xref: /sqlite-3.40.0/src/vdbeapi.c (revision 7fdb522c)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 **
16 ** $Id: vdbeapi.c,v 1.136 2008/07/28 19:34:54 drh Exp $
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
22 /*
23 ** The following structure contains pointers to the end points of a
24 ** doubly-linked list of all compiled SQL statements that may be holding
25 ** buffers eligible for release when the sqlite3_release_memory() interface is
26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
27 ** mutex.
28 **
29 ** Statements are added to the end of this list when sqlite3_reset() is
30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
31 ** is called. When statements are added to this list, the associated
32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
33 ** can be freed using sqlite3VdbeReleaseMemory().
34 **
35 ** When statements are added or removed from this list, the mutex
36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
39 */
40 struct StatementLruList {
41   Vdbe *pFirst;
42   Vdbe *pLast;
43 };
44 static struct StatementLruList sqlite3LruStatements;
45 
46 /*
47 ** Check that the list looks to be internally consistent. This is used
48 ** as part of an assert() statement as follows:
49 **
50 **   assert( stmtLruCheck() );
51 */
52 #ifndef NDEBUG
53 static int stmtLruCheck(){
54   Vdbe *p;
55   for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
56     assert(p->pLruNext || p==sqlite3LruStatements.pLast);
57     assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
58     assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
59     assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
60   }
61   return 1;
62 }
63 #endif
64 
65 /*
66 ** Add vdbe p to the end of the statement lru list. It is assumed that
67 ** p is not already part of the list when this is called. The lru list
68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
69 */
70 static void stmtLruAdd(Vdbe *p){
71   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
72 
73   if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
74     sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
75     return;
76   }
77 
78   assert( stmtLruCheck() );
79 
80   if( !sqlite3LruStatements.pFirst ){
81     assert( !sqlite3LruStatements.pLast );
82     sqlite3LruStatements.pFirst = p;
83     sqlite3LruStatements.pLast = p;
84   }else{
85     assert( !sqlite3LruStatements.pLast->pLruNext );
86     p->pLruPrev = sqlite3LruStatements.pLast;
87     sqlite3LruStatements.pLast->pLruNext = p;
88     sqlite3LruStatements.pLast = p;
89   }
90 
91   assert( stmtLruCheck() );
92 
93   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
94 }
95 
96 /*
97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
98 ** statement p from the least-recently-used statement list. If the
99 ** statement is not currently part of the list, this call is a no-op.
100 */
101 static void stmtLruRemoveNomutex(Vdbe *p){
102   if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
103     assert( stmtLruCheck() );
104     if( p->pLruNext ){
105       p->pLruNext->pLruPrev = p->pLruPrev;
106     }else{
107       sqlite3LruStatements.pLast = p->pLruPrev;
108     }
109     if( p->pLruPrev ){
110       p->pLruPrev->pLruNext = p->pLruNext;
111     }else{
112       sqlite3LruStatements.pFirst = p->pLruNext;
113     }
114     p->pLruNext = 0;
115     p->pLruPrev = 0;
116     assert( stmtLruCheck() );
117   }
118 }
119 
120 /*
121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
122 ** statement p from the least-recently-used statement list. If the
123 ** statement is not currently part of the list, this call is a no-op.
124 */
125 static void stmtLruRemove(Vdbe *p){
126   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
127   stmtLruRemoveNomutex(p);
128   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
129 }
130 
131 /*
132 ** Try to release n bytes of memory by freeing buffers associated
133 ** with the memory registers of currently unused vdbes.
134 */
135 int sqlite3VdbeReleaseMemory(int n){
136   Vdbe *p;
137   Vdbe *pNext;
138   int nFree = 0;
139 
140   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
141   for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
142     pNext = p->pLruNext;
143 
144     /* For each statement handle in the lru list, attempt to obtain the
145     ** associated database mutex. If it cannot be obtained, continue
146     ** to the next statement handle. It is not possible to block on
147     ** the database mutex - that could cause deadlock.
148     */
149     if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
150       nFree += sqlite3VdbeReleaseBuffers(p);
151       stmtLruRemoveNomutex(p);
152       sqlite3_mutex_leave(p->db->mutex);
153     }
154   }
155   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
156 
157   return nFree;
158 }
159 
160 /*
161 ** Call sqlite3Reprepare() on the statement. Remove it from the
162 ** lru list before doing so, as Reprepare() will free all the
163 ** memory register buffers anyway.
164 */
165 int vdbeReprepare(Vdbe *p){
166   stmtLruRemove(p);
167   return sqlite3Reprepare(p);
168 }
169 
170 #else       /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
171   #define stmtLruRemove(x)
172   #define stmtLruAdd(x)
173   #define vdbeReprepare(x) sqlite3Reprepare(x)
174 #endif
175 
176 
177 /*
178 ** Return TRUE (non-zero) of the statement supplied as an argument needs
179 ** to be recompiled.  A statement needs to be recompiled whenever the
180 ** execution environment changes in a way that would alter the program
181 ** that sqlite3_prepare() generates.  For example, if new functions or
182 ** collating sequences are registered or if an authorizer function is
183 ** added or changed.
