1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 */ 238 SQLITE_NULL, /* 0x01 */ 239 SQLITE_TEXT, /* 0x02 */ 240 SQLITE_NULL, /* 0x03 */ 241 SQLITE_INTEGER, /* 0x04 */ 242 SQLITE_NULL, /* 0x05 */ 243 SQLITE_INTEGER, /* 0x06 */ 244 SQLITE_NULL, /* 0x07 */ 245 SQLITE_FLOAT, /* 0x08 */ 246 SQLITE_NULL, /* 0x09 */ 247 SQLITE_FLOAT, /* 0x0a */ 248 SQLITE_NULL, /* 0x0b */ 249 SQLITE_INTEGER, /* 0x0c */ 250 SQLITE_NULL, /* 0x0d */ 251 SQLITE_INTEGER, /* 0x0e */ 252 SQLITE_NULL, /* 0x0f */ 253 SQLITE_BLOB, /* 0x10 */ 254 SQLITE_NULL, /* 0x11 */ 255 SQLITE_TEXT, /* 0x12 */ 256 SQLITE_NULL, /* 0x13 */ 257 SQLITE_INTEGER, /* 0x14 */ 258 SQLITE_NULL, /* 0x15 */ 259 SQLITE_INTEGER, /* 0x16 */ 260 SQLITE_NULL, /* 0x17 */ 261 SQLITE_FLOAT, /* 0x18 */ 262 SQLITE_NULL, /* 0x19 */ 263 SQLITE_FLOAT, /* 0x1a */ 264 SQLITE_NULL, /* 0x1b */ 265 SQLITE_INTEGER, /* 0x1c */ 266 SQLITE_NULL, /* 0x1d */ 267 SQLITE_INTEGER, /* 0x1e */ 268 SQLITE_NULL, /* 0x1f */ 269 }; 270 return aType[pVal->flags&MEM_AffMask]; 271 } 272 273 /* Return true if a parameter to xUpdate represents an unchanged column */ 274 int sqlite3_value_nochange(sqlite3_value *pVal){ 275 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 276 } 277 278 /* Make a copy of an sqlite3_value object 279 */ 280 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 281 sqlite3_value *pNew; 282 if( pOrig==0 ) return 0; 283 pNew = sqlite3_malloc( sizeof(*pNew) ); 284 if( pNew==0 ) return 0; 285 memset(pNew, 0, sizeof(*pNew)); 286 memcpy(pNew, pOrig, MEMCELLSIZE); 287 pNew->flags &= ~MEM_Dyn; 288 pNew->db = 0; 289 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 290 pNew->flags &= ~(MEM_Static|MEM_Dyn); 291 pNew->flags |= MEM_Ephem; 292 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 293 sqlite3ValueFree(pNew); 294 pNew = 0; 295 } 296 } 297 return pNew; 298 } 299 300 /* Destroy an sqlite3_value object previously obtained from 301 ** sqlite3_value_dup(). 302 */ 303 void sqlite3_value_free(sqlite3_value *pOld){ 304 sqlite3ValueFree(pOld); 305 } 306 307 308 /**************************** sqlite3_result_ ******************************* 309 ** The following routines are used by user-defined functions to specify 310 ** the function result. 311 ** 312 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 313 ** result as a string or blob but if the string or blob is too large, it 314 ** then sets the error code to SQLITE_TOOBIG 315 ** 316 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 317 ** on value P is not going to be used and need to be destroyed. 318 */ 319 static void setResultStrOrError( 320 sqlite3_context *pCtx, /* Function context */ 321 const char *z, /* String pointer */ 322 int n, /* Bytes in string, or negative */ 323 u8 enc, /* Encoding of z. 0 for BLOBs */ 324 void (*xDel)(void*) /* Destructor function */ 325 ){ 326 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 327 sqlite3_result_error_toobig(pCtx); 328 } 329 } 330 static int invokeValueDestructor( 331 const void *p, /* Value to destroy */ 332 void (*xDel)(void*), /* The destructor */ 333 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 334 ){ 335 assert( xDel!=SQLITE_DYNAMIC ); 336 if( xDel==0 ){ 337 /* noop */ 338 }else if( xDel==SQLITE_TRANSIENT ){ 339 /* noop */ 340 }else{ 341 xDel((void*)p); 342 } 343 if( pCtx ) sqlite3_result_error_toobig(pCtx); 344 return SQLITE_TOOBIG; 345 } 346 void sqlite3_result_blob( 347 sqlite3_context *pCtx, 348 const void *z, 349 int n, 350 void (*xDel)(void *) 351 ){ 352 assert( n>=0 ); 353 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 354 setResultStrOrError(pCtx, z, n, 0, xDel); 355 } 356 void sqlite3_result_blob64( 357 sqlite3_context *pCtx, 358 const void *z, 359 sqlite3_uint64 n, 360 void (*xDel)(void *) 361 ){ 362 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 363 assert( xDel!=SQLITE_DYNAMIC ); 364 if( n>0x7fffffff ){ 365 (void)invokeValueDestructor(z, xDel, pCtx); 366 }else{ 367 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 368 } 369 } 370 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 371 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 372 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 373 } 374 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 375 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 376 pCtx->isError = SQLITE_ERROR; 377 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 378 } 379 #ifndef SQLITE_OMIT_UTF16 380 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 381 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 382 pCtx->isError = SQLITE_ERROR; 383 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 384 } 385 #endif 386 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 387 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 388 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 389 } 390 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 392 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 393 } 394 void sqlite3_result_null(sqlite3_context *pCtx){ 395 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 396 sqlite3VdbeMemSetNull(pCtx->pOut); 397 } 398 void sqlite3_result_pointer( 399 sqlite3_context *pCtx, 400 void *pPtr, 401 const char *zPType, 402 void (*xDestructor)(void*) 403 ){ 404 Mem *pOut = pCtx->pOut; 405 assert( sqlite3_mutex_held(pOut->db->mutex) ); 406 sqlite3VdbeMemRelease(pOut); 407 pOut->flags = MEM_Null; 408 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 409 } 410 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 411 Mem *pOut = pCtx->pOut; 412 assert( sqlite3_mutex_held(pOut->db->mutex) ); 413 pOut->eSubtype = eSubtype & 0xff; 414 pOut->flags |= MEM_Subtype; 415 } 416 void sqlite3_result_text( 417 sqlite3_context *pCtx, 418 const char *z, 419 int n, 420 void (*xDel)(void *) 421 ){ 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 424 } 425 void sqlite3_result_text64( 426 sqlite3_context *pCtx, 427 const char *z, 428 sqlite3_uint64 n, 429 void (*xDel)(void *), 430 unsigned char enc 431 ){ 432 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 433 assert( xDel!