1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 ** 16 ** $Id: vdbeapi.c,v 1.167 2009/06/25 01:47:12 drh Exp $ 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifndef SQLITE_OMIT_DEPRECATED 22 /* 23 ** Return TRUE (non-zero) of the statement supplied as an argument needs 24 ** to be recompiled. A statement needs to be recompiled whenever the 25 ** execution environment changes in a way that would alter the program 26 ** that sqlite3_prepare() generates. For example, if new functions or 27 ** collating sequences are registered or if an authorizer function is 28 ** added or changed. 29 */ 30 int sqlite3_expired(sqlite3_stmt *pStmt){ 31 Vdbe *p = (Vdbe*)pStmt; 32 return p==0 || p->expired; 33 } 34 #endif 35 36 /* 37 ** The following routine destroys a virtual machine that is created by 38 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 39 ** success/failure code that describes the result of executing the virtual 40 ** machine. 41 ** 42 ** This routine sets the error code and string returned by 43 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 44 */ 45 int sqlite3_finalize(sqlite3_stmt *pStmt){ 46 int rc; 47 if( pStmt==0 ){ 48 rc = SQLITE_OK; 49 }else{ 50 Vdbe *v = (Vdbe*)pStmt; 51 sqlite3 *db = v->db; 52 #if SQLITE_THREADSAFE 53 sqlite3_mutex *mutex = v->db->mutex; 54 #endif 55 sqlite3_mutex_enter(mutex); 56 rc = sqlite3VdbeFinalize(v); 57 rc = sqlite3ApiExit(db, rc); 58 sqlite3_mutex_leave(mutex); 59 } 60 return rc; 61 } 62 63 /* 64 ** Terminate the current execution of an SQL statement and reset it 65 ** back to its starting state so that it can be reused. A success code from 66 ** the prior execution is returned. 67 ** 68 ** This routine sets the error code and string returned by 69 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 70 */ 71 int sqlite3_reset(sqlite3_stmt *pStmt){ 72 int rc; 73 if( pStmt==0 ){ 74 rc = SQLITE_OK; 75 }else{ 76 Vdbe *v = (Vdbe*)pStmt; 77 sqlite3_mutex_enter(v->db->mutex); 78 rc = sqlite3VdbeReset(v); 79 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 80 assert( (rc & (v->db->errMask))==rc ); 81 rc = sqlite3ApiExit(v->db, rc); 82 sqlite3_mutex_leave(v->db->mutex); 83 } 84 return rc; 85 } 86 87 /* 88 ** Set all the parameters in the compiled SQL statement to NULL. 89 */ 90 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 91 int i; 92 int rc = SQLITE_OK; 93 Vdbe *p = (Vdbe*)pStmt; 94 #if SQLITE_THREADSAFE 95 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 96 #endif 97 sqlite3_mutex_enter(mutex); 98 for(i=0; i<p->nVar; i++){ 99 sqlite3VdbeMemRelease(&p->aVar[i]); 100 p->aVar[i].flags = MEM_Null; 101 } 102 sqlite3_mutex_leave(mutex); 103 return rc; 104 } 105 106 107 /**************************** sqlite3_value_ ******************************* 108 ** The following routines extract information from a Mem or sqlite3_value 109 ** structure. 110 */ 111 const void *sqlite3_value_blob(sqlite3_value *pVal){ 112 Mem *p = (Mem*)pVal; 113 if( p->flags & (MEM_Blob|MEM_Str) ){ 114 sqlite3VdbeMemExpandBlob(p); 115 p->flags &= ~MEM_Str; 116 p->flags |= MEM_Blob; 117 return p->z; 118 }else{ 119 return sqlite3_value_text(pVal); 120 } 121 } 122 int sqlite3_value_bytes(sqlite3_value *pVal){ 123 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 124 } 125 int sqlite3_value_bytes16(sqlite3_value *pVal){ 126 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 127 } 128 double sqlite3_value_double(sqlite3_value *pVal){ 129 return sqlite3VdbeRealValue((Mem*)pVal); 130 } 131 int sqlite3_value_int(sqlite3_value *pVal){ 132 return (int)sqlite3VdbeIntValue((Mem*)pVal); 133 } 134 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 135 return sqlite3VdbeIntValue((Mem*)pVal); 136 } 137 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 138 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 139 } 140 #ifndef SQLITE_OMIT_UTF16 141 const void *sqlite3_value_text16(sqlite3_value* pVal){ 142 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 143 } 144 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 145 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 146 } 147 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 148 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 149 } 150 #endif /* SQLITE_OMIT_UTF16 */ 151 int sqlite3_value_type(sqlite3_value* pVal){ 152 return pVal->type; 153 } 154 155 /**************************** sqlite3_result_ ******************************* 156 ** The following routines are used by user-defined functions to specify 157 ** the function result. 