1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 ** 16 ** $Id: vdbeapi.c,v 1.136 2008/07/28 19:34:54 drh Exp $ 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 22 /* 23 ** The following structure contains pointers to the end points of a 24 ** doubly-linked list of all compiled SQL statements that may be holding 25 ** buffers eligible for release when the sqlite3_release_memory() interface is 26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 27 ** mutex. 28 ** 29 ** Statements are added to the end of this list when sqlite3_reset() is 30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize() 31 ** is called. When statements are added to this list, the associated 32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that 33 ** can be freed using sqlite3VdbeReleaseMemory(). 34 ** 35 ** When statements are added or removed from this list, the mutex 36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is 37 ** already held. The LRU2 mutex is then obtained, blocking if necessary, 38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished. 39 */ 40 struct StatementLruList { 41 Vdbe *pFirst; 42 Vdbe *pLast; 43 }; 44 static struct StatementLruList sqlite3LruStatements; 45 46 /* 47 ** Check that the list looks to be internally consistent. This is used 48 ** as part of an assert() statement as follows: 49 ** 50 ** assert( stmtLruCheck() ); 51 */ 52 #ifndef NDEBUG 53 static int stmtLruCheck(){ 54 Vdbe *p; 55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ 56 assert(p->pLruNext || p==sqlite3LruStatements.pLast); 57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p); 58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); 59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); 60 } 61 return 1; 62 } 63 #endif 64 65 /* 66 ** Add vdbe p to the end of the statement lru list. It is assumed that 67 ** p is not already part of the list when this is called. The lru list 68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. 69 */ 70 static void stmtLruAdd(Vdbe *p){ 71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 72 73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ 74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 75 return; 76 } 77 78 assert( stmtLruCheck() ); 79 80 if( !sqlite3LruStatements.pFirst ){ 81 assert( !sqlite3LruStatements.pLast ); 82 sqlite3LruStatements.pFirst = p; 83 sqlite3LruStatements.pLast = p; 84 }else{ 85 assert( !sqlite3LruStatements.pLast->pLruNext ); 86 p->pLruPrev = sqlite3LruStatements.pLast; 87 sqlite3LruStatements.pLast->pLruNext = p; 88 sqlite3LruStatements.pLast = p; 89 } 90 91 assert( stmtLruCheck() ); 92 93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 94 } 95 96 /* 97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove 98 ** statement p from the least-recently-used statement list. If the 99 ** statement is not currently part of the list, this call is a no-op. 100 */ 101 static void stmtLruRemoveNomutex(Vdbe *p){ 102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ 103 assert( stmtLruCheck() ); 104 if( p->pLruNext ){ 105 p->pLruNext->pLruPrev = p->pLruPrev; 106 }else{ 107 sqlite3LruStatements.pLast = p->pLruPrev; 108 } 109 if( p->pLruPrev ){ 110 p->pLruPrev->pLruNext = p->pLruNext; 111 }else{ 112 sqlite3LruStatements.pFirst = p->pLruNext; 113 } 114 p->pLruNext = 0; 115 p->pLruPrev = 0; 116 assert( stmtLruCheck() ); 117 } 118 } 119 120 /* 121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove 122 ** statement p from the least-recently-used statement list. If the 123 ** statement is not currently part of the list, this call is a no-op. 124 */ 125 static void stmtLruRemove(Vdbe *p){ 126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 127 stmtLruRemoveNomutex(p); 128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 129 } 130 131 /* 132 ** Try to release n bytes of memory by freeing buffers associated 133 ** with the memory registers of currently unused vdbes. 134 */ 135 int sqlite3VdbeReleaseMemory(int n){ 136 Vdbe *p; 137 Vdbe *pNext; 138 int nFree = 0; 139 140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){ 142 pNext = p->pLruNext; 143 144 /* For each statement handle in the lru list, attempt to obtain the 145 ** associated database mutex. If it cannot be obtained, continue 146 ** to the next statement handle. It is not possible to block on 147 ** the database mutex - that could cause deadlock. 148 */ 149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ 150 nFree += sqlite3VdbeReleaseBuffers(p); 151 stmtLruRemoveNomutex(p); 152 sqlite3_mutex_leave(p->db->mutex); 153 } 154 } 155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 156 157 return nFree; 158 } 159 160 /* 161 ** Call sqlite3Reprepare() on the statement. Remove it from the 162 ** lru list before doing so, as Reprepare() will free all the 163 ** memory register buffers anyway. 