=SQLITE_DYNAMIC ); 434 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 435 if( n>0x7fffffff ){ 436 (void)invokeValueDestructor(z, xDel, pCtx); 437 }else{ 438 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 439 } 440 } 441 #ifndef SQLITE_OMIT_UTF16 442 void sqlite3_result_text16( 443 sqlite3_context *pCtx, 444 const void *z, 445 int n, 446 void (*xDel)(void *) 447 ){ 448 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 449 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 450 } 451 void sqlite3_result_text16be( 452 sqlite3_context *pCtx, 453 const void *z, 454 int n, 455 void (*xDel)(void *) 456 ){ 457 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 458 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 459 } 460 void sqlite3_result_text16le( 461 sqlite3_context *pCtx, 462 const void *z, 463 int n, 464 void (*xDel)(void *) 465 ){ 466 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 467 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 468 } 469 #endif /* SQLITE_OMIT_UTF16 */ 470 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 471 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 472 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 473 } 474 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 475 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 476 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 477 } 478 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 479 Mem *pOut = pCtx->pOut; 480 assert( sqlite3_mutex_held(pOut->db->mutex) ); 481 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 482 return SQLITE_TOOBIG; 483 } 484 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 485 return SQLITE_OK; 486 } 487 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 488 pCtx->isError = errCode ? errCode : -1; 489 #ifdef SQLITE_DEBUG 490 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 491 #endif 492 if( pCtx->pOut->flags & MEM_Null ){ 493 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 494 SQLITE_UTF8, SQLITE_STATIC); 495 } 496 } 497 498 /* Force an SQLITE_TOOBIG error. */ 499 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 501 pCtx->isError = SQLITE_TOOBIG; 502 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 503 SQLITE_UTF8, SQLITE_STATIC); 504 } 505 506 /* An SQLITE_NOMEM error. */ 507 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 508 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 509 sqlite3VdbeMemSetNull(pCtx->pOut); 510 pCtx->isError = SQLITE_NOMEM_BKPT; 511 sqlite3OomFault(pCtx->pOut->db); 512 } 513 514 /* 515 ** This function is called after a transaction has been committed. It 516 ** invokes callbacks registered with sqlite3_wal_hook() as required. 517 */ 518 static int doWalCallbacks(sqlite3 *db){ 519 int rc = SQLITE_OK; 520 #ifndef SQLITE_OMIT_WAL 521 int i; 522 for(i=0; i<db->nDb; i++){ 523 Btree *pBt = db->aDb[i].pBt; 524 if( pBt ){ 525 int nEntry; 526 sqlite3BtreeEnter(pBt); 527 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 528 sqlite3BtreeLeave(pBt); 529 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 530 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 531 } 532 } 533 } 534 #endif 535 return rc; 536 } 537 538 539 /* 540 ** Execute the statement pStmt, either until a row of data is ready, the 541 ** statement is completely executed or an error occurs. 542 ** 543 ** This routine implements the bulk of the logic behind the sqlite_step() 544 ** API. The only thing omitted is the automatic recompile if a 545 ** schema change has occurred. That detail is handled by the 546 ** outer sqlite3_step() wrapper procedure. 547 */ 548 static int sqlite3Step(Vdbe *p){ 549 sqlite3 *db; 550 int rc; 551 552 assert(p); 553 if( p->magic!=VDBE_MAGIC_RUN ){ 554 /* We used to require that sqlite3_reset() be called before retrying 555 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 556 ** with version 3.7.0, we changed this so that sqlite3_reset() would 557 ** be called automatically instead of throwing the SQLITE_MISUSE error. 558 ** This "automatic-reset" change is not technically an incompatibility, 559 ** since any application that receives an SQLITE_MISUSE is broken by 560 ** definition. 561 ** 562 ** Nevertheless, some published applications that were originally written 563 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 564 ** returns, and those were broken by the automatic-reset change. As a 565 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 566 ** legacy behavior of returning SQLITE_MISUSE for cases where the 567 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 568 ** or SQLITE_BUSY error. 569 */ 570 #ifdef SQLITE_OMIT_AUTORESET 571 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 572 sqlite3_reset((sqlite3_stmt*)p); 573 }else{ 574 return SQLITE_MISUSE_BKPT; 575 } 576 #else 577 sqlite3_reset((sqlite3_stmt*)p); 578 #endif 579 } 580 581 /* Check that malloc() has not failed. If it has, return early. */ 582 db = p->db; 583 if( db->mallocFailed ){ 584 p->rc = SQLITE_NOMEM; 585 return SQLITE_NOMEM_BKPT; 586 } 587 588 if( p->pc<0 && p->expired ){ 589 p->rc = SQLITE_SCHEMA; 590 rc = SQLITE_ERROR; 591 goto end_of_step; 592 } 593 if( p->pc<0 ){ 594 /* If there are no other statements currently running, then 595 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 596 ** from interrupting a statement that has not yet started. 597 */ 598 if( db->nVdbeActive==0 ){ 599 db->u1.isInterrupted = 0; 600 } 601 602 assert( db->nVdbeWrite>0 || db->autoCommit==0 603 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 604 ); 605 606 #ifndef SQLITE_OMIT_TRACE 607 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 608 && !db->init.busy && p->zSql ){ 609 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 610 }else{ 611 assert( p->startTime==0 ); 612 } 613 #endif 614 615 db->nVdbeActive++; 616 if( p->readOnly==0 ) db->nVdbeWrite++; 617 if( p->bIsReader ) db->nVdbeRead++; 618 p->pc = 0; 619 } 620 #ifdef SQLITE_DEBUG 621 p->rcApp = SQLITE_OK; 622 #endif 623 #ifndef SQLITE_OMIT_EXPLAIN 624 if( p->explain ){ 625 rc = sqlite3VdbeList(p); 626 }else 627 #endif /* SQLITE_OMIT_EXPLAIN */ 628 { 629 db->nVdbeExec++; 630 rc = sqlite3VdbeExec(p); 631 db->nVdbeExec--; 632 } 633 634 if( rc!=SQLITE_ROW ){ 635 #ifndef SQLITE_OMIT_TRACE 636 /* If the statement completed successfully, invoke the profile callback */ 637 checkProfileCallback(db, p); 638 #endif 639 640 if( rc==SQLITE_DONE && db->autoCommit ){ 641 assert( p->rc==SQLITE_OK ); 642 p->rc = doWalCallbacks(db); 643 if( p->rc!=SQLITE_OK ){ 644 rc = SQLITE_ERROR; 645 } 646 } 647 } 648 649 db->errCode = rc; 650 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 651 p->rc = SQLITE_NOMEM_BKPT; 652 } 653 end_of_step: 654 /* At this point local variable rc holds the value that should be 655 ** returned if this statement was compiled using the legacy 656 ** sqlite3_prepare() interface. According to the docs, this can only 657 ** be one of the values in the first assert() below. Variable p->rc 658 ** contains the value that would be returned if sqlite3_finalize() 659 ** were called on statement p. 660 */ 661 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 662 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 663 ); 664 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 665 if( rc!=SQLITE_ROW 666 && rc!=SQLITE_DONE 667 && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 668 ){ 669 /* If this statement was prepared using saved SQL and an 670 ** error has occurred, then return the error code in p->rc to the 671 ** caller. Set the error code in the database handle to the same value. 672 */ 673 rc = sqlite3VdbeTransferError(p); 674 } 675 return (rc&db->errMask); 676 } 677 678 /* 679 ** This is the top-level implementation of sqlite3_step(). Call 680 ** sqlite3Step() to do most of the work. If a schema error occurs, 681 ** call sqlite3Reprepare() and try again. 