1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 #if SQLITE_THREADSAFE 75 sqlite3_mutex *mutex; 76 #endif 77 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 78 #if SQLITE_THREADSAFE 79 mutex = v->db->mutex; 80 #endif 81 sqlite3_mutex_enter(mutex); 82 rc = sqlite3VdbeFinalize(v); 83 rc = sqlite3ApiExit(db, rc); 84 sqlite3_mutex_leave(mutex); 85 } 86 return rc; 87 } 88 89 /* 90 ** Terminate the current execution of an SQL statement and reset it 91 ** back to its starting state so that it can be reused. A success code from 92 ** the prior execution is returned. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_reset(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 rc = SQLITE_OK; 101 }else{ 102 Vdbe *v = (Vdbe*)pStmt; 103 sqlite3_mutex_enter(v->db->mutex); 104 rc = sqlite3VdbeReset(v); 105 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0); 106 assert( (rc & (v->db->errMask))==rc ); 107 rc = sqlite3ApiExit(v->db, rc); 108 sqlite3_mutex_leave(v->db->mutex); 109 } 110 return rc; 111 } 112 113 /* 114 ** Set all the parameters in the compiled SQL statement to NULL. 115 */ 116 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 117 int i; 118 int rc = SQLITE_OK; 119 Vdbe *p = (Vdbe*)pStmt; 120 #if SQLITE_THREADSAFE 121 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 122 #endif 123 sqlite3_mutex_enter(mutex); 124 for(i=0; i<p->nVar; i++){ 125 sqlite3VdbeMemRelease(&p->aVar[i]); 126 p->aVar[i].flags = MEM_Null; 127 } 128 if( p->isPrepareV2 && p->expmask ){ 129 p->expired = 1; 130 } 131 sqlite3_mutex_leave(mutex); 132 return rc; 133 } 134 135 136 /**************************** sqlite3_value_ ******************************* 137 ** The following routines extract information from a Mem or sqlite3_value 138 ** structure. 139 */ 140 const void *sqlite3_value_blob(sqlite3_value *pVal){ 141 Mem *p = (Mem*)pVal; 142 if( p->flags & (MEM_Blob|MEM_Str) ){ 143 sqlite3VdbeMemExpandBlob(p); 144 p->flags &= ~MEM_Str; 145 p->flags |= MEM_Blob; 146 return p->n ? p->z : 0; 147 }else{ 148 return sqlite3_value_text(pVal); 149 } 150 } 151 int sqlite3_value_bytes(sqlite3_value *pVal){ 152 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 153 } 154 int sqlite3_value_bytes16(sqlite3_value *pVal){ 155 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 156 } 157 double sqlite3_value_double(sqlite3_value *pVal){ 158 return sqlite3VdbeRealValue((Mem*)pVal); 159 } 160 int sqlite3_value_int(sqlite3_value *pVal){ 161 return (int)sqlite3VdbeIntValue((Mem*)pVal); 162 } 163 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 164 return sqlite3VdbeIntValue((Mem*)pVal); 165 } 166 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 167 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 168 } 169 #ifndef SQLITE_OMIT_UTF16 170 const void *sqlite3_value_text16(sqlite3_value* pVal){ 171 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 172 } 173 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 174 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 175 } 176 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 177 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 178 } 179 #endif /* SQLITE_OMIT_UTF16 */ 180 int sqlite3_value_type(sqlite3_value* pVal){ 181 return pVal->type; 182 } 183 184 /**************************** sqlite3_result_ ******************************* 185 ** The following routines are used by user-defined functions to specify 186 ** the function result. 187 ** 188 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 189 ** result as a string or blob but if the string or blob is too large, it 190 ** then sets the error code to SQLITE_TOOBIG 191 */ 192 static void setResultStrOrError( 193 sqlite3_context *pCtx, /* Function context */ 194 const char *z, /* String pointer */ 195 int n, /* Bytes in string, or negative */ 196 u8 enc, /* Encoding of z. 0 for BLOBs */ 197 void (*xDel)(void*) /* Destructor function */ 198 ){ 199 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 200 sqlite3_result_error_toobig(pCtx); 201 } 202 } 203 void sqlite3_result_blob( 204 sqlite3_context *pCtx, 205 const void *z, 206 int n, 207 void (*xDel)(void *) 208 ){ 209 assert( n>=0 ); 210 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 211 setResultStrOrError(pCtx, z, n, 0, xDel); 212 } 213 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 214 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 215 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 216 } 217 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 pCtx->isError = SQLITE_ERROR; 220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 221 } 222 #ifndef SQLITE_OMIT_UTF16 223 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 225 pCtx->isError = SQLITE_ERROR; 226 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 227 } 228 #endif 229 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 230 