xref: /sqlite-3.40.0/src/vdbeapi.c (revision 7a420e22)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 /*
57 ** The following routine destroys a virtual machine that is created by
58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
59 ** success/failure code that describes the result of executing the virtual
60 ** machine.
61 **
62 ** This routine sets the error code and string returned by
63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
64 */
65 int sqlite3_finalize(sqlite3_stmt *pStmt){
66   int rc;
67   if( pStmt==0 ){
68     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
69     ** pointer is a harmless no-op. */
70     rc = SQLITE_OK;
71   }else{
72     Vdbe *v = (Vdbe*)pStmt;
73     sqlite3 *db = v->db;
74 #if SQLITE_THREADSAFE
75     sqlite3_mutex *mutex;
76 #endif
77     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
78 #if SQLITE_THREADSAFE
79     mutex = v->db->mutex;
80 #endif
81     sqlite3_mutex_enter(mutex);
82     rc = sqlite3VdbeFinalize(v);
83     rc = sqlite3ApiExit(db, rc);
84     sqlite3_mutex_leave(mutex);
85   }
86   return rc;
87 }
88 
89 /*
90 ** Terminate the current execution of an SQL statement and reset it
91 ** back to its starting state so that it can be reused. A success code from
92 ** the prior execution is returned.
93 **
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
96 */
97 int sqlite3_reset(sqlite3_stmt *pStmt){
98   int rc;
99   if( pStmt==0 ){
100     rc = SQLITE_OK;
101   }else{
102     Vdbe *v = (Vdbe*)pStmt;
103     sqlite3_mutex_enter(v->db->mutex);
104     rc = sqlite3VdbeReset(v);
105     sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
106     assert( (rc & (v->db->errMask))==rc );
107     rc = sqlite3ApiExit(v->db, rc);
108     sqlite3_mutex_leave(v->db->mutex);
109   }
110   return rc;
111 }
112 
113 /*
114 ** Set all the parameters in the compiled SQL statement to NULL.
115 */
116 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
117   int i;
118   int rc = SQLITE_OK;
119   Vdbe *p = (Vdbe*)pStmt;
120 #if SQLITE_THREADSAFE
121   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
122 #endif
123   sqlite3_mutex_enter(mutex);
124   for(i=0; i<p->nVar; i++){
125     sqlite3VdbeMemRelease(&p->aVar[i]);
126     p->aVar[i].flags = MEM_Null;
127   }
128   if( p->isPrepareV2 && p->expmask ){
129     p->expired = 1;
130   }
131   sqlite3_mutex_leave(mutex);
132   return rc;
133 }
134 
135 
136 /**************************** sqlite3_value_  *******************************
137 ** The following routines extract information from a Mem or sqlite3_value
138 ** structure.
139 */
140 const void *sqlite3_value_blob(sqlite3_value *pVal){
141   Mem *p = (Mem*)pVal;
142   if( p->flags & (MEM_Blob|MEM_Str) ){
143     sqlite3VdbeMemExpandBlob(p);
144     p->flags &= ~MEM_Str;
145     p->flags |= MEM_Blob;
146     return p->n ? p->z : 0;
147   }else{
148     return sqlite3_value_text(pVal);
149   }
150 }
151 int sqlite3_value_bytes(sqlite3_value *pVal){
152   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
153 }
154 int sqlite3_value_bytes16(sqlite3_value *pVal){
155   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
156 }
157 double sqlite3_value_double(sqlite3_value *pVal){
158   return sqlite3VdbeRealValue((Mem*)pVal);
159 }
160 int sqlite3_value_int(sqlite3_value *pVal){
161   return (int)sqlite3VdbeIntValue((Mem*)pVal);
162 }
163 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
164   return sqlite3VdbeIntValue((Mem*)pVal);
165 }
166 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
167   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
168 }
169 #ifndef SQLITE_OMIT_UTF16
170 const void *sqlite3_value_text16(sqlite3_value* pVal){
171   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
172 }
173 const void *sqlite3_value_text16be(sqlite3_value *pVal){
174   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
175 }
176 const void *sqlite3_value_text16le(sqlite3_value *pVal){
177   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
178 }
179 #endif /* SQLITE_OMIT_UTF16 */
180 int sqlite3_value_type(sqlite3_value* pVal){
181   return pVal->type;
182 }
183 
184 /**************************** sqlite3_result_  *******************************
185 ** The following routines are used by user-defined functions to specify
186 ** the function result.