164 */ 165 int vdbeReprepare(Vdbe *p){ 166 stmtLruRemove(p); 167 return sqlite3Reprepare(p); 168 } 169 170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ 171 #define stmtLruRemove(x) 172 #define stmtLruAdd(x) 173 #define vdbeReprepare(x) sqlite3Reprepare(x) 174 #endif 175 176 177 /* 178 ** Return TRUE (non-zero) of the statement supplied as an argument needs 179 ** to be recompiled. A statement needs to be recompiled whenever the 180 ** execution environment changes in a way that would alter the program 181 ** that sqlite3_prepare() generates. For example, if new functions or 182 ** collating sequences are registered or if an authorizer function is 183 ** added or changed. 184 */ 185 int sqlite3_expired(sqlite3_stmt *pStmt){ 186 Vdbe *p = (Vdbe*)pStmt; 187 return p==0 || p->expired; 188 } 189 190 /* 191 ** The following routine destroys a virtual machine that is created by 192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 193 ** success/failure code that describes the result of executing the virtual 194 ** machine. 195 ** 196 ** This routine sets the error code and string returned by 197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 198 */ 199 int sqlite3_finalize(sqlite3_stmt *pStmt){ 200 int rc; 201 if( pStmt==0 ){ 202 rc = SQLITE_OK; 203 }else{ 204 Vdbe *v = (Vdbe*)pStmt; 205 #ifndef SQLITE_MUTEX_NOOP 206 sqlite3_mutex *mutex = v->db->mutex; 207 #endif 208 sqlite3_mutex_enter(mutex); 209 stmtLruRemove(v); 210 rc = sqlite3VdbeFinalize(v); 211 sqlite3_mutex_leave(mutex); 212 } 213 return rc; 214 } 215 216 /* 217 ** Terminate the current execution of an SQL statement and reset it 218 ** back to its starting state so that it can be reused. A success code from 219 ** the prior execution is returned. 220 ** 221 ** This routine sets the error code and string returned by 222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 223 */ 224 int sqlite3_reset(sqlite3_stmt *pStmt){ 225 int rc; 226 if( pStmt==0 ){ 227 rc = SQLITE_OK; 228 }else{ 229 Vdbe *v = (Vdbe*)pStmt; 230 sqlite3_mutex_enter(v->db->mutex); 231 rc = sqlite3VdbeReset(v, 1); 232 stmtLruAdd(v); 233 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 234 assert( (rc & (v->db->errMask))==rc ); 235 sqlite3_mutex_leave(v->db->mutex); 236 } 237 return rc; 238 } 239 240 /* 241 ** Set all the parameters in the compiled SQL statement to NULL. 242 */ 243 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 244 int i; 245 int rc = SQLITE_OK; 246 Vdbe *p = (Vdbe*)pStmt; 247 #ifndef SQLITE_MUTEX_NOOP 248 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 249 #endif 250 sqlite3_mutex_enter(mutex); 251 for(i=0; i<p->nVar; i++){ 252 sqlite3VdbeMemRelease(&p->aVar[i]); 253 p->aVar[i].flags = MEM_Null; 254 } 255 sqlite3_mutex_leave(mutex); 256 return rc; 257 } 258 259 260 /**************************** sqlite3_value_ ******************************* 261 ** The following routines extract information from a Mem or sqlite3_value 262 ** structure. 263 */ 264 const void *sqlite3_value_blob(sqlite3_value *pVal){ 265 Mem *p = (Mem*)pVal; 266 if( p->flags & (MEM_Blob|MEM_Str) ){ 267 sqlite3VdbeMemExpandBlob(p); 268 p->flags &= ~MEM_Str; 269 p->flags |= MEM_Blob; 270 return p->z; 271 }else{ 272 return sqlite3_value_text(pVal); 273 } 274 } 275 int sqlite3_value_bytes(sqlite3_value *pVal){ 276 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 277 } 278 int sqlite3_value_bytes16(sqlite3_value *pVal){ 279 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 280 } 281 double sqlite3_value_double(sqlite3_value *pVal){ 282 return sqlite3VdbeRealValue((Mem*)pVal); 283 } 284 int sqlite3_value_int(sqlite3_value *pVal){ 285 return sqlite3VdbeIntValue((Mem*)pVal); 286 } 287 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 288 return sqlite3VdbeIntValue((Mem*)pVal); 289 } 290 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 291 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 292 } 293 #ifndef SQLITE_OMIT_UTF16 294 const void *sqlite3_value_text16(sqlite3_value* pVal){ 295 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 296 } 297 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 298 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 299 } 300 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 301 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 302 } 303 #endif /* SQLITE_OMIT_UTF16 */ 304 int sqlite3_value_type(sqlite3_value* pVal){ 305 return pVal->type; 306 } 307 308 /**************************** sqlite3_result_ ******************************* 309 ** The following routines are used by user-defined functions to specify 310 ** the function result. 