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 231 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 232 } 233 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 234 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 235 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 236 } 237 void sqlite3_result_null(sqlite3_context *pCtx){ 238 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 239 sqlite3VdbeMemSetNull(&pCtx->s); 240 } 241 void sqlite3_result_text( 242 sqlite3_context *pCtx, 243 const char *z, 244 int n, 245 void (*xDel)(void *) 246 ){ 247 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 248 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 249 } 250 #ifndef SQLITE_OMIT_UTF16 251 void sqlite3_result_text16( 252 sqlite3_context *pCtx, 253 const void *z, 254 int n, 255 void (*xDel)(void *) 256 ){ 257 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 258 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 259 } 260 void sqlite3_result_text16be( 261 sqlite3_context *pCtx, 262 const void *z, 263 int n, 264 void (*xDel)(void *) 265 ){ 266 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 267 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 268 } 269 void sqlite3_result_text16le( 270 sqlite3_context *pCtx, 271 const void *z, 272 int n, 273 void (*xDel)(void *) 274 ){ 275 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 276 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 277 } 278 #endif /* SQLITE_OMIT_UTF16 */ 279 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 280 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 281 sqlite3VdbeMemCopy(&pCtx->s, pValue); 282 } 283 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 284 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 285 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 286 } 287 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 288 pCtx->isError = errCode; 289 if( pCtx->s.flags & MEM_Null ){ 290 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 291 SQLITE_UTF8, SQLITE_STATIC); 292 } 293 } 294 295 /* Force an SQLITE_TOOBIG error. */ 296 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 297 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 298 pCtx->isError = SQLITE_TOOBIG; 299 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 300 SQLITE_UTF8, SQLITE_STATIC); 301 } 302 303 /* An SQLITE_NOMEM error. */ 304 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 305 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 306 sqlite3VdbeMemSetNull(&pCtx->s); 307 pCtx->isError = SQLITE_NOMEM; 308 pCtx->s.db->mallocFailed = 1; 309 } 310 311 /* 312 ** This function is called after a transaction has been committed. It 313 ** invokes callbacks registered with sqlite3_wal_hook() as required. 314 */ 315 static int doWalCallbacks(sqlite3 *db){ 316 int rc = SQLITE_OK; 317 #ifndef SQLITE_OMIT_WAL 318 int i; 319 for(i=0; i<db->nDb; i++){ 320 Btree *pBt = db->aDb[i].pBt; 321 if( pBt ){ 322 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 323 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 324 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 325 } 326 } 327 } 328 #endif 329 return rc; 330 } 331 332 /* 333 ** Execute the statement pStmt, either until a row of data is ready, the 334 ** statement is completely executed or an error occurs. 335 ** 336 ** This routine implements the bulk of the logic behind the sqlite_step() 337 ** API. The only thing omitted is the automatic recompile if a 338 ** schema change has occurred. That detail is handled by the 339 ** outer sqlite3_step() wrapper procedure. 340 */ 341 static int sqlite3Step(Vdbe *p){ 342 sqlite3 *db; 343 int rc; 344 345 assert(p); 346 if( p->magic!=VDBE_MAGIC_RUN ){ 347 /* We used to require that sqlite3_reset() be called before retrying 348 ** sqlite3_step() after any error. But after 3.6.23, we changed this 349 ** so that sqlite3_reset() would be called automatically instead of 350 ** throwing the error. 351 */ 352 sqlite3_reset((sqlite3_stmt*)p); 353 } 354 355 /* Check that malloc() has not failed. If it has, return early. */ 356 db = p->db; 357 if( db->mallocFailed ){ 358 p->rc = SQLITE_NOMEM; 359 return SQLITE_NOMEM; 360 } 361 362 if( p->pc<=0 && p->expired ){ 363 p->rc = SQLITE_SCHEMA; 364 rc = SQLITE_ERROR; 365 goto end_of_step; 366 } 367 if( p->pc<0 ){ 368 /* If there are no other statements currently running, then 369 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 370 ** from interrupting a statement that has not yet started. 