187 **
188 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
189 ** result as a string or blob but if the string or blob is too large, it
190 ** then sets the error code to SQLITE_TOOBIG
191 */
192 static void setResultStrOrError(
193   sqlite3_context *pCtx,  /* Function context */
194   const char *z,          /* String pointer */
195   int n,                  /* Bytes in string, or negative */
196   u8 enc,                 /* Encoding of z.  0 for BLOBs */
197   void (*xDel)(void*)     /* Destructor function */
198 ){
199   if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
200     sqlite3_result_error_toobig(pCtx);
201   }
202 }
203 void sqlite3_result_blob(
204   sqlite3_context *pCtx,
205   const void *z,
206   int n,
207   void (*xDel)(void *)
208 ){
209   assert( n>=0 );
210   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
211   setResultStrOrError(pCtx, z, n, 0, xDel);
212 }
213 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
214   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
215   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
216 }
217 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
218   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219   pCtx->isError = SQLITE_ERROR;
220   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
221 }
222 #ifndef SQLITE_OMIT_UTF16
223 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
224   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
225   pCtx->isError = SQLITE_ERROR;
226   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
227 }
228 #endif
229 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
230   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
231   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
232 }
233 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
234   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
235   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
236 }
237 void sqlite3_result_null(sqlite3_context *pCtx){
238   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
239   sqlite3VdbeMemSetNull(&pCtx->s);
240 }
241 void sqlite3_result_text(
242   sqlite3_context *pCtx,
243   const char *z,
244   int n,
245   void (*xDel)(void *)
246 ){
247   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
248   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
249 }
250 #ifndef SQLITE_OMIT_UTF16
251 void sqlite3_result_text16(
252   sqlite3_context *pCtx,
253   const void *z,
254   int n,
255   void (*xDel)(void *)
256 ){
257   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
258   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
259 }
260 void sqlite3_result_text16be(
261   sqlite3_context *pCtx,
262   const void *z,
263   int n,
264   void (*xDel)(void *)
265 ){
266   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
267   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
268 }
269 void sqlite3_result_text16le(
270   sqlite3_context *pCtx,
271   const void *z,
272   int n,
273   void (*xDel)(void *)
274 ){
275   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
276   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
277 }
278 #endif /* SQLITE_OMIT_UTF16 */
279 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
280   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
281   sqlite3VdbeMemCopy(&pCtx->s, pValue);
282 }
283 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
284   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
285   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
286 }
287 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
288   pCtx->isError = errCode;
289   if( pCtx->s.flags & MEM_Null ){
290     sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
291                          SQLITE_UTF8, SQLITE_STATIC);
292   }
293 }
294 
295 /* Force an SQLITE_TOOBIG error. */
296 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
297   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
298   pCtx->isError = SQLITE_TOOBIG;
299   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
300                        SQLITE_UTF8, SQLITE_STATIC);
301 }
302 
303 /* An SQLITE_NOMEM error. */
304 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
305   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
306   sqlite3VdbeMemSetNull(&pCtx->s);
307   pCtx->isError = SQLITE_NOMEM;
308   pCtx->s.db->mallocFailed = 1;
309 }
310 
311 /*
312 ** This function is called after a transaction has been committed. It
313 ** invokes callbacks registered with sqlite3_wal_hook() as required.
314 */
315 static int doWalCallbacks(sqlite3 *db){
316   int rc = SQLITE_OK;
317 #ifndef SQLITE_OMIT_WAL
318   int i;
319   for(i=0; i<db->nDb; i++){
320     Btree *pBt = db->aDb[i].pBt;
321     if( pBt ){
322       int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
323       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
324         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
325       }
326     }
327   }
328 #endif
329   return rc;
330 }
331 
332 /*
333 ** Execute the statement pStmt, either until a row of data is ready, the
334 ** statement is completely executed or an error occurs.
335 **
336 ** This routine implements the bulk of the logic behind the sqlite_step()
337 ** API.  The only thing omitted is the automatic recompile if a
338 ** schema change has occurred.  That detail is handled by the
339 ** outer sqlite3_step() wrapper procedure.
340 */
341 static int sqlite3Step(Vdbe *p){
342   sqlite3 *db;
343   int rc;
344 
345   assert(p);
346   if( p->magic!=VDBE_MAGIC_RUN ){
347     /* We used to require that sqlite3_reset() be called before retrying
348     ** sqlite3_step() after any error.  But after 3.6.23, we changed this
349     ** so that sqlite3_reset() would be called automatically instead of
350     ** throwing the error.
351     */
352     sqlite3_reset((sqlite3_stmt*)p);
353   }
354 
355   /* Check that malloc() has not failed. If it has, return early. */
356   db = p->db;
357   if( db->mallocFailed ){
358     p->rc = SQLITE_NOMEM;
359     return SQLITE_NOMEM;
360   }
361 
362   if( p->pc<=0 && p->expired ){
363     p->rc = SQLITE_SCHEMA;
364     rc = SQLITE_ERROR;
365     goto end_of_step;
366   }
367   if( p->pc<0 ){
368     /* If there are no other statements currently running, then
369     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
370     ** from interrupting a statement that has not yet started.
