1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 }else if( pNew->flags & MEM_Null ){ 349 /* Do not duplicate pointer values */ 350 pNew->flags &= ~(MEM_Term|MEM_Subtype); 351 } 352 return pNew; 353 } 354 355 /* Destroy an sqlite3_value object previously obtained from 356 ** sqlite3_value_dup(). 357 */ 358 void sqlite3_value_free(sqlite3_value *pOld){ 359 sqlite3ValueFree(pOld); 360 } 361 362 363 /**************************** sqlite3_result_ ******************************* 364 ** The following routines are used by user-defined functions to specify 365 ** the function result. 366 ** 367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 368 ** result as a string or blob. Appropriate errors are set if the string/blob 369 ** is too big or if an OOM occurs. 370 ** 371 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 372 ** on value P is not going to be used and need to be destroyed. 373 */ 374 static void setResultStrOrError( 375 sqlite3_context *pCtx, /* Function context */ 376 const char *z, /* String pointer */ 377 int n, /* Bytes in string, or negative */ 378 u8 enc, /* Encoding of z. 0 for BLOBs */ 379 void (*xDel)(void*) /* Destructor function */ 380 ){ 381 Mem *pOut = pCtx->pOut; 382 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 383 if( rc ){ 384 if( rc==SQLITE_TOOBIG ){ 385 sqlite3_result_error_toobig(pCtx); 386 }else{ 387 /* The only errors possible from sqlite3VdbeMemSetStr are 388 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 389 assert( rc==SQLITE_NOMEM ); 390 sqlite3_result_error_nomem(pCtx); 391 } 392 return; 393 } 394 sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db)); 395 if( sqlite3VdbeMemTooBig(pOut) ){ 396 sqlite3_result_error_toobig(pCtx); 397 } 398 } 399 static int invokeValueDestructor( 400 const void *p, /* Value to destroy */ 401 void (*xDel)(void*), /* The destructor */ 402 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 403 ){ 404 assert( xDel!=SQLITE_DYNAMIC ); 405 if( xDel==0 ){ 406 /* noop */ 407 }else if( xDel==SQLITE_TRANSIENT ){ 408 /* noop */ 409 }else{ 410 xDel((void*)p); 411 } 412 sqlite3_result_error_toobig(pCtx); 413 return SQLITE_TOOBIG; 414 } 415 void sqlite3_result_blob( 416 sqlite3_context *pCtx, 417 const void *z, 418 int n, 419 void (*xDel)(void *) 420 ){ 421 assert( n>=0 ); 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 setResultStrOrError(pCtx, z, n, 0, xDel); 424 } 425 void sqlite3_result_blob64( 426 sqlite3_context *pCtx, 427 const void *z, 428 sqlite3_uint64 n, 429 void (*xDel)(void *) 430 ){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 assert( xDel!=SQLITE_DYNAMIC ); 433 if( n>0x7fffffff ){ 434 (void)invokeValueDestructor(z, xDel, pCtx); 435 }else{ 436 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 437 } 438 } 439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 441 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 442 } 443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 445 pCtx->isError = SQLITE_ERROR; 446 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 447 } 448 #ifndef SQLITE_OMIT_UTF16 449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 451 pCtx->isError = SQLITE_ERROR; 452 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 453 } 454 #endif 455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 456 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 457 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 458 } 459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 461 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 462 } 463 void sqlite3_result_null(sqlite3_context *pCtx){ 464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 465 sqlite3VdbeMemSetNull(pCtx->pOut); 466 } 467 void sqlite3_result_pointer( 468 sqlite3_context *pCtx, 469 void *pPtr, 470 const char *zPType, 471 void (*xDestructor)(void*) 472 ){ 473 Mem *pOut = pCtx->pOut; 474 assert( sqlite3_mutex_held(pOut->db->mutex) ); 475 sqlite3VdbeMemRelease(pOut); 476 pOut->flags = MEM_Null; 477 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 478 } 479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 480 Mem *pOut = pCtx->pOut; 481 assert( sqlite3_mutex_held(pOut->db->mutex) ); 482 pOut->eSubtype = eSubtype & 0xff; 483 pOut->flags |= MEM_Subtype; 484 } 485 void sqlite3_result_text( 486 sqlite3_context *pCtx, 487 const char *z, 488 int n, 489 void (*xDel)(void *) 490 ){ 491 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 492 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 493 } 494 void sqlite3_result_text64( 495 sqlite3_context *pCtx, 496 const char *z, 497 sqlite3_uint64 n, 498 void (*xDel)(void *), 499 unsigned char enc 500 ){ 501 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 502 assert( xDel!=SQLITE_DYNAMIC ); 503 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 504 if( n>0x7fffffff ){ 505 (void)invokeValueDestructor(z, xDel, pCtx); 506 }else{ 507 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 508 } 509 } 510 #ifndef SQLITE_OMIT_UTF16 511 void sqlite3_result_text16( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 519 } 520 void sqlite3_result_text16be( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 528 } 529 void sqlite3_result_text16le( 530 sqlite3_context *pCtx, 531 const void *z, 532 int n, 533 void (*xDel)(void *) 534 ){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 537 } 538 #endif /* SQLITE_OMIT_UTF16 */ 539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 540 Mem *pOut = pCtx->pOut; 541 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 542 sqlite3VdbeMemCopy(pOut, pValue); 543 sqlite3VdbeChangeEncoding(pOut, ENC(pOut->db)); 544 if( sqlite3VdbeMemTooBig(pOut) ){ 545 sqlite3_result_error_toobig(pCtx); 546 } 547 } 548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 549 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 550 } 551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 552 Mem *pOut = pCtx->pOut; 553 assert( sqlite3_mutex_held(pOut->db->mutex) ); 554 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 555 sqlite3_result_error_toobig(pCtx); 556 return SQLITE_TOOBIG; 557 } 558 #ifndef SQLITE_OMIT_INCRBLOB 559 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 560 return SQLITE_OK; 561 #else 562 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 563 #endif 564 } 565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 566 pCtx->isError = errCode ? errCode : -1; 567 #ifdef SQLITE_DEBUG 568 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 569 #endif 570 if( pCtx->pOut->flags & MEM_Null ){ 571 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 572 SQLITE_STATIC); 573 } 574 } 575 576 /* Force an SQLITE_TOOBIG error. */ 577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 578 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 579 pCtx->isError = SQLITE_TOOBIG; 580 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 581 SQLITE_UTF8, SQLITE_STATIC); 582 } 583 584 /* An SQLITE_NOMEM error. */ 585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 586 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 587 sqlite3VdbeMemSetNull(pCtx->pOut); 588 pCtx->isError = SQLITE_NOMEM_BKPT; 589 sqlite3OomFault(pCtx->pOut->db); 590 } 591 592 #ifndef SQLITE_UNTESTABLE 593 /* Force the INT64 value currently stored as the result to be 594 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 595 ** test-control. 