158 ** 159 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 160 ** result as a string or blob but if the string or blob is too large, it 161 ** then sets the error code to SQLITE_TOOBIG 162 */ 163 static void setResultStrOrError( 164 sqlite3_context *pCtx, /* Function context */ 165 const char *z, /* String pointer */ 166 int n, /* Bytes in string, or negative */ 167 u8 enc, /* Encoding of z. 0 for BLOBs */ 168 void (*xDel)(void*) /* Destructor function */ 169 ){ 170 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 171 sqlite3_result_error_toobig(pCtx); 172 } 173 } 174 void sqlite3_result_blob( 175 sqlite3_context *pCtx, 176 const void *z, 177 int n, 178 void (*xDel)(void *) 179 ){ 180 assert( n>=0 ); 181 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 182 setResultStrOrError(pCtx, z, n, 0, xDel); 183 } 184 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 185 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 186 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 187 } 188 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 189 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 190 pCtx->isError = SQLITE_ERROR; 191 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 192 } 193 #ifndef SQLITE_OMIT_UTF16 194 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 195 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 196 pCtx->isError = SQLITE_ERROR; 197 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 198 } 199 #endif 200 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 201 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 202 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 203 } 204 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 205 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 206 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 207 } 208 void sqlite3_result_null(sqlite3_context *pCtx){ 209 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 210 sqlite3VdbeMemSetNull(&pCtx->s); 211 } 212 void sqlite3_result_text( 213 sqlite3_context *pCtx, 214 const char *z, 215 int n, 216 void (*xDel)(void *) 217 ){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 220 } 221 #ifndef SQLITE_OMIT_UTF16 222 void sqlite3_result_text16( 223 sqlite3_context *pCtx, 224 const void *z, 225 int n, 226 void (*xDel)(void *) 227 ){ 228 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 229 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 230 } 231 void sqlite3_result_text16be( 232 sqlite3_context *pCtx, 233 const void *z, 234 int n, 235 void (*xDel)(void *) 236 ){ 237 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 238 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 239 } 240 void sqlite3_result_text16le( 241 sqlite3_context *pCtx, 242 const void *z, 243 int n, 244 void (*xDel)(void *) 245 ){ 246 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 247 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 248 } 249 #endif /* SQLITE_OMIT_UTF16 */ 250 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 251 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 252 sqlite3VdbeMemCopy(&pCtx->s, pValue); 253 } 254 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 255 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 256 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 257 } 258 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 259 pCtx->isError = errCode; 260 if( pCtx->s.flags & MEM_Null ){ 261 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 262 SQLITE_UTF8, SQLITE_STATIC); 263 } 264 } 265 266 /* Force an SQLITE_TOOBIG error. */ 267 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 268 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 269 pCtx->isError = SQLITE_TOOBIG; 270 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 271 SQLITE_UTF8, SQLITE_STATIC); 272 } 273 274 /* An SQLITE_NOMEM error. */ 275 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 276 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 277 sqlite3VdbeMemSetNull(&pCtx->s); 278 pCtx->isError = SQLITE_NOMEM; 279 pCtx->s.db->mallocFailed = 1; 280 } 281 282 /* 283 ** Execute the statement pStmt, either until a row of data is ready, the 284 ** statement is completely executed or an error occurs. 