371     */
372     if( db->activeVdbeCnt==0 ){
373       db->u1.isInterrupted = 0;
374     }
375 
376     assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 );
377 
378 #ifndef SQLITE_OMIT_TRACE
379     if( db->xProfile && !db->init.busy ){
380       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
381     }
382 #endif
383 
384     db->activeVdbeCnt++;
385     if( p->readOnly==0 ) db->writeVdbeCnt++;
386     p->pc = 0;
387   }
388 #ifndef SQLITE_OMIT_EXPLAIN
389   if( p->explain ){
390     rc = sqlite3VdbeList(p);
391   }else
392 #endif /* SQLITE_OMIT_EXPLAIN */
393   {
394     rc = sqlite3VdbeExec(p);
395   }
396 
397 #ifndef SQLITE_OMIT_TRACE
398   /* Invoke the profile callback if there is one
399   */
400   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
401     sqlite3_int64 iNow;
402     sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
403     db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
404   }
405 #endif
406 
407   if( rc==SQLITE_DONE ){
408     assert( p->rc==SQLITE_OK );
409     p->rc = doWalCallbacks(db);
410     if( p->rc!=SQLITE_OK ){
411       rc = SQLITE_ERROR;
412     }
413   }
414 
415   db->errCode = rc;
416   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
417     p->rc = SQLITE_NOMEM;
418   }
419 end_of_step:
420   /* At this point local variable rc holds the value that should be
421   ** returned if this statement was compiled using the legacy
422   ** sqlite3_prepare() interface. According to the docs, this can only
423   ** be one of the values in the first assert() below. Variable p->rc
424   ** contains the value that would be returned if sqlite3_finalize()
425   ** were called on statement p.
426   */
427   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
428        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
429   );
430   assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
431   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
432     /* If this statement was prepared using sqlite3_prepare_v2(), and an
433     ** error has occured, then return the error code in p->rc to the
434     ** caller. Set the error code in the database handle to the same value.
435     */
436     rc = db->errCode = p->rc;
437   }
438   return (rc&db->errMask);
439 }
440 
441 /*
442 ** This is the top-level implementation of sqlite3_step().  Call
443 ** sqlite3Step() to do most of the work.  If a schema error occurs,
444 ** call sqlite3Reprepare() and try again.
445 */
446 int sqlite3_step(sqlite3_stmt *pStmt){
447   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
448   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
449   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
450   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
451   sqlite3 *db;             /* The database connection */
452 
453   if( vdbeSafetyNotNull(v) ){
454     return SQLITE_MISUSE_BKPT;
455   }
456   db = v->db;
457   sqlite3_mutex_enter(db->mutex);
458   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
459          && cnt++ < 5
460          && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
461     sqlite3_reset(pStmt);
462     v->expired = 0;
463   }
464   if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
465     /* This case occurs after failing to recompile an sql statement.
466     ** The error message from the SQL compiler has already been loaded
467     ** into the database handle. This block copies the error message
468     ** from the database handle into the statement and sets the statement
469     ** program counter to 0 to ensure that when the statement is
470     ** finalized or reset the parser error message is available via
471     ** sqlite3_errmsg() and sqlite3_errcode().
472     */
473     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
474     sqlite3DbFree(db, v->zErrMsg);
475     if( !db->mallocFailed ){
476       v->zErrMsg = sqlite3DbStrDup(db, zErr);
477       v->rc = rc2;
478     } else {
479       v->zErrMsg = 0;
480       v->rc = rc = SQLITE_NOMEM;
481     }
482   }
483   rc = sqlite3ApiExit(db, rc);
484   sqlite3_mutex_leave(db->mutex);
485   return rc;
486 }
487 
488 /*
489 ** Extract the user data from a sqlite3_context structure and return a
490 ** pointer to it.
491 */
492 void *sqlite3_user_data(sqlite3_context *p){
493   assert( p && p->pFunc );
494   return p->pFunc->pUserData;
495 }
496 
497 /*
498 ** Extract the user data from a sqlite3_context structure and return a
499 ** pointer to it.
500 **
501 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
502 ** returns a copy of the pointer to the database connection (the 1st
503 ** parameter) of the sqlite3_create_function() and
504 ** sqlite3_create_function16() routines that originally registered the
505 ** application defined function.
506 */
507 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
508   assert( p && p->pFunc );
509   return p->s.db;
510 }
511 
512 /*
513 ** The following is the implementation of an SQL function that always
514 ** fails with an error message stating that the function is used in the
515 ** wrong context.  The sqlite3_overload_function() API might construct
516 ** SQL function that use this routine so that the functions will exist
517 ** for name resolution but are actually overloaded by the xFindFunction
518 ** method of virtual tables.
519 */
520 void sqlite3InvalidFunction(
521   sqlite3_context *context,  /* The function calling context */
522   int NotUsed,               /* Number of arguments to the function */
523   sqlite3_value **NotUsed2   /* Value of each argument */
524 ){
525   const char *zName = context->pFunc->zName;
526   char *zErr;
527   UNUSED_PARAMETER2(NotUsed, NotUsed2);
528   zErr = sqlite3_mprintf(
529       "unable to use function %s in the requested context", zName);
530   sqlite3_result_error(context, zErr, -1);
531   sqlite3_free(zErr);
532 }
533 
534 /*
535 ** Allocate or return the aggregate context for a user function.  A new
536 ** context is allocated on the first call.  Subsequent calls return the
537 ** same context that was returned on prior calls.