184 */
185 int sqlite3_expired(sqlite3_stmt *pStmt){
186   Vdbe *p = (Vdbe*)pStmt;
187   return p==0 || p->expired;
188 }
189 
190 /*
191 ** The following routine destroys a virtual machine that is created by
192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
193 ** success/failure code that describes the result of executing the virtual
194 ** machine.
195 **
196 ** This routine sets the error code and string returned by
197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
198 */
199 int sqlite3_finalize(sqlite3_stmt *pStmt){
200   int rc;
201   if( pStmt==0 ){
202     rc = SQLITE_OK;
203   }else{
204     Vdbe *v = (Vdbe*)pStmt;
205 #ifndef SQLITE_MUTEX_NOOP
206     sqlite3_mutex *mutex = v->db->mutex;
207 #endif
208     sqlite3_mutex_enter(mutex);
209     stmtLruRemove(v);
210     rc = sqlite3VdbeFinalize(v);
211     sqlite3_mutex_leave(mutex);
212   }
213   return rc;
214 }
215 
216 /*
217 ** Terminate the current execution of an SQL statement and reset it
218 ** back to its starting state so that it can be reused. A success code from
219 ** the prior execution is returned.
220 **
221 ** This routine sets the error code and string returned by
222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
223 */
224 int sqlite3_reset(sqlite3_stmt *pStmt){
225   int rc;
226   if( pStmt==0 ){
227     rc = SQLITE_OK;
228   }else{
229     Vdbe *v = (Vdbe*)pStmt;
230     sqlite3_mutex_enter(v->db->mutex);
231     rc = sqlite3VdbeReset(v, 1);
232     stmtLruAdd(v);
233     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
234     assert( (rc & (v->db->errMask))==rc );
235     sqlite3_mutex_leave(v->db->mutex);
236   }
237   return rc;
238 }
239 
240 /*
241 ** Set all the parameters in the compiled SQL statement to NULL.
242 */
243 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
244   int i;
245   int rc = SQLITE_OK;
246   Vdbe *p = (Vdbe*)pStmt;
247 #ifndef SQLITE_MUTEX_NOOP
248   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
249 #endif
250   sqlite3_mutex_enter(mutex);
251   for(i=0; i<p->nVar; i++){
252     sqlite3VdbeMemRelease(&p->aVar[i]);
253     p->aVar[i].flags = MEM_Null;
254   }
255   sqlite3_mutex_leave(mutex);
256   return rc;
257 }
258 
259 
260 /**************************** sqlite3_value_  *******************************
261 ** The following routines extract information from a Mem or sqlite3_value
262 ** structure.
263 */
264 const void *sqlite3_value_blob(sqlite3_value *pVal){
265   Mem *p = (Mem*)pVal;
266   if( p->flags & (MEM_Blob|MEM_Str) ){
267     sqlite3VdbeMemExpandBlob(p);
268     p->flags &= ~MEM_Str;
269     p->flags |= MEM_Blob;
270     return p->z;
271   }else{
272     return sqlite3_value_text(pVal);
273   }
274 }
275 int sqlite3_value_bytes(sqlite3_value *pVal){
276   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
277 }
278 int sqlite3_value_bytes16(sqlite3_value *pVal){
279   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
280 }
281 double sqlite3_value_double(sqlite3_value *pVal){
282   return sqlite3VdbeRealValue((Mem*)pVal);
283 }
284 int sqlite3_value_int(sqlite3_value *pVal){
285   return sqlite3VdbeIntValue((Mem*)pVal);
286 }
287 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
288   return sqlite3VdbeIntValue((Mem*)pVal);
289 }
290 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
291   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
292 }
293 #ifndef SQLITE_OMIT_UTF16
294 const void *sqlite3_value_text16(sqlite3_value* pVal){
295   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
296 }
297 const void *sqlite3_value_text16be(sqlite3_value *pVal){
298   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
299 }
300 const void *sqlite3_value_text16le(sqlite3_value *pVal){
301   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
302 }
303 #endif /* SQLITE_OMIT_UTF16 */
304 int sqlite3_value_type(sqlite3_value* pVal){
305   return pVal->type;
306 }
307 
308 /**************************** sqlite3_result_  *******************************
309 ** The following routines are used by user-defined functions to specify
310 ** the function result.