596 */ 597 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 598 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 599 if( pCtx->pOut->flags & MEM_Int ){ 600 pCtx->pOut->flags &= ~MEM_Int; 601 pCtx->pOut->flags |= MEM_IntReal; 602 } 603 } 604 #endif 605 606 607 /* 608 ** This function is called after a transaction has been committed. It 609 ** invokes callbacks registered with sqlite3_wal_hook() as required. 610 */ 611 static int doWalCallbacks(sqlite3 *db){ 612 int rc = SQLITE_OK; 613 #ifndef SQLITE_OMIT_WAL 614 int i; 615 for(i=0; i<db->nDb; i++){ 616 Btree *pBt = db->aDb[i].pBt; 617 if( pBt ){ 618 int nEntry; 619 sqlite3BtreeEnter(pBt); 620 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 621 sqlite3BtreeLeave(pBt); 622 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 623 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 624 } 625 } 626 } 627 #endif 628 return rc; 629 } 630 631 632 /* 633 ** Execute the statement pStmt, either until a row of data is ready, the 634 ** statement is completely executed or an error occurs. 635 ** 636 ** This routine implements the bulk of the logic behind the sqlite_step() 637 ** API. The only thing omitted is the automatic recompile if a 638 ** schema change has occurred. That detail is handled by the 639 ** outer sqlite3_step() wrapper procedure. 640 */ 641 static int sqlite3Step(Vdbe *p){ 642 sqlite3 *db; 643 int rc; 644 645 assert(p); 646 if( p->eVdbeState!=VDBE_RUN_STATE ){ 647 /* We used to require that sqlite3_reset() be called before retrying 648 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 649 ** with version 3.7.0, we changed this so that sqlite3_reset() would 650 ** be called automatically instead of throwing the SQLITE_MISUSE error. 651 ** This "automatic-reset" change is not technically an incompatibility, 652 ** since any application that receives an SQLITE_MISUSE is broken by 653 ** definition. 654 ** 655 ** Nevertheless, some published applications that were originally written 656 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 657 ** returns, and those were broken by the automatic-reset change. As a 658 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 659 ** legacy behavior of returning SQLITE_MISUSE for cases where the 660 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 661 ** or SQLITE_BUSY error. 662 */ 663 #ifdef SQLITE_OMIT_AUTORESET 664 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 665 sqlite3_reset((sqlite3_stmt*)p); 666 }else{ 667 return SQLITE_MISUSE_BKPT; 668 } 669 #else 670 sqlite3_reset((sqlite3_stmt*)p); 671 #endif 672 } 673 674 /* Check that malloc() has not failed. If it has, return early. */ 675 db = p->db; 676 if( db->mallocFailed ){ 677 p->rc = SQLITE_NOMEM; 678 return SQLITE_NOMEM_BKPT; 679 } 680 681 if( p->pc<0 && p->expired ){ 682 p->rc = SQLITE_SCHEMA; 683 rc = SQLITE_ERROR; 684 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 685 /* If this statement was prepared using saved SQL and an 686 ** error has occurred, then return the error code in p->rc to the 687 ** caller. Set the error code in the database handle to the same value. 688 */ 689 rc = sqlite3VdbeTransferError(p); 690 } 691 goto end_of_step; 692 } 693 if( p->pc<0 ){ 694 /* If there are no other statements currently running, then 695 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 696 ** from interrupting a statement that has not yet started. 697 */ 698 if( db->nVdbeActive==0 ){ 699 AtomicStore(&db->u1.isInterrupted, 0); 700 } 701 702 assert( db->nVdbeWrite>0 || db->autoCommit==0 703 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 704 ); 705 706 #ifndef SQLITE_OMIT_TRACE 707 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 708 && !db->init.busy && p->zSql ){ 709 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 710 }else{ 711 assert( p->startTime==0 ); 712 } 713 #endif 714 715 db->nVdbeActive++; 716 if( p->readOnly==0 ) db->nVdbeWrite++; 717 if( p->bIsReader ) db->nVdbeRead++; 718 p->pc = 0; 719 } 720 #ifdef SQLITE_DEBUG 721 p->rcApp = SQLITE_OK; 722 #endif 723 #ifndef SQLITE_OMIT_EXPLAIN 724 if( p->explain ){ 725 rc = sqlite3VdbeList(p); 726 }else 727 #endif /* SQLITE_OMIT_EXPLAIN */ 728 { 729 db->nVdbeExec++; 730 rc = sqlite3VdbeExec(p); 731 db->nVdbeExec--; 732 } 733 734 if( rc==SQLITE_ROW ){ 735 assert( p->rc==SQLITE_OK ); 736 assert( db->mallocFailed==0 ); 737 db->errCode = SQLITE_ROW; 738 return SQLITE_ROW; 739 }else{ 740 #ifndef SQLITE_OMIT_TRACE 741 /* If the statement completed successfully, invoke the profile callback */ 742 checkProfileCallback(db, p); 743 #endif 744 745 if( rc==SQLITE_DONE && db->autoCommit ){ 746 assert( p->rc==SQLITE_OK ); 747 p->rc = doWalCallbacks(db); 748 if( p->rc!=SQLITE_OK ){ 749 rc = SQLITE_ERROR; 750 } 751 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 752 /* If this statement was prepared using saved SQL and an 753 ** error has occurred, then return the error code in p->rc to the 754 ** caller. Set the error code in the database handle to the same value. 755 */ 756 rc = sqlite3VdbeTransferError(p); 757 } 758 } 759 760 db->errCode = rc; 761 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 762 p->rc = SQLITE_NOMEM_BKPT; 763 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 764 } 765 end_of_step: 766 /* There are only a limited number of result codes allowed from the 767 ** statements prepared using the legacy sqlite3_prepare() interface */ 768 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 769 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 770 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 771 ); 772 return (rc&db->errMask); 773 } 774 775 /* 776 ** This is the top-level implementation of sqlite3_step(). Call 777 ** sqlite3Step() to do most of the work. If a schema error occurs, 778 ** call sqlite3Reprepare() and try again. 779 */ 780 int sqlite3_step(sqlite3_stmt *pStmt){ 781 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 782 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 783 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 784 sqlite3 *db; /* The database connection */ 785 786 if( vdbeSafetyNotNull(v) ){ 787 return SQLITE_MISUSE_BKPT; 788 } 789 db = v->db; 790 sqlite3_mutex_enter(db->mutex); 791 v->doingRerun = 0; 792 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 793 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 794 int savedPc = v->pc; 795 rc = sqlite3Reprepare(v); 796 if( rc!=SQLITE_OK ){ 797 /* This case occurs after failing to recompile an sql statement. 798 ** The error message from the SQL compiler has already been loaded 799 ** into the database handle. This block copies the error message 800 ** from the database handle into the statement and sets the statement 801 ** program counter to 0 to ensure that when the statement is 802 ** finalized or reset the parser error message is available via 803 ** sqlite3_errmsg() and sqlite3_errcode(). 