538 */
539 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
540   Mem *pMem;
541   assert( p && p->pFunc && p->pFunc->xStep );
542   assert( sqlite3_mutex_held(p->s.db->mutex) );
543   pMem = p->pMem;
544   testcase( nByte<0 );
545   if( (pMem->flags & MEM_Agg)==0 ){
546     if( nByte<=0 ){
547       sqlite3VdbeMemReleaseExternal(pMem);
548       pMem->flags = MEM_Null;
549       pMem->z = 0;
550     }else{
551       sqlite3VdbeMemGrow(pMem, nByte, 0);
552       pMem->flags = MEM_Agg;
553       pMem->u.pDef = p->pFunc;
554       if( pMem->z ){
555         memset(pMem->z, 0, nByte);
556       }
557     }
558   }
559   return (void*)pMem->z;
560 }
561 
562 /*
563 ** Return the auxilary data pointer, if any, for the iArg'th argument to
564 ** the user-function defined by pCtx.
565 */
566 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
567   VdbeFunc *pVdbeFunc;
568 
569   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
570   pVdbeFunc = pCtx->pVdbeFunc;
571   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
572     return 0;
573   }
574   return pVdbeFunc->apAux[iArg].pAux;
575 }
576 
577 /*
578 ** Set the auxilary data pointer and delete function, for the iArg'th
579 ** argument to the user-function defined by pCtx. Any previous value is
580 ** deleted by calling the delete function specified when it was set.
581 */
582 void sqlite3_set_auxdata(
583   sqlite3_context *pCtx,
584   int iArg,
585   void *pAux,
586   void (*xDelete)(void*)
587 ){
588   struct AuxData *pAuxData;
589   VdbeFunc *pVdbeFunc;
590   if( iArg<0 ) goto failed;
591 
592   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
593   pVdbeFunc = pCtx->pVdbeFunc;
594   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
595     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
596     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
597     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
598     if( !pVdbeFunc ){
599       goto failed;
600     }
601     pCtx->pVdbeFunc = pVdbeFunc;
602     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
603     pVdbeFunc->nAux = iArg+1;
604     pVdbeFunc->pFunc = pCtx->pFunc;
605   }
606 
607   pAuxData = &pVdbeFunc->apAux[iArg];
608   if( pAuxData->pAux && pAuxData->xDelete ){
609     pAuxData->xDelete(pAuxData->pAux);
610   }
611   pAuxData->pAux = pAux;
612   pAuxData->xDelete = xDelete;
613   return;
614 
615 failed:
616   if( xDelete ){
617     xDelete(pAux);
618   }
619 }
620 
621 #ifndef SQLITE_OMIT_DEPRECATED
622 /*
623 ** Return the number of times the Step function of a aggregate has been
624 ** called.
625 **
626 ** This function is deprecated.  Do not use it for new code.  It is
627 ** provide only to avoid breaking legacy code.  New aggregate function
628 ** implementations should keep their own counts within their aggregate
629 ** context.
630 */
631 int sqlite3_aggregate_count(sqlite3_context *p){
632   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
633   return p->pMem->n;
634 }
635 #endif
636 
637 /*
638 ** Return the number of columns in the result set for the statement pStmt.
639 */
640 int sqlite3_column_count(sqlite3_stmt *pStmt){
641   Vdbe *pVm = (Vdbe *)pStmt;
642   return pVm ? pVm->nResColumn : 0;
643 }
644 
645 /*
646 ** Return the number of values available from the current row of the
647 ** currently executing statement pStmt.
648 */
649 int sqlite3_data_count(sqlite3_stmt *pStmt){
650   Vdbe *pVm = (Vdbe *)pStmt;
651   if( pVm==0 || pVm->pResultSet==0 ) return 0;
652   return pVm->nResColumn;
653 }
654 
655 
656 /*
657 ** Check to see if column iCol of the given statement is valid.  If
658 ** it is, return a pointer to the Mem for the value of that column.
659 ** If iCol is not valid, return a pointer to a Mem which has a value
660 ** of NULL.