311 */ 312 void sqlite3_result_blob( 313 sqlite3_context *pCtx, 314 const void *z, 315 int n, 316 void (*xDel)(void *) 317 ){ 318 assert( n>=0 ); 319 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 320 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); 321 } 322 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 323 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 324 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 325 } 326 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 327 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 328 pCtx->isError = SQLITE_ERROR; 329 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 330 } 331 #ifndef SQLITE_OMIT_UTF16 332 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 333 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 334 pCtx->isError = SQLITE_ERROR; 335 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 336 } 337 #endif 338 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 339 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 340 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 341 } 342 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 343 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 344 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 345 } 346 void sqlite3_result_null(sqlite3_context *pCtx){ 347 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 348 sqlite3VdbeMemSetNull(&pCtx->s); 349 } 350 void sqlite3_result_text( 351 sqlite3_context *pCtx, 352 const char *z, 353 int n, 354 void (*xDel)(void *) 355 ){ 356 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 357 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); 358 } 359 #ifndef SQLITE_OMIT_UTF16 360 void sqlite3_result_text16( 361 sqlite3_context *pCtx, 362 const void *z, 363 int n, 364 void (*xDel)(void *) 365 ){ 366 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 367 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); 368 } 369 void sqlite3_result_text16be( 370 sqlite3_context *pCtx, 371 const void *z, 372 int n, 373 void (*xDel)(void *) 374 ){ 375 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 376 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); 377 } 378 void sqlite3_result_text16le( 379 sqlite3_context *pCtx, 380 const void *z, 381 int n, 382 void (*xDel)(void *) 383 ){ 384 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 385 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); 386 } 387 #endif /* SQLITE_OMIT_UTF16 */ 388 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 389 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 390 sqlite3VdbeMemCopy(&pCtx->s, pValue); 391 } 392 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 393 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 394 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 395 } 396 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 397 pCtx->isError = errCode; 398 } 399 400 /* Force an SQLITE_TOOBIG error. */ 401 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 402 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 403 pCtx->isError = SQLITE_TOOBIG; 404 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 405 SQLITE_UTF8, SQLITE_STATIC); 406 } 407 408 /* An SQLITE_NOMEM error. */ 409 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 410 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 411 sqlite3VdbeMemSetNull(&pCtx->s); 412 pCtx->isError = SQLITE_NOMEM; 413 pCtx->s.db->mallocFailed = 1; 414 } 415 416 /* 417 ** Execute the statement pStmt, either until a row of data is ready, the 418 ** statement is completely executed or an error occurs. 419 ** 420 ** This routine implements the bulk of the logic behind the sqlite_step() 421 ** API. The only thing omitted is the automatic recompile if a 422 ** schema change has occurred. That detail is handled by the 423 ** outer sqlite3_step() wrapper procedure. 424 */ 425 static int sqlite3Step(Vdbe *p){ 426 sqlite3 *db; 427 int rc; 428 429 assert(p); 430 if( p->magic!=VDBE_MAGIC_RUN ){ 431 return SQLITE_MISUSE; 432 } 433 434 /* Assert that malloc() has not failed */ 435 db = p->db; 436 assert( !db->mallocFailed ); 437 438 if( p->aborted ){ 439 return SQLITE_ABORT; 440 } 441 if( p->pc<=0 && p->expired ){ 442 if( p->rc==SQLITE_OK ){ 443 p->rc = SQLITE_SCHEMA; 444 } 445 rc = SQLITE_ERROR; 446 goto end_of_step; 447 } 448 if( sqlite3SafetyOn(db) ){ 449 p->rc = SQLITE_MISUSE; 450 return SQLITE_MISUSE; 451 } 452 if( p->pc<0 ){ 453 /* If there are no other statements currently running, then 454 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 455 ** from interrupting a statement that has not yet started. 