xref: /sqlite-3.40.0/src/vdbeapi.c (revision 659fdb4d)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 (not possible) */
238      SQLITE_NULL,     /* 0x01 NULL */
239      SQLITE_TEXT,     /* 0x02 TEXT */
240      SQLITE_NULL,     /* 0x03 (not possible) */
241      SQLITE_INTEGER,  /* 0x04 INTEGER */
242      SQLITE_NULL,     /* 0x05 (not possible) */
243      SQLITE_INTEGER,  /* 0x06 INTEGER + TEXT */
244      SQLITE_NULL,     /* 0x07 (not possible) */
245      SQLITE_FLOAT,    /* 0x08 FLOAT */
246      SQLITE_NULL,     /* 0x09 (not possible) */
247      SQLITE_FLOAT,    /* 0x0a FLOAT + TEXT */
248      SQLITE_NULL,     /* 0x0b (not possible) */
249      SQLITE_INTEGER,  /* 0x0c (not possible) */
250      SQLITE_NULL,     /* 0x0d (not possible) */
251      SQLITE_INTEGER,  /* 0x0e (not possible) */
252      SQLITE_NULL,     /* 0x0f (not possible) */
253      SQLITE_BLOB,     /* 0x10 BLOB */
254      SQLITE_NULL,     /* 0x11 (not possible) */
255      SQLITE_TEXT,     /* 0x12 (not possible) */
256      SQLITE_NULL,     /* 0x13 (not possible) */
257      SQLITE_INTEGER,  /* 0x14 INTEGER + BLOB */
258      SQLITE_NULL,     /* 0x15 (not possible) */
259      SQLITE_INTEGER,  /* 0x16 (not possible) */
260      SQLITE_NULL,     /* 0x17 (not possible) */
261      SQLITE_FLOAT,    /* 0x18 FLOAT + BLOB */
262      SQLITE_NULL,     /* 0x19 (not possible) */
263      SQLITE_FLOAT,    /* 0x1a (not possible) */
264      SQLITE_NULL,     /* 0x1b (not possible) */
265      SQLITE_INTEGER,  /* 0x1c (not possible) */
266      SQLITE_NULL,     /* 0x1d (not possible) */
267      SQLITE_INTEGER,  /* 0x1e (not possible) */
268      SQLITE_NULL,     /* 0x1f (not possible) */
269      SQLITE_FLOAT,    /* 0x20 INTREAL */
270      SQLITE_NULL,     /* 0x21 (not possible) */
271      SQLITE_TEXT,     /* 0x22 INTREAL + TEXT */
272      SQLITE_NULL,     /* 0x23 (not possible) */
273      SQLITE_FLOAT,    /* 0x24 (not possible) */
274      SQLITE_NULL,     /* 0x25 (not possible) */
275      SQLITE_FLOAT,    /* 0x26 (not possible) */
276      SQLITE_NULL,     /* 0x27 (not possible) */
277      SQLITE_FLOAT,    /* 0x28 (not possible) */
278      SQLITE_NULL,     /* 0x29 (not possible) */
279      SQLITE_FLOAT,    /* 0x2a (not possible) */
280      SQLITE_NULL,     /* 0x2b (not possible) */
281      SQLITE_FLOAT,    /* 0x2c (not possible) */
282      SQLITE_NULL,     /* 0x2d (not possible) */
283      SQLITE_FLOAT,    /* 0x2e (not possible) */
284      SQLITE_NULL,     /* 0x2f (not possible) */
285      SQLITE_BLOB,     /* 0x30 (not possible) */
286      SQLITE_NULL,     /* 0x31 (not possible) */
287      SQLITE_TEXT,     /* 0x32 (not possible) */
288      SQLITE_NULL,     /* 0x33 (not possible) */
289      SQLITE_FLOAT,    /* 0x34 (not possible) */
290      SQLITE_NULL,     /* 0x35 (not possible) */
291      SQLITE_FLOAT,    /* 0x36 (not possible) */
292      SQLITE_NULL,     /* 0x37 (not possible) */
293      SQLITE_FLOAT,    /* 0x38 (not possible) */
294      SQLITE_NULL,     /* 0x39 (not possible) */
295      SQLITE_FLOAT,    /* 0x3a (not possible) */
296      SQLITE_NULL,     /* 0x3b (not possible) */
297      SQLITE_FLOAT,    /* 0x3c (not possible) */
298      SQLITE_NULL,     /* 0x3d (not possible) */
299      SQLITE_FLOAT,    /* 0x3e (not possible) */
300      SQLITE_NULL,     /* 0x3f (not possible) */
301   };
302 #ifdef SQLITE_DEBUG
303   {
304     int eType = SQLITE_BLOB;
305     if( pVal->flags & MEM_Null ){
306       eType = SQLITE_NULL;
307     }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308       eType = SQLITE_FLOAT;
309     }else if( pVal->flags & MEM_Int ){
310       eType = SQLITE_INTEGER;
311     }else if( pVal->flags & MEM_Str ){
312       eType = SQLITE_TEXT;
313     }
314     assert( eType == aType[pVal->flags&MEM_AffMask] );
315   }
316 #endif
317   return aType[pVal->flags&MEM_AffMask];
318 }
319 
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
323 }
324 
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327   return (pVal->flags&MEM_FromBind)!=0;
328 }
329 
330 /* Make a copy of an sqlite3_value object
331 */
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333   sqlite3_value *pNew;
334   if( pOrig==0 ) return 0;
335   pNew = sqlite3_malloc( sizeof(*pNew) );
336   if( pNew==0 ) return 0;
337   memset(pNew, 0, sizeof(*pNew));
338   memcpy(pNew, pOrig, MEMCELLSIZE);
339   pNew->flags &= ~MEM_Dyn;
340   pNew->db = 0;
341   if( pNew->flags&(MEM_Str|MEM_Blob) ){
342     pNew->flags &= ~(MEM_Static|MEM_Dyn);
343     pNew->flags |= MEM_Ephem;
344     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345       sqlite3ValueFree(pNew);
346       pNew = 0;
347     }
348   }else if( pNew->flags & MEM_Null ){
349     /* Do not duplicate pointer values */
350     pNew->flags &= ~(MEM_Term|MEM_Subtype);
351   }
352   return pNew;
353 }
354 
355 /* Destroy an sqlite3_value object previously obtained from
356 ** sqlite3_value_dup().
357 */
358 void sqlite3_value_free(sqlite3_value *pOld){
359   sqlite3ValueFree(pOld);
360 }
361 
362 
363 /**************************** sqlite3_result_  *******************************
364 ** The following routines are used by user-defined functions to specify
365 ** the function result.
366 **
367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
368 ** result as a string or blob.  Appropriate errors are set if the string/blob
369 ** is too big or if an OOM occurs.
370 **
371 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
372 ** on value P is not going to be used and need to be destroyed.