661 */
662 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
663   Vdbe *pVm;
664   int vals;
665   Mem *pOut;
666 
667   pVm = (Vdbe *)pStmt;
668   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
669     sqlite3_mutex_enter(pVm->db->mutex);
670     vals = sqlite3_data_count(pStmt);
671     pOut = &pVm->pResultSet[i];
672   }else{
673     /* If the value passed as the second argument is out of range, return
674     ** a pointer to the following static Mem object which contains the
675     ** value SQL NULL. Even though the Mem structure contains an element
676     ** of type i64, on certain architecture (x86) with certain compiler
677     ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
678     ** instead of an 8-byte one. This all works fine, except that when
679     ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
680     ** that a Mem structure is located on an 8-byte boundary. To prevent
681     ** this assert() from failing, when building with SQLITE_DEBUG defined
682     ** using gcc, force nullMem to be 8-byte aligned using the magical
683     ** __attribute__((aligned(8))) macro.  */
684     static const Mem nullMem
685 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
686       __attribute__((aligned(8)))
687 #endif
688       = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
689 
690     if( pVm && ALWAYS(pVm->db) ){
691       sqlite3_mutex_enter(pVm->db->mutex);
692       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
693     }
694     pOut = (Mem*)&nullMem;
695   }
696   return pOut;
697 }
698 
699 /*
700 ** This function is called after invoking an sqlite3_value_XXX function on a
701 ** column value (i.e. a value returned by evaluating an SQL expression in the
702 ** select list of a SELECT statement) that may cause a malloc() failure. If
703 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
704 ** code of statement pStmt set to SQLITE_NOMEM.
705 **
706 ** Specifically, this is called from within:
707 **
708 **     sqlite3_column_int()
709 **     sqlite3_column_int64()
710 **     sqlite3_column_text()
711 **     sqlite3_column_text16()
712 **     sqlite3_column_real()
713 **     sqlite3_column_bytes()
714 **     sqlite3_column_bytes16()
715 **     sqiite3_column_blob()
716 */
717 static void columnMallocFailure(sqlite3_stmt *pStmt)
718 {
719   /* If malloc() failed during an encoding conversion within an
720   ** sqlite3_column_XXX API, then set the return code of the statement to
721   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
722   ** and _finalize() will return NOMEM.
723   */
724   Vdbe *p = (Vdbe *)pStmt;
725   if( p ){
726     p->rc = sqlite3ApiExit(p->db, p->rc);
727     sqlite3_mutex_leave(p->db->mutex);
728   }
729 }
730 
731 /**************************** sqlite3_column_  *******************************
732 ** The following routines are used to access elements of the current row
733 ** in the result set.
734 */
735 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
736   const void *val;
737   val = sqlite3_value_blob( columnMem(pStmt,i) );
738   /* Even though there is no encoding conversion, value_blob() might
739   ** need to call malloc() to expand the result of a zeroblob()
740   ** expression.
741   */
742   columnMallocFailure(pStmt);
743   return val;
744 }
745 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
746   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
747   columnMallocFailure(pStmt);
748   return val;
749 }
750 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
751   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
752   columnMallocFailure(pStmt);
753   return val;
754 }
755 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
756   double val = sqlite3_value_double( columnMem(pStmt,i) );
757   columnMallocFailure(pStmt);
758   return val;
759 }
760 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
761   int val = sqlite3_value_int( columnMem(pStmt,i) );
762   columnMallocFailure(pStmt);
763   return val;
764 }
765 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
766   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
767   columnMallocFailure(pStmt);
768   return val;
769 }
770 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
771   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
772   columnMallocFailure(pStmt);
773   return val;
774 }
775 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
776   Mem *pOut = columnMem(pStmt, i);
777   if( pOut->flags&MEM_Static ){
778     pOut->flags &= ~MEM_Static;
779     pOut->flags |= MEM_Ephem;
780   }
781   columnMallocFailure(pStmt);
782   return (sqlite3_value *)pOut;
783 }
784 #ifndef SQLITE_OMIT_UTF16
785 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
786   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
787   columnMallocFailure(pStmt);
788   return val;
789 }
790 #endif /* SQLITE_OMIT_UTF16 */
791 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
792   int iType = sqlite3_value_type( columnMem(pStmt,i) );
793   columnMallocFailure(pStmt);
794   return iType;
795 }
796 
797 /* The following function is experimental and subject to change or
798 ** removal */
799 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
800 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
801 **}
802 */
803 
804 /*
805 ** Convert the N-th element of pStmt->pColName[] into a string using
806 ** xFunc() then return that string.  If N is out of range, return 0.
807 **
808 ** There are up to 5 names for each column.  useType determines which
809 ** name is returned.  Here are the names:
810 **
811 **    0      The column name as it should be displayed for output
812 **    1      The datatype name for the column
813 **    2      The name of the database that the column derives from
814 **    3      The name of the table that the column derives from
815 **    4      The name of the table column that the result column derives from
816 **
817 ** If the result is not a simple column reference (if it is an expression
818 ** or a constant) then useTypes 2, 3, and 4 return NULL.