682 */ 683 int sqlite3_step(sqlite3_stmt *pStmt){ 684 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 685 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 686 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 687 sqlite3 *db; /* The database connection */ 688 689 if( vdbeSafetyNotNull(v) ){ 690 return SQLITE_MISUSE_BKPT; 691 } 692 db = v->db; 693 sqlite3_mutex_enter(db->mutex); 694 v->doingRerun = 0; 695 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 696 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 697 int savedPc = v->pc; 698 rc = sqlite3Reprepare(v); 699 if( rc!=SQLITE_OK ){ 700 /* This case occurs after failing to recompile an sql statement. 701 ** The error message from the SQL compiler has already been loaded 702 ** into the database handle. This block copies the error message 703 ** from the database handle into the statement and sets the statement 704 ** program counter to 0 to ensure that when the statement is 705 ** finalized or reset the parser error message is available via 706 ** sqlite3_errmsg() and sqlite3_errcode(). 707 */ 708 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 709 sqlite3DbFree(db, v->zErrMsg); 710 if( !db->mallocFailed ){ 711 v->zErrMsg = sqlite3DbStrDup(db, zErr); 712 v->rc = rc = sqlite3ApiExit(db, rc); 713 } else { 714 v->zErrMsg = 0; 715 v->rc = rc = SQLITE_NOMEM_BKPT; 716 } 717 break; 718 } 719 sqlite3_reset(pStmt); 720 if( savedPc>=0 ) v->doingRerun = 1; 721 assert( v->expired==0 ); 722 } 723 sqlite3_mutex_leave(db->mutex); 724 return rc; 725 } 726 727 728 /* 729 ** Extract the user data from a sqlite3_context structure and return a 730 ** pointer to it. 731 */ 732 void *sqlite3_user_data(sqlite3_context *p){ 733 assert( p && p->pFunc ); 734 return p->pFunc->pUserData; 735 } 736 737 /* 738 ** Extract the user data from a sqlite3_context structure and return a 739 ** pointer to it. 740 ** 741 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 742 ** returns a copy of the pointer to the database connection (the 1st 743 ** parameter) of the sqlite3_create_function() and 744 ** sqlite3_create_function16() routines that originally registered the 745 ** application defined function. 746 */ 747 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 748 assert( p && p->pOut ); 749 return p->pOut->db; 750 } 751 752 /* 753 ** If this routine is invoked from within an xColumn method of a virtual 754 ** table, then it returns true if and only if the the call is during an 755 ** UPDATE operation and the value of the column will not be modified 756 ** by the UPDATE. 757 ** 758 ** If this routine is called from any context other than within the 759 ** xColumn method of a virtual table, then the return value is meaningless 760 ** and arbitrary. 761 ** 762 ** Virtual table implements might use this routine to optimize their 763 ** performance by substituting a NULL result, or some other light-weight 764 ** value, as a signal to the xUpdate routine that the column is unchanged. 765 */ 766 int sqlite3_vtab_nochange(sqlite3_context *p){ 767 assert( p ); 768 return sqlite3_value_nochange(p->pOut); 769 } 770 771 /* 772 ** Return the current time for a statement. If the current time 773 ** is requested more than once within the same run of a single prepared 774 ** statement, the exact same time is returned for each invocation regardless 775 ** of the amount of time that elapses between invocations. In other words, 776 ** the time returned is always the time of the first call. 777 */ 778 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 779 int rc; 780 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 781 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 782 assert( p->pVdbe!=0 ); 783 #else 784 sqlite3_int64 iTime = 0; 785 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 786 #endif 787 if( *piTime==0 ){ 788 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 789 if( rc ) *piTime = 0; 790 } 791 return *piTime; 792 } 793 794 /* 795 ** Create a new aggregate context for p and return a pointer to 796 ** its pMem->z element. 797 */ 798 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 799 Mem *pMem = p->pMem; 800 assert( (pMem->flags & MEM_Agg)==0 ); 801 if( nByte<=0 ){ 802 sqlite3VdbeMemSetNull(pMem); 803 pMem->z = 0; 804 }else{ 805 sqlite3VdbeMemClearAndResize(pMem, nByte); 806 pMem->flags = MEM_Agg; 807 pMem->u.pDef = p->pFunc; 808 if( pMem->z ){ 809 memset(pMem->z, 0, nByte); 810 } 811 } 812 return (void*)pMem->z; 813 } 814 815 /* 816 ** Allocate or return the aggregate context for a user function. A new 817 ** context is allocated on the first call. Subsequent calls return the 818 ** same context that was returned on prior calls. 819 */ 820 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 821 assert( p && p->pFunc && p->pFunc->xFinalize ); 822 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 823 testcase( nByte<0 ); 824 if( (p->pMem->flags & MEM_Agg)==0 ){ 825 return createAggContext(p, nByte); 826 }else{ 827 return (void*)p->pMem->z; 828 } 829 } 830 831 /* 832 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 833 ** the user-function defined by pCtx. 834 ** 835 ** The left-most argument is 0. 836 ** 837 ** Undocumented behavior: If iArg is negative then access a cache of 838 ** auxiliary data pointers that is available to all functions within a 839 ** single prepared statement. The iArg values must match. 840 */ 841 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 842 AuxData *pAuxData; 843 844 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 845 #if SQLITE_ENABLE_STAT3_OR_STAT4 846 if( pCtx->pVdbe==0 ) return 0; 847 #else 848 assert( pCtx->pVdbe!=0 ); 849 #endif 850 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 851 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 852 return pAuxData->pAux; 853 } 854 } 855 return 0; 856 } 857 858 /* 859 ** Set the auxiliary data pointer and delete function, for the iArg'th 860 ** argument to the user-function defined by pCtx. Any previous value is 861 ** deleted by calling the delete function specified when it was set. 862 ** 863 ** The left-most argument is 0. 864 ** 865 ** Undocumented behavior: If iArg is negative then make the data available 866 ** to all functions within the current prepared statement using iArg as an 867 ** access code. 868 */ 869 void sqlite3_set_auxdata( 870 sqlite3_context *pCtx, 871 int iArg, 872 void *pAux, 873 void (*xDelete)(void*) 874 ){ 875 AuxData *pAuxData; 876 Vdbe *pVdbe = pCtx->pVdbe; 877 878 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 879 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 880 if( pVdbe==0 ) goto failed; 881 #else 882 assert( pVdbe!