371 */ 372 if( db->activeVdbeCnt==0 ){ 373 db->u1.isInterrupted = 0; 374 } 375 376 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); 377 378 #ifndef SQLITE_OMIT_TRACE 379 if( db->xProfile && !db->init.busy ){ 380 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 381 } 382 #endif 383 384 db->activeVdbeCnt++; 385 if( p->readOnly==0 ) db->writeVdbeCnt++; 386 p->pc = 0; 387 } 388 #ifndef SQLITE_OMIT_EXPLAIN 389 if( p->explain ){ 390 rc = sqlite3VdbeList(p); 391 }else 392 #endif /* SQLITE_OMIT_EXPLAIN */ 393 { 394 rc = sqlite3VdbeExec(p); 395 } 396 397 #ifndef SQLITE_OMIT_TRACE 398 /* Invoke the profile callback if there is one 399 */ 400 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 401 sqlite3_int64 iNow; 402 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 403 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 404 } 405 #endif 406 407 if( rc==SQLITE_DONE ){ 408 assert( p->rc==SQLITE_OK ); 409 p->rc = doWalCallbacks(db); 410 if( p->rc!=SQLITE_OK ){ 411 rc = SQLITE_ERROR; 412 } 413 } 414 415 db->errCode = rc; 416 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 417 p->rc = SQLITE_NOMEM; 418 } 419 end_of_step: 420 /* At this point local variable rc holds the value that should be 421 ** returned if this statement was compiled using the legacy 422 ** sqlite3_prepare() interface. According to the docs, this can only 423 ** be one of the values in the first assert() below. Variable p->rc 424 ** contains the value that would be returned if sqlite3_finalize() 425 ** were called on statement p. 426 */ 427 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 428 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 429 ); 430 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 431 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 432 /* If this statement was prepared using sqlite3_prepare_v2(), and an 433 ** error has occured, then return the error code in p->rc to the 434 ** caller. Set the error code in the database handle to the same value. 435 */ 436 rc = db->errCode = p->rc; 437 } 438 return (rc&db->errMask); 439 } 440 441 /* 442 ** This is the top-level implementation of sqlite3_step(). Call 443 ** sqlite3Step() to do most of the work. If a schema error occurs, 444 ** call sqlite3Reprepare() and try again. 445 */ 446 int sqlite3_step(sqlite3_stmt *pStmt){ 447 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 448 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 449 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 450 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 451 sqlite3 *db; /* The database connection */ 452 453 if( vdbeSafetyNotNull(v) ){ 454 return SQLITE_MISUSE_BKPT; 455 } 456 db = v->db; 457 sqlite3_mutex_enter(db->mutex); 458 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 459 && cnt++ < 5 460 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 461 sqlite3_reset(pStmt); 462 v->expired = 0; 463 } 464 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 465 /* This case occurs after failing to recompile an sql statement. 466 ** The error message from the SQL compiler has already been loaded 467 ** into the database handle. This block copies the error message 468 ** from the database handle into the statement and sets the statement 469 ** program counter to 0 to ensure that when the statement is 470 ** finalized or reset the parser error message is available via 471 ** sqlite3_errmsg() and sqlite3_errcode(). 472 */ 473 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 474 sqlite3DbFree(db, v->zErrMsg); 475 if( !db->mallocFailed ){ 476 v->zErrMsg = sqlite3DbStrDup(db, zErr); 477 v->rc = rc2; 478 } else { 479 v->zErrMsg = 0; 480 v->rc = rc = SQLITE_NOMEM; 481 } 482 } 483 rc = sqlite3ApiExit(db, rc); 484 sqlite3_mutex_leave(db->mutex); 485 return rc; 486 } 487 488 /* 489 ** Extract the user data from a sqlite3_context structure and return a 490 ** pointer to it. 491 */ 492 void *sqlite3_user_data(sqlite3_context *p){ 493 assert( p && p->pFunc ); 494 return p->pFunc->pUserData; 495 } 496 497 /* 498 ** Extract the user data from a sqlite3_context structure and return a 499 ** pointer to it. 500 ** 501 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 502 ** returns a copy of the pointer to the database connection (the 1st 503 ** parameter) of the sqlite3_create_function() and 504 ** sqlite3_create_function16() routines that originally registered the 505 ** application defined function. 506 */ 507 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 508 assert( p && p->pFunc ); 509 return p->s.db; 510 } 511 512 /* 513 ** The following is the implementation of an SQL function that always 514 ** fails with an error message stating that the function is used in the 515 ** wrong context. The sqlite3_overload_function() API might construct 516 ** SQL function that use this routine so that the functions will exist 517 ** for name resolution but are actually overloaded by the xFindFunction 518 ** method of virtual tables. 