819 */
820 static const void *columnName(
821   sqlite3_stmt *pStmt,
822   int N,
823   const void *(*xFunc)(Mem*),
824   int useType
825 ){
826   const void *ret = 0;
827   Vdbe *p = (Vdbe *)pStmt;
828   int n;
829   sqlite3 *db = p->db;
830 
831   assert( db!=0 );
832   n = sqlite3_column_count(pStmt);
833   if( N<n && N>=0 ){
834     N += useType*n;
835     sqlite3_mutex_enter(db->mutex);
836     assert( db->mallocFailed==0 );
837     ret = xFunc(&p->aColName[N]);
838      /* A malloc may have failed inside of the xFunc() call. If this
839     ** is the case, clear the mallocFailed flag and return NULL.
840     */
841     if( db->mallocFailed ){
842       db->mallocFailed = 0;
843       ret = 0;
844     }
845     sqlite3_mutex_leave(db->mutex);
846   }
847   return ret;
848 }
849 
850 /*
851 ** Return the name of the Nth column of the result set returned by SQL
852 ** statement pStmt.
853 */
854 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
855   return columnName(
856       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
857 }
858 #ifndef SQLITE_OMIT_UTF16
859 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
860   return columnName(
861       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
862 }
863 #endif
864 
865 /*
866 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
867 ** not define OMIT_DECLTYPE.
868 */
869 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
870 # error "Must not define both SQLITE_OMIT_DECLTYPE \
871          and SQLITE_ENABLE_COLUMN_METADATA"
872 #endif
873 
874 #ifndef SQLITE_OMIT_DECLTYPE
875 /*
876 ** Return the column declaration type (if applicable) of the 'i'th column
877 ** of the result set of SQL statement pStmt.
878 */
879 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
880   return columnName(
881       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
882 }
883 #ifndef SQLITE_OMIT_UTF16
884 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
885   return columnName(
886       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
887 }
888 #endif /* SQLITE_OMIT_UTF16 */
889 #endif /* SQLITE_OMIT_DECLTYPE */
890 
891 #ifdef SQLITE_ENABLE_COLUMN_METADATA
892 /*
893 ** Return the name of the database from which a result column derives.
894 ** NULL is returned if the result column is an expression or constant or
895 ** anything else which is not an unabiguous reference to a database column.
896 */
897 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
898   return columnName(
899       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
900 }
901 #ifndef SQLITE_OMIT_UTF16
902 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
903   return columnName(
904       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
905 }
906 #endif /* SQLITE_OMIT_UTF16 */
907 
908 /*
909 ** Return the name of the table from which a result column derives.
910 ** NULL is returned if the result column is an expression or constant or
911 ** anything else which is not an unabiguous reference to a database column.
912 */
913 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
914   return columnName(
915       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
916 }
917 #ifndef SQLITE_OMIT_UTF16
918 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
919   return columnName(
920       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
921 }
922 #endif /* SQLITE_OMIT_UTF16 */
923 
924 /*
925 ** Return the name of the table column from which a result column derives.
926 ** NULL is returned if the result column is an expression or constant or
927 ** anything else which is not an unabiguous reference to a database column.
928 */
929 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
930   return columnName(
931       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
932 }
933 #ifndef SQLITE_OMIT_UTF16
934 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
935   return columnName(
936       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
937 }
938 #endif /* SQLITE_OMIT_UTF16 */
939 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
940 
941 
942 /******************************* sqlite3_bind_  ***************************
943 **
944 ** Routines used to attach values to wildcards in a compiled SQL statement.
945 */
946 /*
947 ** Unbind the value bound to variable i in virtual machine p. This is the
948 ** the same as binding a NULL value to the column. If the "i" parameter is
949 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
950 **
951 ** A successful evaluation of this routine acquires the mutex on p.
952 ** the mutex is released if any kind of error occurs.
953 **
954 ** The error code stored in database p->db is overwritten with the return
955 ** value in any case.
956 */
957 static int vdbeUnbind(Vdbe *p, int i){
958   Mem *pVar;
959   if( vdbeSafetyNotNull(p) ){
960     return SQLITE_MISUSE_BKPT;
961   }
962   sqlite3_mutex_enter(p->db->mutex);
963   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
964     sqlite3Error(p->db, SQLITE_MISUSE, 0);
965     sqlite3_mutex_leave(p->db->mutex);
966     sqlite3_log(SQLITE_MISUSE,
967         "bind on a busy prepared statement: [%s]", p->zSql);
968     return SQLITE_MISUSE_BKPT;
969   }
970   if( i<1 || i>p->nVar ){
971     sqlite3Error(p->db, SQLITE_RANGE, 0);
972     sqlite3_mutex_leave(p->db->mutex);
973     return SQLITE_RANGE;
974   }
975   i--;
976   pVar = &p->aVar[i];
977   sqlite3VdbeMemRelease(pVar);
978   pVar->flags = MEM_Null;
979   sqlite3Error(p->db, SQLITE_OK, 0);
980 
981   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
982   ** binding a new value to this variable invalidates the current query plan.
983   **
984   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
985   ** parameter in the WHERE clause might influence the choice of query plan
986   ** for a statement, then the statement will be automatically recompiled,
987   ** as if there had been a schema change, on the first sqlite3_step() call
988   ** following any change to the bindings of that parameter.