456 */ 457 if( db->activeVdbeCnt==0 ){ 458 db->u1.isInterrupted = 0; 459 } 460 461 #ifndef SQLITE_OMIT_TRACE 462 if( db->xProfile && !db->init.busy ){ 463 double rNow; 464 sqlite3OsCurrentTime(db->pVfs, &rNow); 465 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; 466 } 467 #endif 468 469 db->activeVdbeCnt++; 470 p->pc = 0; 471 stmtLruRemove(p); 472 } 473 #ifndef SQLITE_OMIT_EXPLAIN 474 if( p->explain ){ 475 rc = sqlite3VdbeList(p); 476 }else 477 #endif /* SQLITE_OMIT_EXPLAIN */ 478 { 479 rc = sqlite3VdbeExec(p); 480 } 481 482 if( sqlite3SafetyOff(db) ){ 483 rc = SQLITE_MISUSE; 484 } 485 486 #ifndef SQLITE_OMIT_TRACE 487 /* Invoke the profile callback if there is one 488 */ 489 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 490 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ 491 double rNow; 492 u64 elapseTime; 493 494 sqlite3OsCurrentTime(db->pVfs, &rNow); 495 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; 496 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); 497 } 498 #endif 499 500 db->errCode = rc; 501 /*sqlite3Error(p->db, rc, 0);*/ 502 p->rc = sqlite3ApiExit(p->db, p->rc); 503 end_of_step: 504 assert( (rc&0xff)==rc ); 505 if( p->zSql && (rc&0xff)<SQLITE_ROW ){ 506 /* This behavior occurs if sqlite3_prepare_v2() was used to build 507 ** the prepared statement. Return error codes directly */ 508 p->db->errCode = p->rc; 509 /* sqlite3Error(p->db, p->rc, 0); */ 510 return p->rc; 511 }else{ 512 /* This is for legacy sqlite3_prepare() builds and when the code 513 ** is SQLITE_ROW or SQLITE_DONE */ 514 return rc; 515 } 516 } 517 518 /* 519 ** This is the top-level implementation of sqlite3_step(). Call 520 ** sqlite3Step() to do most of the work. If a schema error occurs, 521 ** call sqlite3Reprepare() and try again. 522 */ 523 #ifdef SQLITE_OMIT_PARSER 524 int sqlite3_step(sqlite3_stmt *pStmt){ 525 int rc = SQLITE_MISUSE; 526 if( pStmt ){ 527 Vdbe *v; 528 v = (Vdbe*)pStmt; 529 sqlite3_mutex_enter(v->db->mutex); 530 rc = sqlite3Step(v); 531 sqlite3_mutex_leave(v->db->mutex); 532 } 533 return rc; 534 } 535 #else 536 int sqlite3_step(sqlite3_stmt *pStmt){ 537 int rc = SQLITE_MISUSE; 538 if( pStmt ){ 539 int cnt = 0; 540 Vdbe *v = (Vdbe*)pStmt; 541 sqlite3 *db = v->db; 542 sqlite3_mutex_enter(db->mutex); 543 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 544 && cnt++ < 5 545 && vdbeReprepare(v) ){ 546 sqlite3_reset(pStmt); 547 v->expired = 0; 548 } 549 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ 550 /* This case occurs after failing to recompile an sql statement. 551 ** The error message from the SQL compiler has already been loaded 552 ** into the database handle. This block copies the error message 553 ** from the database handle into the statement and sets the statement 554 ** program counter to 0 to ensure that when the statement is 555 ** finalized or reset the parser error message is available via 556 ** sqlite3_errmsg() and sqlite3_errcode(). 557 */ 558 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 559 sqlite3DbFree(db, v->zErrMsg); 560 if( !db->mallocFailed ){ 561 v->zErrMsg = sqlite3DbStrDup(db, zErr); 562 } else { 563 v->zErrMsg = 0; 564 v->rc = SQLITE_NOMEM; 565 } 566 } 567 rc = sqlite3ApiExit(db, rc); 568 sqlite3_mutex_leave(db->mutex); 569 } 570 return rc; 571 } 572 #endif 573 574 /* 575 ** Extract the user data from a sqlite3_context structure and return a 576 ** pointer to it. 577 */ 578 void *sqlite3_user_data(sqlite3_context *p){ 579 assert( p && p->pFunc ); 580 return p->pFunc->pUserData; 581 } 582 583 /* 584 ** Extract the user data from a sqlite3_context structure and return a 585 ** pointer to it. 586 */ 587 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 588 assert( p && p->pFunc ); 589 return p->s.db; 590 } 591 592 /* 593 ** The following is the implementation of an SQL function that always 594 ** fails with an error message stating that the function is used in the 595 ** wrong context. The sqlite3_overload_function() API might construct 596 ** SQL function that use this routine so that the functions will exist 597 ** for name resolution but are actually overloaded by the xFindFunction 598 ** method of virtual tables. 599 */ 600 void sqlite3InvalidFunction( 601 sqlite3_context *context, /* The function calling context */ 602 int argc, /* Number of arguments to the function */ 603 sqlite3_value **argv /* Value of each argument */ 604 ){ 605 const char *zName = context->pFunc->zName; 606 char *zErr; 607 zErr = sqlite3MPrintf(0, 608 "unable to use function %s in the requested context", zName); 609 sqlite3_result_error(context, zErr, -1); 610 sqlite3_free(zErr); 611 } 612 613 /* 614 ** Allocate or return the aggregate context for a user function. A new 615 ** context is allocated on the first call. Subsequent calls return the 616 ** same context that was returned on prior calls. 617 */ 618 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 619 Mem *pMem; 620 assert( p && p->pFunc && p->pFunc->xStep ); 621 assert( sqlite3_mutex_held(p->s.db->mutex) ); 622 pMem = p->pMem; 623 if( (pMem->flags & MEM_Agg)==0 ){ 624 if( nByte==0 ){ 625 sqlite3VdbeMemReleaseExternal(pMem); 626 pMem->flags = MEM_Null; 627 pMem->z = 0; 628 }else{ 629 sqlite3VdbeMemGrow(pMem, nByte, 0); 630 pMem->flags = MEM_Agg; 631 pMem->u.pDef = p->pFunc; 632 if( pMem->z ){ 633 memset(pMem->z, 0, nByte); 634 } 635 } 636 } 637 return (void*)pMem->z; 638 } 639 640 /* 641 ** Return the auxilary data pointer, if any, for the iArg'th argument to 642 ** the user-function defined by pCtx. 643 */ 644 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 645 