519 */ 520 void sqlite3InvalidFunction( 521 sqlite3_context *context, /* The function calling context */ 522 int NotUsed, /* Number of arguments to the function */ 523 sqlite3_value **NotUsed2 /* Value of each argument */ 524 ){ 525 const char *zName = context->pFunc->zName; 526 char *zErr; 527 UNUSED_PARAMETER2(NotUsed, NotUsed2); 528 zErr = sqlite3_mprintf( 529 "unable to use function %s in the requested context", zName); 530 sqlite3_result_error(context, zErr, -1); 531 sqlite3_free(zErr); 532 } 533 534 /* 535 ** Allocate or return the aggregate context for a user function. A new 536 ** context is allocated on the first call. Subsequent calls return the 537 ** same context that was returned on prior calls. 538 */ 539 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 540 Mem *pMem; 541 assert( p && p->pFunc && p->pFunc->xStep ); 542 assert( sqlite3_mutex_held(p->s.db->mutex) ); 543 pMem = p->pMem; 544 testcase( nByte<0 ); 545 if( (pMem->flags & MEM_Agg)==0 ){ 546 if( nByte<=0 ){ 547 sqlite3VdbeMemReleaseExternal(pMem); 548 pMem->flags = MEM_Null; 549 pMem->z = 0; 550 }else{ 551 sqlite3VdbeMemGrow(pMem, nByte, 0); 552 pMem->flags = MEM_Agg; 553 pMem->u.pDef = p->pFunc; 554 if( pMem->z ){ 555 memset(pMem->z, 0, nByte); 556 } 557 } 558 } 559 return (void*)pMem->z; 560 } 561 562 /* 563 ** Return the auxilary data pointer, if any, for the iArg'th argument to 564 ** the user-function defined by pCtx. 565 */ 566 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 567 VdbeFunc *pVdbeFunc; 568 569 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 570 pVdbeFunc = pCtx->pVdbeFunc; 571 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 572 return 0; 573 } 574 return pVdbeFunc->apAux[iArg].pAux; 575 } 576 577 /* 578 ** Set the auxilary data pointer and delete function, for the iArg'th 579 ** argument to the user-function defined by pCtx. Any previous value is 580 ** deleted by calling the delete function specified when it was set. 581 */ 582 void sqlite3_set_auxdata( 583 sqlite3_context *pCtx, 584 int iArg, 585 void *pAux, 586 void (*xDelete)(void*) 587 ){ 588 struct AuxData *pAuxData; 589 VdbeFunc *pVdbeFunc; 590 if( iArg<0 ) goto failed; 591 592 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 593 pVdbeFunc = pCtx->pVdbeFunc; 594 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 595 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 596 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 597 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 598 if( !pVdbeFunc ){ 599 goto failed; 600 } 601 pCtx->pVdbeFunc = pVdbeFunc; 602 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 603 pVdbeFunc->nAux = iArg+1; 604 pVdbeFunc->pFunc = pCtx->pFunc; 605 } 606 607 pAuxData = &pVdbeFunc->apAux[iArg]; 608 if( pAuxData->pAux && pAuxData->xDelete ){ 609 pAuxData->xDelete(pAuxData->pAux); 610 } 611 pAuxData->pAux = pAux; 612 pAuxData->xDelete = xDelete; 613 return; 614 615 failed: 616 if( xDelete ){ 617 xDelete(pAux); 618 } 619 } 620 621 #ifndef SQLITE_OMIT_DEPRECATED 622 /* 623 ** Return the number of times the Step function of a aggregate has been 624 ** called. 625 ** 626 ** This function is deprecated. Do not use it for new code. It is 627 ** provide only to avoid breaking legacy code. New aggregate function 628 ** implementations should keep their own counts within their aggregate 629 ** context. 630 */ 631 int sqlite3_aggregate_count(sqlite3_context *p){ 632 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 633 return p->pMem->n; 634 } 635 #endif 636 637 /* 638 ** Return the number of columns in the result set for the statement pStmt. 639 */ 640 int sqlite3_column_count(sqlite3_stmt *pStmt){ 641 Vdbe *pVm = (Vdbe *)pStmt; 642 return pVm ? pVm->nResColumn : 0; 643 } 644 645 /* 646 ** Return the number of values available from the current row of the 647 ** currently executing statement pStmt. 648 */ 649 int sqlite3_data_count(sqlite3_stmt *pStmt){ 650 Vdbe *pVm = (Vdbe *)pStmt; 651 if( pVm==0 || pVm->pResultSet==0 ) return 0; 652 return pVm->nResColumn; 653 } 654 655 656 /* 657 ** Check to see if column iCol of the given statement is valid. If 658 ** it is, return a pointer to the Mem for the value of that column. 659 ** If iCol is not valid, return a pointer to a Mem which has a value 660 ** of NULL. 661 */ 662 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 663 Vdbe *pVm; 664 int vals; 665 Mem *pOut; 666 667 pVm = (Vdbe *)pStmt; 668 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 669 sqlite3_mutex_enter(pVm->db->mutex); 670 vals = sqlite3_data_count(pStmt); 671 pOut = &pVm->pResultSet[i]; 672 }else{ 673 /* If the value passed as the second argument is out of range, return 674 ** a pointer to the following static Mem object which contains the 675 ** value SQL NULL. Even though the Mem structure contains an element 676 ** of type i64, on certain architecture (x86) with certain compiler 677 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 678 ** instead of an 8-byte one. This all works fine, except that when 679 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 680 ** that a Mem structure is located on an 8-byte