804 */ 805 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 806 sqlite3DbFree(db, v->zErrMsg); 807 if( !db->mallocFailed ){ 808 v->zErrMsg = sqlite3DbStrDup(db, zErr); 809 v->rc = rc = sqlite3ApiExit(db, rc); 810 } else { 811 v->zErrMsg = 0; 812 v->rc = rc = SQLITE_NOMEM_BKPT; 813 } 814 break; 815 } 816 sqlite3_reset(pStmt); 817 if( savedPc>=0 ) v->doingRerun = 1; 818 assert( v->expired==0 ); 819 } 820 sqlite3_mutex_leave(db->mutex); 821 return rc; 822 } 823 824 825 /* 826 ** Extract the user data from a sqlite3_context structure and return a 827 ** pointer to it. 828 */ 829 void *sqlite3_user_data(sqlite3_context *p){ 830 assert( p && p->pFunc ); 831 return p->pFunc->pUserData; 832 } 833 834 /* 835 ** Extract the user data from a sqlite3_context structure and return a 836 ** pointer to it. 837 ** 838 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 839 ** returns a copy of the pointer to the database connection (the 1st 840 ** parameter) of the sqlite3_create_function() and 841 ** sqlite3_create_function16() routines that originally registered the 842 ** application defined function. 843 */ 844 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 845 assert( p && p->pOut ); 846 return p->pOut->db; 847 } 848 849 /* 850 ** If this routine is invoked from within an xColumn method of a virtual 851 ** table, then it returns true if and only if the the call is during an 852 ** UPDATE operation and the value of the column will not be modified 853 ** by the UPDATE. 854 ** 855 ** If this routine is called from any context other than within the 856 ** xColumn method of a virtual table, then the return value is meaningless 857 ** and arbitrary. 858 ** 859 ** Virtual table implements might use this routine to optimize their 860 ** performance by substituting a NULL result, or some other light-weight 861 ** value, as a signal to the xUpdate routine that the column is unchanged. 862 */ 863 int sqlite3_vtab_nochange(sqlite3_context *p){ 864 assert( p ); 865 return sqlite3_value_nochange(p->pOut); 866 } 867 868 /* 869 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 870 ** sqlite3_vtab_in_next() (if bNext!=0). 871 */ 872 static int valueFromValueList( 873 sqlite3_value *pVal, /* Pointer to the ValueList object */ 874 sqlite3_value **ppOut, /* Store the next value from the list here */ 875 int bNext /* 1 for _next(). 0 for _first() */ 876 ){ 877 int rc; 878 ValueList *pRhs; 879 880 *ppOut = 0; 881 if( pVal==0 ) return SQLITE_MISUSE; 882 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList"); 883 if( pRhs==0 ) return SQLITE_MISUSE; 884 if( bNext ){ 885 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 886 }else{ 887 int dummy = 0; 888 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 889 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 890 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 891 } 892 if( rc==SQLITE_OK ){ 893 u32 sz; /* Size of current row in bytes */ 894 Mem sMem; /* Raw content of current row */ 895 memset(&sMem, 0, sizeof(sMem)); 896 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 897 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 898 if( rc==SQLITE_OK ){ 899 u8 *zBuf = (u8*)sMem.z; 900 u32 iSerial; 901 sqlite3_value *pOut = pRhs->pOut; 902 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 903 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 904 pOut->enc = ENC(pOut->db); 905 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 906 rc = SQLITE_NOMEM; 907 }else{ 908 *ppOut = pOut; 909 } 910 } 911 sqlite3VdbeMemRelease(&sMem); 912 } 913 return rc; 914 } 915 916 /* 917 ** Set the iterator value pVal to point to the first value in the set. 918 ** Set (*ppOut) to point to this value before returning. 919 */ 920 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 921 return valueFromValueList(pVal, ppOut, 0); 922 } 923 924 /* 925 ** Set the iterator value pVal to point to the next value in the set. 926 ** Set (*ppOut) to point to this value before returning. 927 */ 928 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 929 return valueFromValueList(pVal, ppOut, 1); 930 } 931 932 /* 933 ** Return the current time for a statement. If the current time 934 ** is requested more than once within the same run of a single prepared 935 ** statement, the exact same time is returned for each invocation regardless 936 ** of the amount of time that elapses between invocations. In other words, 937 ** the time returned is always the time of the first call. 938 */ 939 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 940 int rc; 941 #ifndef SQLITE_ENABLE_STAT4 942 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 943 assert( p->pVdbe!=0 ); 944 #else 945 sqlite3_int64 iTime = 0; 946 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 947 #endif 948 if( *piTime==0 ){ 949 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 950 if( rc ) *piTime = 0; 951 } 952 return *piTime; 953 } 954 955 /* 956 ** Create a new aggregate context for p and return a pointer to 957 ** its pMem->z element. 958 */ 959 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 960 Mem *pMem = p->pMem; 961 assert( (pMem->flags & MEM_Agg)==0 ); 962 if( nByte<=0 ){ 963 sqlite3VdbeMemSetNull(pMem); 964 pMem->z = 0; 965 }else{ 966 sqlite3VdbeMemClearAndResize(pMem, nByte); 967 pMem->flags = MEM_Agg; 968 pMem->u.pDef = p->pFunc; 969 if( pMem->z ){ 970 memset(pMem->z, 0, nByte); 971 } 972 } 973 return (void*)pMem->z; 974 } 975 976 /* 977 ** Allocate or return the aggregate context for a user function. A new 978 ** context is allocated on the first call. Subsequent calls return the 979 ** same context that was returned on prior calls. 980 */ 981 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 982 assert( p && p->pFunc && p->pFunc->xFinalize ); 983 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 984 testcase( nByte<0 ); 985 if( (p->pMem->flags & MEM_Agg)==0 ){ 986 return createAggContext(p, nByte); 987 }else{ 988 return (void*)p->pMem->z; 989 } 990 } 991 992 /* 993 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 994 ** the user-function defined by pCtx. 995 ** 996 ** The left-most argument is 0. 997 ** 998 ** Undocumented behavior: If iArg is negative then access a cache of 999 ** auxiliary data pointers that is available to all functions within a 1000 ** single prepared statement. The iArg values must match. 1001 */ 1002 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 1003 AuxData *pAuxData; 1004 1005 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1006 #if SQLITE_ENABLE_STAT4 1007 if( pCtx->pVdbe==0 ) return 0; 1008 #else 1009 assert( pCtx->pVdbe!=0 ); 1010 #endif 1011 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1012 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1013 return pAuxData->pAux; 1014 } 1015 } 1016 return 0; 1017 } 1018 1019 /* 1020 ** Set the auxiliary data pointer and delete function, for the iArg'th 1021 ** argument to the user-function defined by pCtx. Any previous value is 1022 ** deleted by calling the delete function specified when it was set. 1023 ** 1024 ** The left-most argument is 0. 