373 */
374 static void setResultStrOrError(
375   sqlite3_context *pCtx,  /* Function context */
376   const char *z,          /* String pointer */
377   int n,                  /* Bytes in string, or negative */
378   u8 enc,                 /* Encoding of z.  0 for BLOBs */
379   void (*xDel)(void*)     /* Destructor function */
380 ){
381   Mem *pOut = pCtx->pOut;
382   int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
383   if( rc ){
384     if( rc==SQLITE_TOOBIG ){
385       sqlite3_result_error_toobig(pCtx);
386     }else{
387       /* The only errors possible from sqlite3VdbeMemSetStr are
388       ** SQLITE_TOOBIG and SQLITE_NOMEM */
389       assert( rc==SQLITE_NOMEM );
390       sqlite3_result_error_nomem(pCtx);
391     }
392     return;
393   }
394   sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
395   if( sqlite3VdbeMemTooBig(pOut) ){
396     sqlite3_result_error_toobig(pCtx);
397   }
398 }
399 static int invokeValueDestructor(
400   const void *p,             /* Value to destroy */
401   void (*xDel)(void*),       /* The destructor */
402   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
403 ){
404   assert( xDel!=SQLITE_DYNAMIC );
405   if( xDel==0 ){
406     /* noop */
407   }else if( xDel==SQLITE_TRANSIENT ){
408     /* noop */
409   }else{
410     xDel((void*)p);
411   }
412   sqlite3_result_error_toobig(pCtx);
413   return SQLITE_TOOBIG;
414 }
415 void sqlite3_result_blob(
416   sqlite3_context *pCtx,
417   const void *z,
418   int n,
419   void (*xDel)(void *)
420 ){
421   assert( n>=0 );
422   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
423   setResultStrOrError(pCtx, z, n, 0, xDel);
424 }
425 void sqlite3_result_blob64(
426   sqlite3_context *pCtx,
427   const void *z,
428   sqlite3_uint64 n,
429   void (*xDel)(void *)
430 ){
431   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
432   assert( xDel!=SQLITE_DYNAMIC );
433   if( n>0x7fffffff ){
434     (void)invokeValueDestructor(z, xDel, pCtx);
435   }else{
436     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
437   }
438 }
439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
440   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
441   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
442 }
443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
444   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
445   pCtx->isError = SQLITE_ERROR;
446   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
447 }
448 #ifndef SQLITE_OMIT_UTF16
449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
450   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
451   pCtx->isError = SQLITE_ERROR;
452   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
453 }
454 #endif
455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
456   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
457   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
458 }
459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
460   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
461   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
462 }
463 void sqlite3_result_null(sqlite3_context *pCtx){
464   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
465   sqlite3VdbeMemSetNull(pCtx->pOut);
466 }
467 void sqlite3_result_pointer(
468   sqlite3_context *pCtx,
469   void *pPtr,
470   const char *zPType,
471   void (*xDestructor)(void*)
472 ){
473   Mem *pOut = pCtx->pOut;
474   assert( sqlite3_mutex_held(pOut->db->mutex) );
475   sqlite3VdbeMemRelease(pOut);
476   pOut->flags = MEM_Null;
477   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
478 }
479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
480   Mem *pOut = pCtx->pOut;
481   assert( sqlite3_mutex_held(pOut->db->mutex) );
482   pOut->eSubtype = eSubtype & 0xff;
483   pOut->flags |= MEM_Subtype;
484 }
485 void sqlite3_result_text(
486   sqlite3_context *pCtx,
487   const char *z,
488   int n,
489   void (*xDel)(void *)
490 ){
491   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
492   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
493 }
494 void sqlite3_result_text64(
495   sqlite3_context *pCtx,
496   const char *z,
497   sqlite3_uint64 n,
498   void (*xDel)(void *),
499   unsigned char enc
500 ){
501   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
502   assert( xDel!=SQLITE_DYNAMIC );
503   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
504   if( n>0x7fffffff ){
505     (void)invokeValueDestructor(z, xDel, pCtx);
506   }else{
507     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
508   }
509 }
510 #ifndef SQLITE_OMIT_UTF16
511 void sqlite3_result_text16(
512   sqlite3_context *pCtx,
513   const void *z,
514   int n,
515   void (*xDel)(void *)
516 ){
517   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
518   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
519 }
520 void sqlite3_result_text16be(
521   sqlite3_context *pCtx,
522   const void *z,
523   int n,
524   void (*xDel)(void *)
525 ){
526   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
527   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
528 }
529 void sqlite3_result_text16le(
530   sqlite3_context *pCtx,
531   const void *z,
532   int n,
533   void (*xDel)(void *)
534 ){
535   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
536   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
537 }
538 #endif /* SQLITE_OMIT_UTF16 */
539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
540   Mem *pOut = pCtx->pOut;
541   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
542   sqlite3VdbeMemCopy(pOut, pValue);
543   sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
544   if( sqlite3VdbeMemTooBig(pOut) ){
545     sqlite3_result_error_toobig(pCtx);
546   }
547 }
548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
549   sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
550 }
551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
552   Mem *pOut = pCtx->pOut;
553   assert( sqlite3_mutex_held(pOut->db->mutex) );
554   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
555     sqlite3_result_error_toobig(pCtx);
556     return SQLITE_TOOBIG;
557   }
558 #ifndef SQLITE_OMIT_INCRBLOB
559   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
560   return SQLITE_OK;
561 #else
562   return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
563 #endif
564 }
565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
566   pCtx->isError = errCode ? errCode : -1;
567 #ifdef SQLITE_DEBUG
568   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
569 #endif
570   if( pCtx->pOut->flags & MEM_Null ){
571     setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
572                         SQLITE_STATIC);
573   }
574 }
575 
576 /* Force an SQLITE_TOOBIG error. */
577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
578   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
579   pCtx->isError = SQLITE_TOOBIG;
580   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
581                        SQLITE_UTF8, SQLITE_STATIC);
582 }
583 
584 /* An SQLITE_NOMEM error. */
585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
586   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
587   sqlite3VdbeMemSetNull(pCtx->pOut);
588   pCtx->isError = SQLITE_NOMEM_BKPT;
589   sqlite3OomFault(pCtx->pOut->db);
590 }
591 
592 #ifndef SQLITE_UNTESTABLE
593 /* Force the INT64 value currently stored as the result to be
594 ** a MEM_IntReal value.  See the SQLITE_TESTCTRL_RESULT_INTREAL
595 ** test-control.
596 */
597 void sqlite3ResultIntReal(sqlite3_context *pCtx){
598   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
599   if( pCtx->pOut->flags & MEM_Int ){
600     pCtx->pOut->flags &= ~MEM_Int;
601     pCtx->pOut->flags |= MEM_IntReal;
602   }
603 }
604 #endif
605 
606 
607 /*
608 ** This function is called after a transaction has been committed. It
609 ** invokes callbacks registered with sqlite3_wal_hook() as required.
610 */
611 static int doWalCallbacks(sqlite3 *db){
612   int rc = SQLITE_OK;
613 #ifndef SQLITE_OMIT_WAL
614   int i;
615   for(i=0; i<db->nDb; i++){
616     Btree *pBt = db->aDb[i].pBt;
617     if( pBt ){
618       int nEntry;
619       sqlite3BtreeEnter(pBt);
620       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
621       sqlite3BtreeLeave(pBt);
622       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
623         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
624       }
625     }
626   }
627 #endif
628   return rc;
629 }
630 
631 
632 /*
633 ** Execute the statement pStmt, either until a row of data is ready, the
634 ** statement is completely executed or an error occurs.
635 **
636 ** This routine implements the bulk of the logic behind the sqlite_step()
637 ** API.  The only thing omitted is the automatic recompile if a
638 ** schema change has occurred.  That detail is handled by the
639 ** outer sqlite3_step() wrapper procedure.
640 */
641 static int sqlite3Step(Vdbe *p){
642   sqlite3 *db;
643   int rc;
644 
645   assert(p);
646   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
647     /* We used to require that sqlite3_reset() be called before retrying
648     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
649     ** with version 3.7.0, we changed this so that sqlite3_reset() would
650     ** be called automatically instead of throwing the SQLITE_MISUSE error.
651     ** This "automatic-reset" change is not technically an incompatibility,
652     ** since any application that receives an SQLITE_MISUSE is broken by
653     ** definition.
654     **
655     ** Nevertheless, some published applications that were originally written
656     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
657     ** returns, and those were broken by the automatic-reset change.  As a
658     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
659     ** legacy behavior of returning SQLITE_MISUSE for cases where the
660     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
661     ** or SQLITE_BUSY error.
662     */
663 #ifdef SQLITE_OMIT_AUTORESET
664     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
665       sqlite3_reset((sqlite3_stmt*)p);
666     }else{
667       return SQLITE_MISUSE_BKPT;
668     }
669 #else
670     sqlite3_reset((sqlite3_stmt*)p);
671 #endif
672   }
673 
674   /* Check that malloc() has not failed. If it has, return early. */
675   db = p->db;
676   if( db->mallocFailed ){
677     p->rc = SQLITE_NOMEM;
678     return SQLITE_NOMEM_BKPT;
679   }
680 
681   if( p->pc<0 && p->expired ){
682     p->rc = SQLITE_SCHEMA;
683     rc = SQLITE_ERROR;
684     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
685       /* If this statement was prepared using saved SQL and an
686       ** error has occurred, then return the error code in p->rc to the
687       ** caller. Set the error code in the database handle to the same value.