boundary. To prevent 681 ** this assert() from failing, when building with SQLITE_DEBUG defined 682 ** using gcc, force nullMem to be 8-byte aligned using the magical 683 ** __attribute__((aligned(8))) macro. */ 684 static const Mem nullMem 685 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 686 __attribute__((aligned(8))) 687 #endif 688 = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 689 690 if( pVm && ALWAYS(pVm->db) ){ 691 sqlite3_mutex_enter(pVm->db->mutex); 692 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 693 } 694 pOut = (Mem*)&nullMem; 695 } 696 return pOut; 697 } 698 699 /* 700 ** This function is called after invoking an sqlite3_value_XXX function on a 701 ** column value (i.e. a value returned by evaluating an SQL expression in the 702 ** select list of a SELECT statement) that may cause a malloc() failure. If 703 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 704 ** code of statement pStmt set to SQLITE_NOMEM. 705 ** 706 ** Specifically, this is called from within: 707 ** 708 ** sqlite3_column_int() 709 ** sqlite3_column_int64() 710 ** sqlite3_column_text() 711 ** sqlite3_column_text16() 712 ** sqlite3_column_real() 713 ** sqlite3_column_bytes() 714 ** sqlite3_column_bytes16() 715 ** sqiite3_column_blob() 716 */ 717 static void columnMallocFailure(sqlite3_stmt *pStmt) 718 { 719 /* If malloc() failed during an encoding conversion within an 720 ** sqlite3_column_XXX API, then set the return code of the statement to 721 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 722 ** and _finalize() will return NOMEM. 723 */ 724 Vdbe *p = (Vdbe *)pStmt; 725 if( p ){ 726 p->rc = sqlite3ApiExit(p->db, p->rc); 727 sqlite3_mutex_leave(p->db->mutex); 728 } 729 } 730 731 /**************************** sqlite3_column_ ******************************* 732 ** The following routines are used to access elements of the current row 733 ** in the result set. 734 */ 735 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 736 const void *val; 737 val = sqlite3_value_blob( columnMem(pStmt,i) ); 738 /* Even though there is no encoding conversion, value_blob() might 739 ** need to call malloc() to expand the result of a zeroblob() 740 ** expression. 741 */ 742 columnMallocFailure(pStmt); 743 return val; 744 } 745 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 746 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 747 columnMallocFailure(pStmt); 748 return val; 749 } 750 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 751 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 752 columnMallocFailure(pStmt); 753 return val; 754 } 755 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 756 double val = sqlite3_value_double( columnMem(pStmt,i) ); 757 columnMallocFailure(pStmt); 758 return val; 759 } 760 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 761 int val = sqlite3_value_int( columnMem(pStmt,i) ); 762 columnMallocFailure(pStmt); 763 return val; 764 } 765 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 766 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 767 columnMallocFailure(pStmt); 768 return val; 769 } 770 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 771 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 772 columnMallocFailure(pStmt); 773 return val; 774 } 775 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 776 Mem *pOut = columnMem(pStmt, i); 777 if( pOut->flags&MEM_Static ){ 778 pOut->flags &= ~MEM_Static; 779 pOut->flags |= MEM_Ephem; 780 } 781 columnMallocFailure(pStmt); 782 return (sqlite3_value *)pOut; 783 } 784 #ifndef SQLITE_OMIT_UTF16 785 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 786 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 787 columnMallocFailure(pStmt); 788 return val; 789 } 790 #endif /* SQLITE_OMIT_UTF16 */ 791 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 792 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 793 columnMallocFailure(pStmt); 794 return iType; 795 } 796 797 /* The following function is experimental and subject to change or 798 ** removal */ 799 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 800 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 801 **} 802 */ 803 804 /* 805 ** Convert the N-th element of pStmt->pColName[] into a string using 806 ** xFunc() then return that string. If N is out of range, return 0. 807 ** 808 ** There are up to 5 names for each column. useType determines which 809 ** name is returned. Here are the names: 810 ** 811 ** 0 The column name as it should be displayed for output 812 ** 1 The datatype name for the column 813 ** 2 The name of the database that the column derives from 814 ** 3 The name of the table that the column derives from 815 ** 4 The name of the table column that the result column derives from 816 ** 817 ** If the result is not a simple column reference (if it is an expression 818 ** or a constant) then useTypes 2, 3, and 4 return NULL. 819 */ 820 static const void *columnName( 821 sqlite3_stmt *pStmt, 822 int N, 823 const void *(*xFunc)(Mem*), 824 int useType 825 ){ 826 const void *ret = 0; 827 Vdbe *p = (Vdbe *)pStmt; 828 int n; 829 sqlite3 *db = p->db; 830 831 assert( db!