311 */
312 void sqlite3_result_blob(
313   sqlite3_context *pCtx,
314   const void *z,
315   int n,
316   void (*xDel)(void *)
317 ){
318   assert( n>=0 );
319   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
320   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
321 }
322 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
323   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
324   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
325 }
326 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
327   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
328   pCtx->isError = SQLITE_ERROR;
329   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
330 }
331 #ifndef SQLITE_OMIT_UTF16
332 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
333   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
334   pCtx->isError = SQLITE_ERROR;
335   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
336 }
337 #endif
338 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
339   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
340   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
341 }
342 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
343   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
344   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
345 }
346 void sqlite3_result_null(sqlite3_context *pCtx){
347   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
348   sqlite3VdbeMemSetNull(&pCtx->s);
349 }
350 void sqlite3_result_text(
351   sqlite3_context *pCtx,
352   const char *z,
353   int n,
354   void (*xDel)(void *)
355 ){
356   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
357   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
358 }
359 #ifndef SQLITE_OMIT_UTF16
360 void sqlite3_result_text16(
361   sqlite3_context *pCtx,
362   const void *z,
363   int n,
364   void (*xDel)(void *)
365 ){
366   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
367   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
368 }
369 void sqlite3_result_text16be(
370   sqlite3_context *pCtx,
371   const void *z,
372   int n,
373   void (*xDel)(void *)
374 ){
375   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
376   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
377 }
378 void sqlite3_result_text16le(
379   sqlite3_context *pCtx,
380   const void *z,
381   int n,
382   void (*xDel)(void *)
383 ){
384   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
385   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
386 }
387 #endif /* SQLITE_OMIT_UTF16 */
388 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
389   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
390   sqlite3VdbeMemCopy(&pCtx->s, pValue);
391 }
392 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
393   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
394   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
395 }
396 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
397   pCtx->isError = errCode;
398 }
399 
400 /* Force an SQLITE_TOOBIG error. */
401 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
402   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
403   pCtx->isError = SQLITE_TOOBIG;
404   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
405                        SQLITE_UTF8, SQLITE_STATIC);
406 }
407 
408 /* An SQLITE_NOMEM error. */
409 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
410   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
411   sqlite3VdbeMemSetNull(&pCtx->s);
412   pCtx->isError = SQLITE_NOMEM;
413   pCtx->s.db->mallocFailed = 1;
414 }
415 
416 /*
417 ** Execute the statement pStmt, either until a row of data is ready, the
418 ** statement is completely executed or an error occurs.
419 **
420 ** This routine implements the bulk of the logic behind the sqlite_step()
421 ** API.  The only thing omitted is the automatic recompile if a
422 ** schema change has occurred.  That detail is handled by the
423 ** outer sqlite3_step() wrapper procedure.
424 */
425 static int sqlite3Step(Vdbe *p){
426   sqlite3 *db;
427   int rc;
428 
429   assert(p);
430   if( p->magic!=VDBE_MAGIC_RUN ){
431     return SQLITE_MISUSE;
432   }
433 
434   /* Assert that malloc() has not failed */
435   db = p->db;
436   assert( !db->mallocFailed );
437 
438   if( p->aborted ){
439     return SQLITE_ABORT;
440   }
441   if( p->pc<=0 && p->expired ){
442     if( p->rc==SQLITE_OK ){
443       p->rc = SQLITE_SCHEMA;
444     }
445     rc = SQLITE_ERROR;
446     goto end_of_step;
447   }
448   if( sqlite3SafetyOn(db) ){
449     p->rc = SQLITE_MISUSE;
450     return SQLITE_MISUSE;
451   }
452   if( p->pc<0 ){
453     /* If there are no other statements currently running, then
454     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
455     ** from interrupting a statement that has not yet started.
456     */
457     if( db->activeVdbeCnt==0 ){
458       db->u1.isInterrupted = 0;
459     }
460 
461 #ifndef SQLITE_OMIT_TRACE
462     if( db->xProfile && !db->init.busy ){
463       double rNow;
464       sqlite3OsCurrentTime(db->pVfs, &rNow);
465       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
466     }
467 #endif
468 
469     db->activeVdbeCnt++;
470     p->pc = 0;
471     stmtLruRemove(p);
472   }
473 #ifndef SQLITE_OMIT_EXPLAIN
474   if( p->explain ){
475     rc = sqlite3VdbeList(p);
476   }else
477 #endif /* SQLITE_OMIT_EXPLAIN */
478   {
479     rc = sqlite3VdbeExec(p);
480   }
481 
482   if( sqlite3SafetyOff(db) ){
483     rc = SQLITE_MISUSE;
484   }
485 
486 #ifndef SQLITE_OMIT_TRACE
487   /* Invoke the profile callback if there is one
488   */
489   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
490            && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
491     double rNow;
492     u64 elapseTime;
493 
494     sqlite3OsCurrentTime(db->pVfs, &rNow);
495     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
496     db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
497   }
498 #endif
499 
500   db->errCode = rc;
501   /*sqlite3Error(p->db, rc, 0);*/
502   p->rc = sqlite3ApiExit(p->db, p->rc);
503 end_of_step:
504   assert( (rc&0xff)==rc );
505   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
506     /* This behavior occurs if sqlite3_prepare_v2() was used to build
507     ** the prepared statement.  Return error codes directly */
508     p->db->errCode = p->rc;
509     /* sqlite3Error(p->db, p->rc, 0); */
510     return p->rc;
511   }else{
512     /* This is for legacy sqlite3_prepare() builds and when the code
513     ** is SQLITE_ROW or SQLITE_DONE */
514     return rc;
515   }
516 }
517 
518 /*
519 ** This is the top-level implementation of sqlite3_step().  Call
520 ** sqlite3Step() to do most of the work.  If a schema error occurs,
521 ** call sqlite3Reprepare() and try again.