688       */
689       rc = sqlite3VdbeTransferError(p);
690     }
691     goto end_of_step;
692   }
693   if( p->pc<0 ){
694     /* If there are no other statements currently running, then
695     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
696     ** from interrupting a statement that has not yet started.
697     */
698     if( db->nVdbeActive==0 ){
699       AtomicStore(&db->u1.isInterrupted, 0);
700     }
701 
702     assert( db->nVdbeWrite>0 || db->autoCommit==0
703         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
704     );
705 
706 #ifndef SQLITE_OMIT_TRACE
707     if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
708         && !db->init.busy && p->zSql ){
709       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
710     }else{
711       assert( p->startTime==0 );
712     }
713 #endif
714 
715     db->nVdbeActive++;
716     if( p->readOnly==0 ) db->nVdbeWrite++;
717     if( p->bIsReader ) db->nVdbeRead++;
718     p->pc = 0;
719   }
720 #ifdef SQLITE_DEBUG
721   p->rcApp = SQLITE_OK;
722 #endif
723 #ifndef SQLITE_OMIT_EXPLAIN
724   if( p->explain ){
725     rc = sqlite3VdbeList(p);
726   }else
727 #endif /* SQLITE_OMIT_EXPLAIN */
728   {
729     db->nVdbeExec++;
730     rc = sqlite3VdbeExec(p);
731     db->nVdbeExec--;
732   }
733 
734   if( rc==SQLITE_ROW ){
735     assert( p->rc==SQLITE_OK );
736     assert( db->mallocFailed==0 );
737     db->errCode = SQLITE_ROW;
738     return SQLITE_ROW;
739   }else{
740 #ifndef SQLITE_OMIT_TRACE
741     /* If the statement completed successfully, invoke the profile callback */
742     checkProfileCallback(db, p);
743 #endif
744 
745     if( rc==SQLITE_DONE && db->autoCommit ){
746       assert( p->rc==SQLITE_OK );
747       p->rc = doWalCallbacks(db);
748       if( p->rc!=SQLITE_OK ){
749         rc = SQLITE_ERROR;
750       }
751     }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
752       /* If this statement was prepared using saved SQL and an
753       ** error has occurred, then return the error code in p->rc to the
754       ** caller. Set the error code in the database handle to the same value.
755       */
756       rc = sqlite3VdbeTransferError(p);
757     }
758   }
759 
760   db->errCode = rc;
761   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
762     p->rc = SQLITE_NOMEM_BKPT;
763     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
764   }
765 end_of_step:
766   /* There are only a limited number of result codes allowed from the
767   ** statements prepared using the legacy sqlite3_prepare() interface */
768   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
769        || rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
770        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
771   );
772   return (rc&db->errMask);
773 }
774 
775 /*
776 ** This is the top-level implementation of sqlite3_step().  Call
777 ** sqlite3Step() to do most of the work.  If a schema error occurs,
778 ** call sqlite3Reprepare() and try again.
779 */
780 int sqlite3_step(sqlite3_stmt *pStmt){
781   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
782   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
783   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
784   sqlite3 *db;             /* The database connection */
785 
786   if( vdbeSafetyNotNull(v) ){
787     return SQLITE_MISUSE_BKPT;
788   }
789   db = v->db;
790   sqlite3_mutex_enter(db->mutex);
791   v->doingRerun = 0;
792   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
793          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
794     int savedPc = v->pc;
795     rc = sqlite3Reprepare(v);
796     if( rc!=SQLITE_OK ){
797       /* This case occurs after failing to recompile an sql statement.
798       ** The error message from the SQL compiler has already been loaded
799       ** into the database handle. This block copies the error message
800       ** from the database handle into the statement and sets the statement
801       ** program counter to 0 to ensure that when the statement is
802       ** finalized or reset the parser error message is available via
803       ** sqlite3_errmsg() and sqlite3_errcode().
804       */
805       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
806       sqlite3DbFree(db, v->zErrMsg);
807       if( !db->mallocFailed ){
808         v->zErrMsg = sqlite3DbStrDup(db, zErr);
809         v->rc = rc = sqlite3ApiExit(db, rc);
810       } else {
811         v->zErrMsg = 0;
812         v->rc = rc = SQLITE_NOMEM_BKPT;
813       }
814       break;
815     }
816     sqlite3_reset(pStmt);
817     if( savedPc>=0 ) v->doingRerun = 1;
818     assert( v->expired==0 );
819   }
820   sqlite3_mutex_leave(db->mutex);
821   return rc;
822 }
823 
824 
825 /*
826 ** Extract the user data from a sqlite3_context structure and return a
827 ** pointer to it.
828 */
829 void *sqlite3_user_data(sqlite3_context *p){
830   assert( p && p->pFunc );
831   return p->pFunc->pUserData;
832 }
833 
834 /*
835 ** Extract the user data from a sqlite3_context structure and return a
836 ** pointer to it.
837 **
838 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
839 ** returns a copy of the pointer to the database connection (the 1st
840 ** parameter) of the sqlite3_create_function() and
841 ** sqlite3_create_function16() routines that originally registered the
842 ** application defined function.
843 */
844 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
845   assert( p && p->pOut );
846   return p->pOut->db;
847 }
848 
849 /*
850 ** If this routine is invoked from within an xColumn method of a virtual
851 ** table, then it returns true if and only if the the call is during an
852 ** UPDATE operation and the value of the column will not be modified
853 ** by the UPDATE.
854 **
855 ** If this routine is called from any context other than within the
856 ** xColumn method of a virtual table, then the return value is meaningless
857 ** and arbitrary.
858 **
859 ** Virtual table implements might use this routine to optimize their
860 ** performance by substituting a NULL result, or some other light-weight
861 ** value, as a signal to the xUpdate routine that the column is unchanged.
862 */
863 int sqlite3_vtab_nochange(sqlite3_context *p){
864   assert( p );
865   return sqlite3_value_nochange(p->pOut);
866 }
867 
868 /*
869 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
870 ** sqlite3_vtab_in_next() (if bNext!=0).
871 */
872 static int valueFromValueList(
873   sqlite3_value *pVal,        /* Pointer to the ValueList object */
874   sqlite3_value **ppOut,      /* Store the next value from the list here */
875   int bNext                   /* 1 for _next(). 0 for _first() */
876 ){
877   int rc;
878   ValueList *pRhs;
879 
880   *ppOut = 0;
881   if( pVal==0 ) return SQLITE_MISUSE;
882   pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
883   if( pRhs==0 ) return SQLITE_MISUSE;
884   if( bNext ){
885     rc = sqlite3BtreeNext(pRhs->pCsr, 0);
886   }else{
887     int dummy = 0;
888     rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
889     assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
890     if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
891   }
892   if( rc==SQLITE_OK ){
893     u32 sz;       /* Size of current row in bytes */
894     Mem sMem;     /* Raw content of current row */
895     memset(&sMem, 0, sizeof(sMem));
896     sz = sqlite3BtreePayloadSize(pRhs->pCsr);
897     rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
898     if( rc==SQLITE_OK ){
899       u8 *zBuf = (u8*)sMem.z;
900       u32 iSerial;
901       sqlite3_value *pOut = pRhs->pOut;
902       int iOff = 1 + getVarint32(&zBuf[1], iSerial);
903       sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
904       pOut->enc = ENC(pOut->db);
905       if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
906         rc = SQLITE_NOMEM;
907       }else{
908         *ppOut = pOut;
909       }
910     }
911     sqlite3VdbeMemRelease(&sMem);
912   }
913   return rc;
914 }
915 
916 /*
917 ** Set the iterator value pVal to point to the first value in the set.
918 ** Set (*ppOut) to point to this value before returning.
919 */
920 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
921   return valueFromValueList(pVal, ppOut, 0);
922 }
923 
924 /*
925 ** Set the iterator value pVal to point to the next value in the set.
926 ** Set (*ppOut) to point to this value before returning.