285 ** 286 ** This routine implements the bulk of the logic behind the sqlite_step() 287 ** API. The only thing omitted is the automatic recompile if a 288 ** schema change has occurred. That detail is handled by the 289 ** outer sqlite3_step() wrapper procedure. 290 */ 291 static int sqlite3Step(Vdbe *p){ 292 sqlite3 *db; 293 int rc; 294 295 assert(p); 296 if( p->magic!=VDBE_MAGIC_RUN ){ 297 return SQLITE_MISUSE; 298 } 299 300 /* Assert that malloc() has not failed */ 301 db = p->db; 302 if( db->mallocFailed ){ 303 return SQLITE_NOMEM; 304 } 305 306 if( p->pc<=0 && p->expired ){ 307 if( ALWAYS(p->rc==SQLITE_OK) ){ 308 p->rc = SQLITE_SCHEMA; 309 } 310 rc = SQLITE_ERROR; 311 goto end_of_step; 312 } 313 if( sqlite3SafetyOn(db) ){ 314 p->rc = SQLITE_MISUSE; 315 return SQLITE_MISUSE; 316 } 317 if( p->pc<0 ){ 318 /* If there are no other statements currently running, then 319 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 320 ** from interrupting a statement that has not yet started. 321 */ 322 if( db->activeVdbeCnt==0 ){ 323 db->u1.isInterrupted = 0; 324 } 325 326 #ifndef SQLITE_OMIT_TRACE 327 if( db->xProfile && !db->init.busy ){ 328 double rNow; 329 sqlite3OsCurrentTime(db->pVfs, &rNow); 330 p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0); 331 } 332 #endif 333 334 db->activeVdbeCnt++; 335 if( p->readOnly==0 ) db->writeVdbeCnt++; 336 p->pc = 0; 337 } 338 #ifndef SQLITE_OMIT_EXPLAIN 339 if( p->explain ){ 340 rc = sqlite3VdbeList(p); 341 }else 342 #endif /* SQLITE_OMIT_EXPLAIN */ 343 { 344 rc = sqlite3VdbeExec(p); 345 } 346 347 if( sqlite3SafetyOff(db) ){ 348 rc = SQLITE_MISUSE; 349 } 350 351 #ifndef SQLITE_OMIT_TRACE 352 /* Invoke the profile callback if there is one 353 */ 354 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 355 double rNow; 356 u64 elapseTime; 357 358 sqlite3OsCurrentTime(db->pVfs, &rNow); 359 elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0); 360 elapseTime -= p->startTime; 361 db->xProfile(db->pProfileArg, p->zSql, elapseTime); 362 } 363 #endif 364 365 db->errCode = rc; 366 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 367 p->rc = SQLITE_NOMEM; 368 } 369 end_of_step: 370 /* At this point local variable rc holds the value that should be 371 ** returned if this statement was compiled using the legacy 372 ** sqlite3_prepare() interface. According to the docs, this can only 373 ** be one of the values in the first assert() below. Variable p->rc 374 ** contains the value that would be returned if sqlite3_finalize() 375 ** were called on statement p. 376 */ 377 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 378 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 379 ); 380 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 381 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 382 /* If this statement was prepared using sqlite3_prepare_v2(), and an 383 ** error has occured, then return the error code in p->rc to the 384 ** caller. Set the error code in the database handle to the same value. 385 */ 386 rc = db->errCode = p->rc; 387 } 388 return (rc&db->errMask); 389 } 390 391 /* 392 ** This is the top-level implementation of sqlite3_step(). Call 393 ** sqlite3Step() to do most of the work. If a schema error occurs, 394 ** call sqlite3Reprepare() and try again. 395 */ 396 int sqlite3_step(sqlite3_stmt *pStmt){ 397 int rc = SQLITE_MISUSE; 398 if( pStmt ){ 399 int cnt = 0; 400 Vdbe *v = (Vdbe*)pStmt; 401 sqlite3 *db = v->db; 402 sqlite3_mutex_enter(db->mutex); 403 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 404 && cnt++ < 5 405 && (rc = sqlite3Reprepare(v))==SQLITE_OK ){ 406 sqlite3_reset(pStmt); 407 v->expired = 0; 408 } 409 if( rc==SQLITE_SCHEMA && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 410 /* This case occurs after failing to recompile an sql statement. 411 ** The error message from the SQL compiler has already been loaded 412 ** into the database handle. This block copies the error message 413 ** from the database handle into the statement and sets the statement 414 ** program counter to 0 to ensure that when the statement is 415 ** finalized or reset the parser error message is available via 416 ** sqlite3_errmsg() and sqlite3_errcode(). 