1025 ** 1026 ** Undocumented behavior: If iArg is negative then make the data available 1027 ** to all functions within the current prepared statement using iArg as an 1028 ** access code. 1029 */ 1030 void sqlite3_set_auxdata( 1031 sqlite3_context *pCtx, 1032 int iArg, 1033 void *pAux, 1034 void (*xDelete)(void*) 1035 ){ 1036 AuxData *pAuxData; 1037 Vdbe *pVdbe = pCtx->pVdbe; 1038 1039 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1040 #ifdef SQLITE_ENABLE_STAT4 1041 if( pVdbe==0 ) goto failed; 1042 #else 1043 assert( pVdbe!=0 ); 1044 #endif 1045 1046 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1047 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1048 break; 1049 } 1050 } 1051 if( pAuxData==0 ){ 1052 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 1053 if( !pAuxData ) goto failed; 1054 pAuxData->iAuxOp = pCtx->iOp; 1055 pAuxData->iAuxArg = iArg; 1056 pAuxData->pNextAux = pVdbe->pAuxData; 1057 pVdbe->pAuxData = pAuxData; 1058 if( pCtx->isError==0 ) pCtx->isError = -1; 1059 }else if( pAuxData->xDeleteAux ){ 1060 pAuxData->xDeleteAux(pAuxData->pAux); 1061 } 1062 1063 pAuxData->pAux = pAux; 1064 pAuxData->xDeleteAux = xDelete; 1065 return; 1066 1067 failed: 1068 if( xDelete ){ 1069 xDelete(pAux); 1070 } 1071 } 1072 1073 #ifndef SQLITE_OMIT_DEPRECATED 1074 /* 1075 ** Return the number of times the Step function of an aggregate has been 1076 ** called. 1077 ** 1078 ** This function is deprecated. Do not use it for new code. It is 1079 ** provide only to avoid breaking legacy code. New aggregate function 1080 ** implementations should keep their own counts within their aggregate 1081 ** context. 1082 */ 1083 int sqlite3_aggregate_count(sqlite3_context *p){ 1084 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1085 return p->pMem->n; 1086 } 1087 #endif 1088 1089 /* 1090 ** Return the number of columns in the result set for the statement pStmt. 1091 */ 1092 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1093 Vdbe *pVm = (Vdbe *)pStmt; 1094 return pVm ? pVm->nResColumn : 0; 1095 } 1096 1097 /* 1098 ** Return the number of values available from the current row of the 1099 ** currently executing statement pStmt. 1100 */ 1101 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1102 Vdbe *pVm = (Vdbe *)pStmt; 1103 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1104 return pVm->nResColumn; 1105 } 1106 1107 /* 1108 ** Return a pointer to static memory containing an SQL NULL value. 1109 */ 1110 static const Mem *columnNullValue(void){ 1111 /* Even though the Mem structure contains an element 1112 ** of type i64, on certain architectures (x86) with certain compiler 1113 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1114 ** instead of an 8-byte one. This all works fine, except that when 1115 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1116 ** that a Mem structure is located on an 8-byte boundary. To prevent 1117 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1118 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1119 ** __attribute__((aligned(8))) macro. */ 1120 static const Mem nullMem 1121 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1122 __attribute__((aligned(8))) 1123 #endif 1124 = { 1125 /* .u = */ {0}, 1126 /* .z = */ (char*)0, 1127 /* .n = */ (int)0, 1128 /* .flags = */ (u16)MEM_Null, 1129 /* .enc = */ (u8)0, 1130 /* .eSubtype = */ (u8)0, 1131 /* .db = */ (sqlite3*)0, 1132 /* .szMalloc = */ (int)0, 1133 /* .uTemp = */ (u32)0, 1134 /* .zMalloc = */ (char*)0, 1135 /* .xDel = */ (void(*)(void*))0, 1136 #ifdef SQLITE_DEBUG 1137 /* .pScopyFrom = */ (Mem*)0, 1138 /* .mScopyFlags= */ 0, 1139 #endif 1140 }; 1141 return &nullMem; 1142 } 1143 1144 /* 1145 ** Check to see if column iCol of the given statement is valid. If 1146 ** it is, return a pointer to the Mem for the value of that column. 1147 ** If iCol is not valid, return a pointer to a Mem which has a value 1148 ** of NULL. 1149 */ 1150 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1151 Vdbe *pVm; 1152 Mem *pOut; 1153 1154 pVm = (Vdbe *)pStmt; 1155 if( pVm==0 ) return (Mem*)columnNullValue(); 1156 assert( pVm->db ); 1157 sqlite3_mutex_enter(pVm->db->mutex); 1158 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1159 pOut = &pVm->pResultSet[i]; 1160 }else{ 1161 sqlite3Error(pVm->db, SQLITE_RANGE); 1162 pOut = (Mem*)columnNullValue(); 1163 } 1164 return pOut; 1165 } 1166 1167 /* 1168 ** This function is called after invoking an sqlite3_value_XXX function on a 1169 ** column value (i.e. a value returned by evaluating an SQL expression in the 1170 ** select list of a SELECT statement) that may cause a malloc() failure. If 1171 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1172 ** code of statement pStmt set to SQLITE_NOMEM. 1173 ** 1174 ** Specifically, this is called from within: 1175 ** 1176 ** sqlite3_column_int() 1177 ** sqlite3_column_int64() 1178 ** sqlite3_column_text() 1179 ** sqlite3_column_text16() 1180 ** sqlite3_column_real() 1181 ** sqlite3_column_bytes() 1182 ** sqlite3_column_bytes16() 1183 ** sqiite3_column_blob() 1184 */ 1185 static void columnMallocFailure(sqlite3_stmt *pStmt) 1186 { 1187 /* If malloc() failed during an encoding conversion within an 1188 ** sqlite3_column_XXX API, then set the return code of the statement to 1189 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1190 ** and _finalize() will return NOMEM. 1191 */ 1192 Vdbe *p = (Vdbe *)pStmt; 1193 if( p ){ 1194 assert( p->db!=0 ); 1195 assert( sqlite3_mutex_held(p->db->mutex) ); 1196 p->rc = sqlite3ApiExit(p->db, p->rc); 1197 sqlite3_mutex_leave(p->db->mutex); 1198 } 1199 } 1200 1201 /**************************** sqlite3_column_ ******************************* 1202 ** The following routines are used to access elements of the current row 1203 ** in the result set. 1204 */ 1205 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1206 const void *val; 1207 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1208 /* Even though there is no encoding conversion, value_blob() might 1209 ** need to call malloc() to expand the result of a zeroblob() 1210 ** expression. 1211 */ 1212 columnMallocFailure(pStmt); 1213 return val; 1214 } 1215 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1216 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1217 columnMallocFailure(pStmt); 1218 return val; 1219 } 1220 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1221 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1222 columnMallocFailure(pStmt); 1223 return val; 1224 } 1225 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1226 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1227 columnMallocFailure(pStmt); 1228 return val; 1229 } 1230 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1231 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1232 columnMallocFailure(pStmt); 1233 return val; 1234 } 1235 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1236 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1237 columnMallocFailure(pStmt); 1238 return val; 1239 } 1240 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1241 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1242 columnMallocFailure(pStmt); 1243 return val; 1244 } 1245 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1246 Mem *pOut = columnMem(pStmt, i); 1247 if( pOut->flags&MEM_Static ){ 1248 pOut->flags &= ~MEM_Static; 1249 pOut->flags |= MEM_Ephem; 1250 } 1251 columnMallocFailure(pStmt); 1252 return (sqlite3_value *)pOut; 1253 } 1254 #ifndef SQLITE_OMIT_UTF16 1255 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1256 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1257 columnMallocFailure(pStmt); 1258 return val; 1259 } 1260 #endif /* SQLITE_OMIT_UTF16 */ 1261 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1262 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1263 columnMallocFailure(pStmt); 1264 return iType; 1265 } 1266 1267 /* 1268 ** Convert the N-th element of pStmt->pColName[] into a string using 1269 ** xFunc() then return that string. If N is out of range, return 0. 