927 */
928 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
929   return valueFromValueList(pVal, ppOut, 1);
930 }
931 
932 /*
933 ** Return the current time for a statement.  If the current time
934 ** is requested more than once within the same run of a single prepared
935 ** statement, the exact same time is returned for each invocation regardless
936 ** of the amount of time that elapses between invocations.  In other words,
937 ** the time returned is always the time of the first call.
938 */
939 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
940   int rc;
941 #ifndef SQLITE_ENABLE_STAT4
942   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
943   assert( p->pVdbe!=0 );
944 #else
945   sqlite3_int64 iTime = 0;
946   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
947 #endif
948   if( *piTime==0 ){
949     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
950     if( rc ) *piTime = 0;
951   }
952   return *piTime;
953 }
954 
955 /*
956 ** Create a new aggregate context for p and return a pointer to
957 ** its pMem->z element.
958 */
959 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
960   Mem *pMem = p->pMem;
961   assert( (pMem->flags & MEM_Agg)==0 );
962   if( nByte<=0 ){
963     sqlite3VdbeMemSetNull(pMem);
964     pMem->z = 0;
965   }else{
966     sqlite3VdbeMemClearAndResize(pMem, nByte);
967     pMem->flags = MEM_Agg;
968     pMem->u.pDef = p->pFunc;
969     if( pMem->z ){
970       memset(pMem->z, 0, nByte);
971     }
972   }
973   return (void*)pMem->z;
974 }
975 
976 /*
977 ** Allocate or return the aggregate context for a user function.  A new
978 ** context is allocated on the first call.  Subsequent calls return the
979 ** same context that was returned on prior calls.
980 */
981 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
982   assert( p && p->pFunc && p->pFunc->xFinalize );
983   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
984   testcase( nByte<0 );
985   if( (p->pMem->flags & MEM_Agg)==0 ){
986     return createAggContext(p, nByte);
987   }else{
988     return (void*)p->pMem->z;
989   }
990 }
991 
992 /*
993 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
994 ** the user-function defined by pCtx.
995 **
996 ** The left-most argument is 0.
997 **
998 ** Undocumented behavior:  If iArg is negative then access a cache of
999 ** auxiliary data pointers that is available to all functions within a
1000 ** single prepared statement.  The iArg values must match.
1001 */
1002 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
1003   AuxData *pAuxData;
1004 
1005   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1006 #if SQLITE_ENABLE_STAT4
1007   if( pCtx->pVdbe==0 ) return 0;
1008 #else
1009   assert( pCtx->pVdbe!=0 );
1010 #endif
1011   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1012     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1013       return pAuxData->pAux;
1014     }
1015   }
1016   return 0;
1017 }
1018 
1019 /*
1020 ** Set the auxiliary data pointer and delete function, for the iArg'th
1021 ** argument to the user-function defined by pCtx. Any previous value is
1022 ** deleted by calling the delete function specified when it was set.
1023 **
1024 ** The left-most argument is 0.
1025 **
1026 ** Undocumented behavior:  If iArg is negative then make the data available
1027 ** to all functions within the current prepared statement using iArg as an
1028 ** access code.
1029 */
1030 void sqlite3_set_auxdata(
1031   sqlite3_context *pCtx,
1032   int iArg,
1033   void *pAux,
1034   void (*xDelete)(void*)
1035 ){
1036   AuxData *pAuxData;
1037   Vdbe *pVdbe = pCtx->pVdbe;
1038 
1039   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1040 #ifdef SQLITE_ENABLE_STAT4
1041   if( pVdbe==0 ) goto failed;
1042 #else
1043   assert( pVdbe!=0 );
1044 #endif
1045 
1046   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1047     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1048       break;
1049     }
1050   }
1051   if( pAuxData==0 ){
1052     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1053     if( !pAuxData ) goto failed;
1054     pAuxData->iAuxOp = pCtx->iOp;
1055     pAuxData->iAuxArg = iArg;
1056     pAuxData->pNextAux = pVdbe->pAuxData;
1057     pVdbe->pAuxData = pAuxData;
1058     if( pCtx->isError==0 ) pCtx->isError = -1;
1059   }else if( pAuxData->xDeleteAux ){
1060     pAuxData->xDeleteAux(pAuxData->pAux);
1061   }
1062 
1063   pAuxData->pAux = pAux;
1064   pAuxData->xDeleteAux = xDelete;
1065   return;
1066 
1067 failed:
1068   if( xDelete ){
1069     xDelete(pAux);
1070   }
1071 }
1072 
1073 #ifndef SQLITE_OMIT_DEPRECATED
1074 /*
1075 ** Return the number of times the Step function of an aggregate has been
1076 ** called.
1077 **
1078 ** This function is deprecated.  Do not use it for new code.  It is
1079 ** provide only to avoid breaking legacy code.  New aggregate function
1080 ** implementations should keep their own counts within their aggregate
1081 ** context.
1082 */
1083 int sqlite3_aggregate_count(sqlite3_context *p){
1084   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1085   return p->pMem->n;
1086 }
1087 #endif
1088 
1089 /*
1090 ** Return the number of columns in the result set for the statement pStmt.
1091 */
1092 int sqlite3_column_count(sqlite3_stmt *pStmt){
1093   Vdbe *pVm = (Vdbe *)pStmt;
1094   return pVm ? pVm->nResColumn : 0;
1095 }
1096 
1097 /*
1098 ** Return the number of values available from the current row of the
1099 ** currently executing statement pStmt.
1100 */
1101 int sqlite3_data_count(sqlite3_stmt *pStmt){
1102   Vdbe *pVm = (Vdbe *)pStmt;
1103   if( pVm==0 || pVm->pResultSet==0 ) return 0;
1104   return pVm->nResColumn;
1105 }
1106 
1107 /*
1108 ** Return a pointer to static memory containing an SQL NULL value.
1109 */
1110 static const Mem *columnNullValue(void){
1111   /* Even though the Mem structure contains an element
1112   ** of type i64, on certain architectures (x86) with certain compiler
1113   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1114   ** instead of an 8-byte one. This all works fine, except that when
1115   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1116   ** that a Mem structure is located on an 8-byte boundary. To prevent
1117   ** these assert()s from failing, when building with SQLITE_DEBUG defined
1118   ** using gcc, we force nullMem to be 8-byte aligned using the magical
1119   ** __attribute__((aligned(8))) macro.  */
1120   static const Mem nullMem
1121 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1122     __attribute__((aligned(8)))
1123 #endif
1124     = {
1125         /* .u          = */ {0},
1126         /* .z          = */ (char*)0,
1127         /* .n          = */ (int)0,
1128         /* .flags      = */ (u16)MEM_Null,
1129         /* .enc        = */ (u8)0,
1130         /* .eSubtype   = */ (u8)0,
1131         /* .db         = */ (sqlite3*)0,
1132         /* .szMalloc   = */ (int)0,
1133         /* .uTemp      = */ (u32)0,
1134         /* .zMalloc    = */ (char*)0,
1135         /* .xDel       = */ (void(*)(void*))0,
1136 #ifdef SQLITE_DEBUG
1137         /* .pScopyFrom = */ (Mem*)0,
1138         /* .mScopyFlags= */ 0,
1139 #endif
1140       };
1141   return &nullMem;
1142 }
1143 
1144 /*
1145 ** Check to see if column iCol of the given statement is valid.  If
1146 ** it is, return a pointer to the Mem for the value of that column.
1147 ** If iCol is not valid, return a pointer to a Mem which has a value
1148 ** of NULL.
1149 */
1150 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1151   Vdbe *pVm;
1152   Mem *pOut;
1153 
1154   pVm = (Vdbe *)pStmt;
1155   if( pVm==0 ) return (Mem*)columnNullValue();
1156   assert( pVm->db );
1157   sqlite3_mutex_enter(pVm->db->mutex);
1158   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1159     pOut = &pVm->pResultSet[i];
1160   }else{
1161     sqlite3Error(pVm->db, SQLITE_RANGE);
1162     pOut = (Mem*)columnNullValue();
1163   }
1164   return pOut;
1165 }
1166 
1167 /*
1168 ** This function is called after invoking an sqlite3_value_XXX function on a
1169 ** column value (i.e. a value returned by evaluating an SQL expression in the
1170 ** select list of a SELECT statement) that may cause a malloc() failure. If
1171 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1172 ** code of statement pStmt set to SQLITE_NOMEM.