417 */ 418 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 419 sqlite3DbFree(db, v->zErrMsg); 420 if( !db->mallocFailed ){ 421 v->zErrMsg = sqlite3DbStrDup(db, zErr); 422 } else { 423 v->zErrMsg = 0; 424 v->rc = SQLITE_NOMEM; 425 } 426 } 427 rc = sqlite3ApiExit(db, rc); 428 sqlite3_mutex_leave(db->mutex); 429 } 430 return rc; 431 } 432 433 /* 434 ** Extract the user data from a sqlite3_context structure and return a 435 ** pointer to it. 436 */ 437 void *sqlite3_user_data(sqlite3_context *p){ 438 assert( p && p->pFunc ); 439 return p->pFunc->pUserData; 440 } 441 442 /* 443 ** Extract the user data from a sqlite3_context structure and return a 444 ** pointer to it. 445 */ 446 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 447 assert( p && p->pFunc ); 448 return p->s.db; 449 } 450 451 /* 452 ** The following is the implementation of an SQL function that always 453 ** fails with an error message stating that the function is used in the 454 ** wrong context. The sqlite3_overload_function() API might construct 455 ** SQL function that use this routine so that the functions will exist 456 ** for name resolution but are actually overloaded by the xFindFunction 457 ** method of virtual tables. 458 */ 459 void sqlite3InvalidFunction( 460 sqlite3_context *context, /* The function calling context */ 461 int NotUsed, /* Number of arguments to the function */ 462 sqlite3_value **NotUsed2 /* Value of each argument */ 463 ){ 464 const char *zName = context->pFunc->zName; 465 char *zErr; 466 UNUSED_PARAMETER2(NotUsed, NotUsed2); 467 zErr = sqlite3_mprintf( 468 "unable to use function %s in the requested context", zName); 469 sqlite3_result_error(context, zErr, -1); 470 sqlite3_free(zErr); 471 } 472 473 /* 474 ** Allocate or return the aggregate context for a user function. A new 475 ** context is allocated on the first call. Subsequent calls return the 476 ** same context that was returned on prior calls. 477 */ 478 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 479 Mem *pMem; 480 assert( p && p->pFunc && p->pFunc->xStep ); 481 assert( sqlite3_mutex_held(p->s.db->mutex) ); 482 pMem = p->pMem; 483 if( (pMem->flags & MEM_Agg)==0 ){ 484 if( nByte==0 ){ 485 sqlite3VdbeMemReleaseExternal(pMem); 486 pMem->flags = MEM_Null; 487 pMem->z = 0; 488 }else{ 489 sqlite3VdbeMemGrow(pMem, nByte, 0); 490 pMem->flags = MEM_Agg; 491 pMem->u.pDef = p->pFunc; 492 if( pMem->z ){ 493 memset(pMem->z, 0, nByte); 494 } 495 } 496 } 497 return (void*)pMem->z; 498 } 499 500 /* 501 ** Return the auxilary data pointer, if any, for the iArg'th argument to 502 ** the user-function defined by pCtx. 503 */ 504 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 505 VdbeFunc *pVdbeFunc; 506 507 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 508 pVdbeFunc = pCtx->pVdbeFunc; 509 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 510 return 0; 511 } 512 return pVdbeFunc->apAux[iArg].pAux; 513 } 514 515 /* 516 ** Set the auxilary data pointer and delete function, for the iArg'th 517 ** argument to the user-function defined by pCtx. Any previous value is 518 ** deleted by calling the delete function specified when it was set. 519 */ 520 void sqlite3_set_auxdata( 521 sqlite3_context *pCtx, 522 int iArg, 523 void *pAux, 524 void (*xDelete)(void*) 525 ){ 526 struct AuxData *pAuxData; 527 VdbeFunc *pVdbeFunc; 528 if( iArg<0 ) goto failed; 529 530 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 531 pVdbeFunc = pCtx->pVdbeFunc; 532 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 533 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 534 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 535 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 536 if( !pVdbeFunc ){ 537 goto failed; 538 } 539 pCtx->pVdbeFunc = pVdbeFunc; 540 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 541 pVdbeFunc->nAux = iArg+1; 542 pVdbeFunc->pFunc = pCtx->pFunc; 543 } 544 545 pAuxData = &pVdbeFunc->apAux[iArg]; 546 if( pAuxData->pAux && pAuxData->xDelete ){ 547 pAuxData->xDelete(pAuxData->pAux); 548 } 549 pAuxData->pAux = pAux; 550 pAuxData->xDelete = xDelete; 551 return; 552 553 failed: 554 if( xDelete ){ 555 xDelete(pAux); 556 } 557 } 558 559 #ifndef SQLITE_OMIT_DEPRECATED 560 /* 561 ** Return the number of times the Step function of a aggregate has been 562 ** called. 