=0 ); 832 n = sqlite3_column_count(pStmt); 833 if( N<n && N>=0 ){ 834 N += useType*n; 835 sqlite3_mutex_enter(db->mutex); 836 assert( db->mallocFailed==0 ); 837 ret = xFunc(&p->aColName[N]); 838 /* A malloc may have failed inside of the xFunc() call. If this 839 ** is the case, clear the mallocFailed flag and return NULL. 840 */ 841 if( db->mallocFailed ){ 842 db->mallocFailed = 0; 843 ret = 0; 844 } 845 sqlite3_mutex_leave(db->mutex); 846 } 847 return ret; 848 } 849 850 /* 851 ** Return the name of the Nth column of the result set returned by SQL 852 ** statement pStmt. 853 */ 854 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 855 return columnName( 856 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 857 } 858 #ifndef SQLITE_OMIT_UTF16 859 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 860 return columnName( 861 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 862 } 863 #endif 864 865 /* 866 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 867 ** not define OMIT_DECLTYPE. 868 */ 869 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 870 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 871 and SQLITE_ENABLE_COLUMN_METADATA" 872 #endif 873 874 #ifndef SQLITE_OMIT_DECLTYPE 875 /* 876 ** Return the column declaration type (if applicable) of the 'i'th column 877 ** of the result set of SQL statement pStmt. 878 */ 879 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 880 return columnName( 881 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 882 } 883 #ifndef SQLITE_OMIT_UTF16 884 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 885 return columnName( 886 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 887 } 888 #endif /* SQLITE_OMIT_UTF16 */ 889 #endif /* SQLITE_OMIT_DECLTYPE */ 890 891 #ifdef SQLITE_ENABLE_COLUMN_METADATA 892 /* 893 ** Return the name of the database from which a result column derives. 894 ** NULL is returned if the result column is an expression or constant or 895 ** anything else which is not an unabiguous reference to a database column. 896 */ 897 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 898 return columnName( 899 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 900 } 901 #ifndef SQLITE_OMIT_UTF16 902 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 903 return columnName( 904 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 905 } 906 #endif /* SQLITE_OMIT_UTF16 */ 907 908 /* 909 ** Return the name of the table from which a result column derives. 910 ** NULL is returned if the result column is an expression or constant or 911 ** anything else which is not an unabiguous reference to a database column. 912 */ 913 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 914 return columnName( 915 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 916 } 917 #ifndef SQLITE_OMIT_UTF16 918 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 919 return columnName( 920 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 921 } 922 #endif /* SQLITE_OMIT_UTF16 */ 923 924 /* 925 ** Return the name of the table column from which a result column derives. 926 ** NULL is returned if the result column is an expression or constant or 927 ** anything else which is not an unabiguous reference to a database column. 928 */ 929 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 930 return columnName( 931 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 932 } 933 #ifndef SQLITE_OMIT_UTF16 934 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 935 return columnName( 936 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 937 } 938 #endif /* SQLITE_OMIT_UTF16 */ 939 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 940 941 942 /******************************* sqlite3_bind_ *************************** 943 ** 944 ** Routines used to attach values to wildcards in a compiled SQL statement. 945 */ 946 /* 947 ** Unbind the value bound to variable i in virtual machine p. This is the 948 ** the same as binding a NULL value to the column. If the "i" parameter is 949 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 950 ** 951 ** A successful evaluation of this routine acquires the mutex on p. 952 ** the mutex is released if any kind of error occurs. 