VdbeFunc *pVdbeFunc; 646 647 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 648 pVdbeFunc = pCtx->pVdbeFunc; 649 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 650 return 0; 651 } 652 return pVdbeFunc->apAux[iArg].pAux; 653 } 654 655 /* 656 ** Set the auxilary data pointer and delete function, for the iArg'th 657 ** argument to the user-function defined by pCtx. Any previous value is 658 ** deleted by calling the delete function specified when it was set. 659 */ 660 void sqlite3_set_auxdata( 661 sqlite3_context *pCtx, 662 int iArg, 663 void *pAux, 664 void (*xDelete)(void*) 665 ){ 666 struct AuxData *pAuxData; 667 VdbeFunc *pVdbeFunc; 668 if( iArg<0 ) goto failed; 669 670 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 671 pVdbeFunc = pCtx->pVdbeFunc; 672 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 673 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 674 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 675 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 676 if( !pVdbeFunc ){ 677 goto failed; 678 } 679 pCtx->pVdbeFunc = pVdbeFunc; 680 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 681 pVdbeFunc->nAux = iArg+1; 682 pVdbeFunc->pFunc = pCtx->pFunc; 683 } 684 685 pAuxData = &pVdbeFunc->apAux[iArg]; 686 if( pAuxData->pAux && pAuxData->xDelete ){ 687 pAuxData->xDelete(pAuxData->pAux); 688 } 689 pAuxData->pAux = pAux; 690 pAuxData->xDelete = xDelete; 691 return; 692 693 failed: 694 if( xDelete ){ 695 xDelete(pAux); 696 } 697 } 698 699 /* 700 ** Return the number of times the Step function of a aggregate has been 701 ** called. 702 ** 703 ** This function is deprecated. Do not use it for new code. It is 704 ** provide only to avoid breaking legacy code. New aggregate function 705 ** implementations should keep their own counts within their aggregate 706 ** context. 707 */ 708 int sqlite3_aggregate_count(sqlite3_context *p){ 709 assert( p && p->pFunc && p->pFunc->xStep ); 710 return p->pMem->n; 711 } 712 713 /* 714 ** Return the number of columns in the result set for the statement pStmt. 715 */ 716 int sqlite3_column_count(sqlite3_stmt *pStmt){ 717 Vdbe *pVm = (Vdbe *)pStmt; 718 return pVm ? pVm->nResColumn : 0; 719 } 720 721 /* 722 ** Return the number of values available from the current row of the 723 ** currently executing statement pStmt. 724 */ 725 int sqlite3_data_count(sqlite3_stmt *pStmt){ 726 Vdbe *pVm = (Vdbe *)pStmt; 727 if( pVm==0 || pVm->pResultSet==0 ) return 0; 728 return pVm->nResColumn; 729 } 730 731 732 /* 733 ** Check to see if column iCol of the given statement is valid. If 734 ** it is, return a pointer to the Mem for the value of that column. 735 ** If iCol is not valid, return a pointer to a Mem which has a value 736 ** of NULL. 737 */ 738 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 739 Vdbe *pVm; 740 int vals; 741 Mem *pOut; 742 743 pVm = (Vdbe *)pStmt; 744 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 745 sqlite3_mutex_enter(pVm->db->mutex); 746 vals = sqlite3_data_count(pStmt); 747 pOut = &pVm->pResultSet[i]; 748 }else{ 749 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 750 if( pVm->db ){ 751 sqlite3_mutex_enter(pVm->db->mutex); 752 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 753 } 754 pOut = (Mem*)&nullMem; 755 } 756 return pOut; 757 } 758 759 /* 760 ** This function is called after invoking an sqlite3_value_XXX function on a 761 ** column value (i.e. a value returned by evaluating an SQL expression in the 762 ** select list of a SELECT statement) that may cause a malloc() failure. If 763 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 764 ** code of statement pStmt set to SQLITE_NOMEM. 765 ** 766 ** Specifically, this is called from within: 767 ** 768 ** sqlite3_column_int() 769 ** sqlite3_column_int64() 770 ** sqlite3_column_text() 771 ** sqlite3_column_text16() 772 ** sqlite3_column_real() 773 ** sqlite3_column_bytes() 774 ** sqlite3_column_bytes16() 775 ** 776 ** But not for sqlite3_column_blob(), which never calls malloc(). 777 */ 778 static void columnMallocFailure(sqlite3_stmt *pStmt) 779 { 780 /* If malloc() failed during an encoding conversion within an 781 ** sqlite3_column_XXX API, then set the return code of the statement to 782 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 783 ** and _finalize() will return NOMEM. 784 */ 785 Vdbe *p = (Vdbe *)pStmt; 786 if( p ){ 787 p->rc = sqlite3ApiExit(p->db, p->rc); 788 sqlite3_mutex_leave(p->db->mutex); 789 } 790 } 791 792 /**************************** sqlite3_column_ ******************************* 793 ** The following routines are used to access elements of the current row 794 ** in the result set. 795 */ 796 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 797 const void *val; 798 val = sqlite3_value_blob( columnMem(pStmt,i) ); 799 /* Even though there is no encoding conversion, value_blob() might 800 ** need to call malloc() to expand the result of a zeroblob() 801 ** expression. 