522 */
523 #ifdef SQLITE_OMIT_PARSER
524 int sqlite3_step(sqlite3_stmt *pStmt){
525   int rc = SQLITE_MISUSE;
526   if( pStmt ){
527     Vdbe *v;
528     v = (Vdbe*)pStmt;
529     sqlite3_mutex_enter(v->db->mutex);
530     rc = sqlite3Step(v);
531     sqlite3_mutex_leave(v->db->mutex);
532   }
533   return rc;
534 }
535 #else
536 int sqlite3_step(sqlite3_stmt *pStmt){
537   int rc = SQLITE_MISUSE;
538   if( pStmt ){
539     int cnt = 0;
540     Vdbe *v = (Vdbe*)pStmt;
541     sqlite3 *db = v->db;
542     sqlite3_mutex_enter(db->mutex);
543     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
544            && cnt++ < 5
545            && vdbeReprepare(v) ){
546       sqlite3_reset(pStmt);
547       v->expired = 0;
548     }
549     if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
550       /* This case occurs after failing to recompile an sql statement.
551       ** The error message from the SQL compiler has already been loaded
552       ** into the database handle. This block copies the error message
553       ** from the database handle into the statement and sets the statement
554       ** program counter to 0 to ensure that when the statement is
555       ** finalized or reset the parser error message is available via
556       ** sqlite3_errmsg() and sqlite3_errcode().
557       */
558       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
559       sqlite3DbFree(db, v->zErrMsg);
560       if( !db->mallocFailed ){
561         v->zErrMsg = sqlite3DbStrDup(db, zErr);
562       } else {
563         v->zErrMsg = 0;
564         v->rc = SQLITE_NOMEM;
565       }
566     }
567     rc = sqlite3ApiExit(db, rc);
568     sqlite3_mutex_leave(db->mutex);
569   }
570   return rc;
571 }
572 #endif
573 
574 /*
575 ** Extract the user data from a sqlite3_context structure and return a
576 ** pointer to it.
577 */
578 void *sqlite3_user_data(sqlite3_context *p){
579   assert( p && p->pFunc );
580   return p->pFunc->pUserData;
581 }
582 
583 /*
584 ** Extract the user data from a sqlite3_context structure and return a
585 ** pointer to it.
586 */
587 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
588   assert( p && p->pFunc );
589   return p->s.db;
590 }
591 
592 /*
593 ** The following is the implementation of an SQL function that always
594 ** fails with an error message stating that the function is used in the
595 ** wrong context.  The sqlite3_overload_function() API might construct
596 ** SQL function that use this routine so that the functions will exist
597 ** for name resolution but are actually overloaded by the xFindFunction
598 ** method of virtual tables.
599 */
600 void sqlite3InvalidFunction(
601   sqlite3_context *context,  /* The function calling context */
602   int argc,                  /* Number of arguments to the function */
603   sqlite3_value **argv       /* Value of each argument */
604 ){
605   const char *zName = context->pFunc->zName;
606   char *zErr;
607   zErr = sqlite3MPrintf(0,
608       "unable to use function %s in the requested context", zName);
609   sqlite3_result_error(context, zErr, -1);
610   sqlite3_free(zErr);
611 }
612 
613 /*
614 ** Allocate or return the aggregate context for a user function.  A new
615 ** context is allocated on the first call.  Subsequent calls return the
616 ** same context that was returned on prior calls.
617 */
618 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
619   Mem *pMem;
620   assert( p && p->pFunc && p->pFunc->xStep );
621   assert( sqlite3_mutex_held(p->s.db->mutex) );
622   pMem = p->pMem;
623   if( (pMem->flags & MEM_Agg)==0 ){
624     if( nByte==0 ){
625       sqlite3VdbeMemReleaseExternal(pMem);
626       pMem->flags = MEM_Null;
627       pMem->z = 0;
628     }else{
629       sqlite3VdbeMemGrow(pMem, nByte, 0);
630       pMem->flags = MEM_Agg;
631       pMem->u.pDef = p->pFunc;
632       if( pMem->z ){
633         memset(pMem->z, 0, nByte);
634       }
635     }
636   }
637   return (void*)pMem->z;
638 }
639 
640 /*
641 ** Return the auxilary data pointer, if any, for the iArg'th argument to
642 ** the user-function defined by pCtx.
