1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 ** 16 ** $Id: vdbeapi.c,v 1.150 2008/12/10 18:03:47 drh Exp $ 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 22 /* 23 ** The following structure contains pointers to the end points of a 24 ** doubly-linked list of all compiled SQL statements that may be holding 25 ** buffers eligible for release when the sqlite3_release_memory() interface is 26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 27 ** mutex. 28 ** 29 ** Statements are added to the end of this list when sqlite3_reset() is 30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize() 31 ** is called. When statements are added to this list, the associated 32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that 33 ** can be freed using sqlite3VdbeReleaseMemory(). 34 ** 35 ** When statements are added or removed from this list, the mutex 36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is 37 ** already held. The LRU2 mutex is then obtained, blocking if necessary, 38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished. 39 */ 40 struct StatementLruList { 41 Vdbe *pFirst; 42 Vdbe *pLast; 43 }; 44 static struct StatementLruList sqlite3LruStatements; 45 46 /* 47 ** Check that the list looks to be internally consistent. This is used 48 ** as part of an assert() statement as follows: 49 ** 50 ** assert( stmtLruCheck() ); 51 */ 52 #ifndef NDEBUG 53 static int stmtLruCheck(){ 54 Vdbe *p; 55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ 56 assert(p->pLruNext || p==sqlite3LruStatements.pLast); 57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p); 58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); 59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); 60 } 61 return 1; 62 } 63 #endif 64 65 /* 66 ** Add vdbe p to the end of the statement lru list. It is assumed that 67 ** p is not already part of the list when this is called. The lru list 68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. 69 */ 70 static void stmtLruAdd(Vdbe *p){ 71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 72 73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ 74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 75 return; 76 } 77 78 assert( stmtLruCheck() ); 79 80 if( !sqlite3LruStatements.pFirst ){ 81 assert( !sqlite3LruStatements.pLast ); 82 sqlite3LruStatements.pFirst = p; 83 sqlite3LruStatements.pLast = p; 84 }else{ 85 assert( !sqlite3LruStatements.pLast->pLruNext ); 86 p->pLruPrev = sqlite3LruStatements.pLast; 87 sqlite3LruStatements.pLast->pLruNext = p; 88 sqlite3LruStatements.pLast = p; 89 } 90 91 assert( stmtLruCheck() ); 92 93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 94 } 95 96 /* 97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove 98 ** statement p from the least-recently-used statement list. If the 99 ** statement is not currently part of the list, this call is a no-op. 100 */ 101 static void stmtLruRemoveNomutex(Vdbe *p){ 102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ 103 assert( stmtLruCheck() ); 104 if( p->pLruNext ){ 105 p->pLruNext->pLruPrev = p->pLruPrev; 106 }else{ 107 sqlite3LruStatements.pLast = p->pLruPrev; 108 } 109 if( p->pLruPrev ){ 110 p->pLruPrev->pLruNext = p->pLruNext; 111 }else{ 112 sqlite3LruStatements.pFirst = p->pLruNext; 113 } 114 p->pLruNext = 0; 115 p->pLruPrev = 0; 116 assert( stmtLruCheck() ); 117 } 118 } 119 120 /* 121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove 122 ** statement p from the least-recently-used statement list. If the 123 ** statement is not currently part of the list, this call is a no-op. 124 */ 125 static void stmtLruRemove(Vdbe *p){ 126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 127 stmtLruRemoveNomutex(p); 128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 129 } 130 131 /* 132 ** Try to release n bytes of memory by freeing buffers associated 133 ** with the memory registers of currently unused vdbes. 134 */ 135 int sqlite3VdbeReleaseMemory(int n){ 136 Vdbe *p; 137 Vdbe *pNext; 138 int nFree = 0; 139 140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){ 142 pNext = p->pLruNext; 143 144 /* For each statement handle in the lru list, attempt to obtain the 145 ** associated database mutex. If it cannot be obtained, continue 146 ** to the next statement handle. It is not possible to block on 147 ** the database mutex - that could cause deadlock. 148 */ 149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ 150 nFree += sqlite3VdbeReleaseBuffers(p); 151 stmtLruRemoveNomutex(p); 152 sqlite3_mutex_leave(p->db->mutex); 153 } 154 } 155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 156 157 return nFree; 158 } 159 160 /* 161 ** Call sqlite3Reprepare() on the statement. Remove it from the 162 ** lru list before doing so, as Reprepare() will free all the 163 ** memory register buffers anyway. 