=0 ); 883 #endif 884 885 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 886 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 887 break; 888 } 889 } 890 if( pAuxData==0 ){ 891 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 892 if( !pAuxData ) goto failed; 893 pAuxData->iAuxOp = pCtx->iOp; 894 pAuxData->iAuxArg = iArg; 895 pAuxData->pNextAux = pVdbe->pAuxData; 896 pVdbe->pAuxData = pAuxData; 897 if( pCtx->isError==0 ) pCtx->isError = -1; 898 }else if( pAuxData->xDeleteAux ){ 899 pAuxData->xDeleteAux(pAuxData->pAux); 900 } 901 902 pAuxData->pAux = pAux; 903 pAuxData->xDeleteAux = xDelete; 904 return; 905 906 failed: 907 if( xDelete ){ 908 xDelete(pAux); 909 } 910 } 911 912 #ifndef SQLITE_OMIT_DEPRECATED 913 /* 914 ** Return the number of times the Step function of an aggregate has been 915 ** called. 916 ** 917 ** This function is deprecated. Do not use it for new code. It is 918 ** provide only to avoid breaking legacy code. New aggregate function 919 ** implementations should keep their own counts within their aggregate 920 ** context. 921 */ 922 int sqlite3_aggregate_count(sqlite3_context *p){ 923 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 924 return p->pMem->n; 925 } 926 #endif 927 928 /* 929 ** Return the number of columns in the result set for the statement pStmt. 930 */ 931 int sqlite3_column_count(sqlite3_stmt *pStmt){ 932 Vdbe *pVm = (Vdbe *)pStmt; 933 return pVm ? pVm->nResColumn : 0; 934 } 935 936 /* 937 ** Return the number of values available from the current row of the 938 ** currently executing statement pStmt. 939 */ 940 int sqlite3_data_count(sqlite3_stmt *pStmt){ 941 Vdbe *pVm = (Vdbe *)pStmt; 942 if( pVm==0 || pVm->pResultSet==0 ) return 0; 943 return pVm->nResColumn; 944 } 945 946 /* 947 ** Return a pointer to static memory containing an SQL NULL value. 948 */ 949 static const Mem *columnNullValue(void){ 950 /* Even though the Mem structure contains an element 951 ** of type i64, on certain architectures (x86) with certain compiler 952 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 953 ** instead of an 8-byte one. This all works fine, except that when 954 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 955 ** that a Mem structure is located on an 8-byte boundary. To prevent 956 ** these assert()s from failing, when building with SQLITE_DEBUG defined 957 ** using gcc, we force nullMem to be 8-byte aligned using the magical 958 ** __attribute__((aligned(8))) macro. */ 959 static const Mem nullMem 960 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 961 __attribute__((aligned(8))) 962 #endif 963 = { 964 /* .u = */ {0}, 965 /* .flags = */ (u16)MEM_Null, 966 /* .enc = */ (u8)0, 967 /* .eSubtype = */ (u8)0, 968 /* .n = */ (int)0, 969 /* .z = */ (char*)0, 970 /* .zMalloc = */ (char*)0, 971 /* .szMalloc = */ (int)0, 972 /* .uTemp = */ (u32)0, 973 /* .db = */ (sqlite3*)0, 974 /* .xDel = */ (void(*)(void*))0, 975 #ifdef SQLITE_DEBUG 976 /* .pScopyFrom = */ (Mem*)0, 977 /* .mScopyFlags= */ 0, 978 #endif 979 }; 980 return &nullMem; 981 } 982 983 /* 984 ** Check to see if column iCol of the given statement is valid. If 985 ** it is, return a pointer to the Mem for the value of that column. 986 ** If iCol is not valid, return a pointer to a Mem which has a value 987 ** of NULL. 988 */ 989 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 990 Vdbe *pVm; 991 Mem *pOut; 992 993 pVm = (Vdbe *)pStmt; 994 if( pVm==0 ) return (Mem*)columnNullValue(); 995 assert( pVm->db ); 996 sqlite3_mutex_enter(pVm->db->mutex); 997 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 998 pOut = &pVm->pResultSet[i]; 999 }else{ 1000 sqlite3Error(pVm->db, SQLITE_RANGE); 1001 pOut = (Mem*)columnNullValue(); 1002 } 1003 return pOut; 1004 } 1005 1006 /* 1007 ** This function is called after invoking an sqlite3_value_XXX function on a 1008 ** column value (i.e. a value returned by evaluating an SQL expression in the 1009 ** select list of a SELECT statement) that may cause a malloc() failure. If 1010 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1011 ** code of statement pStmt set to SQLITE_NOMEM. 1012 ** 1013 ** Specifically, this is called from within: 1014 ** 1015 ** sqlite3_column_int() 1016 ** sqlite3_column_int64() 1017 ** sqlite3_column_text() 1018 ** sqlite3_column_text16() 1019 ** sqlite3_column_real() 1020 ** sqlite3_column_bytes() 1021 ** sqlite3_column_bytes16() 1022 ** sqiite3_column_blob() 1023 */ 1024 static void columnMallocFailure(sqlite3_stmt *pStmt) 1025 { 1026 /* If malloc() failed during an encoding conversion within an 1027 ** sqlite3_column_XXX API, then set the return code of the statement to 1028 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1029 ** and _finalize() will return NOMEM. 1030 */ 1031 Vdbe *p = (Vdbe *)pStmt; 1032 if( p ){ 1033 assert( p->db!=0 ); 1034 assert( sqlite3_mutex_held(p->db->mutex) ); 1035 p->rc = sqlite3ApiExit(p->db, p->rc); 1036 sqlite3_mutex_leave(p->db->mutex); 1037 } 1038 } 1039 1040 /**************************** sqlite3_column_ ******************************* 1041 ** The following routines are used to access elements of the current row 1042 ** in the result set. 1043 */ 1044 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1045 const void *val; 1046 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1047 /* Even though there is no encoding conversion, value_blob() might 1048 ** need to call malloc() to expand the result of a zeroblob() 1049 ** expression. 1050 */ 1051 columnMallocFailure(pStmt); 1052 return val; 1053 } 1054 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1055 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1056 columnMallocFailure(pStmt); 1057 return val; 1058 } 1059 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1060 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1061 columnMallocFailure(pStmt); 1062 return val; 1063 } 1064 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1065 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1066 columnMallocFailure(pStmt); 1067 return val; 1068 } 1069 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1070 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1071 columnMallocFailure(pStmt); 1072 return val; 1073 } 1074 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1075 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1076 columnMallocFailure(pStmt); 1077 return val; 1078 } 1079 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1080 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1081 columnMallocFailure(pStmt); 1082 return val; 1083 } 1084 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1085 Mem *pOut = columnMem(pStmt, i); 1086 if( pOut->flags&MEM_Static ){ 1087 pOut->flags &= ~MEM_Static; 1088 pOut->flags |= MEM_Ephem; 1089 } 1090 columnMallocFailure(pStmt); 1091 return (sqlite3_value *)pOut; 1092 } 1093 #ifndef SQLITE_OMIT_UTF16 1094 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1095 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1096 columnMallocFailure(pStmt); 1097 return val; 1098 } 1099 #endif /* SQLITE_OMIT_UTF16 */ 1100 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1101 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1102 columnMallocFailure(pStmt); 1103 return iType; 1104 } 1105 1106 /* 1107 ** Convert the N-th element of pStmt->pColName[] into a string using 1108 ** xFunc() then return that string. If N is out of range, return 0. 