643 */
644 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
645   VdbeFunc *pVdbeFunc;
646 
647   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
648   pVdbeFunc = pCtx->pVdbeFunc;
649   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
650     return 0;
651   }
652   return pVdbeFunc->apAux[iArg].pAux;
653 }
654 
655 /*
656 ** Set the auxilary data pointer and delete function, for the iArg'th
657 ** argument to the user-function defined by pCtx. Any previous value is
658 ** deleted by calling the delete function specified when it was set.
659 */
660 void sqlite3_set_auxdata(
661   sqlite3_context *pCtx,
662   int iArg,
663   void *pAux,
664   void (*xDelete)(void*)
665 ){
666   struct AuxData *pAuxData;
667   VdbeFunc *pVdbeFunc;
668   if( iArg<0 ) goto failed;
669 
670   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
671   pVdbeFunc = pCtx->pVdbeFunc;
672   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
673     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
674     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
675     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
676     if( !pVdbeFunc ){
677       goto failed;
678     }
679     pCtx->pVdbeFunc = pVdbeFunc;
680     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
681     pVdbeFunc->nAux = iArg+1;
682     pVdbeFunc->pFunc = pCtx->pFunc;
683   }
684 
685   pAuxData = &pVdbeFunc->apAux[iArg];
686   if( pAuxData->pAux && pAuxData->xDelete ){
687     pAuxData->xDelete(pAuxData->pAux);
688   }
689   pAuxData->pAux = pAux;
690   pAuxData->xDelete = xDelete;
691   return;
692 
693 failed:
694   if( xDelete ){
695     xDelete(pAux);
696   }
697 }
698 
699 /*
700 ** Return the number of times the Step function of a aggregate has been
701 ** called.
702 **
703 ** This function is deprecated.  Do not use it for new code.  It is
704 ** provide only to avoid breaking legacy code.  New aggregate function
705 ** implementations should keep their own counts within their aggregate
706 ** context.
707 */
708 int sqlite3_aggregate_count(sqlite3_context *p){
709   assert( p && p->pFunc && p->pFunc->xStep );
710   return p->pMem->n;
711 }
712 
713 /*
714 ** Return the number of columns in the result set for the statement pStmt.
715 */
716 int sqlite3_column_count(sqlite3_stmt *pStmt){
717   Vdbe *pVm = (Vdbe *)pStmt;
718   return pVm ? pVm->nResColumn : 0;
719 }
720 
721 /*
722 ** Return the number of values available from the current row of the
723 ** currently executing statement pStmt.
724 */
725 int sqlite3_data_count(sqlite3_stmt *pStmt){
726   Vdbe *pVm = (Vdbe *)pStmt;
727   if( pVm==0 || pVm->pResultSet==0 ) return 0;
728   return pVm->nResColumn;
729 }
730 
731 
732 /*
733 ** Check to see if column iCol of the given statement is valid.  If
734 ** it is, return a pointer to the Mem for the value of that column.
735 ** If iCol is not valid, return a pointer to a Mem which has a value
736 ** of NULL.
737 */
738 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
739   Vdbe *pVm;
740   int vals;
741   Mem *pOut;
742 
743   pVm = (Vdbe *)pStmt;
744   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
745     sqlite3_mutex_enter(pVm->db->mutex);
746     vals = sqlite3_data_count(pStmt);
747     pOut = &pVm->pResultSet[i];
748   }else{
749     static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
750     if( pVm->db ){
751       sqlite3_mutex_enter(pVm->db->mutex);
752       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
753     }
754     pOut = (Mem*)&nullMem;
755   }
756   return pOut;
757 }
758 
759 /*
760 ** This function is called after invoking an sqlite3_value_XXX function on a
761 ** column value (i.e. a value returned by evaluating an SQL expression in the
762 ** select list of a SELECT statement) that may cause a malloc() failure. If
763 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
764 ** code of statement pStmt set to SQLITE_NOMEM.
765 **
766 ** Specifically, this is called from within:
767 **
768 **     sqlite3_column_int()
769 **     sqlite3_column_int64()
770 **     sqlite3_column_text()
771 **     sqlite3_column_text16()
772 **     sqlite3_column_real()
773 **     sqlite3_column_bytes()
774 **     sqlite3_column_bytes16()
775 **
776 ** But not for sqlite3_column_blob(), which never calls malloc().
777 */
778 static void columnMallocFailure(sqlite3_stmt *pStmt)
779 {
780   /* If malloc() failed during an encoding conversion within an
781   ** sqlite3_column_XXX API, then set the return code of the statement to
782   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
783   ** and _finalize() will return NOMEM.
784   */
785   Vdbe *p = (Vdbe *)pStmt;
786   if( p ){
787     p->rc = sqlite3ApiExit(p->db, p->rc);
788     sqlite3_mutex_leave(p->db->mutex);
789   }
790 }
791 
792 /**************************** sqlite3_column_  *******************************
793 ** The following routines are used to access elements of the current row
794 ** in the result set.