164 */ 165 int vdbeReprepare(Vdbe *p){ 166 stmtLruRemove(p); 167 return sqlite3Reprepare(p); 168 } 169 170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ 171 #define stmtLruRemove(x) 172 #define stmtLruAdd(x) 173 #define vdbeReprepare(x) sqlite3Reprepare(x) 174 #endif 175 176 177 #ifndef SQLITE_OMIT_DEPRECATED 178 /* 179 ** Return TRUE (non-zero) of the statement supplied as an argument needs 180 ** to be recompiled. A statement needs to be recompiled whenever the 181 ** execution environment changes in a way that would alter the program 182 ** that sqlite3_prepare() generates. For example, if new functions or 183 ** collating sequences are registered or if an authorizer function is 184 ** added or changed. 185 */ 186 int sqlite3_expired(sqlite3_stmt *pStmt){ 187 Vdbe *p = (Vdbe*)pStmt; 188 return p==0 || p->expired; 189 } 190 #endif 191 192 /* 193 ** The following routine destroys a virtual machine that is created by 194 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 195 ** success/failure code that describes the result of executing the virtual 196 ** machine. 197 ** 198 ** This routine sets the error code and string returned by 199 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 200 */ 201 int sqlite3_finalize(sqlite3_stmt *pStmt){ 202 int rc; 203 if( pStmt==0 ){ 204 rc = SQLITE_OK; 205 }else{ 206 Vdbe *v = (Vdbe*)pStmt; 207 #if SQLITE_THREADSAFE 208 sqlite3_mutex *mutex = v->db->mutex; 209 #endif 210 sqlite3_mutex_enter(mutex); 211 stmtLruRemove(v); 212 rc = sqlite3VdbeFinalize(v); 213 sqlite3_mutex_leave(mutex); 214 } 215 return rc; 216 } 217 218 /* 219 ** Terminate the current execution of an SQL statement and reset it 220 ** back to its starting state so that it can be reused. A success code from 221 ** the prior execution is returned. 222 ** 223 ** This routine sets the error code and string returned by 224 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 225 */ 226 int sqlite3_reset(sqlite3_stmt *pStmt){ 227 int rc; 228 if( pStmt==0 ){ 229 rc = SQLITE_OK; 230 }else{ 231 Vdbe *v = (Vdbe*)pStmt; 232 sqlite3_mutex_enter(v->db->mutex); 233 rc = sqlite3VdbeReset(v); 234 stmtLruAdd(v); 235 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 236 assert( (rc & (v->db->errMask))==rc ); 237 sqlite3_mutex_leave(v->db->mutex); 238 } 239 return rc; 240 } 241 242 /* 243 ** Set all the parameters in the compiled SQL statement to NULL. 244 */ 245 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 246 int i; 247 int rc = SQLITE_OK; 248 Vdbe *p = (Vdbe*)pStmt; 249 #if SQLITE_THREADSAFE 250 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 251 #endif 252 sqlite3_mutex_enter(mutex); 253 for(i=0; i<p->nVar; i++){ 254 sqlite3VdbeMemRelease(&p->aVar[i]); 255 p->aVar[i].flags = MEM_Null; 256 } 257 sqlite3_mutex_leave(mutex); 258 return rc; 259 } 260 261 262 /**************************** sqlite3_value_ ******************************* 263 ** The following routines extract information from a Mem or sqlite3_value 264 ** structure. 265 */ 266 const void *sqlite3_value_blob(sqlite3_value *pVal){ 267 Mem *p = (Mem*)pVal; 268 if( p->flags & (MEM_Blob|MEM_Str) ){ 269 sqlite3VdbeMemExpandBlob(p); 270 p->flags &= ~MEM_Str; 271 p->flags |= MEM_Blob; 272 return p->z; 273 }else{ 274 return sqlite3_value_text(pVal); 275 } 276 } 277 int sqlite3_value_bytes(sqlite3_value *pVal){ 278 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 279 } 280 int sqlite3_value_bytes16(sqlite3_value *pVal){ 281 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 282 } 283 double sqlite3_value_double(sqlite3_value *pVal){ 284 return sqlite3VdbeRealValue((Mem*)pVal); 285 } 286 int sqlite3_value_int(sqlite3_value *pVal){ 287 return (int)sqlite3VdbeIntValue((Mem*)pVal); 288 } 289 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 290 return sqlite3VdbeIntValue((Mem*)pVal); 291 } 292 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 293 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 294 } 295 #ifndef SQLITE_OMIT_UTF16 296 const void *sqlite3_value_text16(sqlite3_value* pVal){ 297 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 298 } 299 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 300 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 301 } 302 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 303 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 304 } 305 #endif /* SQLITE_OMIT_UTF16 */ 306 int sqlite3_value_type(sqlite3_value* pVal){ 307 return pVal->type; 308 } 309 310 /**************************** sqlite3_result_ ******************************* 311 ** The following routines are used by user-defined functions to specify 312 ** the function result. 