1109 ** 1110 ** There are up to 5 names for each column. useType determines which 1111 ** name is returned. Here are the names: 1112 ** 1113 ** 0 The column name as it should be displayed for output 1114 ** 1 The datatype name for the column 1115 ** 2 The name of the database that the column derives from 1116 ** 3 The name of the table that the column derives from 1117 ** 4 The name of the table column that the result column derives from 1118 ** 1119 ** If the result is not a simple column reference (if it is an expression 1120 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1121 */ 1122 static const void *columnName( 1123 sqlite3_stmt *pStmt, /* The statement */ 1124 int N, /* Which column to get the name for */ 1125 int useUtf16, /* True to return the name as UTF16 */ 1126 int useType /* What type of name */ 1127 ){ 1128 const void *ret; 1129 Vdbe *p; 1130 int n; 1131 sqlite3 *db; 1132 #ifdef SQLITE_ENABLE_API_ARMOR 1133 if( pStmt==0 ){ 1134 (void)SQLITE_MISUSE_BKPT; 1135 return 0; 1136 } 1137 #endif 1138 ret = 0; 1139 p = (Vdbe *)pStmt; 1140 db = p->db; 1141 assert( db!=0 ); 1142 n = sqlite3_column_count(pStmt); 1143 if( N<n && N>=0 ){ 1144 N += useType*n; 1145 sqlite3_mutex_enter(db->mutex); 1146 assert( db->mallocFailed==0 ); 1147 #ifndef SQLITE_OMIT_UTF16 1148 if( useUtf16 ){ 1149 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1150 }else 1151 #endif 1152 { 1153 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1154 } 1155 /* A malloc may have failed inside of the _text() call. If this 1156 ** is the case, clear the mallocFailed flag and return NULL. 1157 */ 1158 if( db->mallocFailed ){ 1159 sqlite3OomClear(db); 1160 ret = 0; 1161 } 1162 sqlite3_mutex_leave(db->mutex); 1163 } 1164 return ret; 1165 } 1166 1167 /* 1168 ** Return the name of the Nth column of the result set returned by SQL 1169 ** statement pStmt. 1170 */ 1171 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1172 return columnName(pStmt, N, 0, COLNAME_NAME); 1173 } 1174 #ifndef SQLITE_OMIT_UTF16 1175 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1176 return columnName(pStmt, N, 1, COLNAME_NAME); 1177 } 1178 #endif 1179 1180 /* 1181 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1182 ** not define OMIT_DECLTYPE. 1183 */ 1184 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1185 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1186 and SQLITE_ENABLE_COLUMN_METADATA" 1187 #endif 1188 1189 #ifndef SQLITE_OMIT_DECLTYPE 1190 /* 1191 ** Return the column declaration type (if applicable) of the 'i'th column 1192 ** of the result set of SQL statement pStmt. 1193 */ 1194 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1195 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1196 } 1197 #ifndef SQLITE_OMIT_UTF16 1198 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1199 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1200 } 1201 #endif /* SQLITE_OMIT_UTF16 */ 1202 #endif /* SQLITE_OMIT_DECLTYPE */ 1203 1204 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1205 /* 1206 ** Return the name of the database from which a result column derives. 1207 ** NULL is returned if the result column is an expression or constant or 1208 ** anything else which is not an unambiguous reference to a database column. 1209 */ 1210 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1211 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1212 } 1213 #ifndef SQLITE_OMIT_UTF16 1214 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1215 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1216 } 1217 #endif /* SQLITE_OMIT_UTF16 */ 1218 1219 /* 1220 ** Return the name of the table from which a result column derives. 1221 ** NULL is returned if the result column is an expression or constant or 1222 ** anything else which is not an unambiguous reference to a database column. 1223 */ 1224 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1225 return columnName(pStmt, N, 0, COLNAME_TABLE); 1226 } 1227 #ifndef SQLITE_OMIT_UTF16 1228 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1229 return columnName(pStmt, N, 1, COLNAME_TABLE); 1230 } 1231 #endif /* SQLITE_OMIT_UTF16 */ 1232 1233 /* 1234 ** Return the name of the table column from which a result column derives. 1235 ** NULL is returned if the result column is an expression or constant or 1236 ** anything else which is not an unambiguous reference to a database column. 1237 */ 1238 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1239 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1240 } 1241 #ifndef SQLITE_OMIT_UTF16 1242 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1243 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1244 } 1245 #endif /* SQLITE_OMIT_UTF16 */ 1246 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1247 1248 1249 /******************************* sqlite3_bind_ *************************** 1250 ** 1251 ** Routines used to attach values to wildcards in a compiled SQL statement. 1252 */ 1253 /* 1254 ** Unbind the value bound to variable i in virtual machine p. This is the 1255 ** the same as binding a NULL value to the column. If the "i" parameter is 1256 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1257 ** 1258 ** A successful evaluation of this routine acquires the mutex on p. 1259 ** the mutex is released if any kind of error occurs. 1260 ** 1261 ** The error code stored in database p->db is overwritten with the return 1262 ** value in any case. 1263 */ 1264 static int vdbeUnbind(Vdbe *p, int i){ 1265 Mem *pVar; 1266 if( vdbeSafetyNotNull(p) ){ 1267 return SQLITE_MISUSE_BKPT; 1268 } 1269 sqlite3_mutex_enter(p->db->mutex); 1270 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1271 sqlite3Error(p->db, SQLITE_MISUSE); 1272 sqlite3_mutex_leave(p->db->mutex); 1273 sqlite3_log(SQLITE_MISUSE, 1274 "bind on a busy prepared statement: [%s]", p->zSql); 1275 return SQLITE_MISUSE_BKPT; 1276 } 1277 if( i<1 || i>p->nVar ){ 1278 sqlite3Error(p->db, SQLITE_RANGE); 1279 sqlite3_mutex_leave(p->db->mutex); 1280 return SQLITE_RANGE; 1281 } 1282 i--; 1283 pVar = &p->aVar[i]; 1284 sqlite3VdbeMemRelease(pVar); 1285 pVar->flags = MEM_Null; 1286 p->db->errCode = SQLITE_OK; 1287 1288 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1289 ** binding a new value to this variable invalidates the current query plan. 1290 ** 1291 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1292 ** parameter in the WHERE clause might influence the choice of query plan 1293 ** for a statement, then the statement will be automatically recompiled, 1294 ** as if there had been a schema change, on the first sqlite3_step() call 1295 ** following any change to the bindings of that parameter. 