953 ** 954 ** The error code stored in database p->db is overwritten with the return 955 ** value in any case. 956 */ 957 static int vdbeUnbind(Vdbe *p, int i){ 958 Mem *pVar; 959 if( vdbeSafetyNotNull(p) ){ 960 return SQLITE_MISUSE_BKPT; 961 } 962 sqlite3_mutex_enter(p->db->mutex); 963 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 964 sqlite3Error(p->db, SQLITE_MISUSE, 0); 965 sqlite3_mutex_leave(p->db->mutex); 966 sqlite3_log(SQLITE_MISUSE, 967 "bind on a busy prepared statement: [%s]", p->zSql); 968 return SQLITE_MISUSE_BKPT; 969 } 970 if( i<1 || i>p->nVar ){ 971 sqlite3Error(p->db, SQLITE_RANGE, 0); 972 sqlite3_mutex_leave(p->db->mutex); 973 return SQLITE_RANGE; 974 } 975 i--; 976 pVar = &p->aVar[i]; 977 sqlite3VdbeMemRelease(pVar); 978 pVar->flags = MEM_Null; 979 sqlite3Error(p->db, SQLITE_OK, 0); 980 981 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 982 ** binding a new value to this variable invalidates the current query plan. 983 ** 984 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 985 ** parameter in the WHERE clause might influence the choice of query plan 986 ** for a statement, then the statement will be automatically recompiled, 987 ** as if there had been a schema change, on the first sqlite3_step() call 988 ** following any change to the bindings of that parameter. 989 */ 990 if( p->isPrepareV2 && 991 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 992 ){ 993 p->expired = 1; 994 } 995 return SQLITE_OK; 996 } 997 998 /* 999 ** Bind a text or BLOB value. 1000 */ 1001 static int bindText( 1002 sqlite3_stmt *pStmt, /* The statement to bind against */ 1003 int i, /* Index of the parameter to bind */ 1004 const void *zData, /* Pointer to the data to be bound */ 1005 int nData, /* Number of bytes of data to be bound */ 1006 void (*xDel)(void*), /* Destructor for the data */ 1007 u8 encoding /* Encoding for the data */ 1008 ){ 1009 Vdbe *p = (Vdbe *)pStmt; 1010 Mem *pVar; 1011 int rc; 1012 1013 rc = vdbeUnbind(p, i); 1014 if( rc==SQLITE_OK ){ 1015 if( zData!=0 ){ 1016 pVar = &p->aVar[i-1]; 1017 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1018 if( rc==SQLITE_OK && encoding!=0 ){ 1019 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1020 } 1021 sqlite3Error(p->db, rc, 0); 1022 rc = sqlite3ApiExit(p->db, rc); 1023 } 1024 sqlite3_mutex_leave(p->db->mutex); 1025 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1026 xDel((void*)zData); 1027 } 1028 return rc; 1029 } 1030 1031 1032 /* 1033 ** Bind a blob value to an SQL statement variable. 1034 */ 1035 int sqlite3_bind_blob( 1036 sqlite3_stmt *pStmt, 1037 int i, 1038 const void *zData, 1039 int nData, 1040 void (*xDel)(void*) 1041 ){ 1042 return bindText(pStmt, i, zData, nData, xDel, 0); 1043 } 1044 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1045 int rc; 1046 Vdbe *p = (Vdbe *)pStmt; 1047 rc = vdbeUnbind(p, i); 1048 if( rc==SQLITE_OK ){ 1049 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1050 sqlite3_mutex_leave(p->db->mutex); 1051 } 1052 return rc; 1053 } 1054 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1055 return sqlite3_bind_int64(p, i, (i64)iValue); 1056 } 1057 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1058 int rc; 1059 Vdbe *p = (Vdbe *)pStmt; 1060 rc = vdbeUnbind(p, i); 1061 if( rc==SQLITE_OK ){ 1062 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1063 sqlite3_mutex_leave(p->db->mutex); 1064 } 1065 return rc; 1066 } 1067 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1068 int rc; 1069 Vdbe *p = (Vdbe*)pStmt; 1070 rc = vdbeUnbind(p, i); 1071 if( rc==SQLITE_OK ){ 1072 sqlite3_mutex_leave(p->db->mutex); 1073 } 1074 return rc; 1075 } 1076 int sqlite3_bind_text( 1077 sqlite3_stmt *pStmt, 1078 int i, 1079 const char *zData, 1080 int nData, 1081 void (*xDel)(void*) 1082 ){ 1083 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1084 } 1085 #ifndef SQLITE_OMIT_UTF16 1086 int sqlite3_bind_text16( 1087 sqlite3_stmt *pStmt, 1088 int i, 1089 const void *zData, 1090 int nData, 1091 void (*xDel)(void*) 1092 ){ 1093 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1094 } 1095 #endif /* SQLITE_OMIT_UTF16 */ 1096 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1097 int rc; 1098 switch( pValue->type ){ 1099 case SQLITE_INTEGER: { 1100 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1101 break; 1102 } 1103 case SQLITE_FLOAT: { 1104 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1105 break; 1106 } 1107 case SQLITE_BLOB: { 1108 if( pValue->flags & MEM_Zero ){ 1109 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1110 }else{ 1111 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1112 } 1113 break; 1114 } 1115 case SQLITE_TEXT: { 1116 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1117 pValue->enc); 1118 break; 1119 } 1120 default: { 1121 rc = sqlite3_bind_null(pStmt, i); 1122 break; 1123 } 1124 } 1125 return rc; 1126 } 1127 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1128 int rc; 1129 Vdbe *p = (Vdbe *)pStmt; 1130 rc = vdbeUnbind(p, i); 1131 if( rc==SQLITE_OK ){ 1132 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1133 sqlite3_mutex_leave(p->db->mutex); 1134 } 1135 return rc; 1136 } 1137 1138 /* 1139 ** Return the number of wildcards that can be potentially bound to. 1140 ** This routine is added to support DBD::SQLite. 