795 */
796 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
797   const void *val;
798   val = sqlite3_value_blob( columnMem(pStmt,i) );
799   /* Even though there is no encoding conversion, value_blob() might
800   ** need to call malloc() to expand the result of a zeroblob()
801   ** expression.
802   */
803   columnMallocFailure(pStmt);
804   return val;
805 }
806 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
807   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
808   columnMallocFailure(pStmt);
809   return val;
810 }
811 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
812   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
813   columnMallocFailure(pStmt);
814   return val;
815 }
816 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
817   double val = sqlite3_value_double( columnMem(pStmt,i) );
818   columnMallocFailure(pStmt);
819   return val;
820 }
821 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
822   int val = sqlite3_value_int( columnMem(pStmt,i) );
823   columnMallocFailure(pStmt);
824   return val;
825 }
826 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
827   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
828   columnMallocFailure(pStmt);
829   return val;
830 }
831 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
832   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
833   columnMallocFailure(pStmt);
834   return val;
835 }
836 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
837   sqlite3_value *pOut = columnMem(pStmt, i);
838   columnMallocFailure(pStmt);
839   return pOut;
840 }
841 #ifndef SQLITE_OMIT_UTF16
842 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
843   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
844   columnMallocFailure(pStmt);
845   return val;
846 }
847 #endif /* SQLITE_OMIT_UTF16 */
848 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
849   int iType = sqlite3_value_type( columnMem(pStmt,i) );
850   columnMallocFailure(pStmt);
851   return iType;
852 }
853 
854 /* The following function is experimental and subject to change or
855 ** removal */
856 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
857 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
858 **}
859 */
860 
861 /*
862 ** Convert the N-th element of pStmt->pColName[] into a string using
863 ** xFunc() then return that string.  If N is out of range, return 0.
864 **
865 ** There are up to 5 names for each column.  useType determines which
866 ** name is returned.  Here are the names:
867 **
868 **    0      The column name as it should be displayed for output
869 **    1      The datatype name for the column
870 **    2      The name of the database that the column derives from
871 **    3      The name of the table that the column derives from
872 **    4      The name of the table column that the result column derives from
873 **
874 ** If the result is not a simple column reference (if it is an expression
875 ** or a constant) then useTypes 2, 3, and 4 return NULL.
876 */
877 static const void *columnName(
878   sqlite3_stmt *pStmt,
879   int N,
880   const void *(*xFunc)(Mem*),
881   int useType
882 ){
883   const void *ret = 0;
884   Vdbe *p = (Vdbe *)pStmt;
885   int n;
886 
887 
888   if( p!=0 ){
889     n = sqlite3_column_count(pStmt);
890     if( N<n && N>=0 ){
891       N += useType*n;
892       sqlite3_mutex_enter(p->db->mutex);
893       ret = xFunc(&p->aColName[N]);
894 
895       /* A malloc may have failed inside of the xFunc() call. If this
896       ** is the case, clear the mallocFailed flag and return NULL.
897       */
898       if( p->db && p->db->mallocFailed ){
899         p->db->mallocFailed = 0;
900         ret = 0;
901       }
902       sqlite3_mutex_leave(p->db->mutex);
903     }
904   }
905   return ret;
906 }
907 
908 /*
909 ** Return the name of the Nth column of the result set returned by SQL
910 ** statement pStmt.
911 */
912 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
913   return columnName(
914       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
915 }
916 #ifndef SQLITE_OMIT_UTF16
917 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
918   return columnName(
919       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
920 }
921 #endif
922 
923 /*
924 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
925 ** not define OMIT_DECLTYPE.
926 */
927 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
928 # error "Must not define both SQLITE_OMIT_DECLTYPE \
929          and SQLITE_ENABLE_COLUMN_METADATA"
930 #endif
931 
932 #ifndef SQLITE_OMIT_DECLTYPE
933 /*
934 ** Return the column declaration type (if applicable) of the 'i'th column
935 ** of the result set of SQL statement pStmt.
936 */
937 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
938   return columnName(
939       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
940 }
941 #ifndef SQLITE_OMIT_UTF16
942 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
943   return columnName(
944       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
945 }
946 #endif /* SQLITE_OMIT_UTF16 */
947 #endif /* SQLITE_OMIT_DECLTYPE */
948 
949 #ifdef SQLITE_ENABLE_COLUMN_METADATA
950 /*
951 ** Return the name of the database from which a result column derives.
952 ** NULL is returned if the result column is an expression or constant or
953 ** anything else which is not an unabiguous reference to a database column.
954 */
955 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
956   return columnName(
957       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
958 }
959 #ifndef SQLITE_OMIT_UTF16
960 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
961   return columnName(
962       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
963 }
964 #endif /* SQLITE_OMIT_UTF16 */
965 
966 /*
967 ** Return the name of the table from which a result column derives.
968 ** NULL is returned if the result column is an expression or constant or
969 ** anything else which is not an unabiguous reference to a database column.