1296 */ 1297 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1298 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1299 p->expired = 1; 1300 } 1301 return SQLITE_OK; 1302 } 1303 1304 /* 1305 ** Bind a text or BLOB value. 1306 */ 1307 static int bindText( 1308 sqlite3_stmt *pStmt, /* The statement to bind against */ 1309 int i, /* Index of the parameter to bind */ 1310 const void *zData, /* Pointer to the data to be bound */ 1311 int nData, /* Number of bytes of data to be bound */ 1312 void (*xDel)(void*), /* Destructor for the data */ 1313 u8 encoding /* Encoding for the data */ 1314 ){ 1315 Vdbe *p = (Vdbe *)pStmt; 1316 Mem *pVar; 1317 int rc; 1318 1319 rc = vdbeUnbind(p, i); 1320 if( rc==SQLITE_OK ){ 1321 if( zData!=0 ){ 1322 pVar = &p->aVar[i-1]; 1323 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1324 if( rc==SQLITE_OK && encoding!=0 ){ 1325 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1326 } 1327 if( rc ){ 1328 sqlite3Error(p->db, rc); 1329 rc = sqlite3ApiExit(p->db, rc); 1330 } 1331 } 1332 sqlite3_mutex_leave(p->db->mutex); 1333 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1334 xDel((void*)zData); 1335 } 1336 return rc; 1337 } 1338 1339 1340 /* 1341 ** Bind a blob value to an SQL statement variable. 1342 */ 1343 int sqlite3_bind_blob( 1344 sqlite3_stmt *pStmt, 1345 int i, 1346 const void *zData, 1347 int nData, 1348 void (*xDel)(void*) 1349 ){ 1350 #ifdef SQLITE_ENABLE_API_ARMOR 1351 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1352 #endif 1353 return bindText(pStmt, i, zData, nData, xDel, 0); 1354 } 1355 int sqlite3_bind_blob64( 1356 sqlite3_stmt *pStmt, 1357 int i, 1358 const void *zData, 1359 sqlite3_uint64 nData, 1360 void (*xDel)(void*) 1361 ){ 1362 assert( xDel!=SQLITE_DYNAMIC ); 1363 if( nData>0x7fffffff ){ 1364 return invokeValueDestructor(zData, xDel, 0); 1365 }else{ 1366 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1367 } 1368 } 1369 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1370 int rc; 1371 Vdbe *p = (Vdbe *)pStmt; 1372 rc = vdbeUnbind(p, i); 1373 if( rc==SQLITE_OK ){ 1374 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1375 sqlite3_mutex_leave(p->db->mutex); 1376 } 1377 return rc; 1378 } 1379 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1380 return sqlite3_bind_int64(p, i, (i64)iValue); 1381 } 1382 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1383 int rc; 1384 Vdbe *p = (Vdbe *)pStmt; 1385 rc = vdbeUnbind(p, i); 1386 if( rc==SQLITE_OK ){ 1387 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1388 sqlite3_mutex_leave(p->db->mutex); 1389 } 1390 return rc; 1391 } 1392 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1393 int rc; 1394 Vdbe *p = (Vdbe*)pStmt; 1395 rc = vdbeUnbind(p, i); 1396 if( rc==SQLITE_OK ){ 1397 sqlite3_mutex_leave(p->db->mutex); 1398 } 1399 return rc; 1400 } 1401 int sqlite3_bind_pointer( 1402 sqlite3_stmt *pStmt, 1403 int i, 1404 void *pPtr, 1405 const char *zPTtype, 1406 void (*xDestructor)(void*) 1407 ){ 1408 int rc; 1409 Vdbe *p = (Vdbe*)pStmt; 1410 rc = vdbeUnbind(p, i); 1411 if( rc==SQLITE_OK ){ 1412 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1413 sqlite3_mutex_leave(p->db->mutex); 1414 }else if( xDestructor ){ 1415 xDestructor(pPtr); 1416 } 1417 return rc; 1418 } 1419 int sqlite3_bind_text( 1420 sqlite3_stmt *pStmt, 1421 int i, 1422 const char *zData, 1423 int nData, 1424 void (*xDel)(void*) 1425 ){ 1426 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1427 } 1428 int sqlite3_bind_text64( 1429 sqlite3_stmt *pStmt, 1430 int i, 1431 const char *zData, 1432 sqlite3_uint64 nData, 1433 void (*xDel)(void*), 1434 unsigned char enc 1435 ){ 1436 assert( xDel!=SQLITE_DYNAMIC ); 1437 if( nData>0x7fffffff ){ 1438 return invokeValueDestructor(zData, xDel, 0); 1439 }else{ 1440 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1441 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1442 } 1443 } 1444 #ifndef SQLITE_OMIT_UTF16 1445 int sqlite3_bind_text16( 1446 sqlite3_stmt *pStmt, 1447 int i, 1448 const void *zData, 1449 int nData, 1450 void (*xDel)(void*) 1451 ){ 1452 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1453 } 1454 #endif /* SQLITE_OMIT_UTF16 */ 1455 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1456 int rc; 1457 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1458 case SQLITE_INTEGER: { 1459 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1460 break; 1461 } 1462 case SQLITE_FLOAT: { 1463 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1464 break; 1465 } 1466 case SQLITE_BLOB: { 1467 if( pValue->flags & MEM_Zero ){ 1468 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1469 }else{ 1470 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1471 } 1472 break; 1473 } 1474 case SQLITE_TEXT: { 1475 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1476 pValue->enc); 1477 break; 1478 } 1479 default: { 1480 rc = sqlite3_bind_null(pStmt, i); 1481 break; 1482 } 1483 } 1484 return rc; 1485 } 1486 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1487 int rc; 1488 Vdbe *p = (Vdbe *)pStmt; 1489 rc = vdbeUnbind(p, i); 1490 if( rc==SQLITE_OK ){ 1491 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1492 sqlite3_mutex_leave(p->db->mutex); 1493 } 1494 return rc; 1495 } 1496 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1497 int rc; 1498 Vdbe *p = (Vdbe *)pStmt; 1499 sqlite3_mutex_enter(p->db->mutex); 1500 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1501 rc = SQLITE_TOOBIG; 1502 }else{ 1503 assert( (n & 0x7FFFFFFF)==n ); 1504 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1505 } 1506 rc = sqlite3ApiExit(p->db, rc); 1507 sqlite3_mutex_leave(p->db->mutex); 1508 return rc; 1509 } 1510 1511 /* 1512 ** Return the number of wildcards that can be potentially bound to. 1513 ** This routine is added to support DBD::SQLite. 1514 */ 1515 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1516 Vdbe *p = (Vdbe*)pStmt; 1517 return p ? p->nVar : 0; 1518 } 1519 1520 /* 1521 ** Return the name of a wildcard parameter. Return NULL if the index 1522 ** is out of range or if the wildcard is unnamed. 1523 ** 1524 ** The result is always UTF-8. 1525 */ 1526 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1527 Vdbe *p = (Vdbe*)pStmt; 1528 if( p==0 ) return 0; 1529 return sqlite3VListNumToName(p->pVList, i); 1530 } 1531 1532 /* 1533 ** Given a wildcard parameter name, return the index of the variable 1534 ** with that name. If there is no variable with the given name, 1535 ** return 0. 1536 */ 1537 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1538 if( p==0 || zName==0 ) return 0; 1539 return sqlite3VListNameToNum(p->pVList, zName, nName); 1540 } 1541 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1542 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1543 } 1544 1545 /* 1546 ** Transfer all bindings from the first statement over to the second. 