1270 ** 1271 ** There are up to 5 names for each column. useType determines which 1272 ** name is returned. Here are the names: 1273 ** 1274 ** 0 The column name as it should be displayed for output 1275 ** 1 The datatype name for the column 1276 ** 2 The name of the database that the column derives from 1277 ** 3 The name of the table that the column derives from 1278 ** 4 The name of the table column that the result column derives from 1279 ** 1280 ** If the result is not a simple column reference (if it is an expression 1281 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1282 */ 1283 static const void *columnName( 1284 sqlite3_stmt *pStmt, /* The statement */ 1285 int N, /* Which column to get the name for */ 1286 int useUtf16, /* True to return the name as UTF16 */ 1287 int useType /* What type of name */ 1288 ){ 1289 const void *ret; 1290 Vdbe *p; 1291 int n; 1292 sqlite3 *db; 1293 #ifdef SQLITE_ENABLE_API_ARMOR 1294 if( pStmt==0 ){ 1295 (void)SQLITE_MISUSE_BKPT; 1296 return 0; 1297 } 1298 #endif 1299 ret = 0; 1300 p = (Vdbe *)pStmt; 1301 db = p->db; 1302 assert( db!=0 ); 1303 n = sqlite3_column_count(pStmt); 1304 if( N<n && N>=0 ){ 1305 N += useType*n; 1306 sqlite3_mutex_enter(db->mutex); 1307 assert( db->mallocFailed==0 ); 1308 #ifndef SQLITE_OMIT_UTF16 1309 if( useUtf16 ){ 1310 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1311 }else 1312 #endif 1313 { 1314 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1315 } 1316 /* A malloc may have failed inside of the _text() call. If this 1317 ** is the case, clear the mallocFailed flag and return NULL. 1318 */ 1319 if( db->mallocFailed ){ 1320 sqlite3OomClear(db); 1321 ret = 0; 1322 } 1323 sqlite3_mutex_leave(db->mutex); 1324 } 1325 return ret; 1326 } 1327 1328 /* 1329 ** Return the name of the Nth column of the result set returned by SQL 1330 ** statement pStmt. 1331 */ 1332 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1333 return columnName(pStmt, N, 0, COLNAME_NAME); 1334 } 1335 #ifndef SQLITE_OMIT_UTF16 1336 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1337 return columnName(pStmt, N, 1, COLNAME_NAME); 1338 } 1339 #endif 1340 1341 /* 1342 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1343 ** not define OMIT_DECLTYPE. 1344 */ 1345 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1346 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1347 and SQLITE_ENABLE_COLUMN_METADATA" 1348 #endif 1349 1350 #ifndef SQLITE_OMIT_DECLTYPE 1351 /* 1352 ** Return the column declaration type (if applicable) of the 'i'th column 1353 ** of the result set of SQL statement pStmt. 1354 */ 1355 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1356 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1357 } 1358 #ifndef SQLITE_OMIT_UTF16 1359 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1360 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1361 } 1362 #endif /* SQLITE_OMIT_UTF16 */ 1363 #endif /* SQLITE_OMIT_DECLTYPE */ 1364 1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1366 /* 1367 ** Return the name of the database from which a result column derives. 1368 ** NULL is returned if the result column is an expression or constant or 1369 ** anything else which is not an unambiguous reference to a database column. 1370 */ 1371 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1372 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1373 } 1374 #ifndef SQLITE_OMIT_UTF16 1375 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1376 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1377 } 1378 #endif /* SQLITE_OMIT_UTF16 */ 1379 1380 /* 1381 ** Return the name of the table from which a result column derives. 1382 ** NULL is returned if the result column is an expression or constant or 1383 ** anything else which is not an unambiguous reference to a database column. 1384 */ 1385 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1386 return columnName(pStmt, N, 0, COLNAME_TABLE); 1387 } 1388 #ifndef SQLITE_OMIT_UTF16 1389 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1390 return columnName(pStmt, N, 1, COLNAME_TABLE); 1391 } 1392 #endif /* SQLITE_OMIT_UTF16 */ 1393 1394 /* 1395 ** Return the name of the table column from which a result column derives. 1396 ** NULL is returned if the result column is an expression or constant or 1397 ** anything else which is not an unambiguous reference to a database column. 1398 */ 1399 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1400 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1401 } 1402 #ifndef SQLITE_OMIT_UTF16 1403 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1404 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1405 } 1406 #endif /* SQLITE_OMIT_UTF16 */ 1407 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1408 1409 1410 /******************************* sqlite3_bind_ *************************** 1411 ** 1412 ** Routines used to attach values to wildcards in a compiled SQL statement. 1413 */ 1414 /* 1415 ** Unbind the value bound to variable i in virtual machine p. This is the 1416 ** the same as binding a NULL value to the column. If the "i" parameter is 1417 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1418 ** 1419 ** A successful evaluation of this routine acquires the mutex on p. 1420 ** the mutex is released if any kind of error occurs. 1421 ** 1422 ** The error code stored in database p->db is overwritten with the return 1423 ** value in any case. 1424 */ 1425 static int vdbeUnbind(Vdbe *p, int i){ 1426 Mem *pVar; 1427 if( vdbeSafetyNotNull(p) ){ 1428 return SQLITE_MISUSE_BKPT; 1429 } 1430 sqlite3_mutex_enter(p->db->mutex); 1431 if( p->eVdbeState!=VDBE_RUN_STATE || p->pc>=0 ){ 1432 sqlite3Error(p->db, SQLITE_MISUSE); 1433 sqlite3_mutex_leave(p->db->mutex); 1434 sqlite3_log(SQLITE_MISUSE, 1435 "bind on a busy prepared statement: [%s]", p->zSql); 1436 return SQLITE_MISUSE_BKPT; 1437 } 1438 if( i<1 || i>p->nVar ){ 1439 sqlite3Error(p->db, SQLITE_RANGE); 1440 sqlite3_mutex_leave(p->db->mutex); 1441 return SQLITE_RANGE; 1442 } 1443 i--; 1444 pVar = &p->aVar[i]; 1445 sqlite3VdbeMemRelease(pVar); 1446 pVar->flags = MEM_Null; 1447 p->db->errCode = SQLITE_OK; 1448 1449 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1450 ** binding a new value to this variable invalidates the current query plan. 1451 ** 1452 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1453 ** parameter in the WHERE clause might influence the choice of query plan 1454 ** for a statement, then the statement will be automatically recompiled, 1455 ** as if there had been a schema change, on the first sqlite3_step() call 1456 ** following any change to the bindings of that parameter. 