970 */
971 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
972   return columnName(
973       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
974 }
975 #ifndef SQLITE_OMIT_UTF16
976 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
977   return columnName(
978       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
979 }
980 #endif /* SQLITE_OMIT_UTF16 */
981 
982 /*
983 ** Return the name of the table column from which a result column derives.
984 ** NULL is returned if the result column is an expression or constant or
985 ** anything else which is not an unabiguous reference to a database column.
986 */
987 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
988   return columnName(
989       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
990 }
991 #ifndef SQLITE_OMIT_UTF16
992 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
993   return columnName(
994       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
995 }
996 #endif /* SQLITE_OMIT_UTF16 */
997 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
998 
999 
1000 /******************************* sqlite3_bind_  ***************************
1001 **
1002 ** Routines used to attach values to wildcards in a compiled SQL statement.
1003 */
1004 /*
1005 ** Unbind the value bound to variable i in virtual machine p. This is the
1006 ** the same as binding a NULL value to the column. If the "i" parameter is
1007 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1008 **
1009 ** The error code stored in database p->db is overwritten with the return
1010 ** value in any case.
1011 */
1012 static int vdbeUnbind(Vdbe *p, int i){
1013   Mem *pVar;
1014   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1015     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
1016     return SQLITE_MISUSE;
1017   }
1018   if( i<1 || i>p->nVar ){
1019     sqlite3Error(p->db, SQLITE_RANGE, 0);
1020     return SQLITE_RANGE;
1021   }
1022   i--;
1023   pVar = &p->aVar[i];
1024   sqlite3VdbeMemRelease(pVar);
1025   pVar->flags = MEM_Null;
1026   sqlite3Error(p->db, SQLITE_OK, 0);
1027   return SQLITE_OK;
1028 }
1029 
1030 /*
1031 ** Bind a text or BLOB value.
1032 */
1033 static int bindText(
1034   sqlite3_stmt *pStmt,   /* The statement to bind against */
1035   int i,                 /* Index of the parameter to bind */
1036   const void *zData,     /* Pointer to the data to be bound */
1037   int nData,             /* Number of bytes of data to be bound */
1038   void (*xDel)(void*),   /* Destructor for the data */
1039   int encoding           /* Encoding for the data */
1040 ){
1041   Vdbe *p = (Vdbe *)pStmt;
1042   Mem *pVar;
1043   int rc;
1044 
1045   if( p==0 ){
1046     return SQLITE_MISUSE;
1047   }
1048   sqlite3_mutex_enter(p->db->mutex);
1049   rc = vdbeUnbind(p, i);
1050   if( rc==SQLITE_OK && zData!=0 ){
1051     pVar = &p->aVar[i-1];
1052     rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1053     if( rc==SQLITE_OK && encoding!=0 ){
1054       rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1055     }
1056     sqlite3Error(p->db, rc, 0);
1057     rc = sqlite3ApiExit(p->db, rc);
1058   }
1059   sqlite3_mutex_leave(p->db->mutex);
1060   return rc;
1061 }
1062 
1063 
1064 /*
1065 ** Bind a blob value to an SQL statement variable.
1066 */
1067 int sqlite3_bind_blob(
1068   sqlite3_stmt *pStmt,
1069   int i,
1070   const void *zData,
1071   int nData,
1072   void (*xDel)(void*)
1073 ){
1074   return bindText(pStmt, i, zData, nData, xDel, 0);
1075 }
1076 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1077   int rc;
1078   Vdbe *p = (Vdbe *)pStmt;
1079   sqlite3_mutex_enter(p->db->mutex);
1080   rc = vdbeUnbind(p, i);
1081   if( rc==SQLITE_OK ){
1082     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1083   }
1084   sqlite3_mutex_leave(p->db->mutex);
1085   return rc;
1086 }
1087 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1088   return sqlite3_bind_int64(p, i, (i64)iValue);
1089 }
1090 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1091   int rc;
1092   Vdbe *p = (Vdbe *)pStmt;
1093   sqlite3_mutex_enter(p->db->mutex);
1094   rc = vdbeUnbind(p, i);
1095   if( rc==SQLITE_OK ){
1096     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1097   }
1098   sqlite3_mutex_leave(p->db->mutex);
1099   return rc;
1100 }
1101 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1102   int rc;
1103   Vdbe *p = (Vdbe*)pStmt;
1104   sqlite3_mutex_enter(p->db->mutex);
1105   rc = vdbeUnbind(p, i);
1106   sqlite3_mutex_leave(p->db->mutex);
1107   return rc;
1108 }
1109 int sqlite3_bind_text(
1110   sqlite3_stmt *pStmt,
1111   int i,
1112   const char *zData,
1113   int nData,
1114   void (*xDel)(void*)
1115 ){
1116   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1117 }
1118 #ifndef SQLITE_OMIT_UTF16
1119 int sqlite3_bind_text16(
1120   sqlite3_stmt *pStmt,
1121   int i,
1122   const void *zData,
1123   int nData,
1124   void (*xDel)(void*)
1125 ){
1126   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1127 }
1128 #endif /* SQLITE_OMIT_UTF16 */
1129 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1130   int rc;
1131   Vdbe *p = (Vdbe *)pStmt;
1132   sqlite3_mutex_enter(p->db->mutex);
1133   rc = vdbeUnbind(p, i);
1134   if( rc==SQLITE_OK ){
1135     rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
1136     if( rc==SQLITE_OK ){
1137       rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
1138     }
1139   }
1140   rc = sqlite3ApiExit(p->db, rc);
1141   sqlite3_mutex_leave(p->db->mutex);
1142   return rc;
1143 }
1144 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1145   int rc;
1146   Vdbe *p = (Vdbe *)pStmt;
1147   sqlite3_mutex_enter(p->db->mutex);
1148   rc = vdbeUnbind(p, i);
1149   if( rc==SQLITE_OK ){
1150     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1151   }
1152   sqlite3_mutex_leave(p->db->mutex);
1153   return rc;
1154 }
1155 
1156 /*
1157 ** Return the number of wildcards that can be potentially bound to.