1547 */ 1548 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1549 Vdbe *pFrom = (Vdbe*)pFromStmt; 1550 Vdbe *pTo = (Vdbe*)pToStmt; 1551 int i; 1552 assert( pTo->db==pFrom->db ); 1553 assert( pTo->nVar==pFrom->nVar ); 1554 sqlite3_mutex_enter(pTo->db->mutex); 1555 for(i=0; i<pFrom->nVar; i++){ 1556 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1557 } 1558 sqlite3_mutex_leave(pTo->db->mutex); 1559 return SQLITE_OK; 1560 } 1561 1562 #ifndef SQLITE_OMIT_DEPRECATED 1563 /* 1564 ** Deprecated external interface. Internal/core SQLite code 1565 ** should call sqlite3TransferBindings. 1566 ** 1567 ** It is misuse to call this routine with statements from different 1568 ** database connections. But as this is a deprecated interface, we 1569 ** will not bother to check for that condition. 1570 ** 1571 ** If the two statements contain a different number of bindings, then 1572 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1573 ** SQLITE_OK is returned. 1574 */ 1575 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1576 Vdbe *pFrom = (Vdbe*)pFromStmt; 1577 Vdbe *pTo = (Vdbe*)pToStmt; 1578 if( pFrom->nVar!=pTo->nVar ){ 1579 return SQLITE_ERROR; 1580 } 1581 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1582 if( pTo->expmask ){ 1583 pTo->expired = 1; 1584 } 1585 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1586 if( pFrom->expmask ){ 1587 pFrom->expired = 1; 1588 } 1589 return sqlite3TransferBindings(pFromStmt, pToStmt); 1590 } 1591 #endif 1592 1593 /* 1594 ** Return the sqlite3* database handle to which the prepared statement given 1595 ** in the argument belongs. This is the same database handle that was 1596 ** the first argument to the sqlite3_prepare() that was used to create 1597 ** the statement in the first place. 1598 */ 1599 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1600 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1601 } 1602 1603 /* 1604 ** Return true if the prepared statement is guaranteed to not modify the 1605 ** database. 1606 */ 1607 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1608 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1609 } 1610 1611 /* 1612 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1613 ** statement is an EXPLAIN QUERY PLAN 1614 */ 1615 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1616 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1617 } 1618 1619 /* 1620 ** Return true if the prepared statement is in need of being reset. 1621 */ 1622 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1623 Vdbe *v = (Vdbe*)pStmt; 1624 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1625 } 1626 1627 /* 1628 ** Return a pointer to the next prepared statement after pStmt associated 1629 ** with database connection pDb. If pStmt is NULL, return the first 1630 ** prepared statement for the database connection. Return NULL if there 1631 ** are no more. 1632 */ 1633 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1634 sqlite3_stmt *pNext; 1635 #ifdef SQLITE_ENABLE_API_ARMOR 1636 if( !sqlite3SafetyCheckOk(pDb) ){ 1637 (void)SQLITE_MISUSE_BKPT; 1638 return 0; 1639 } 1640 #endif 1641 sqlite3_mutex_enter(pDb->mutex); 1642 if( pStmt==0 ){ 1643 pNext = (sqlite3_stmt*)pDb->pVdbe; 1644 }else{ 1645 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1646 } 1647 sqlite3_mutex_leave(pDb->mutex); 1648 return pNext; 1649 } 1650 1651 /* 1652 ** Return the value of a status counter for a prepared statement 1653 */ 1654 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1655 Vdbe *pVdbe = (Vdbe*)pStmt; 1656 u32 v; 1657 #ifdef SQLITE_ENABLE_API_ARMOR 1658 if( !pStmt 1659 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1660 ){ 1661 (void)SQLITE_MISUSE_BKPT; 1662 return 0; 1663 } 1664 #endif 1665 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1666 sqlite3 *db = pVdbe->db; 1667 sqlite3_mutex_enter(db->mutex); 1668 v = 0; 1669 db->pnBytesFreed = (int*)&v; 1670 sqlite3VdbeClearObject(db, pVdbe); 1671 sqlite3DbFree(db, pVdbe); 1672 db->pnBytesFreed = 0; 1673 sqlite3_mutex_leave(db->mutex); 1674 }else{ 1675 v = pVdbe->aCounter[op]; 1676 if( resetFlag ) pVdbe->aCounter[op] = 0; 1677 } 1678 return (int)v; 1679 } 1680 1681 /* 1682 ** Return the SQL associated with a prepared statement 1683 */ 1684 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1685 Vdbe *p = (Vdbe *)pStmt; 1686 return p ? p->zSql : 0; 1687 } 1688 1689 /* 1690 ** Return the SQL associated with a prepared statement with 1691 ** bound parameters expanded. Space to hold the returned string is 1692 ** obtained from sqlite3_malloc(). The caller is responsible for 1693 ** freeing the returned string by passing it to sqlite3_free(). 1694 ** 1695 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1696 ** expanded bound parameters. 1697 */ 1698 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1699 #ifdef SQLITE_OMIT_TRACE 1700 return 0; 1701 #else 1702 char *z = 0; 1703 const char *zSql = sqlite3_sql(pStmt); 1704 if( zSql ){ 1705 Vdbe *p = (Vdbe *)pStmt; 1706 sqlite3_mutex_enter(p->db->mutex); 1707 z = sqlite3VdbeExpandSql(p, zSql); 1708 sqlite3_mutex_leave(p->db->mutex); 1709 } 1710 return z; 1711 #endif 1712 } 1713 1714 #ifdef SQLITE_ENABLE_NORMALIZE 1715 /* 1716 ** Return the normalized SQL associated with a prepared statement. 1717 */ 1718 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1719 Vdbe *p = (Vdbe *)pStmt; 1720 if( p==0 ) return 0; 1721 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1722 sqlite3_mutex_enter(p->db->mutex); 1723 p->zNormSql = sqlite3Normalize(p, p->zSql); 1724 sqlite3_mutex_leave(p->db->mutex); 1725 } 1726 return p->zNormSql; 1727 } 1728 #endif /* SQLITE_ENABLE_NORMALIZE */ 1729 1730 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1731 /* 1732 ** Allocate and populate an UnpackedRecord structure based on the serialized 1733 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1734 ** if successful, or a NULL pointer if an OOM error is encountered. 1735 */ 1736 static UnpackedRecord *vdbeUnpackRecord( 1737 KeyInfo *pKeyInfo, 1738 int nKey, 1739 const void *pKey 1740 ){ 1741 UnpackedRecord *pRet; /* Return value */ 1742 1743 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1744 if( pRet ){ 1745 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1746 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1747 } 1748 return pRet; 1749 } 1750 1751 /* 1752 ** This function is called from within a pre-update callback to retrieve 1753 ** a field of the row currently being updated or deleted. 1754 */ 1755 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1756 PreUpdate *p = db->pPreUpdate; 1757 Mem *pMem; 1758 int rc = SQLITE_OK; 1759 1760 /* Test that this call is being made from within an SQLITE_DELETE or 1761 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1762 if( !p || p->op==SQLITE_INSERT ){ 1763 rc = SQLITE_MISUSE_BKPT; 1764 goto preupdate_old_out; 1765 } 1766 if( p->pPk ){ 1767 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1768 } 1769 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1770 rc = SQLITE_RANGE; 1771 goto preupdate_old_out; 1772 } 1773 1774 /* If the old.