313 */ 314 void sqlite3_result_blob( 315 sqlite3_context *pCtx, 316 const void *z, 317 int n, 318 void (*xDel)(void *) 319 ){ 320 assert( n>=0 ); 321 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 322 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); 323 } 324 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 325 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 326 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 327 } 328 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 329 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 330 pCtx->isError = SQLITE_ERROR; 331 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 332 } 333 #ifndef SQLITE_OMIT_UTF16 334 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 335 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 336 pCtx->isError = SQLITE_ERROR; 337 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 338 } 339 #endif 340 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 341 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 342 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 343 } 344 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 345 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 346 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 347 } 348 void sqlite3_result_null(sqlite3_context *pCtx){ 349 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 350 sqlite3VdbeMemSetNull(&pCtx->s); 351 } 352 void sqlite3_result_text( 353 sqlite3_context *pCtx, 354 const char *z, 355 int n, 356 void (*xDel)(void *) 357 ){ 358 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 359 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); 360 } 361 #ifndef SQLITE_OMIT_UTF16 362 void sqlite3_result_text16( 363 sqlite3_context *pCtx, 364 const void *z, 365 int n, 366 void (*xDel)(void *) 367 ){ 368 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 369 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); 370 } 371 void sqlite3_result_text16be( 372 sqlite3_context *pCtx, 373 const void *z, 374 int n, 375 void (*xDel)(void *) 376 ){ 377 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 378 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); 379 } 380 void sqlite3_result_text16le( 381 sqlite3_context *pCtx, 382 const void *z, 383 int n, 384 void (*xDel)(void *) 385 ){ 386 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 387 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); 388 } 389 #endif /* SQLITE_OMIT_UTF16 */ 390 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 391 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 392 sqlite3VdbeMemCopy(&pCtx->s, pValue); 393 } 394 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 395 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 396 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 397 } 398 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 399 pCtx->isError = errCode; 400 } 401 402 /* Force an SQLITE_TOOBIG error. */ 403 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 404 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 405 pCtx->isError = SQLITE_TOOBIG; 406 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 407 SQLITE_UTF8, SQLITE_STATIC); 408 } 409 410 /* An SQLITE_NOMEM error. */ 411 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 412 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 413 sqlite3VdbeMemSetNull(&pCtx->s); 414 pCtx->isError = SQLITE_NOMEM; 415 pCtx->s.db->mallocFailed = 1; 416 } 417 418 /* 419 ** Execute the statement pStmt, either until a row of data is ready, the 420 ** statement is completely executed or an error occurs. 421 ** 422 ** This routine implements the bulk of the logic behind the sqlite_step() 423 ** API. The only thing omitted is the automatic recompile if a 424 ** schema change has occurred. That detail is handled by the 425 ** outer sqlite3_step() wrapper procedure. 426 */ 427 static int sqlite3Step(Vdbe *p){ 428 sqlite3 *db; 429 int rc; 430 431 assert(p); 432 if( p->magic!=VDBE_MAGIC_RUN ){ 433 return SQLITE_MISUSE; 434 } 435 436 /* Assert that malloc() has not failed */ 437 db = p->db; 438 if( db->mallocFailed ){ 439 return SQLITE_NOMEM; 440 } 441 442 if( p->pc<=0 && p->expired ){ 443 if( p->rc==SQLITE_OK ){ 444 p->rc = SQLITE_SCHEMA; 445 } 446 rc = SQLITE_ERROR; 447 goto end_of_step; 448 } 449 if( sqlite3SafetyOn(db) ){ 450 p->rc = SQLITE_MISUSE; 451 return SQLITE_MISUSE; 452 } 453 if( p->pc<0 ){ 454 /* If there are no other statements currently running, then 455 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 456 ** from interrupting a statement that has not yet started. 457 */ 458 if( db->activeVdbeCnt==0 ){ 459 db->u1.isInterrupted = 0; 460 } 461 462 #ifndef SQLITE_OMIT_TRACE 463 if( db->xProfile && !db->init.busy ){ 464 double rNow; 465 sqlite3OsCurrentTime(db->pVfs, &rNow); 466 p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0); 467 } 468 #endif 469 470 db->activeVdbeCnt++; 471 if( p->readOnly==0 ) db->writeVdbeCnt++; 472 p->pc = 0; 473 stmtLruRemove(p); 474 } 475 #ifndef SQLITE_OMIT_EXPLAIN 476 if( p->explain ){ 477 rc = sqlite3VdbeList(p); 478 }else 479 #endif /* SQLITE_OMIT_EXPLAIN */ 480 { 481 rc = sqlite3VdbeExec(p); 482 } 483 484 if( sqlite3SafetyOff(db) ){ 485 rc = SQLITE_MISUSE; 486 } 487 488 #ifndef SQLITE_OMIT_TRACE 489 /* Invoke the profile callback if there is one 490 */ 491 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 492 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ 493 double rNow; 494 u64 elapseTime; 495 496 sqlite3OsCurrentTime(db->pVfs, &rNow); 497 elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0); 498 elapseTime -= p->startTime; 499 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); 500 } 501 #endif 502 503 db->errCode = rc; 504 /*sqlite3Error(p->db, rc, 0);*/ 505 p->rc = sqlite3ApiExit(p->db, p->rc); 506 end_of_step: 507 assert( (rc&0xff)==rc ); 508 if( p->zSql && (rc&0xff)<SQLITE_ROW ){ 509 /* This behavior occurs if sqlite3_prepare_v2() was used to build 510 ** the prepared statement. Return error codes directly */ 511 p->db->errCode = p->rc; 512 /* sqlite3Error(p->db, p->rc, 0); */ 513 return p->rc; 514 }else{ 515 /* This is for legacy sqlite3_prepare() builds and when the code 516 ** is SQLITE_ROW or SQLITE_DONE */ 517 return rc; 518 } 519 } 520 521 /* 522 ** This is the top-level implementation of sqlite3_step(). Call 523 ** sqlite3Step() to do most of the work. If a schema error occurs, 524 ** call sqlite3Reprepare() and try again. 525 */ 526 #ifdef SQLITE_OMIT_PARSER 527 int sqlite3_step(sqlite3_stmt *pStmt){ 528 int rc = SQLITE_MISUSE; 529 if( pStmt ){ 530 Vdbe *v; 531 v = (Vdbe*)pStmt; 532 sqlite3_mutex_enter(v->db->mutex); 533 rc = sqlite3Step(v); 534 sqlite3_mutex_leave(v->db->mutex); 535 } 536 return rc; 537 } 538 #else 539 int sqlite3_step(sqlite3_stmt *pStmt){ 540 int rc = SQLITE_MISUSE; 541 if( pStmt ){ 542 int cnt = 0; 543 Vdbe *v = (Vdbe*)pStmt; 544 sqlite3 *db = v->db; 545 sqlite3_mutex_enter(db->mutex); 546 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 547 && cnt++ < 5 548 && vdbeReprepare(v) ){ 549 sqlite3_reset(pStmt); 550 v->expired = 0; 551 } 552 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ 553 /* This case occurs after failing to recompile an sql statement. 554 ** The error message from the SQL compiler has already been loaded 555 ** into the database handle. This block copies the error message 556 ** from the database handle into the statement and sets the statement 557 ** program counter to 0 to ensure that when the statement is 558 ** finalized or reset the parser error message is available via 559 ** sqlite3_errmsg() and sqlite3_errcode(). 560 */ 561 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 562 sqlite3DbFree(db, v->zErrMsg); 563 if( !db->mallocFailed ){ 564 v->zErrMsg = sqlite3DbStrDup(db, zErr); 565 } else { 566 v->zErrMsg = 0; 567 v->rc = SQLITE_NOMEM; 568 } 569 } 570 rc = sqlite3ApiExit(db, rc); 571 sqlite3_mutex_leave(db->mutex); 572 } 573 return rc; 574 } 575 #endif 576 577 /* 578 ** Extract the user data from a sqlite3_context structure and return a 579 ** pointer to it. 580 */ 581 void *sqlite3_user_data(sqlite3_context *p){ 582 assert( p && p->pFunc ); 583 return p->pFunc->pUserData; 584 } 585 586 /* 587 ** Extract the user data from a sqlite3_context structure and return a 588 ** pointer to it. 589 */ 590 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 591 assert( p && p->pFunc ); 592 return p->s.db; 593 } 594 595 /* 596 ** The following is the implementation of an SQL function that always 597 ** fails with an error message stating that the function is used in the 598 ** wrong context. The sqlite3_overload_function() API might construct 599 ** SQL function that use this routine so that the functions will exist 600 ** for name resolution but are actually overloaded by the xFindFunction 601 ** method of virtual tables. 602 */ 603 void sqlite3InvalidFunction( 604 sqlite3_context *context, /* The function calling context */ 605 int NotUsed, /* Number of arguments to the function */ 606 sqlite3_value **NotUsed2 /* Value of each argument */ 607 ){ 608 const char *zName = context->pFunc->zName; 609 char *zErr; 610 UNUSED_PARAMETER2(NotUsed, NotUsed2); 611 zErr = sqlite3MPrintf(0, 612 "unable to use function %s in the requested context", zName); 613 sqlite3_result_error(context, zErr, -1); 614 sqlite3_free(zErr); 615 } 616 617 /* 618 ** Allocate or return the aggregate context for a user function. A new 619 ** context is allocated on the first call. Subsequent calls return the 620 ** same context that was returned on prior calls. 621 */ 622 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 623 Mem *pMem; 624 assert( p && p->pFunc && p->pFunc->xStep ); 625 assert( sqlite3_mutex_held(p->s.db->mutex) ); 626 pMem = p->pMem; 627 if( (pMem->flags & MEM_Agg)==0 ){ 628 if( nByte==0 ){ 629 sqlite3VdbeMemReleaseExternal(pMem); 630 pMem->flags = MEM_Null; 631 pMem->z = 0; 632 }else{ 633 sqlite3VdbeMemGrow(pMem, nByte, 0); 634 pMem->flags = MEM_Agg; 635 pMem->u.pDef = p->pFunc; 636 if( pMem->z ){ 637 memset(pMem->z, 0, nByte); 638 } 639 } 640 } 641 return (void*)pMem->z; 642 } 643 644 /* 645 ** Return the auxilary data pointer, if any, for the iArg'th argument to 646 ** the user-function defined by pCtx. 647 */ 648 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 649 VdbeFunc *pVdbeFunc; 650 651 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 652 pVdbeFunc = pCtx->pVdbeFunc; 653 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 654 return 0; 655 } 656 return pVdbeFunc->apAux[iArg].pAux; 657 } 658 659 /* 660 ** Set the auxilary data pointer and delete function, for the iArg'th 661 ** argument to the user-function defined by pCtx. Any previous value is 662 ** deleted by calling the delete function specified when it was set. 663 */ 664 void sqlite3_set_auxdata( 665 sqlite3_context *pCtx, 666 int iArg, 667 void *pAux, 668 void (*xDelete)(void*) 669 ){ 670 struct AuxData *pAuxData; 671 VdbeFunc *pVdbeFunc; 672 if( iArg<0 ) goto failed; 673 674 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 675 pVdbeFunc = pCtx->pVdbeFunc; 676 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 677 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 678 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 679 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 680 if( !pVdbeFunc ){ 681 goto failed; 682 } 683 pCtx->pVdbeFunc = pVdbeFunc; 684 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 685 pVdbeFunc->nAux = iArg+1; 686 pVdbeFunc->pFunc = pCtx->pFunc; 687 } 688 689 pAuxData = &pVdbeFunc->apAux[iArg]; 690 if( pAuxData->pAux && pAuxData->xDelete ){ 691 pAuxData->xDelete(pAuxData->pAux); 692 } 693 pAuxData->pAux = pAux; 694 pAuxData->xDelete = xDelete; 695 return; 696 697 failed: 698 if( xDelete ){ 699 xDelete(pAux); 700 } 701 } 702 703 #ifndef SQLITE_OMIT_DEPRECATED 704 /* 705 ** Return the number of times the Step function of a aggregate has been 706 ** called. 707 ** 708 ** This function is deprecated. Do not use it for new code. It is 709 ** provide only to avoid breaking legacy code. New aggregate function 710 ** implementations should keep their own counts within their aggregate 711 ** context. 712 */ 713 int sqlite3_aggregate_count(sqlite3_context *p){ 714 assert( p && p->pFunc && p->pFunc->xStep ); 715 return p->pMem->n; 716 } 717 #endif 718 719 /* 720 ** Return the number of columns in the result set for the statement pStmt. 721 */ 722 int sqlite3_column_count(sqlite3_stmt *pStmt){ 723 Vdbe *pVm = (Vdbe *)pStmt; 724 return pVm ? pVm->nResColumn : 0; 725 } 726 727 /* 728 ** Return the number of values available from the current row of the 729 ** currently executing statement pStmt. 730 */ 731 int sqlite3_data_count(sqlite3_stmt *pStmt){ 732 Vdbe *pVm = (Vdbe *)pStmt; 733 if( pVm==0 || pVm->pResultSet==0 ) return 0; 734 return pVm->nResColumn; 735 } 736 737 738 /* 739 ** Check to see if column iCol of the given statement is valid. If 740 ** it is, return a pointer to the Mem for the value of that column. 741 ** If iCol is not valid, return a pointer to a Mem which has a value 742 ** of NULL. 743 */ 744 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 745 Vdbe *pVm; 746 int vals; 747 Mem *pOut; 748 749 pVm = (Vdbe *)pStmt; 750 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 751 sqlite3_mutex_enter(pVm->db->mutex); 752 vals = sqlite3_data_count(pStmt); 753 pOut = &pVm->pResultSet[i]; 754 }else{ 755 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 756 if( pVm->db ){ 757 sqlite3_mutex_enter(pVm->db->mutex); 758 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 759 } 760 pOut = (Mem*)&nullMem; 761 } 762 return pOut; 763 } 764 765 /* 766 ** This function is called after invoking an sqlite3_value_XXX function on a 767 ** column value (i.e. a value returned by evaluating an SQL expression in the 768 ** select list of a SELECT statement) that may cause a malloc() failure. If 769 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 770 ** code of statement pStmt set to SQLITE_NOMEM. 771 ** 772 ** Specifically, this is called from within: 773 ** 774 ** sqlite3_column_int() 775 ** sqlite3_column_int64() 776 ** sqlite3_column_text() 777 ** sqlite3_column_text16() 778 ** sqlite3_column_real() 779 ** sqlite3_column_bytes() 780 ** sqlite3_column_bytes16() 781 ** 782 ** But not for sqlite3_column_blob(), which never calls malloc(). 783 */ 784 static void columnMallocFailure(sqlite3_stmt *pStmt) 785 { 786 /* If malloc() failed during an encoding conversion within an 787 ** sqlite3_column_XXX API, then set the return code of the statement to 788 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 789 ** and _finalize() will return NOMEM. 790 */ 791 Vdbe *p = (Vdbe *)pStmt; 792 if( p ){ 793 p->rc = sqlite3ApiExit(p->db, p->rc); 794 sqlite3_mutex_leave(p->db->mutex); 795 } 796 } 797 798 /**************************** sqlite3_column_ ******************************* 799 ** The following routines are used to access elements of the current row 800 ** in the result set. 801 */ 802 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 803 const void *val; 804 val = sqlite3_value_blob( columnMem(pStmt,i) ); 805 /* Even though there is no encoding conversion, value_blob() might 806 ** need to call malloc() to expand the result of a zeroblob() 807 ** expression. 