802 */ 803 columnMallocFailure(pStmt); 804 return val; 805 } 806 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 807 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 808 columnMallocFailure(pStmt); 809 return val; 810 } 811 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 812 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 813 columnMallocFailure(pStmt); 814 return val; 815 } 816 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 817 double val = sqlite3_value_double( columnMem(pStmt,i) ); 818 columnMallocFailure(pStmt); 819 return val; 820 } 821 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 822 int val = sqlite3_value_int( columnMem(pStmt,i) ); 823 columnMallocFailure(pStmt); 824 return val; 825 } 826 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 827 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 828 columnMallocFailure(pStmt); 829 return val; 830 } 831 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 832 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 833 columnMallocFailure(pStmt); 834 return val; 835 } 836 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 837 sqlite3_value *pOut = columnMem(pStmt, i); 838 columnMallocFailure(pStmt); 839 return pOut; 840 } 841 #ifndef SQLITE_OMIT_UTF16 842 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 843 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 844 columnMallocFailure(pStmt); 845 return val; 846 } 847 #endif /* SQLITE_OMIT_UTF16 */ 848 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 849 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 850 columnMallocFailure(pStmt); 851 return iType; 852 } 853 854 /* The following function is experimental and subject to change or 855 ** removal */ 856 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 857 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 858 **} 859 */ 860 861 /* 862 ** Convert the N-th element of pStmt->pColName[] into a string using 863 ** xFunc() then return that string. If N is out of range, return 0. 864 ** 865 ** There are up to 5 names for each column. useType determines which 866 ** name is returned. Here are the names: 867 ** 868 ** 0 The column name as it should be displayed for output 869 ** 1 The datatype name for the column 870 ** 2 The name of the database that the column derives from 871 ** 3 The name of the table that the column derives from 872 ** 4 The name of the table column that the result column derives from 873 ** 874 ** If the result is not a simple column reference (if it is an expression 875 ** or a constant) then useTypes 2, 3, and 4 return NULL. 876 */ 877 static const void *columnName( 878 sqlite3_stmt *pStmt, 879 int N, 880 const void *(*xFunc)(Mem*), 881 int useType 882 ){ 883 const void *ret = 0; 884 Vdbe *p = (Vdbe *)pStmt; 885 int n; 886 887 888 if( p!=0 ){ 889 n = sqlite3_column_count(pStmt); 890 if( N<n && N>=0 ){ 891 N += useType*n; 892 sqlite3_mutex_enter(p->db->mutex); 893 ret = xFunc(&p->aColName[N]); 894 895 /* A malloc may have failed inside of the xFunc() call. If this 896 ** is the case, clear the mallocFailed flag and return NULL. 897 */ 898 if( p->db && p->db->mallocFailed ){ 899 p->db->mallocFailed = 0; 900 ret = 0; 901 } 902 sqlite3_mutex_leave(p->db->mutex); 903 } 904 } 905 return ret; 906 } 907 908 /* 909 ** Return the name of the Nth column of the result set returned by SQL 910 ** statement pStmt. 911 */ 912 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 913 return columnName( 914 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 915 } 916 #ifndef SQLITE_OMIT_UTF16 917 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 918 return columnName( 919 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 920 } 921 #endif 922 923 /* 924 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 925 ** not define OMIT_DECLTYPE. 926 */ 927 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 928 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 929 and SQLITE_ENABLE_COLUMN_METADATA" 930 #endif 931 932 #ifndef SQLITE_OMIT_DECLTYPE 933 /* 934 ** Return the column declaration type (if applicable) of the 'i'th column 935 ** of the result set of SQL statement pStmt. 936 */ 937 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 938 return columnName( 939 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 940 } 941 #ifndef SQLITE_OMIT_UTF16 942 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 943 return columnName( 944 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 945 } 946 #endif /* SQLITE_OMIT_UTF16 */ 947 #endif /* SQLITE_OMIT_DECLTYPE */ 948 949 #ifdef SQLITE_ENABLE_COLUMN_METADATA 950 /* 951 ** Return the name of the database from which a result column derives. 952 ** NULL is returned if the result column is an expression or constant or 953 ** anything else which is not an unabiguous reference to a database column. 