1173 **
1174 ** Specifically, this is called from within:
1175 **
1176 **     sqlite3_column_int()
1177 **     sqlite3_column_int64()
1178 **     sqlite3_column_text()
1179 **     sqlite3_column_text16()
1180 **     sqlite3_column_real()
1181 **     sqlite3_column_bytes()
1182 **     sqlite3_column_bytes16()
1183 **     sqiite3_column_blob()
1184 */
1185 static void columnMallocFailure(sqlite3_stmt *pStmt)
1186 {
1187   /* If malloc() failed during an encoding conversion within an
1188   ** sqlite3_column_XXX API, then set the return code of the statement to
1189   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1190   ** and _finalize() will return NOMEM.
1191   */
1192   Vdbe *p = (Vdbe *)pStmt;
1193   if( p ){
1194     assert( p->db!=0 );
1195     assert( sqlite3_mutex_held(p->db->mutex) );
1196     p->rc = sqlite3ApiExit(p->db, p->rc);
1197     sqlite3_mutex_leave(p->db->mutex);
1198   }
1199 }
1200 
1201 /**************************** sqlite3_column_  *******************************
1202 ** The following routines are used to access elements of the current row
1203 ** in the result set.
1204 */
1205 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1206   const void *val;
1207   val = sqlite3_value_blob( columnMem(pStmt,i) );
1208   /* Even though there is no encoding conversion, value_blob() might
1209   ** need to call malloc() to expand the result of a zeroblob()
1210   ** expression.
1211   */
1212   columnMallocFailure(pStmt);
1213   return val;
1214 }
1215 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1216   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1217   columnMallocFailure(pStmt);
1218   return val;
1219 }
1220 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1221   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1222   columnMallocFailure(pStmt);
1223   return val;
1224 }
1225 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1226   double val = sqlite3_value_double( columnMem(pStmt,i) );
1227   columnMallocFailure(pStmt);
1228   return val;
1229 }
1230 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1231   int val = sqlite3_value_int( columnMem(pStmt,i) );
1232   columnMallocFailure(pStmt);
1233   return val;
1234 }
1235 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1236   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1237   columnMallocFailure(pStmt);
1238   return val;
1239 }
1240 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1241   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1242   columnMallocFailure(pStmt);
1243   return val;
1244 }
1245 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1246   Mem *pOut = columnMem(pStmt, i);
1247   if( pOut->flags&MEM_Static ){
1248     pOut->flags &= ~MEM_Static;
1249     pOut->flags |= MEM_Ephem;
1250   }
1251   columnMallocFailure(pStmt);
1252   return (sqlite3_value *)pOut;
1253 }
1254 #ifndef SQLITE_OMIT_UTF16
1255 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1256   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1257   columnMallocFailure(pStmt);
1258   return val;
1259 }
1260 #endif /* SQLITE_OMIT_UTF16 */
1261 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1262   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1263   columnMallocFailure(pStmt);
1264   return iType;
1265 }
1266 
1267 /*
1268 ** Convert the N-th element of pStmt->pColName[] into a string using
1269 ** xFunc() then return that string.  If N is out of range, return 0.
1270 **
1271 ** There are up to 5 names for each column.  useType determines which
1272 ** name is returned.  Here are the names:
1273 **
1274 **    0      The column name as it should be displayed for output
1275 **    1      The datatype name for the column
1276 **    2      The name of the database that the column derives from
1277 **    3      The name of the table that the column derives from
1278 **    4      The name of the table column that the result column derives from
1279 **
1280 ** If the result is not a simple column reference (if it is an expression
1281 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1282 */
1283 static const void *columnName(
1284   sqlite3_stmt *pStmt,     /* The statement */
1285   int N,                   /* Which column to get the name for */
1286   int useUtf16,            /* True to return the name as UTF16 */
1287   int useType              /* What type of name */
1288 ){
1289   const void *ret;
1290   Vdbe *p;
1291   int n;
1292   sqlite3 *db;
1293 #ifdef SQLITE_ENABLE_API_ARMOR
1294   if( pStmt==0 ){
1295     (void)SQLITE_MISUSE_BKPT;
1296     return 0;
1297   }
1298 #endif
1299   ret = 0;
1300   p = (Vdbe *)pStmt;
1301   db = p->db;
1302   assert( db!=0 );
1303   n = sqlite3_column_count(pStmt);
1304   if( N<n && N>=0 ){
1305     N += useType*n;
1306     sqlite3_mutex_enter(db->mutex);
1307     assert( db->mallocFailed==0 );
1308 #ifndef SQLITE_OMIT_UTF16
1309     if( useUtf16 ){
1310       ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1311     }else
1312 #endif
1313     {
1314       ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1315     }
1316     /* A malloc may have failed inside of the _text() call. If this
1317     ** is the case, clear the mallocFailed flag and return NULL.
1318     */
1319     if( db->mallocFailed ){
1320       sqlite3OomClear(db);
1321       ret = 0;
1322     }
1323     sqlite3_mutex_leave(db->mutex);
1324   }
1325   return ret;
1326 }
1327 
1328 /*
1329 ** Return the name of the Nth column of the result set returned by SQL
1330 ** statement pStmt.
1331 */
1332 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1333   return columnName(pStmt, N, 0, COLNAME_NAME);
1334 }
1335 #ifndef SQLITE_OMIT_UTF16
1336 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1337   return columnName(pStmt, N, 1, COLNAME_NAME);
1338 }
1339 #endif
1340 
1341 /*
1342 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1343 ** not define OMIT_DECLTYPE.
1344 */
1345 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1346 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1347          and SQLITE_ENABLE_COLUMN_METADATA"
1348 #endif
1349 
1350 #ifndef SQLITE_OMIT_DECLTYPE
1351 /*
1352 ** Return the column declaration type (if applicable) of the 'i'th column
1353 ** of the result set of SQL statement pStmt.
1354 */
1355 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1356   return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1357 }
1358 #ifndef SQLITE_OMIT_UTF16
1359 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1360   return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1361 }
1362 #endif /* SQLITE_OMIT_UTF16 */
1363 #endif /* SQLITE_OMIT_DECLTYPE */
1364 
1365 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1366 /*
1367 ** Return the name of the database from which a result column derives.
1368 ** NULL is returned if the result column is an expression or constant or
1369 ** anything else which is not an unambiguous reference to a database column.
1370 */
1371 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1372   return columnName(pStmt, N, 0, COLNAME_DATABASE);
1373 }
1374 #ifndef SQLITE_OMIT_UTF16
1375 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1376   return columnName(pStmt, N, 1, COLNAME_DATABASE);
1377 }
1378 #endif /* SQLITE_OMIT_UTF16 */
1379 
1380 /*
1381 ** Return the name of the table from which a result column derives.
1382 ** NULL is returned if the result column is an expression or constant or
1383 ** anything else which is not an unambiguous reference to a database column.
1384 */
1385 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1386   return columnName(pStmt, N, 0, COLNAME_TABLE);
1387 }
1388 #ifndef SQLITE_OMIT_UTF16
1389 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1390   return columnName(pStmt, N, 1, COLNAME_TABLE);
1391 }
1392 #endif /* SQLITE_OMIT_UTF16 */
1393 
1394 /*
1395 ** Return the name of the table column from which a result column derives.
1396 ** NULL is returned if the result column is an expression or constant or
1397 ** anything else which is not an unambiguous reference to a database column.
1398 */
1399 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1400   return columnName(pStmt, N, 0, COLNAME_COLUMN);
1401 }
1402 #ifndef SQLITE_OMIT_UTF16
1403 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1404   return columnName(pStmt, N, 1, COLNAME_COLUMN);
1405 }
1406 #endif /* SQLITE_OMIT_UTF16 */
1407 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1408 
1409 
1410 /******************************* sqlite3_bind_  ***************************
1411 **
1412 ** Routines used to attach values to wildcards in a compiled SQL statement.