808 */ 809 columnMallocFailure(pStmt); 810 return val; 811 } 812 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 813 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 814 columnMallocFailure(pStmt); 815 return val; 816 } 817 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 818 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 819 columnMallocFailure(pStmt); 820 return val; 821 } 822 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 823 double val = sqlite3_value_double( columnMem(pStmt,i) ); 824 columnMallocFailure(pStmt); 825 return val; 826 } 827 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 828 int val = sqlite3_value_int( columnMem(pStmt,i) ); 829 columnMallocFailure(pStmt); 830 return val; 831 } 832 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 833 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 834 columnMallocFailure(pStmt); 835 return val; 836 } 837 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 838 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 839 columnMallocFailure(pStmt); 840 return val; 841 } 842 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 843 Mem *pOut = columnMem(pStmt, i); 844 if( pOut->flags&MEM_Static ){ 845 pOut->flags &= ~MEM_Static; 846 pOut->flags |= MEM_Ephem; 847 } 848 columnMallocFailure(pStmt); 849 return (sqlite3_value *)pOut; 850 } 851 #ifndef SQLITE_OMIT_UTF16 852 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 853 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 854 columnMallocFailure(pStmt); 855 return val; 856 } 857 #endif /* SQLITE_OMIT_UTF16 */ 858 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 859 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 860 columnMallocFailure(pStmt); 861 return iType; 862 } 863 864 /* The following function is experimental and subject to change or 865 ** removal */ 866 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 867 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 868 **} 869 */ 870 871 /* 872 ** Convert the N-th element of pStmt->pColName[] into a string using 873 ** xFunc() then return that string. If N is out of range, return 0. 874 ** 875 ** There are up to 5 names for each column. useType determines which 876 ** name is returned. Here are the names: 877 ** 878 ** 0 The column name as it should be displayed for output 879 ** 1 The datatype name for the column 880 ** 2 The name of the database that the column derives from 881 ** 3 The name of the table that the column derives from 882 ** 4 The name of the table column that the result column derives from 883 ** 884 ** If the result is not a simple column reference (if it is an expression 885 ** or a constant) then useTypes 2, 3, and 4 return NULL. 886 */ 887 static const void *columnName( 888 sqlite3_stmt *pStmt, 889 int N, 890 const void *(*xFunc)(Mem*), 891 int useType 892 ){ 893 const void *ret = 0; 894 Vdbe *p = (Vdbe *)pStmt; 895 int n; 896 897 898 if( p!=0 ){ 899 n = sqlite3_column_count(pStmt); 900 if( N<n && N>=0 ){ 901 N += useType*n; 902 sqlite3_mutex_enter(p->db->mutex); 903 ret = xFunc(&p->aColName[N]); 904 905 /* A malloc may have failed inside of the xFunc() call. If this 906 ** is the case, clear the mallocFailed flag and return NULL. 907 */ 908 if( p->db && p->db->mallocFailed ){ 909 p->db->mallocFailed = 0; 910 ret = 0; 911 } 912 sqlite3_mutex_leave(p->db->mutex); 913 } 914 } 915 return ret; 916 } 917 918 /* 919 ** Return the name of the Nth column of the result set returned by SQL 920 ** statement pStmt. 921 */ 922 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 923 return columnName( 924 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 925 } 926 #ifndef SQLITE_OMIT_UTF16 927 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 928 return columnName( 929 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 930 } 931 #endif 932 933 /* 934 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 935 ** not define OMIT_DECLTYPE. 936 */ 937 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 938 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 939 and SQLITE_ENABLE_COLUMN_METADATA" 940 #endif 941 942 #ifndef SQLITE_OMIT_DECLTYPE 943 /* 944 ** Return the column declaration type (if applicable) of the 'i'th column 945 ** of the result set of SQL statement pStmt. 946 */ 947 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 948 return columnName( 949 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 950 } 951 #ifndef SQLITE_OMIT_UTF16 952 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 953 return columnName( 954 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 955 } 956 #endif /* SQLITE_OMIT_UTF16 */ 957 #endif /* SQLITE_OMIT_DECLTYPE */ 958 959 #ifdef SQLITE_ENABLE_COLUMN_METADATA 960 /* 961 ** Return the name of the database from which a result column derives. 962 ** NULL is returned if the result column is an expression or constant or 963 ** anything else which is not an unabiguous reference to a database column. 964 */ 965 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 966 return columnName( 967 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 968 } 969 #ifndef SQLITE_OMIT_UTF16 970 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 971 return columnName( 972 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 973 } 974 #endif /* SQLITE_OMIT_UTF16 */ 975 976 /* 977 ** Return the name of the table from which a result column derives. 