989   */
990   if( p->isPrepareV2 &&
991      ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
992   ){
993     p->expired = 1;
994   }
995   return SQLITE_OK;
996 }
997 
998 /*
999 ** Bind a text or BLOB value.
1000 */
1001 static int bindText(
1002   sqlite3_stmt *pStmt,   /* The statement to bind against */
1003   int i,                 /* Index of the parameter to bind */
1004   const void *zData,     /* Pointer to the data to be bound */
1005   int nData,             /* Number of bytes of data to be bound */
1006   void (*xDel)(void*),   /* Destructor for the data */
1007   u8 encoding            /* Encoding for the data */
1008 ){
1009   Vdbe *p = (Vdbe *)pStmt;
1010   Mem *pVar;
1011   int rc;
1012 
1013   rc = vdbeUnbind(p, i);
1014   if( rc==SQLITE_OK ){
1015     if( zData!=0 ){
1016       pVar = &p->aVar[i-1];
1017       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1018       if( rc==SQLITE_OK && encoding!=0 ){
1019         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1020       }
1021       sqlite3Error(p->db, rc, 0);
1022       rc = sqlite3ApiExit(p->db, rc);
1023     }
1024     sqlite3_mutex_leave(p->db->mutex);
1025   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1026     xDel((void*)zData);
1027   }
1028   return rc;
1029 }
1030 
1031 
1032 /*
1033 ** Bind a blob value to an SQL statement variable.
1034 */
1035 int sqlite3_bind_blob(
1036   sqlite3_stmt *pStmt,
1037   int i,
1038   const void *zData,
1039   int nData,
1040   void (*xDel)(void*)
1041 ){
1042   return bindText(pStmt, i, zData, nData, xDel, 0);
1043 }
1044 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1045   int rc;
1046   Vdbe *p = (Vdbe *)pStmt;
1047   rc = vdbeUnbind(p, i);
1048   if( rc==SQLITE_OK ){
1049     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1050     sqlite3_mutex_leave(p->db->mutex);
1051   }
1052   return rc;
1053 }
1054 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1055   return sqlite3_bind_int64(p, i, (i64)iValue);
1056 }
1057 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1058   int rc;
1059   Vdbe *p = (Vdbe *)pStmt;
1060   rc = vdbeUnbind(p, i);
1061   if( rc==SQLITE_OK ){
1062     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1063     sqlite3_mutex_leave(p->db->mutex);
1064   }
1065   return rc;
1066 }
1067 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1068   int rc;
1069   Vdbe *p = (Vdbe*)pStmt;
1070   rc = vdbeUnbind(p, i);
1071   if( rc==SQLITE_OK ){
1072     sqlite3_mutex_leave(p->db->mutex);
1073   }
1074   return rc;
1075 }
1076 int sqlite3_bind_text(
1077   sqlite3_stmt *pStmt,
1078   int i,
1079   const char *zData,
1080   int nData,
1081   void (*xDel)(void*)
1082 ){
1083   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1084 }
1085 #ifndef SQLITE_OMIT_UTF16
1086 int sqlite3_bind_text16(
1087   sqlite3_stmt *pStmt,
1088   int i,
1089   const void *zData,
1090   int nData,
1091   void (*xDel)(void*)
1092 ){
1093   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1094 }
1095 #endif /* SQLITE_OMIT_UTF16 */
1096 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1097   int rc;
1098   switch( pValue->type ){
1099     case SQLITE_INTEGER: {
1100       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1101       break;
1102     }
1103     case SQLITE_FLOAT: {
1104       rc = sqlite3_bind_double(pStmt, i, pValue->r);
1105       break;
1106     }
1107     case SQLITE_BLOB: {
1108       if( pValue->flags & MEM_Zero ){
1109         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1110       }else{
1111         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1112       }
1113       break;
1114     }
1115     case SQLITE_TEXT: {
1116       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1117                               pValue->enc);
1118       break;
1119     }
1120     default: {
1121       rc = sqlite3_bind_null(pStmt, i);
1122       break;
1123     }
1124   }
1125   return rc;
1126 }
1127 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1128   int rc;
1129   Vdbe *p = (Vdbe *)pStmt;
1130   rc = vdbeUnbind(p, i);
1131   if( rc==SQLITE_OK ){
1132     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1133     sqlite3_mutex_leave(p->db->mutex);
1134   }
1135   return rc;
1136 }
1137 
1138 /*
1139 ** Return the number of wildcards that can be potentially bound to.
1140 ** This routine is added to support DBD::SQLite.
1141 */
1142 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1143   Vdbe *p = (Vdbe*)pStmt;
1144   return p ? p->nVar : 0;
1145 }
1146 
1147 /*
1148 ** Create a mapping from variable numbers to variable names
1149 ** in the Vdbe.azVar[] array, if such a mapping does not already
1150 ** exist.