* record has not yet been loaded into memory, do so now. */ 1775 if( p->pUnpacked==0 ){ 1776 u32 nRec; 1777 u8 *aRec; 1778 1779 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1780 aRec = sqlite3DbMallocRaw(db, nRec); 1781 if( !aRec ) goto preupdate_old_out; 1782 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1783 if( rc==SQLITE_OK ){ 1784 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1785 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1786 } 1787 if( rc!=SQLITE_OK ){ 1788 sqlite3DbFree(db, aRec); 1789 goto preupdate_old_out; 1790 } 1791 p->aRecord = aRec; 1792 } 1793 1794 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1795 if( iIdx==p->pTab->iPKey ){ 1796 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1797 }else if( iIdx>=p->pUnpacked->nField ){ 1798 *ppValue = (sqlite3_value *)columnNullValue(); 1799 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1800 if( pMem->flags & MEM_Int ){ 1801 sqlite3VdbeMemRealify(pMem); 1802 } 1803 } 1804 1805 preupdate_old_out: 1806 sqlite3Error(db, rc); 1807 return sqlite3ApiExit(db, rc); 1808 } 1809 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1810 1811 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1812 /* 1813 ** This function is called from within a pre-update callback to retrieve 1814 ** the number of columns in the row being updated, deleted or inserted. 1815 */ 1816 int sqlite3_preupdate_count(sqlite3 *db){ 1817 PreUpdate *p = db->pPreUpdate; 1818 return (p ? p->keyinfo.nKeyField : 0); 1819 } 1820 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1821 1822 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1823 /* 1824 ** This function is designed to be called from within a pre-update callback 1825 ** only. It returns zero if the change that caused the callback was made 1826 ** immediately by a user SQL statement. Or, if the change was made by a 1827 ** trigger program, it returns the number of trigger programs currently 1828 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1829 ** top-level trigger etc.). 1830 ** 1831 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1832 ** or SET DEFAULT action is considered a trigger. 1833 */ 1834 int sqlite3_preupdate_depth(sqlite3 *db){ 1835 PreUpdate *p = db->pPreUpdate; 1836 return (p ? p->v->nFrame : 0); 1837 } 1838 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1839 1840 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1841 /* 1842 ** This function is called from within a pre-update callback to retrieve 1843 ** a field of the row currently being updated or inserted. 1844 */ 1845 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1846 PreUpdate *p = db->pPreUpdate; 1847 int rc = SQLITE_OK; 1848 Mem *pMem; 1849 1850 if( !p || p->op==SQLITE_DELETE ){ 1851 rc = SQLITE_MISUSE_BKPT; 1852 goto preupdate_new_out; 1853 } 1854 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1855 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1856 } 1857 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1858 rc = SQLITE_RANGE; 1859 goto preupdate_new_out; 1860 } 1861 1862 if( p->op==SQLITE_INSERT ){ 1863 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1864 ** that is being inserted. Deserialize it. */ 1865 UnpackedRecord *pUnpack = p->pNewUnpacked; 1866 if( !pUnpack ){ 1867 Mem *pData = &p->v->aMem[p->iNewReg]; 1868 rc = ExpandBlob(pData); 1869 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1870 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1871 if( !pUnpack ){ 1872 rc = SQLITE_NOMEM; 1873 goto preupdate_new_out; 1874 } 1875 p->pNewUnpacked = pUnpack; 1876 } 1877 pMem = &pUnpack->aMem[iIdx]; 1878 if( iIdx==p->pTab->iPKey ){ 1879 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1880 }else if( iIdx>=pUnpack->nField ){ 1881 pMem = (sqlite3_value *)columnNullValue(); 1882 } 1883 }else{ 1884 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1885 ** value. Make a copy of the cell contents and return a pointer to it. 1886 ** It is not safe to return a pointer to the memory cell itself as the 1887 ** caller may modify the value text encoding. 1888 */ 1889 assert( p->op==SQLITE_UPDATE ); 1890 if( !p->aNew ){ 1891 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1892 if( !p->aNew ){ 1893 rc = SQLITE_NOMEM; 1894 goto preupdate_new_out; 1895 } 1896 } 1897 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1898 pMem = &p->aNew[iIdx]; 1899 if( pMem->flags==0 ){ 1900 if( iIdx==p->pTab->iPKey ){ 1901 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1902 }else{ 1903 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1904 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1905 } 1906 } 1907 } 1908 *ppValue = pMem; 1909 1910 preupdate_new_out: 1911 sqlite3Error(db, rc); 1912 return sqlite3ApiExit(db, rc); 1913 } 1914 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1915 1916 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1917 /* 1918 ** Return status data for a single loop within query pStmt. 1919 */ 1920 int sqlite3_stmt_scanstatus( 1921 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1922 int idx, /* Index of loop to report on */ 1923 int iScanStatusOp, /* Which metric to return */ 1924 void *pOut /* OUT: Write the answer here */ 1925 ){ 1926 Vdbe *p = (Vdbe*)pStmt; 1927 ScanStatus *pScan; 1928 if( idx<0 || idx>=p->nScan ) return 1; 1929 pScan = &p->aScan[idx]; 1930 switch( iScanStatusOp ){ 1931 case SQLITE_SCANSTAT_NLOOP: { 1932 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1933 break; 1934 } 1935 case SQLITE_SCANSTAT_NVISIT: { 1936 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1937 break; 1938 } 1939 case SQLITE_SCANSTAT_EST: { 1940 double r = 1.0; 1941 LogEst x = pScan->nEst; 1942 while( x<100 ){ 1943 x += 10; 1944 r *= 0.5; 1945 } 1946 *(double*)pOut = r*sqlite3LogEstToInt(x); 1947 break; 1948 } 1949 case SQLITE_SCANSTAT_NAME: { 1950 *(const char**)pOut = pScan->zName; 1951 break; 1952 } 1953 case SQLITE_SCANSTAT_EXPLAIN: { 1954 if( pScan->addrExplain ){ 1955 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1956 }else{ 1957 *(const char**)pOut = 0; 1958 } 1959 break; 1960 } 1961 case SQLITE_SCANSTAT_SELECTID: { 1962 if( pScan->addrExplain ){ 1963 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1964 }else{ 1965 *(int*)pOut = -1; 1966 } 1967 break; 1968 } 1969 default: { 1970 return 1; 1971 } 1972 } 1973 return 0; 1974 } 1975 1976 /* 1977 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1978 */ 1979 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1980 Vdbe *p = (Vdbe*)pStmt; 1981 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1982 } 1983 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1984