind_blob(
876   sqlite3_stmt *pStmt,
877   int i,
878   const void *zData,
879   int nData,
880   void (*xDel)(void*)
881 ){
882   return bindText(pStmt, i, zData, nData, xDel, 0);
883 }
884 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
885   int rc;
886   Vdbe *p = (Vdbe *)pStmt;
887   sqlite3_mutex_enter(p->db->mutex);
888   rc = vdbeUnbind(p, i);
889   if( rc==SQLITE_OK ){
890     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
891   }
892   sqlite3_mutex_leave(p->db->mutex);
893   return rc;
894 }
895 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
896   return sqlite3_bind_int64(p, i, (i64)iValue);
897 }
898 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
899   int rc;
900   Vdbe *p = (Vdbe *)pStmt;
901   sqlite3_mutex_enter(p->db->mutex);
902   rc = vdbeUnbind(p, i);
903   if( rc==SQLITE_OK ){
904     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
905   }
906   sqlite3_mutex_leave(p->db->mutex);
907   return rc;
908 }
909 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
910   int rc;
911   Vdbe *p = (Vdbe*)pStmt;
912   sqlite3_mutex_enter(p->db->mutex);
913   rc = vdbeUnbind(p, i);
914   sqlite3_mutex_leave(p->db->mutex);
915   return rc;
916 }
917 int sqlite3_bind_text(
918   sqlite3_stmt *pStmt,
919   int i,
920   const char *zData,
921   int nData,
922   void (*xDel)(void*)
923 ){
924   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
925 }
926 #ifndef SQLITE_OMIT_UTF16
927 int sqlite3_bind_text16(
928   sqlite3_stmt *pStmt,
929   int i,
930   const void *zData,
931   int nData,
932   void (*xDel)(void*)
933 ){
934   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
935 }
936 #endif /* SQLITE_OMIT_UTF16 */
937 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
938   int rc;
939   Vdbe *p = (Vdbe *)pStmt;
940   sqlite3_mutex_enter(p->db->mutex);
941   rc = vdbeUnbind(p, i);
942   if( rc==SQLITE_OK ){
943     rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
944   }
945   sqlite3_mutex_leave(p->db->mutex);
946   return rc;
947 }
948 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
949   int rc;
950   Vdbe *p = (Vdbe *)pStmt;
951   sqlite3_mutex_enter(p->db->mutex);
952   rc = vdbeUnbind(p, i);
953   if( rc==SQLITE_OK ){
954     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
955   }
956   sqlite3_mutex_leave(p->db->mutex);
957   return rc;
958 }
959 
960 /*
961 ** Return the number of wildcards that can be potentially bound to.
962 ** This routine is added to support DBD::SQLite.
963 */
964 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
965   Vdbe *p = (Vdbe*)pStmt;
966   return p ? p->nVar : 0;
967 }
968 
969 /*
970 ** Create a mapping from variable numbers to variable names
971 ** in the Vdbe.azVar[] array, if such a mapping does not already
972 ** exist.
973 */
974 static void createVarMap(Vdbe *p){
975   if( !p->okVar ){
976     sqlite3_mutex_enter(p->db->mutex);
977     if( !p->okVar ){
978       int j;
979       Op *pOp;
980       for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
981         if( pOp->opcode==OP_Variable ){
982           assert( pOp->p1>0 && pOp->p1<=p->nVar );
983           p->azVar[pOp->p1-1] = pOp->p3;
984         }
985       }
986       p->okVar = 1;
987     }
988     sqlite3_mutex_leave(p->db->mutex);
989   }
990 }
991 
992 /*
993 ** Return the name of a wildcard parameter.  Return NULL if the index
994 ** is out of range or if the wildcard is unnamed.
995 **
996 ** The result is always UTF-8.
997 */
998 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
999   Vdbe *p = (Vdbe*)pStmt;
1000   if( p==0 || i<1 || i>p->nVar ){
1001     return 0;
1002   }
1003   createVarMap(p);
1004   return p->azVar[i-1];
1005 }
1006 
1007 /*
1008 ** Given a wildcard parameter name, return the index of the variable
1009 ** with that name.  If there is no variable with the given name,
1010 ** return 0.
1011 */
1012 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1013   Vdbe *p = (Vdbe*)pStmt;
1014   int i;
1015   if( p==0 ){
1016     return 0;
1017   }
1018   createVarMap(p);
1019   if( zName ){
1020     for(i=0; i<p->nVar; i++){
1021       const char *z = p->azVar[i];
1022       if( z && strcmp(z,zName)==0 ){
1023         return i+1;
1024       }
1025     }
1026   }
1027   return 0;
1028 }
1029 
1030 /*
1031 ** Transfer all bindings from the first statement over to the second.
1032 ** If the two statements contain a different number of bindings, then
1033 ** an SQLITE_ERROR is returned.
1034 */
1035 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1036   Vdbe *pFrom = (Vdbe*)pFromStmt;
1037   Vdbe *pTo = (Vdbe*)pToStmt;
1038   int i, rc = SQLITE_OK;
1039   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1040     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1041     || pTo->db!=pFrom->db ){
1042     return SQLITE_MISUSE;
1043   }
1044   if( pFrom->nVar!=pTo->nVar ){
1045     return SQLITE_ERROR;
1046   }
1047   sqlite3_mutex_enter(pTo->db->mutex);
1048   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1049     sqlite3MallocDisallow();
1050     rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1051     sqlite3MallocAllow();
1052   }
1053   sqlite3_mutex_leave(pTo->db->mutex);
1054   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1055   return rc;
1056 }
1057 
1058 /*
1059 ** Return the sqlite3* database handle to which the prepared statement given
1060 ** in the argument belongs.  This is the same database handle that was
1061 ** the first argument to the sqlite3_prepare() that was used to create
1062 ** the statement in the first place.
1063 */
1064 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1065   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1066 }
1067