1151 */
1152 static void createVarMap(Vdbe *p){
1153   if( !p->okVar ){
1154     int j;
1155     Op *pOp;
1156     sqlite3_mutex_enter(p->db->mutex);
1157     /* The race condition here is harmless.  If two threads call this
1158     ** routine on the same Vdbe at the same time, they both might end
1159     ** up initializing the Vdbe.azVar[] array.  That is a little extra
1160     ** work but it results in the same answer.
1161     */
1162     for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1163       if( pOp->opcode==OP_Variable ){
1164         assert( pOp->p1>0 && pOp->p1<=p->nVar );
1165         p->azVar[pOp->p1-1] = pOp->p4.z;
1166       }
1167     }
1168     p->okVar = 1;
1169     sqlite3_mutex_leave(p->db->mutex);
1170   }
1171 }
1172 
1173 /*
1174 ** Return the name of a wildcard parameter.  Return NULL if the index
1175 ** is out of range or if the wildcard is unnamed.
1176 **
1177 ** The result is always UTF-8.
1178 */
1179 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1180   Vdbe *p = (Vdbe*)pStmt;
1181   if( p==0 || i<1 || i>p->nVar ){
1182     return 0;
1183   }
1184   createVarMap(p);
1185   return p->azVar[i-1];
1186 }
1187 
1188 /*
1189 ** Given a wildcard parameter name, return the index of the variable
1190 ** with that name.  If there is no variable with the given name,
1191 ** return 0.
1192 */
1193 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1194   int i;
1195   if( p==0 ){
1196     return 0;
1197   }
1198   createVarMap(p);
1199   if( zName ){
1200     for(i=0; i<p->nVar; i++){
1201       const char *z = p->azVar[i];
1202       if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
1203         return i+1;
1204       }
1205     }
1206   }
1207   return 0;
1208 }
1209 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1210   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1211 }
1212 
1213 /*
1214 ** Transfer all bindings from the first statement over to the second.
1215 */
1216 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1217   Vdbe *pFrom = (Vdbe*)pFromStmt;
1218   Vdbe *pTo = (Vdbe*)pToStmt;
1219   int i;
1220   assert( pTo->db==pFrom->db );
1221   assert( pTo->nVar==pFrom->nVar );
1222   sqlite3_mutex_enter(pTo->db->mutex);
1223   for(i=0; i<pFrom->nVar; i++){
1224     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1225   }
1226   sqlite3_mutex_leave(pTo->db->mutex);
1227   return SQLITE_OK;
1228 }
1229 
1230 #ifndef SQLITE_OMIT_DEPRECATED
1231 /*
1232 ** Deprecated external interface.  Internal/core SQLite code
1233 ** should call sqlite3TransferBindings.
1234 **
1235 ** Is is misuse to call this routine with statements from different
1236 ** database connections.  But as this is a deprecated interface, we
1237 ** will not bother to check for that condition.
1238 **
1239 ** If the two statements contain a different number of bindings, then
1240 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1241 ** SQLITE_OK is returned.
1242 */
1243 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1244   Vdbe *pFrom = (Vdbe*)pFromStmt;
1245   Vdbe *pTo = (Vdbe*)pToStmt;
1246   if( pFrom->nVar!=pTo->nVar ){
1247     return SQLITE_ERROR;
1248   }
1249   if( pTo->isPrepareV2 && pTo->expmask ){
1250     pTo->expired = 1;
1251   }
1252   if( pFrom->isPrepareV2 && pFrom->expmask ){
1253     pFrom->expired = 1;
1254   }
1255   return sqlite3TransferBindings(pFromStmt, pToStmt);
1256 }
1257 #endif
1258 
1259 /*
1260 ** Return the sqlite3* database handle to which the prepared statement given
1261 ** in the argument belongs.  This is the same database handle that was
1262 ** the first argument to the sqlite3_prepare() that was used to create
1263 ** the statement in the first place.
1264 */
1265 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1266   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1267 }
1268 
1269 /*
1270 ** Return a pointer to the next prepared statement after pStmt associated
1271 ** with database connection pDb.  If pStmt is NULL, return the first
1272 ** prepared statement for the database connection.  Return NULL if there
1273 ** are no more.
1274 */
1275 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1276   sqlite3_stmt *pNext;
1277   sqlite3_mutex_enter(pDb->mutex);
1278   if( pStmt==0 ){
1279     pNext = (sqlite3_stmt*)pDb->pVdbe;
1280   }else{
1281     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1282   }
1283   sqlite3_mutex_leave(pDb->mutex);
1284   return pNext;
1285 }
1286 
1287 /*
1288 ** Return the value of a status counter for a prepared statement
1289 */
1290 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1291   Vdbe *pVdbe = (Vdbe*)pStmt;
1292   int v = pVdbe->aCounter[op-1];
1293   if( resetFlag ) pVdbe->aCounter[op-1] = 0;
1294   return v;
1295 }
1296