1457 */ 1458 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1459 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1460 p->expired = 1; 1461 } 1462 return SQLITE_OK; 1463 } 1464 1465 /* 1466 ** Bind a text or BLOB value. 1467 */ 1468 static int bindText( 1469 sqlite3_stmt *pStmt, /* The statement to bind against */ 1470 int i, /* Index of the parameter to bind */ 1471 const void *zData, /* Pointer to the data to be bound */ 1472 i64 nData, /* Number of bytes of data to be bound */ 1473 void (*xDel)(void*), /* Destructor for the data */ 1474 u8 encoding /* Encoding for the data */ 1475 ){ 1476 Vdbe *p = (Vdbe *)pStmt; 1477 Mem *pVar; 1478 int rc; 1479 1480 rc = vdbeUnbind(p, i); 1481 if( rc==SQLITE_OK ){ 1482 if( zData!=0 ){ 1483 pVar = &p->aVar[i-1]; 1484 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1485 if( rc==SQLITE_OK && encoding!=0 ){ 1486 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1487 } 1488 if( rc ){ 1489 sqlite3Error(p->db, rc); 1490 rc = sqlite3ApiExit(p->db, rc); 1491 } 1492 } 1493 sqlite3_mutex_leave(p->db->mutex); 1494 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1495 xDel((void*)zData); 1496 } 1497 return rc; 1498 } 1499 1500 1501 /* 1502 ** Bind a blob value to an SQL statement variable. 1503 */ 1504 int sqlite3_bind_blob( 1505 sqlite3_stmt *pStmt, 1506 int i, 1507 const void *zData, 1508 int nData, 1509 void (*xDel)(void*) 1510 ){ 1511 #ifdef SQLITE_ENABLE_API_ARMOR 1512 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1513 #endif 1514 return bindText(pStmt, i, zData, nData, xDel, 0); 1515 } 1516 int sqlite3_bind_blob64( 1517 sqlite3_stmt *pStmt, 1518 int i, 1519 const void *zData, 1520 sqlite3_uint64 nData, 1521 void (*xDel)(void*) 1522 ){ 1523 assert( xDel!=SQLITE_DYNAMIC ); 1524 return bindText(pStmt, i, zData, nData, xDel, 0); 1525 } 1526 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1527 int rc; 1528 Vdbe *p = (Vdbe *)pStmt; 1529 rc = vdbeUnbind(p, i); 1530 if( rc==SQLITE_OK ){ 1531 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1532 sqlite3_mutex_leave(p->db->mutex); 1533 } 1534 return rc; 1535 } 1536 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1537 return sqlite3_bind_int64(p, i, (i64)iValue); 1538 } 1539 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1540 int rc; 1541 Vdbe *p = (Vdbe *)pStmt; 1542 rc = vdbeUnbind(p, i); 1543 if( rc==SQLITE_OK ){ 1544 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1545 sqlite3_mutex_leave(p->db->mutex); 1546 } 1547 return rc; 1548 } 1549 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1550 int rc; 1551 Vdbe *p = (Vdbe*)pStmt; 1552 rc = vdbeUnbind(p, i); 1553 if( rc==SQLITE_OK ){ 1554 sqlite3_mutex_leave(p->db->mutex); 1555 } 1556 return rc; 1557 } 1558 int sqlite3_bind_pointer( 1559 sqlite3_stmt *pStmt, 1560 int i, 1561 void *pPtr, 1562 const char *zPTtype, 1563 void (*xDestructor)(void*) 1564 ){ 1565 int rc; 1566 Vdbe *p = (Vdbe*)pStmt; 1567 rc = vdbeUnbind(p, i); 1568 if( rc==SQLITE_OK ){ 1569 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1570 sqlite3_mutex_leave(p->db->mutex); 1571 }else if( xDestructor ){ 1572 xDestructor(pPtr); 1573 } 1574 return rc; 1575 } 1576 int sqlite3_bind_text( 1577 sqlite3_stmt *pStmt, 1578 int i, 1579 const char *zData, 1580 int nData, 1581 void (*xDel)(void*) 1582 ){ 1583 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1584 } 1585 int sqlite3_bind_text64( 1586 sqlite3_stmt *pStmt, 1587 int i, 1588 const char *zData, 1589 sqlite3_uint64 nData, 1590 void (*xDel)(void*), 1591 unsigned char enc 1592 ){ 1593 assert( xDel!=SQLITE_DYNAMIC ); 1594 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1595 return bindText(pStmt, i, zData, nData, xDel, enc); 1596 } 1597 #ifndef SQLITE_OMIT_UTF16 1598 int sqlite3_bind_text16( 1599 sqlite3_stmt *pStmt, 1600 int i, 1601 const void *zData, 1602 int nData, 1603 void (*xDel)(void*) 1604 ){ 1605 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1606 } 1607 #endif /* SQLITE_OMIT_UTF16 */ 1608 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1609 int rc; 1610 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1611 case SQLITE_INTEGER: { 1612 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1613 break; 1614 } 1615 case SQLITE_FLOAT: { 1616 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 1617 rc = sqlite3_bind_double(pStmt, i, 1618 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 1619 ); 1620 break; 1621 } 1622 case SQLITE_BLOB: { 1623 if( pValue->flags & MEM_Zero ){ 1624 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1625 }else{ 1626 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1627 } 1628 break; 1629 } 1630 case SQLITE_TEXT: { 1631 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1632 pValue->enc); 1633 break; 1634 } 1635 default: { 1636 rc = sqlite3_bind_null(pStmt, i); 1637 break; 1638 } 1639 } 1640 return rc; 1641 } 1642 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1643 int rc; 1644 Vdbe *p = (Vdbe *)pStmt; 1645 rc = vdbeUnbind(p, i); 1646 if( rc==SQLITE_OK ){ 1647 #ifndef SQLITE_OMIT_INCRBLOB 1648 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1649 #else 1650 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1651 #endif 1652 sqlite3_mutex_leave(p->db->mutex); 1653 } 1654 return rc; 1655 } 1656 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1657 int rc; 1658 Vdbe *p = (Vdbe *)pStmt; 1659 sqlite3_mutex_enter(p->db->mutex); 1660 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1661 rc = SQLITE_TOOBIG; 1662 }else{ 1663 assert( (n & 0x7FFFFFFF)==n ); 1664 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1665 } 1666 rc = sqlite3ApiExit(p->db, rc); 1667 sqlite3_mutex_leave(p->db->mutex); 1668 return rc; 1669 } 1670 1671 /* 1672 ** Return the number of wildcards that can be potentially bound to. 1673 ** This routine is added to support DBD::SQLite. 1674 */ 1675 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1676 Vdbe *p = (Vdbe*)pStmt; 1677 return p ? p->nVar : 0; 1678 } 1679 1680 /* 1681 ** Return the name of a wildcard parameter. Return NULL if the index 1682 ** is out of range or if the wildcard is unnamed. 1683 ** 1684 ** The result is always UTF-8. 1685 */ 1686 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1687 Vdbe *p = (Vdbe*)pStmt; 1688 if( p==0 ) return 0; 1689 return sqlite3VListNumToName(p->pVList, i); 1690 } 1691 1692 /* 1693 ** Given a wildcard parameter name, return the index of the variable 1694 ** with that name. If there is no variable with the given name, 1695 ** return 0. 1696 */ 1697 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1698 if( p==0 || zName==0 ) return 0; 1699 return sqlite3VListNameToNum(p->pVList, zName, nName); 1700 } 1701 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1702 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1703 } 1704 1705 /* 1706 ** Transfer all bindings from the first statement over to the second. 