563 ** 564 ** This function is deprecated. Do not use it for new code. It is 565 ** provide only to avoid breaking legacy code. New aggregate function 566 ** implementations should keep their own counts within their aggregate 567 ** context. 568 */ 569 int sqlite3_aggregate_count(sqlite3_context *p){ 570 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 571 return p->pMem->n; 572 } 573 #endif 574 575 /* 576 ** Return the number of columns in the result set for the statement pStmt. 577 */ 578 int sqlite3_column_count(sqlite3_stmt *pStmt){ 579 Vdbe *pVm = (Vdbe *)pStmt; 580 return pVm ? pVm->nResColumn : 0; 581 } 582 583 /* 584 ** Return the number of values available from the current row of the 585 ** currently executing statement pStmt. 586 */ 587 int sqlite3_data_count(sqlite3_stmt *pStmt){ 588 Vdbe *pVm = (Vdbe *)pStmt; 589 if( pVm==0 || pVm->pResultSet==0 ) return 0; 590 return pVm->nResColumn; 591 } 592 593 594 /* 595 ** Check to see if column iCol of the given statement is valid. If 596 ** it is, return a pointer to the Mem for the value of that column. 597 ** If iCol is not valid, return a pointer to a Mem which has a value 598 ** of NULL. 599 */ 600 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 601 Vdbe *pVm; 602 int vals; 603 Mem *pOut; 604 605 pVm = (Vdbe *)pStmt; 606 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 607 sqlite3_mutex_enter(pVm->db->mutex); 608 vals = sqlite3_data_count(pStmt); 609 pOut = &pVm->pResultSet[i]; 610 }else{ 611 /* If the value passed as the second argument is out of range, return 612 ** a pointer to the following static Mem object which contains the 613 ** value SQL NULL. Even though the Mem structure contains an element 614 ** of type i64, on certain architecture (x86) with certain compiler 615 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 616 ** instead of an 8-byte one. This all works fine, except that when 617 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 618 ** that a Mem structure is located on an 8-byte boundary. To prevent 619 ** this assert() from failing, when building with SQLITE_DEBUG defined 620 ** using gcc, force nullMem to be 8-byte aligned using the magical 621 ** __attribute__((aligned(8))) macro. */ 622 static const Mem nullMem 623 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 624 __attribute__((aligned(8))) 625 #endif 626 = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 627 628 if( pVm && ALWAYS(pVm->db) ){ 629 sqlite3_mutex_enter(pVm->db->mutex); 630 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 631 } 632 pOut = (Mem*)&nullMem; 633 } 634 return pOut; 635 } 636 637 /* 638 ** This function is called after invoking an sqlite3_value_XXX function on a 639 ** column value (i.e. a value returned by evaluating an SQL expression in the 640 ** select list of a SELECT statement) that may cause a malloc() failure. If 641 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 642 ** code of statement pStmt set to SQLITE_NOMEM. 643 ** 644 ** Specifically, this is called from within: 645 ** 646 ** sqlite3_column_int() 647 ** sqlite3_column_int64() 648 ** sqlite3_column_text() 649 ** sqlite3_column_text16() 650 ** sqlite3_column_real() 651 ** sqlite3_column_bytes() 652 ** sqlite3_column_bytes16() 653 ** 654 ** But not for sqlite3_column_blob(), which never calls malloc(). 655 */ 656 static void columnMallocFailure(sqlite3_stmt *pStmt) 657 { 658 /* If malloc() failed during an encoding conversion within an 659 ** sqlite3_column_XXX API, then set the return code of the statement to 660 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 661 ** and _finalize() will return NOMEM. 662 */ 663 Vdbe *p = (Vdbe *)pStmt; 664 if( p ){ 665 p->rc = sqlite3ApiExit(p->db, p->rc); 666 sqlite3_mutex_leave(p->db->mutex); 667 } 668 } 669 670 /**************************** sqlite3_column_ ******************************* 671 ** The following routines are used to access elements of the current row 672 ** in the result set. 673 */ 674 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 675 const void *val; 676 val = sqlite3_value_blob( columnMem(pStmt,i) ); 677 /* Even though there is no encoding conversion, value_blob() might 678 ** need to call malloc() to expand the result of a zeroblob() 679 ** expression. 