1413 */
1414 /*
1415 ** Unbind the value bound to variable i in virtual machine p. This is the
1416 ** the same as binding a NULL value to the column. If the "i" parameter is
1417 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1418 **
1419 ** A successful evaluation of this routine acquires the mutex on p.
1420 ** the mutex is released if any kind of error occurs.
1421 **
1422 ** The error code stored in database p->db is overwritten with the return
1423 ** value in any case.
1424 */
1425 static int vdbeUnbind(Vdbe *p, int i){
1426   Mem *pVar;
1427   if( vdbeSafetyNotNull(p) ){
1428     return SQLITE_MISUSE_BKPT;
1429   }
1430   sqlite3_mutex_enter(p->db->mutex);
1431   if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1432     sqlite3Error(p->db, SQLITE_MISUSE);
1433     sqlite3_mutex_leave(p->db->mutex);
1434     sqlite3_log(SQLITE_MISUSE,
1435         "bind on a busy prepared statement: [%s]", p->zSql);
1436     return SQLITE_MISUSE_BKPT;
1437   }
1438   if( i<1 || i>p->nVar ){
1439     sqlite3Error(p->db, SQLITE_RANGE);
1440     sqlite3_mutex_leave(p->db->mutex);
1441     return SQLITE_RANGE;
1442   }
1443   i--;
1444   pVar = &p->aVar[i];
1445   sqlite3VdbeMemRelease(pVar);
1446   pVar->flags = MEM_Null;
1447   p->db->errCode = SQLITE_OK;
1448 
1449   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1450   ** binding a new value to this variable invalidates the current query plan.
1451   **
1452   ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1453   ** parameter in the WHERE clause might influence the choice of query plan
1454   ** for a statement, then the statement will be automatically recompiled,
1455   ** as if there had been a schema change, on the first sqlite3_step() call
1456   ** following any change to the bindings of that parameter.
1457   */
1458   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1459   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1460     p->expired = 1;
1461   }
1462   return SQLITE_OK;
1463 }
1464 
1465 /*
1466 ** Bind a text or BLOB value.
1467 */
1468 static int bindText(
1469   sqlite3_stmt *pStmt,   /* The statement to bind against */
1470   int i,                 /* Index of the parameter to bind */
1471   const void *zData,     /* Pointer to the data to be bound */
1472   i64 nData,             /* Number of bytes of data to be bound */
1473   void (*xDel)(void*),   /* Destructor for the data */
1474   u8 encoding            /* Encoding for the data */
1475 ){
1476   Vdbe *p = (Vdbe *)pStmt;
1477   Mem *pVar;
1478   int rc;
1479 
1480   rc = vdbeUnbind(p, i);
1481   if( rc==SQLITE_OK ){
1482     if( zData!=0 ){
1483       pVar = &p->aVar[i-1];
1484       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1485       if( rc==SQLITE_OK && encoding!=0 ){
1486         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1487       }
1488       if( rc ){
1489         sqlite3Error(p->db, rc);
1490         rc = sqlite3ApiExit(p->db, rc);
1491       }
1492     }
1493     sqlite3_mutex_leave(p->db->mutex);
1494   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1495     xDel((void*)zData);
1496   }
1497   return rc;
1498 }
1499 
1500 
1501 /*
1502 ** Bind a blob value to an SQL statement variable.
1503 */
1504 int sqlite3_bind_blob(
1505   sqlite3_stmt *pStmt,
1506   int i,
1507   const void *zData,
1508   int nData,
1509   void (*xDel)(void*)
1510 ){
1511 #ifdef SQLITE_ENABLE_API_ARMOR
1512   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1513 #endif
1514   return bindText(pStmt, i, zData, nData, xDel, 0);
1515 }
1516 int sqlite3_bind_blob64(
1517   sqlite3_stmt *pStmt,
1518   int i,
1519   const void *zData,
1520   sqlite3_uint64 nData,
1521   void (*xDel)(void*)
1522 ){
1523   assert( xDel!=SQLITE_DYNAMIC );
1524   return bindText(pStmt, i, zData, nData, xDel, 0);
1525 }
1526 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1527   int rc;
1528   Vdbe *p = (Vdbe *)pStmt;
1529   rc = vdbeUnbind(p, i);
1530   if( rc==SQLITE_OK ){
1531     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1532     sqlite3_mutex_leave(p->db->mutex);
1533   }
1534   return rc;
1535 }
1536 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1537   return sqlite3_bind_int64(p, i, (i64)iValue);
1538 }
1539 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1540   int rc;
1541   Vdbe *p = (Vdbe *)pStmt;
1542   rc = vdbeUnbind(p, i);
1543   if( rc==SQLITE_OK ){
1544     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1545     sqlite3_mutex_leave(p->db->mutex);
1546   }
1547   return rc;
1548 }
1549 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1550   int rc;
1551   Vdbe *p = (Vdbe*)pStmt;
1552   rc = vdbeUnbind(p, i);
1553   if( rc==SQLITE_OK ){
1554     sqlite3_mutex_leave(p->db->mutex);
1555   }
1556   return rc;
1557 }
1558 int sqlite3_bind_pointer(
1559   sqlite3_stmt *pStmt,
1560   int i,
1561   void *pPtr,
1562   const char *zPTtype,
1563   void (*xDestructor)(void*)
1564 ){
1565   int rc;
1566   Vdbe *p = (Vdbe*)pStmt;
1567   rc = vdbeUnbind(p, i);
1568   if( rc==SQLITE_OK ){
1569     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1570     sqlite3_mutex_leave(p->db->mutex);
1571   }else if( xDestructor ){
1572     xDestructor(pPtr);
1573   }
1574   return rc;
1575 }
1576 int sqlite3_bind_text(
1577   sqlite3_stmt *pStmt,
1578   int i,
1579   const char *zData,
1580   int nData,
1581   void (*xDel)(void*)
1582 ){
1583   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1584 }
1585 int sqlite3_bind_text64(
1586   sqlite3_stmt *pStmt,
1587   int i,
1588   const char *zData,
1589   sqlite3_uint64 nData,
1590   void (*xDel)(void*),
1591   unsigned char enc
1592 ){
1593   assert( xDel!=SQLITE_DYNAMIC );
1594   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1595   return bindText(pStmt, i, zData, nData, xDel, enc);
1596 }
1597 #ifndef SQLITE_OMIT_UTF16
1598 int sqlite3_bind_text16(
1599   sqlite3_stmt *pStmt,
1600   int i,
1601   const void *zData,
1602   int nData,
1603   void (*xDel)(void*)
1604 ){
1605   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1606 }
1607 #endif /* SQLITE_OMIT_UTF16 */
1608 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1609   int rc;
1610   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1611     case SQLITE_INTEGER: {
1612       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1613       break;
1614     }
1615     case SQLITE_FLOAT: {
1616       assert( pValue->flags & (MEM_Real|MEM_IntReal) );
1617       rc = sqlite3_bind_double(pStmt, i,
1618           (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
1619       );
1620       break;
1621     }
1622     case SQLITE_BLOB: {
1623       if( pValue->flags & MEM_Zero ){
1624         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1625       }else{
1626         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1627       }
1628       break;
1629     }
1630     case SQLITE_TEXT: {
1631       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1632                               pValue->enc);
1633       break;
1634     }
1635     default: {
1636       rc = sqlite3_bind_null(pStmt, i);
1637       break;
1638     }
1639   }
1640   return rc;
1641 }
1642 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1643   int rc;
1644   Vdbe *p = (Vdbe *)pStmt;
1645   rc = vdbeUnbind(p, i);
1646   if( rc==SQLITE_OK ){
1647 #ifndef SQLITE_OMIT_INCRBLOB
1648     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1649 #else
1650     rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1651 #endif
1652     sqlite3_mutex_leave(p->db->mutex);
1653   }
1654   return rc;
1655 }
1656 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1657   int rc;
1658   Vdbe *p = (Vdbe *)pStmt;
1659   sqlite3_mutex_enter(p->db->mutex);
1660   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1661     rc = SQLITE_TOOBIG;
1662   }else{
1663     assert( (n & 0x7FFFFFFF)==n );
1664     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1665   }
1666   rc = sqlite3ApiExit(p->db, rc);
1667   sqlite3_mutex_leave(p->db->mutex);
1668   return rc;
1669 }
1670 
1671 /*
1672 ** Return the number of wildcards that can be potentially bound to.