1707 */ 1708 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1709 Vdbe *pFrom = (Vdbe*)pFromStmt; 1710 Vdbe *pTo = (Vdbe*)pToStmt; 1711 int i; 1712 assert( pTo->db==pFrom->db ); 1713 assert( pTo->nVar==pFrom->nVar ); 1714 sqlite3_mutex_enter(pTo->db->mutex); 1715 for(i=0; i<pFrom->nVar; i++){ 1716 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1717 } 1718 sqlite3_mutex_leave(pTo->db->mutex); 1719 return SQLITE_OK; 1720 } 1721 1722 #ifndef SQLITE_OMIT_DEPRECATED 1723 /* 1724 ** Deprecated external interface. Internal/core SQLite code 1725 ** should call sqlite3TransferBindings. 1726 ** 1727 ** It is misuse to call this routine with statements from different 1728 ** database connections. But as this is a deprecated interface, we 1729 ** will not bother to check for that condition. 1730 ** 1731 ** If the two statements contain a different number of bindings, then 1732 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1733 ** SQLITE_OK is returned. 1734 */ 1735 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1736 Vdbe *pFrom = (Vdbe*)pFromStmt; 1737 Vdbe *pTo = (Vdbe*)pToStmt; 1738 if( pFrom->nVar!=pTo->nVar ){ 1739 return SQLITE_ERROR; 1740 } 1741 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1742 if( pTo->expmask ){ 1743 pTo->expired = 1; 1744 } 1745 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1746 if( pFrom->expmask ){ 1747 pFrom->expired = 1; 1748 } 1749 return sqlite3TransferBindings(pFromStmt, pToStmt); 1750 } 1751 #endif 1752 1753 /* 1754 ** Return the sqlite3* database handle to which the prepared statement given 1755 ** in the argument belongs. This is the same database handle that was 1756 ** the first argument to the sqlite3_prepare() that was used to create 1757 ** the statement in the first place. 1758 */ 1759 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1760 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1761 } 1762 1763 /* 1764 ** Return true if the prepared statement is guaranteed to not modify the 1765 ** database. 1766 */ 1767 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1768 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1769 } 1770 1771 /* 1772 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1773 ** statement is an EXPLAIN QUERY PLAN 1774 */ 1775 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1776 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1777 } 1778 1779 /* 1780 ** Return true if the prepared statement is in need of being reset. 1781 */ 1782 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1783 Vdbe *v = (Vdbe*)pStmt; 1784 return v!=0 && v->eVdbeState==VDBE_RUN_STATE && v->pc>=0; 1785 } 1786 1787 /* 1788 ** Return a pointer to the next prepared statement after pStmt associated 1789 ** with database connection pDb. If pStmt is NULL, return the first 1790 ** prepared statement for the database connection. Return NULL if there 1791 ** are no more. 1792 */ 1793 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1794 sqlite3_stmt *pNext; 1795 #ifdef SQLITE_ENABLE_API_ARMOR 1796 if( !sqlite3SafetyCheckOk(pDb) ){ 1797 (void)SQLITE_MISUSE_BKPT; 1798 return 0; 1799 } 1800 #endif 1801 sqlite3_mutex_enter(pDb->mutex); 1802 if( pStmt==0 ){ 1803 pNext = (sqlite3_stmt*)pDb->pVdbe; 1804 }else{ 1805 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1806 } 1807 sqlite3_mutex_leave(pDb->mutex); 1808 return pNext; 1809 } 1810 1811 /* 1812 ** Return the value of a status counter for a prepared statement 1813 */ 1814 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1815 Vdbe *pVdbe = (Vdbe*)pStmt; 1816 u32 v; 1817 #ifdef SQLITE_ENABLE_API_ARMOR 1818 if( !pStmt 1819 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1820 ){ 1821 (void)SQLITE_MISUSE_BKPT; 1822 return 0; 1823 } 1824 #endif 1825 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1826 sqlite3 *db = pVdbe->db; 1827 sqlite3_mutex_enter(db->mutex); 1828 v = 0; 1829 db->pnBytesFreed = (int*)&v; 1830 sqlite3VdbeClearObject(db, pVdbe); 1831 sqlite3DbFree(db, pVdbe); 1832 db->pnBytesFreed = 0; 1833 sqlite3_mutex_leave(db->mutex); 1834 }else{ 1835 v = pVdbe->aCounter[op]; 1836 if( resetFlag ) pVdbe->aCounter[op] = 0; 1837 } 1838 return (int)v; 1839 } 1840 1841 /* 1842 ** Return the SQL associated with a prepared statement 1843 */ 1844 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1845 Vdbe *p = (Vdbe *)pStmt; 1846 return p ? p->zSql : 0; 1847 } 1848 1849 /* 1850 ** Return the SQL associated with a prepared statement with 1851 ** bound parameters expanded. Space to hold the returned string is 1852 ** obtained from sqlite3_malloc(). The caller is responsible for 1853 ** freeing the returned string by passing it to sqlite3_free(). 1854 ** 1855 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1856 ** expanded bound parameters. 1857 */ 1858 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1859 #ifdef SQLITE_OMIT_TRACE 1860 return 0; 1861 #else 1862 char *z = 0; 1863 const char *zSql = sqlite3_sql(pStmt); 1864 if( zSql ){ 1865 Vdbe *p = (Vdbe *)pStmt; 1866 sqlite3_mutex_enter(p->db->mutex); 1867 z = sqlite3VdbeExpandSql(p, zSql); 1868 sqlite3_mutex_leave(p->db->mutex); 1869 } 1870 return z; 1871 #endif 1872 } 1873 1874 #ifdef SQLITE_ENABLE_NORMALIZE 1875 /* 1876 ** Return the normalized SQL associated with a prepared statement. 1877 */ 1878 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1879 Vdbe *p = (Vdbe *)pStmt; 1880 if( p==0 ) return 0; 1881 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1882 sqlite3_mutex_enter(p->db->mutex); 1883 p->zNormSql = sqlite3Normalize(p, p->zSql); 1884 sqlite3_mutex_leave(p->db->mutex); 1885 } 1886 return p->zNormSql; 1887 } 1888 #endif /* SQLITE_ENABLE_NORMALIZE */ 1889 1890 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1891 /* 1892 ** Allocate and populate an UnpackedRecord structure based on the serialized 1893 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1894 ** if successful, or a NULL pointer if an OOM error is encountered. 1895 */ 1896 static UnpackedRecord *vdbeUnpackRecord( 1897 KeyInfo *pKeyInfo, 1898 int nKey, 1899 const void *pKey 1900 ){ 1901 UnpackedRecord *pRet; /* Return value */ 1902 1903 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1904 if( pRet ){ 1905 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1906 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1907 } 1908 return pRet; 1909 } 1910 1911 /* 1912 ** This function is called from within a pre-update callback to retrieve 1913 ** a field of the row currently being updated or deleted. 1914 */ 1915 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1916 PreUpdate *p = db->pPreUpdate; 1917 Mem *pMem; 1918 int rc = SQLITE_OK; 1919 1920 /* Test that this call is being made from within an SQLITE_DELETE or 1921 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1922 if( !p || p->op==SQLITE_INSERT ){ 1923 rc = SQLITE_MISUSE_BKPT; 1924 goto preupdate_old_out; 1925 } 1926 if( p->pPk ){ 1927 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1928 } 1929 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1930 rc = SQLITE_RANGE; 1931 goto preupdate_old_out; 1932 } 1933 1934 /* If the old.