1158 ** This routine is added to support DBD::SQLite.
1159 */
1160 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1161   Vdbe *p = (Vdbe*)pStmt;
1162   return p ? p->nVar : 0;
1163 }
1164 
1165 /*
1166 ** Create a mapping from variable numbers to variable names
1167 ** in the Vdbe.azVar[] array, if such a mapping does not already
1168 ** exist.
1169 */
1170 static void createVarMap(Vdbe *p){
1171   if( !p->okVar ){
1172     sqlite3_mutex_enter(p->db->mutex);
1173     if( !p->okVar ){
1174       int j;
1175       Op *pOp;
1176       for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1177         if( pOp->opcode==OP_Variable ){
1178           assert( pOp->p1>0 && pOp->p1<=p->nVar );
1179           p->azVar[pOp->p1-1] = pOp->p4.z;
1180         }
1181       }
1182       p->okVar = 1;
1183     }
1184     sqlite3_mutex_leave(p->db->mutex);
1185   }
1186 }
1187 
1188 /*
1189 ** Return the name of a wildcard parameter.  Return NULL if the index
1190 ** is out of range or if the wildcard is unnamed.
1191 **
1192 ** The result is always UTF-8.
1193 */
1194 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1195   Vdbe *p = (Vdbe*)pStmt;
1196   if( p==0 || i<1 || i>p->nVar ){
1197     return 0;
1198   }
1199   createVarMap(p);
1200   return p->azVar[i-1];
1201 }
1202 
1203 /*
1204 ** Given a wildcard parameter name, return the index of the variable
1205 ** with that name.  If there is no variable with the given name,
1206 ** return 0.
1207 */
1208 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1209   Vdbe *p = (Vdbe*)pStmt;
1210   int i;
1211   if( p==0 ){
1212     return 0;
1213   }
1214   createVarMap(p);
1215   if( zName ){
1216     for(i=0; i<p->nVar; i++){
1217       const char *z = p->azVar[i];
1218       if( z && strcmp(z,zName)==0 ){
1219         return i+1;
1220       }
1221     }
1222   }
1223   return 0;
1224 }
1225 
1226 /*
1227 ** Transfer all bindings from the first statement over to the second.
1228 ** If the two statements contain a different number of bindings, then
1229 ** an SQLITE_ERROR is returned.
1230 */
1231 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1232   Vdbe *pFrom = (Vdbe*)pFromStmt;
1233   Vdbe *pTo = (Vdbe*)pToStmt;
1234   int i, rc = SQLITE_OK;
1235   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1236     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1237     || pTo->db!=pFrom->db ){
1238     return SQLITE_MISUSE;
1239   }
1240   if( pFrom->nVar!=pTo->nVar ){
1241     return SQLITE_ERROR;
1242   }
1243   sqlite3_mutex_enter(pTo->db->mutex);
1244   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1245     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1246   }
1247   sqlite3_mutex_leave(pTo->db->mutex);
1248   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1249   return rc;
1250 }
1251 
1252 /*
1253 ** Return the sqlite3* database handle to which the prepared statement given
1254 ** in the argument belongs.  This is the same database handle that was
1255 ** the first argument to the sqlite3_prepare() that was used to create
1256 ** the statement in the first place.
1257 */
1258 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1259   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1260 }
1261 
1262 /*
1263 ** Return a pointer to the next prepared statement after pStmt associated
1264 ** with database connection pDb.  If pStmt is NULL, return the first
1265 ** prepared statement for the database connection.  Return NULL if there
1266 ** are no more.
1267 */
1268 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1269   sqlite3_stmt *pNext;
1270   sqlite3_mutex_enter(pDb->mutex);
1271   if( pStmt==0 ){
1272     pNext = (sqlite3_stmt*)pDb->pVdbe;
1273   }else{
1274     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1275   }
1276   sqlite3_mutex_leave(pDb->mutex);
1277   return pNext;
1278 }
1279