1673 ** This routine is added to support DBD::SQLite.
1674 */
1675 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1676   Vdbe *p = (Vdbe*)pStmt;
1677   return p ? p->nVar : 0;
1678 }
1679 
1680 /*
1681 ** Return the name of a wildcard parameter.  Return NULL if the index
1682 ** is out of range or if the wildcard is unnamed.
1683 **
1684 ** The result is always UTF-8.
1685 */
1686 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1687   Vdbe *p = (Vdbe*)pStmt;
1688   if( p==0 ) return 0;
1689   return sqlite3VListNumToName(p->pVList, i);
1690 }
1691 
1692 /*
1693 ** Given a wildcard parameter name, return the index of the variable
1694 ** with that name.  If there is no variable with the given name,
1695 ** return 0.
1696 */
1697 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1698   if( p==0 || zName==0 ) return 0;
1699   return sqlite3VListNameToNum(p->pVList, zName, nName);
1700 }
1701 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1702   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1703 }
1704 
1705 /*
1706 ** Transfer all bindings from the first statement over to the second.
1707 */
1708 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1709   Vdbe *pFrom = (Vdbe*)pFromStmt;
1710   Vdbe *pTo = (Vdbe*)pToStmt;
1711   int i;
1712   assert( pTo->db==pFrom->db );
1713   assert( pTo->nVar==pFrom->nVar );
1714   sqlite3_mutex_enter(pTo->db->mutex);
1715   for(i=0; i<pFrom->nVar; i++){
1716     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1717   }
1718   sqlite3_mutex_leave(pTo->db->mutex);
1719   return SQLITE_OK;
1720 }
1721 
1722 #ifndef SQLITE_OMIT_DEPRECATED
1723 /*
1724 ** Deprecated external interface.  Internal/core SQLite code
1725 ** should call sqlite3TransferBindings.
1726 **
1727 ** It is misuse to call this routine with statements from different
1728 ** database connections.  But as this is a deprecated interface, we
1729 ** will not bother to check for that condition.
1730 **
1731 ** If the two statements contain a different number of bindings, then
1732 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1733 ** SQLITE_OK is returned.
1734 */
1735 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1736   Vdbe *pFrom = (Vdbe*)pFromStmt;
1737   Vdbe *pTo = (Vdbe*)pToStmt;
1738   if( pFrom->nVar!=pTo->nVar ){
1739     return SQLITE_ERROR;
1740   }
1741   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1742   if( pTo->expmask ){
1743     pTo->expired = 1;
1744   }
1745   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1746   if( pFrom->expmask ){
1747     pFrom->expired = 1;
1748   }
1749   return sqlite3TransferBindings(pFromStmt, pToStmt);
1750 }
1751 #endif
1752 
1753 /*
1754 ** Return the sqlite3* database handle to which the prepared statement given
1755 ** in the argument belongs.  This is the same database handle that was
1756 ** the first argument to the sqlite3_prepare() that was used to create
1757 ** the statement in the first place.
1758 */
1759 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1760   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1761 }
1762 
1763 /*
1764 ** Return true if the prepared statement is guaranteed to not modify the
1765 ** database.
1766 */
1767 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1768   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1769 }
1770 
1771 /*
1772 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1773 ** statement is an EXPLAIN QUERY PLAN
1774 */
1775 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1776   return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1777 }
1778 
1779 /*
1780 ** Return true if the prepared statement is in need of being reset.
1781 */
1782 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1783   Vdbe *v = (Vdbe*)pStmt;
1784   return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0;
1785 }
1786 
1787 /*
1788 ** Return a pointer to the next prepared statement after pStmt associated
1789 ** with database connection pDb.  If pStmt is NULL, return the first
1790 ** prepared statement for the database connection.  Return NULL if there
1791 ** are no more.
1792 */
1793 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1794   sqlite3_stmt *pNext;
1795 #ifdef SQLITE_ENABLE_API_ARMOR
1796   if( !sqlite3SafetyCheckOk(pDb) ){
1797     (void)SQLITE_MISUSE_BKPT;
1798     return 0;
1799   }
1800 #endif
1801   sqlite3_mutex_enter(pDb->mutex);
1802   if( pStmt==0 ){
1803     pNext = (sqlite3_stmt*)pDb->pVdbe;
1804   }else{
1805     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1806   }
1807   sqlite3_mutex_leave(pDb->mutex);
1808   return pNext;
1809 }
1810 
1811 /*
1812 ** Return the value of a status counter for a prepared statement
1813 */
1814 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1815   Vdbe *pVdbe = (Vdbe*)pStmt;
1816   u32 v;
1817 #ifdef SQLITE_ENABLE_API_ARMOR
1818   if( !pStmt
1819    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1820   ){
1821     (void)SQLITE_MISUSE_BKPT;
1822     return 0;
1823   }
1824 #endif
1825   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1826     sqlite3 *db = pVdbe->db;
1827     sqlite3_mutex_enter(db->mutex);
1828     v = 0;
1829     db->pnBytesFreed = (int*)&v;
1830     sqlite3VdbeClearObject(db, pVdbe);
1831     sqlite3DbFree(db, pVdbe);
1832     db->pnBytesFreed = 0;
1833     sqlite3_mutex_leave(db->mutex);
1834   }else{
1835     v = pVdbe->aCounter[op];
1836     if( resetFlag ) pVdbe->aCounter[op] = 0;
1837   }
1838   return (int)v;
1839 }
1840 
1841 /*
1842 ** Return the SQL associated with a prepared statement
1843 */
1844 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1845   Vdbe *p = (Vdbe *)pStmt;
1846   return p ? p->zSql : 0;
1847 }
1848 
1849 /*
1850 ** Return the SQL associated with a prepared statement with
1851 ** bound parameters expanded.  Space to hold the returned string is
1852 ** obtained from sqlite3_malloc().  The caller is responsible for
1853 ** freeing the returned string by passing it to sqlite3_free().
1854 **
1855 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1856 ** expanded bound parameters.
1857 */
1858 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1859 #ifdef SQLITE_OMIT_TRACE
1860   return 0;
1861 #else
1862   char *z = 0;
1863   const char *zSql = sqlite3_sql(pStmt);
1864   if( zSql ){
1865     Vdbe *p = (Vdbe *)pStmt;
1866     sqlite3_mutex_enter(p->db->mutex);
1867     z = sqlite3VdbeExpandSql(p, zSql);
1868     sqlite3_mutex_leave(p->db->mutex);
1869   }
1870   return z;
1871 #endif
1872 }
1873 
1874 #ifdef SQLITE_ENABLE_NORMALIZE
1875 /*
1876 ** Return the normalized SQL associated with a prepared statement.
1877 */
1878 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1879   Vdbe *p = (Vdbe *)pStmt;
1880   if( p==0 ) return 0;
1881   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1882     sqlite3_mutex_enter(p->db->mutex);
1883     p->zNormSql = sqlite3Normalize(p, p->zSql);
1884     sqlite3_mutex_leave(p->db->mutex);
1885   }
1886   return p->zNormSql;
1887 }
1888 #endif /* SQLITE_ENABLE_NORMALIZE */
1889 
1890 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1891 /*
1892 ** Allocate and populate an UnpackedRecord structure based on the serialized
1893 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1894 ** if successful, or a NULL pointer if an OOM error is encountered.
1895 */
1896 static UnpackedRecord *vdbeUnpackRecord(
1897   KeyInfo *pKeyInfo,
1898   int nKey,
1899   const void *pKey
1900 ){
1901   UnpackedRecord *pRet;           /* Return value */
1902 
1903   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1904   if( pRet ){
1905     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1906     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1907   }
1908   return pRet;
1909 }
1910 
1911 /*
1912 ** This function is called from within a pre-update callback to retrieve
1913 ** a field of the row currently being updated or deleted.