954 */ 955 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 956 return columnName( 957 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 958 } 959 #ifndef SQLITE_OMIT_UTF16 960 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 961 return columnName( 962 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 963 } 964 #endif /* SQLITE_OMIT_UTF16 */ 965 966 /* 967 ** Return the name of the table from which a result column derives. 968 ** NULL is returned if the result column is an expression or constant or 969 ** anything else which is not an unabiguous reference to a database column. 970 */ 971 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 972 return columnName( 973 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 974 } 975 #ifndef SQLITE_OMIT_UTF16 976 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 977 return columnName( 978 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 979 } 980 #endif /* SQLITE_OMIT_UTF16 */ 981 982 /* 983 ** Return the name of the table column from which a result column derives. 984 ** NULL is returned if the result column is an expression or constant or 985 ** anything else which is not an unabiguous reference to a database column. 986 */ 987 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 988 return columnName( 989 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 990 } 991 #ifndef SQLITE_OMIT_UTF16 992 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 993 return columnName( 994 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 995 } 996 #endif /* SQLITE_OMIT_UTF16 */ 997 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 998 999 1000 /******************************* sqlite3_bind_ *************************** 1001 ** 1002 ** Routines used to attach values to wildcards in a compiled SQL statement. 1003 */ 1004 /* 1005 ** Unbind the value bound to variable i in virtual machine p. This is the 1006 ** the same as binding a NULL value to the column. If the "i" parameter is 1007 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1008 ** 1009 ** The error code stored in database p->db is overwritten with the return 1010 ** value in any case. 1011 */ 1012 static int vdbeUnbind(Vdbe *p, int i){ 1013 Mem *pVar; 1014 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1015 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); 1016 return SQLITE_MISUSE; 1017 } 1018 if( i<1 || i>p->nVar ){ 1019 sqlite3Error(p->db, SQLITE_RANGE, 0); 1020 return SQLITE_RANGE; 1021 } 1022 i--; 1023 pVar = &p->aVar[i]; 1024 sqlite3VdbeMemRelease(pVar); 1025 pVar->flags = MEM_Null; 1026 sqlite3Error(p->db, SQLITE_OK, 0); 1027 return SQLITE_OK; 1028 } 1029 1030 /* 1031 ** Bind a text or BLOB value. 1032 */ 1033 static int bindText( 1034 sqlite3_stmt *pStmt, /* The statement to bind against */ 1035 int i, /* Index of the parameter to bind */ 1036 const void *zData, /* Pointer to the data to be bound */ 1037 int nData, /* Number of bytes of data to be bound */ 1038 void (*xDel)(void*), /* Destructor for the data */ 1039 int encoding /* Encoding for the data */ 1040 ){ 1041 Vdbe *p = (Vdbe *)pStmt; 1042 Mem *pVar; 1043 int rc; 1044 1045 if( p==0 ){ 1046 return SQLITE_MISUSE; 1047 } 1048 sqlite3_mutex_enter(p->db->mutex); 1049 rc = vdbeUnbind(p, i); 1050 if( rc==SQLITE_OK && zData!=0 ){ 1051 pVar = &p->aVar[i-1]; 1052 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1053 if( rc==SQLITE_OK && encoding!=0 ){ 1054 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1055 } 1056 sqlite3Error(p->db, rc, 0); 1057 rc = sqlite3ApiExit(p->db, rc); 1058 } 1059 sqlite3_mutex_leave(p->db->mutex); 1060 return rc; 1061 } 1062 1063 1064 /* 1065 ** Bind a blob value to an SQL statement variable. 1066 */ 1067 int sqlite3_bind_blob( 1068 sqlite3_stmt *pStmt, 1069 int i, 1070 const void *zData, 1071 int nData, 1072 void (*xDel)(void*) 1073 ){ 1074 return bindText(pStmt, i, zData, nData, xDel, 0); 1075 } 1076 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1077 int rc; 1078 Vdbe *p = (Vdbe *)pStmt; 1079 sqlite3_mutex_enter(p->db->mutex); 1080 rc = vdbeUnbind(p, i); 1081 if( rc==SQLITE_OK ){ 1082 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1083 } 1084 sqlite3_mutex_leave(p->db->mutex); 1085 return rc; 1086 } 1087 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1088 return sqlite3_bind_int64(p, i, (i64)iValue); 1089 } 1090 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1091 int rc; 1092 Vdbe *p = (Vdbe *)pStmt; 1093 sqlite3_mutex_enter(p->db->mutex); 1094 rc = vdbeUnbind(p, i); 1095 if( rc==SQLITE_OK ){ 1096 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1097 } 1098 sqlite3_mutex_leave(p->db->mutex); 1099 return rc; 1100 } 1101 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1102 int rc; 1103 Vdbe *p = (Vdbe*)pStmt; 1104 sqlite3_mutex_enter(p->db->mutex); 1105 rc = vdbeUnbind(p, i); 1106 sqlite3_mutex_leave(p->db->mutex); 1107 return rc; 1108 } 1109 int sqlite3_bind_text( 1110 sqlite3_stmt *pStmt, 