1141 */ 1142 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1143 Vdbe *p = (Vdbe*)pStmt; 1144 return p ? p->nVar : 0; 1145 } 1146 1147 /* 1148 ** Create a mapping from variable numbers to variable names 1149 ** in the Vdbe.azVar[] array, if such a mapping does not already 1150 ** exist. 1151 */ 1152 static void createVarMap(Vdbe *p){ 1153 if( !p->okVar ){ 1154 int j; 1155 Op *pOp; 1156 sqlite3_mutex_enter(p->db->mutex); 1157 /* The race condition here is harmless. If two threads call this 1158 ** routine on the same Vdbe at the same time, they both might end 1159 ** up initializing the Vdbe.azVar[] array. That is a little extra 1160 ** work but it results in the same answer. 1161 */ 1162 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1163 if( pOp->opcode==OP_Variable ){ 1164 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1165 p->azVar[pOp->p1-1] = pOp->p4.z; 1166 } 1167 } 1168 p->okVar = 1; 1169 sqlite3_mutex_leave(p->db->mutex); 1170 } 1171 } 1172 1173 /* 1174 ** Return the name of a wildcard parameter. Return NULL if the index 1175 ** is out of range or if the wildcard is unnamed. 1176 ** 1177 ** The result is always UTF-8. 1178 */ 1179 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1180 Vdbe *p = (Vdbe*)pStmt; 1181 if( p==0 || i<1 || i>p->nVar ){ 1182 return 0; 1183 } 1184 createVarMap(p); 1185 return p->azVar[i-1]; 1186 } 1187 1188 /* 1189 ** Given a wildcard parameter name, return the index of the variable 1190 ** with that name. If there is no variable with the given name, 1191 ** return 0. 1192 */ 1193 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1194 int i; 1195 if( p==0 ){ 1196 return 0; 1197 } 1198 createVarMap(p); 1199 if( zName ){ 1200 for(i=0; i<p->nVar; i++){ 1201 const char *z = p->azVar[i]; 1202 if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){ 1203 return i+1; 1204 } 1205 } 1206 } 1207 return 0; 1208 } 1209 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1210 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1211 } 1212 1213 /* 1214 ** Transfer all bindings from the first statement over to the second. 1215 */ 1216 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1217 Vdbe *pFrom = (Vdbe*)pFromStmt; 1218 Vdbe *pTo = (Vdbe*)pToStmt; 1219 int i; 1220 assert( pTo->db==pFrom->db ); 1221 assert( pTo->nVar==pFrom->nVar ); 1222 sqlite3_mutex_enter(pTo->db->mutex); 1223 for(i=0; i<pFrom->nVar; i++){ 1224 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1225 } 1226 sqlite3_mutex_leave(pTo->db->mutex); 1227 return SQLITE_OK; 1228 } 1229 1230 #ifndef SQLITE_OMIT_DEPRECATED 1231 /* 1232 ** Deprecated external interface. Internal/core SQLite code 1233 ** should call sqlite3TransferBindings. 1234 ** 1235 ** Is is misuse to call this routine with statements from different 1236 ** database connections. But as this is a deprecated interface, we 1237 ** will not bother to check for that condition. 1238 ** 1239 ** If the two statements contain a different number of bindings, then 1240 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1241 ** SQLITE_OK is returned. 1242 */ 1243 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1244 Vdbe *pFrom = (Vdbe*)pFromStmt; 1245 Vdbe *pTo = (Vdbe*)pToStmt; 1246 if( pFrom->nVar!=pTo->nVar ){ 1247 return SQLITE_ERROR; 1248 } 1249 if( pTo->isPrepareV2 && pTo->expmask ){ 1250 pTo->expired = 1; 1251 } 1252 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1253 pFrom->expired = 1; 1254 } 1255 return sqlite3TransferBindings(pFromStmt, pToStmt); 1256 } 1257 #endif 1258 1259 /* 1260 ** Return the sqlite3* database handle to which the prepared statement given 1261 ** in the argument belongs. This is the same database handle that was 1262 ** the first argument to the sqlite3_prepare() that was used to create 1263 ** the statement in the first place. 1264 */ 1265 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1266 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1267 } 1268 1269 /* 1270 ** Return a pointer to the next prepared statement after pStmt associated 1271 ** with database connection pDb. If pStmt is NULL, return the first 1272 ** prepared statement for the database connection. Return NULL if there 1273 ** are no more. 1274 */ 1275 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1276 sqlite3_stmt *pNext; 1277 sqlite3_mutex_enter(pDb->mutex); 1278 if( pStmt==0 ){ 1279 pNext = (sqlite3_stmt*)pDb->pVdbe; 1280 }else{ 1281 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1282 } 1283 sqlite3_mutex_leave(pDb->mutex); 1284 return pNext; 1285 } 1286 1287 /* 1288 ** Return the value of a status counter for a prepared statement 1289 */ 1290 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1291 Vdbe *pVdbe = (Vdbe*)pStmt; 1292 int v = pVdbe->aCounter[op-1]; 1293 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1294 return v; 1295 } 1296