* record has not yet been loaded into memory, do so now. */ 1935 if( p->pUnpacked==0 ){ 1936 u32 nRec; 1937 u8 *aRec; 1938 1939 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1940 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1941 aRec = sqlite3DbMallocRaw(db, nRec); 1942 if( !aRec ) goto preupdate_old_out; 1943 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1944 if( rc==SQLITE_OK ){ 1945 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1946 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1947 } 1948 if( rc!=SQLITE_OK ){ 1949 sqlite3DbFree(db, aRec); 1950 goto preupdate_old_out; 1951 } 1952 p->aRecord = aRec; 1953 } 1954 1955 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1956 if( iIdx==p->pTab->iPKey ){ 1957 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1958 }else if( iIdx>=p->pUnpacked->nField ){ 1959 *ppValue = (sqlite3_value *)columnNullValue(); 1960 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1961 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1962 testcase( pMem->flags & MEM_Int ); 1963 testcase( pMem->flags & MEM_IntReal ); 1964 sqlite3VdbeMemRealify(pMem); 1965 } 1966 } 1967 1968 preupdate_old_out: 1969 sqlite3Error(db, rc); 1970 return sqlite3ApiExit(db, rc); 1971 } 1972 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1973 1974 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1975 /* 1976 ** This function is called from within a pre-update callback to retrieve 1977 ** the number of columns in the row being updated, deleted or inserted. 1978 */ 1979 int sqlite3_preupdate_count(sqlite3 *db){ 1980 PreUpdate *p = db->pPreUpdate; 1981 return (p ? p->keyinfo.nKeyField : 0); 1982 } 1983 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1984 1985 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1986 /* 1987 ** This function is designed to be called from within a pre-update callback 1988 ** only. It returns zero if the change that caused the callback was made 1989 ** immediately by a user SQL statement. Or, if the change was made by a 1990 ** trigger program, it returns the number of trigger programs currently 1991 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1992 ** top-level trigger etc.). 1993 ** 1994 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1995 ** or SET DEFAULT action is considered a trigger. 1996 */ 1997 int sqlite3_preupdate_depth(sqlite3 *db){ 1998 PreUpdate *p = db->pPreUpdate; 1999 return (p ? p->v->nFrame : 0); 2000 } 2001 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2002 2003 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2004 /* 2005 ** This function is designed to be called from within a pre-update callback 2006 ** only. 2007 */ 2008 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 2009 PreUpdate *p = db->pPreUpdate; 2010 return (p ? p->iBlobWrite : -1); 2011 } 2012 #endif 2013 2014 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2015 /* 2016 ** This function is called from within a pre-update callback to retrieve 2017 ** a field of the row currently being updated or inserted. 2018 */ 2019 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 2020 PreUpdate *p = db->pPreUpdate; 2021 int rc = SQLITE_OK; 2022 Mem *pMem; 2023 2024 if( !p || p->op==SQLITE_DELETE ){ 2025 rc = SQLITE_MISUSE_BKPT; 2026 goto preupdate_new_out; 2027 } 2028 if( p->pPk && p->op!=SQLITE_UPDATE ){ 2029 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 2030 } 2031 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 2032 rc = SQLITE_RANGE; 2033 goto preupdate_new_out; 2034 } 2035 2036 if( p->op==SQLITE_INSERT ){ 2037 /* For an INSERT, memory cell p->iNewReg contains the serialized record 2038 ** that is being inserted. Deserialize it. */ 2039 UnpackedRecord *pUnpack = p->pNewUnpacked; 2040 if( !pUnpack ){ 2041 Mem *pData = &p->v->aMem[p->iNewReg]; 2042 rc = ExpandBlob(pData); 2043 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2044 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 2045 if( !pUnpack ){ 2046 rc = SQLITE_NOMEM; 2047 goto preupdate_new_out; 2048 } 2049 p->pNewUnpacked = pUnpack; 2050 } 2051 pMem = &pUnpack->aMem[iIdx]; 2052 if( iIdx==p->pTab->iPKey ){ 2053 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2054 }else if( iIdx>=pUnpack->nField ){ 2055 pMem = (sqlite3_value *)columnNullValue(); 2056 } 2057 }else{ 2058 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 2059 ** value. Make a copy of the cell contents and return a pointer to it. 2060 ** It is not safe to return a pointer to the memory cell itself as the 2061 ** caller may modify the value text encoding. 2062 */ 2063 assert( p->op==SQLITE_UPDATE ); 2064 if( !p->aNew ){ 2065 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 2066 if( !p->aNew ){ 2067 rc = SQLITE_NOMEM; 2068 goto preupdate_new_out; 2069 } 2070 } 2071 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 2072 pMem = &p->aNew[iIdx]; 2073 if( pMem->flags==0 ){ 2074 if( iIdx==p->pTab->iPKey ){ 2075 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2076 }else{ 2077 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 2078 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2079 } 2080 } 2081 } 2082 *ppValue = pMem; 2083 2084 preupdate_new_out: 2085 sqlite3Error(db, rc); 2086 return sqlite3ApiExit(db, rc); 2087 } 2088 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2089 2090 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2091 /* 2092 ** Return status data for a single loop within query pStmt. 2093 */ 2094 int sqlite3_stmt_scanstatus( 2095 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2096 int idx, /* Index of loop to report on */ 2097 int iScanStatusOp, /* Which metric to return */ 2098 void *pOut /* OUT: Write the answer here */ 2099 ){ 2100 Vdbe *p = (Vdbe*)pStmt; 2101 ScanStatus *pScan; 2102 if( idx<0 || idx>=p->nScan ) return 1; 2103 pScan = &p->aScan[idx]; 2104 switch( iScanStatusOp ){ 2105 case SQLITE_SCANSTAT_NLOOP: { 2106 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2107 break; 2108 } 2109 case SQLITE_SCANSTAT_NVISIT: { 2110 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2111 break; 2112 } 2113 case SQLITE_SCANSTAT_EST: { 2114 double r = 1.0; 2115 LogEst x = pScan->nEst; 2116 while( x<100 ){ 2117 x += 10; 2118 r *= 0.5; 2119 } 2120 *(double*)pOut = r*sqlite3LogEstToInt(x); 2121 break; 2122 } 2123 case SQLITE_SCANSTAT_NAME: { 2124 *(const char**)pOut = pScan->zName; 2125 break; 2126 } 2127 case SQLITE_SCANSTAT_EXPLAIN: { 2128 if( pScan->addrExplain ){ 2129 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2130 }else{ 2131 *(const char**)pOut = 0; 2132 } 2133 break; 2134 } 2135 case SQLITE_SCANSTAT_SELECTID: { 2136 if( pScan->addrExplain ){ 2137 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2138 }else{ 2139 *(int*)pOut = -1; 2140 } 2141 break; 2142 } 2143 default: { 2144 return 1; 2145 } 2146 } 2147 return 0; 2148 } 2149 2150 /* 2151 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2152 */ 2153 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2154 Vdbe *p = (Vdbe*)pStmt; 2155 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2156 } 2157 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2158