1111 int i, 1112 const char *zData, 1113 int nData, 1114 void (*xDel)(void*) 1115 ){ 1116 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1117 } 1118 #ifndef SQLITE_OMIT_UTF16 1119 int sqlite3_bind_text16( 1120 sqlite3_stmt *pStmt, 1121 int i, 1122 const void *zData, 1123 int nData, 1124 void (*xDel)(void*) 1125 ){ 1126 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1127 } 1128 #endif /* SQLITE_OMIT_UTF16 */ 1129 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1130 int rc; 1131 Vdbe *p = (Vdbe *)pStmt; 1132 sqlite3_mutex_enter(p->db->mutex); 1133 rc = vdbeUnbind(p, i); 1134 if( rc==SQLITE_OK ){ 1135 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); 1136 if( rc==SQLITE_OK ){ 1137 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db)); 1138 } 1139 } 1140 rc = sqlite3ApiExit(p->db, rc); 1141 sqlite3_mutex_leave(p->db->mutex); 1142 return rc; 1143 } 1144 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1145 int rc; 1146 Vdbe *p = (Vdbe *)pStmt; 1147 sqlite3_mutex_enter(p->db->mutex); 1148 rc = vdbeUnbind(p, i); 1149 if( rc==SQLITE_OK ){ 1150 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1151 } 1152 sqlite3_mutex_leave(p->db->mutex); 1153 return rc; 1154 } 1155 1156 /* 1157 ** Return the number of wildcards that can be potentially bound to. 1158 ** This routine is added to support DBD::SQLite. 1159 */ 1160 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1161 Vdbe *p = (Vdbe*)pStmt; 1162 return p ? p->nVar : 0; 1163 } 1164 1165 /* 1166 ** Create a mapping from variable numbers to variable names 1167 ** in the Vdbe.azVar[] array, if such a mapping does not already 1168 ** exist. 1169 */ 1170 static void createVarMap(Vdbe *p){ 1171 if( !p->okVar ){ 1172 sqlite3_mutex_enter(p->db->mutex); 1173 if( !p->okVar ){ 1174 int j; 1175 Op *pOp; 1176 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1177 if( pOp->opcode==OP_Variable ){ 1178 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1179 p->azVar[pOp->p1-1] = pOp->p4.z; 1180 } 1181 } 1182 p->okVar = 1; 1183 } 1184 sqlite3_mutex_leave(p->db->mutex); 1185 } 1186 } 1187 1188 /* 1189 ** Return the name of a wildcard parameter. Return NULL if the index 1190 ** is out of range or if the wildcard is unnamed. 1191 ** 1192 ** The result is always UTF-8. 1193 */ 1194 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1195 Vdbe *p = (Vdbe*)pStmt; 1196 if( p==0 || i<1 || i>p->nVar ){ 1197 return 0; 1198 } 1199 createVarMap(p); 1200 return p->azVar[i-1]; 1201 } 1202 1203 /* 1204 ** Given a wildcard parameter name, return the index of the variable 1205 ** with that name. If there is no variable with the given name, 1206 ** return 0. 1207 */ 1208 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1209 Vdbe *p = (Vdbe*)pStmt; 1210 int i; 1211 if( p==0 ){ 1212 return 0; 1213 } 1214 createVarMap(p); 1215 if( zName ){ 1216 for(i=0; i<p->nVar; i++){ 1217 const char *z = p->azVar[i]; 1218 if( z && strcmp(z,zName)==0 ){ 1219 return i+1; 1220 } 1221 } 1222 } 1223 return 0; 1224 } 1225 1226 /* 1227 ** Transfer all bindings from the first statement over to the second. 1228 ** If the two statements contain a different number of bindings, then 1229 ** an SQLITE_ERROR is returned. 1230 */ 1231 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1232 Vdbe *pFrom = (Vdbe*)pFromStmt; 1233 Vdbe *pTo = (Vdbe*)pToStmt; 1234 int i, rc = SQLITE_OK; 1235 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) 1236 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) 1237 || pTo->db!=pFrom->db ){ 1238 return SQLITE_MISUSE; 1239 } 1240 if( pFrom->nVar!=pTo->nVar ){ 1241 return SQLITE_ERROR; 1242 } 1243 sqlite3_mutex_enter(pTo->db->mutex); 1244 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ 1245 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1246 } 1247 sqlite3_mutex_leave(pTo->db->mutex); 1248 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1249 return rc; 1250 } 1251 1252 /* 1253 ** Return the sqlite3* database handle to which the prepared statement given 1254 ** in the argument belongs. This is the same database handle that was 1255 ** the first argument to the sqlite3_prepare() that was used to create 1256 ** the statement in the first place. 1257 */ 1258 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1259 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1260 } 1261 1262 /* 1263 ** Return a pointer to the next prepared statement after pStmt associated 1264 ** with database connection pDb. If pStmt is NULL, return the first 1265 ** prepared statement for the database connection. Return NULL if there 1266 ** are no more. 1267 */ 1268 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1269 sqlite3_stmt *pNext; 1270 sqlite3_mutex_enter(pDb->mutex); 1271 if( pStmt==0 ){ 1272 pNext = (sqlite3_stmt*)pDb->pVdbe; 1273 }else{ 1274 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1275 } 1276 sqlite3_mutex_leave(pDb->mutex); 1277 return pNext; 1278 } 1279