978 ** NULL is returned if the result column is an expression or constant or 979 ** anything else which is not an unabiguous reference to a database column. 980 */ 981 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 982 return columnName( 983 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 984 } 985 #ifndef SQLITE_OMIT_UTF16 986 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 987 return columnName( 988 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 989 } 990 #endif /* SQLITE_OMIT_UTF16 */ 991 992 /* 993 ** Return the name of the table column from which a result column derives. 994 ** NULL is returned if the result column is an expression or constant or 995 ** anything else which is not an unabiguous reference to a database column. 996 */ 997 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 998 return columnName( 999 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1000 } 1001 #ifndef SQLITE_OMIT_UTF16 1002 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1003 return columnName( 1004 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1005 } 1006 #endif /* SQLITE_OMIT_UTF16 */ 1007 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1008 1009 1010 /******************************* sqlite3_bind_ *************************** 1011 ** 1012 ** Routines used to attach values to wildcards in a compiled SQL statement. 1013 */ 1014 /* 1015 ** Unbind the value bound to variable i in virtual machine p. This is the 1016 ** the same as binding a NULL value to the column. If the "i" parameter is 1017 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1018 ** 1019 ** A successful evaluation of this routine acquires the mutex on p. 1020 ** the mutex is released if any kind of error occurs. 1021 ** 1022 ** The error code stored in database p->db is overwritten with the return 1023 ** value in any case. 1024 */ 1025 static int vdbeUnbind(Vdbe *p, int i){ 1026 Mem *pVar; 1027 if( p==0 ) return SQLITE_MISUSE; 1028 sqlite3_mutex_enter(p->db->mutex); 1029 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1030 sqlite3Error(p->db, SQLITE_MISUSE, 0); 1031 sqlite3_mutex_leave(p->db->mutex); 1032 return SQLITE_MISUSE; 1033 } 1034 if( i<1 || i>p->nVar ){ 1035 sqlite3Error(p->db, SQLITE_RANGE, 0); 1036 sqlite3_mutex_leave(p->db->mutex); 1037 return SQLITE_RANGE; 1038 } 1039 i--; 1040 pVar = &p->aVar[i]; 1041 sqlite3VdbeMemRelease(pVar); 1042 pVar->flags = MEM_Null; 1043 sqlite3Error(p->db, SQLITE_OK, 0); 1044 return SQLITE_OK; 1045 } 1046 1047 /* 1048 ** Bind a text or BLOB value. 1049 */ 1050 static int bindText( 1051 sqlite3_stmt *pStmt, /* The statement to bind against */ 1052 int i, /* Index of the parameter to bind */ 1053 const void *zData, /* Pointer to the data to be bound */ 1054 int nData, /* Number of bytes of data to be bound */ 1055 void (*xDel)(void*), /* Destructor for the data */ 1056 u8 encoding /* Encoding for the data */ 1057 ){ 1058 Vdbe *p = (Vdbe *)pStmt; 1059 Mem *pVar; 1060 int rc; 1061 1062 rc = vdbeUnbind(p, i); 1063 if( rc==SQLITE_OK ){ 1064 if( zData!=0 ){ 1065 pVar = &p->aVar[i-1]; 1066 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1067 if( rc==SQLITE_OK && encoding!=0 ){ 1068 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1069 } 1070 sqlite3Error(p->db, rc, 0); 1071 rc = sqlite3ApiExit(p->db, rc); 1072 } 1073 sqlite3_mutex_leave(p->db->mutex); 1074 } 1075 return rc; 1076 } 1077 1078 1079 /* 1080 ** Bind a blob value to an SQL statement variable. 1081 */ 1082 int sqlite3_bind_blob( 1083 sqlite3_stmt *pStmt, 1084 int i, 1085 const void *zData, 1086 int nData, 1087 void (*xDel)(void*) 1088 ){ 1089 return bindText(pStmt, i, zData, nData, xDel, 0); 1090 } 1091 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1092 int rc; 1093 Vdbe *p = (Vdbe *)pStmt; 1094 rc = vdbeUnbind(p, i); 1095 if( rc==SQLITE_OK ){ 1096 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1097 sqlite3_mutex_leave(p->db->mutex); 1098 } 1099 return rc; 1100 } 1101 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1102 return sqlite3_bind_int64(p, i, (i64)iValue); 1103 } 1104 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1105 int rc; 1106 Vdbe *p = (Vdbe *)pStmt; 1107 rc = vdbeUnbind(p, i); 1108 if( rc==SQLITE_OK ){ 1109 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1110 sqlite3_mutex_leave(p->db->mutex); 1111 } 1112 return rc; 1113 } 1114 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1115 int rc; 1116 Vdbe *p = (Vdbe*)pStmt; 1117 rc = vdbeUnbind(p, i); 1118 if( rc==SQLITE_OK ){ 1119 sqlite3_mutex_leave(p->db->mutex); 1120 } 1121 return rc; 1122 } 1123 int sqlite3_bind_text( 1124 sqlite3_stmt *pStmt, 1125 int i, 1126 const char *zData, 1127 int nData, 1128 void (*xDel)(void*) 1129 ){ 1130 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1131 } 1132 #ifndef SQLITE_OMIT_UTF16 1133 int sqlite3_bind_text16( 1134 sqlite3_stmt *pStmt, 1135 int i, 1136 const void *zData, 1137 int nData, 1138 void (*xDel)(void*) 1139 ){ 1140 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1141 } 1142 #endif /* SQLITE_OMIT_UTF16 */ 1143 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1144 int rc; 1145 Vdbe *p = (Vdbe *)pStmt; 1146 rc = vdbeUnbind(p, i); 1147 if( rc==SQLITE_OK ){ 1148 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); 1149 if( rc==SQLITE_OK ){ 1150 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db)); 1151 } 1152 sqlite3_mutex_leave(p->db->mutex); 1153 } 1154 rc = sqlite3ApiExit(p->db, rc); 1155 return rc; 1156 } 1157 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1158 int rc; 1159 Vdbe *p = (Vdbe *)pStmt; 1160 rc = vdbeUnbind(p, i); 1161 if( rc==SQLITE_OK ){ 1162 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1163 sqlite3_mutex_leave(p->db->mutex); 1164 } 1165 return rc; 1166 } 1167 1168 /* 1169 ** Return the number of wildcards that can be potentially bound to. 1170 ** This routine is added to support DBD::SQLite. 1171 */ 1172 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1173 Vdbe *p = (Vdbe*)pStmt; 1174 return p ? p->nVar : 0; 1175 } 1176 1177 /* 1178 ** Create a mapping from variable numbers to variable names 1179 ** in the Vdbe.azVar[] array, if such a mapping does not already 1180 ** exist. 1181 */ 1182 static void createVarMap(Vdbe *p){ 1183 if( !p->okVar ){ 1184 sqlite3_mutex_enter(p->db->mutex); 1185 if( !p->okVar ){ 1186 int j; 1187 Op *pOp; 1188 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1189 if( pOp->opcode==OP_Variable ){ 1190 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1191 p->azVar[pOp->p1-1] = pOp->p4.z; 1192 } 1193 } 1194 p->okVar = 1; 1195 } 1196 sqlite3_mutex_leave(p->db->mutex); 1197 } 1198 } 1199 1200 /* 1201 ** Return the name of a wildcard parameter. Return NULL if the index 1202 ** is out of range or if the wildcard is unnamed. 1203 ** 1204 ** The result is always UTF-8. 1205 */ 1206 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1207 Vdbe *p = (Vdbe*)pStmt; 1208 if( p==0 || i<1 || i>p->nVar ){ 1209 return 0; 1210 } 1211 createVarMap(p); 1212 return p->azVar[i-1]; 1213 } 1214 1215 /* 1216 ** Given a wildcard parameter name, return the index of the variable 1217 ** with that name. If there is no variable with the given name, 1218 ** return 0. 1219 */ 1220 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1221 Vdbe *p = (Vdbe*)pStmt; 1222 int i; 1223 if( p==0 ){ 1224 return 0; 1225 } 1226 createVarMap(p); 1227 if( zName ){ 1228 for(i=0; i<p->nVar; i++){ 1229 const char *z = p->azVar[i]; 1230 if( z && strcmp(z,zName)==0 ){ 1231 return i+1; 1232 } 1233 } 1234 } 1235 return 0; 1236 } 1237 1238 /* 1239 ** Transfer all bindings from the first statement over to the second. 1240 ** If the two statements contain a different number of bindings, then 1241 ** an SQLITE_ERROR is returned. 1242 */ 1243 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1244 Vdbe *pFrom = (Vdbe*)pFromStmt; 1245 Vdbe *pTo = (Vdbe*)pToStmt; 1246 int i, rc = SQLITE_OK; 1247 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) 1248 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) 1249 || pTo->db!=pFrom->db ){ 1250 return SQLITE_MISUSE; 1251 } 1252 if( pFrom->nVar!=pTo->nVar ){ 1253 return SQLITE_ERROR; 1254 } 1255 sqlite3_mutex_enter(pTo->db->mutex); 1256 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ 1257 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1258 } 1259 sqlite3_mutex_leave(pTo->db->mutex); 1260 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1261 return rc; 1262 } 1263 1264 #ifndef SQLITE_OMIT_DEPRECATED 1265 /* 1266 ** Deprecated external interface. Internal/core SQLite code 1267 ** should call sqlite3TransferBindings. 1268 */ 1269 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1270 return sqlite3TransferBindings(pFromStmt, pToStmt); 1271 } 1272 #endif 1273 1274 /* 1275 ** Return the sqlite3* database handle to which the prepared statement given 1276 ** in the argument belongs. This is the same database handle that was 1277 ** the first argument to the sqlite3_prepare() that was used to create 1278 ** the statement in the first place. 1279 */ 1280 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1281 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1282 } 1283 1284 /* 1285 ** Return a pointer to the next prepared statement after pStmt associated 1286 ** with database connection pDb. If pStmt is NULL, return the first 1287 ** prepared statement for the database connection. Return NULL if there 1288 ** are no more. 1289 */ 1290 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1291 sqlite3_stmt *pNext; 1292 sqlite3_mutex_enter(pDb->mutex); 1293 if( pStmt==0 ){ 1294 pNext = (sqlite3_stmt*)pDb->pVdbe; 1295 }else{ 1296 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1297 } 1298 sqlite3_mutex_leave(pDb->mutex); 1299 return pNext; 1300 } 1301 1302 /* 1303 ** Return the value of a status counter for a prepared statement 1304 */ 1305 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1306 Vdbe *pVdbe = (Vdbe*)pStmt; 1307 int v = pVdbe->aCounter[op-1]; 1308 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1309 return v; 1310 } 1311