1914 */
1915 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1916   PreUpdate *p = db->pPreUpdate;
1917   Mem *pMem;
1918   int rc = SQLITE_OK;
1919 
1920   /* Test that this call is being made from within an SQLITE_DELETE or
1921   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1922   if( !p || p->op==SQLITE_INSERT ){
1923     rc = SQLITE_MISUSE_BKPT;
1924     goto preupdate_old_out;
1925   }
1926   if( p->pPk ){
1927     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1928   }
1929   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1930     rc = SQLITE_RANGE;
1931     goto preupdate_old_out;
1932   }
1933 
1934   /* If the old.* record has not yet been loaded into memory, do so now. */
1935   if( p->pUnpacked==0 ){
1936     u32 nRec;
1937     u8 *aRec;
1938 
1939     assert( p->pCsr->eCurType==CURTYPE_BTREE );
1940     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1941     aRec = sqlite3DbMallocRaw(db, nRec);
1942     if( !aRec ) goto preupdate_old_out;
1943     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1944     if( rc==SQLITE_OK ){
1945       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1946       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1947     }
1948     if( rc!=SQLITE_OK ){
1949       sqlite3DbFree(db, aRec);
1950       goto preupdate_old_out;
1951     }
1952     p->aRecord = aRec;
1953   }
1954 
1955   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1956   if( iIdx==p->pTab->iPKey ){
1957     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1958   }else if( iIdx>=p->pUnpacked->nField ){
1959     *ppValue = (sqlite3_value *)columnNullValue();
1960   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1961     if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1962       testcase( pMem->flags & MEM_Int );
1963       testcase( pMem->flags & MEM_IntReal );
1964       sqlite3VdbeMemRealify(pMem);
1965     }
1966   }
1967 
1968  preupdate_old_out:
1969   sqlite3Error(db, rc);
1970   return sqlite3ApiExit(db, rc);
1971 }
1972 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1973 
1974 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1975 /*
1976 ** This function is called from within a pre-update callback to retrieve
1977 ** the number of columns in the row being updated, deleted or inserted.
1978 */
1979 int sqlite3_preupdate_count(sqlite3 *db){
1980   PreUpdate *p = db->pPreUpdate;
1981   return (p ? p->keyinfo.nKeyField : 0);
1982 }
1983 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1984 
1985 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1986 /*
1987 ** This function is designed to be called from within a pre-update callback
1988 ** only. It returns zero if the change that caused the callback was made
1989 ** immediately by a user SQL statement. Or, if the change was made by a
1990 ** trigger program, it returns the number of trigger programs currently
1991 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1992 ** top-level trigger etc.).
1993 **
1994 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1995 ** or SET DEFAULT action is considered a trigger.
1996 */
1997 int sqlite3_preupdate_depth(sqlite3 *db){
1998   PreUpdate *p = db->pPreUpdate;
1999   return (p ? p->v->nFrame : 0);
2000 }
2001 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2002 
2003 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2004 /*
2005 ** This function is designed to be called from within a pre-update callback
2006 ** only.
2007 */
2008 int sqlite3_preupdate_blobwrite(sqlite3 *db){
2009   PreUpdate *p = db->pPreUpdate;
2010   return (p ? p->iBlobWrite : -1);
2011 }
2012 #endif
2013 
2014 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2015 /*
2016 ** This function is called from within a pre-update callback to retrieve
2017 ** a field of the row currently being updated or inserted.
2018 */
2019 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
2020   PreUpdate *p = db->pPreUpdate;
2021   int rc = SQLITE_OK;
2022   Mem *pMem;
2023 
2024   if( !p || p->op==SQLITE_DELETE ){
2025     rc = SQLITE_MISUSE_BKPT;
2026     goto preupdate_new_out;
2027   }
2028   if( p->pPk && p->op!=SQLITE_UPDATE ){
2029     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2030   }
2031   if( iIdx>=p->pCsr->nField || iIdx<0 ){
2032     rc = SQLITE_RANGE;
2033     goto preupdate_new_out;
2034   }
2035 
2036   if( p->op==SQLITE_INSERT ){
2037     /* For an INSERT, memory cell p->iNewReg contains the serialized record
2038     ** that is being inserted. Deserialize it. */
2039     UnpackedRecord *pUnpack = p->pNewUnpacked;
2040     if( !pUnpack ){
2041       Mem *pData = &p->v->aMem[p->iNewReg];
2042       rc = ExpandBlob(pData);
2043       if( rc!=SQLITE_OK ) goto preupdate_new_out;
2044       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2045       if( !pUnpack ){
2046         rc = SQLITE_NOMEM;
2047         goto preupdate_new_out;
2048       }
2049       p->pNewUnpacked = pUnpack;
2050     }
2051     pMem = &pUnpack->aMem[iIdx];
2052     if( iIdx==p->pTab->iPKey ){
2053       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2054     }else if( iIdx>=pUnpack->nField ){
2055       pMem = (sqlite3_value *)columnNullValue();
2056     }
2057   }else{
2058     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2059     ** value. Make a copy of the cell contents and return a pointer to it.
2060     ** It is not safe to return a pointer to the memory cell itself as the
2061     ** caller may modify the value text encoding.
2062     */
2063     assert( p->op==SQLITE_UPDATE );
2064     if( !p->aNew ){
2065       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2066       if( !p->aNew ){
2067         rc = SQLITE_NOMEM;
2068         goto preupdate_new_out;
2069       }
2070     }
2071     assert( iIdx>=0 && iIdx<p->pCsr->nField );
2072     pMem = &p->aNew[iIdx];
2073     if( pMem->flags==0 ){
2074       if( iIdx==p->pTab->iPKey ){
2075         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2076       }else{
2077         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2078         if( rc!=SQLITE_OK ) goto preupdate_new_out;
2079       }
2080     }
2081   }
2082   *ppValue = pMem;
2083 
2084  preupdate_new_out:
2085   sqlite3Error(db, rc);
2086   return sqlite3ApiExit(db, rc);
2087 }
2088 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2089 
2090 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2091 /*
2092 ** Return status data for a single loop within query pStmt.
2093 */
2094 int sqlite3_stmt_scanstatus(
2095   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
2096   int idx,                        /* Index of loop to report on */
2097   int iScanStatusOp,              /* Which metric to return */
2098   void *pOut                      /* OUT: Write the answer here */
2099 ){
2100   Vdbe *p = (Vdbe*)pStmt;
2101   ScanStatus *pScan;
2102   if( idx<0 || idx>=p->nScan ) return 1;
2103   pScan = &p->aScan[idx];
2104   switch( iScanStatusOp ){
2105     case SQLITE_SCANSTAT_NLOOP: {
2106       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2107       break;
2108     }
2109     case SQLITE_SCANSTAT_NVISIT: {
2110       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2111       break;
2112     }
2113     case SQLITE_SCANSTAT_EST: {
2114       double r = 1.0;
2115       LogEst x = pScan->nEst;
2116       while( x<100 ){
2117         x += 10;
2118         r *= 0.5;
2119       }
2120       *(double*)pOut = r*sqlite3LogEstToInt(x);
2121       break;
2122     }
2123     case SQLITE_SCANSTAT_NAME: {
2124       *(const char**)pOut = pScan->zName;
2125       break;
2126     }
2127     case SQLITE_SCANSTAT_EXPLAIN: {
2128       if( pScan->addrExplain ){
2129         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2130       }else{
2131         *(const char**)pOut = 0;
2132       }
2133       break;
2134     }
2135     case SQLITE_SCANSTAT_SELECTID: {
2136       if( pScan->addrExplain ){
2137         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2138       }else{
2139         *(int*)pOut = -1;
2140       }
2141       break;
2142     }
2143     default: {
2144       return 1;
2145     }
2146   }
2147   return 0;
2148 }
2149 
2150 /*
2151 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2152 */
2153 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2154   Vdbe *p = (Vdbe*)pStmt;
2155   memset(p->anExec, 0, p->nOp * sizeof(i64));
2156 }
2157 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
2158