680 */ 681 columnMallocFailure(pStmt); 682 return val; 683 } 684 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 685 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 686 columnMallocFailure(pStmt); 687 return val; 688 } 689 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 690 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 691 columnMallocFailure(pStmt); 692 return val; 693 } 694 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 695 double val = sqlite3_value_double( columnMem(pStmt,i) ); 696 columnMallocFailure(pStmt); 697 return val; 698 } 699 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 700 int val = sqlite3_value_int( columnMem(pStmt,i) ); 701 columnMallocFailure(pStmt); 702 return val; 703 } 704 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 705 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 706 columnMallocFailure(pStmt); 707 return val; 708 } 709 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 710 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 711 columnMallocFailure(pStmt); 712 return val; 713 } 714 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 715 Mem *pOut = columnMem(pStmt, i); 716 if( pOut->flags&MEM_Static ){ 717 pOut->flags &= ~MEM_Static; 718 pOut->flags |= MEM_Ephem; 719 } 720 columnMallocFailure(pStmt); 721 return (sqlite3_value *)pOut; 722 } 723 #ifndef SQLITE_OMIT_UTF16 724 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 725 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 726 columnMallocFailure(pStmt); 727 return val; 728 } 729 #endif /* SQLITE_OMIT_UTF16 */ 730 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 731 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 732 columnMallocFailure(pStmt); 733 return iType; 734 } 735 736 /* The following function is experimental and subject to change or 737 ** removal */ 738 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 739 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 740 **} 741 */ 742 743 /* 744 ** Convert the N-th element of pStmt->pColName[] into a string using 745 ** xFunc() then return that string. If N is out of range, return 0. 746 ** 747 ** There are up to 5 names for each column. useType determines which 748 ** name is returned. Here are the names: 749 ** 750 ** 0 The column name as it should be displayed for output 751 ** 1 The datatype name for the column 752 ** 2 The name of the database that the column derives from 753 ** 3 The name of the table that the column derives from 754 ** 4 The name of the table column that the result column derives from 755 ** 756 ** If the result is not a simple column reference (if it is an expression 757 ** or a constant) then useTypes 2, 3, and 4 return NULL. 758 */ 759 static const void *columnName( 760 sqlite3_stmt *pStmt, 761 int N, 762 const void *(*xFunc)(Mem*), 763 int useType 764 ){ 765 const void *ret = 0; 766 Vdbe *p = (Vdbe *)pStmt; 767 int n; 768 sqlite3 *db = p->db; 769 770 assert( db!=0 ); 771 n = sqlite3_column_count(pStmt); 772 if( N<n && N>=0 ){ 773 N += useType*n; 774 sqlite3_mutex_enter(db->mutex); 775 assert( db->mallocFailed==0 ); 776 ret = xFunc(&p->aColName[N]); 777 /* A malloc may have failed inside of the xFunc() call. If this 778 ** is the case, clear the mallocFailed flag and return NULL. 779 */ 780 if( db->mallocFailed ){ 781 db->mallocFailed = 0; 782 ret = 0; 783 } 784 sqlite3_mutex_leave(db->mutex); 785 } 786 return ret; 787 } 788 789 /* 790 ** Return the name of the Nth column of the result set returned by SQL 791 ** statement pStmt. 792 */ 793 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 794 return columnName( 795 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 796 } 797 #ifndef SQLITE_OMIT_UTF16 798 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 799 return columnName( 800 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 801 } 802 #endif 803 804 /* 805 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 806 ** not define OMIT_DECLTYPE. 807 */ 808 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 809 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 810 and SQLITE_ENABLE_COLUMN_METADATA" 811 #endif 812 813 #ifndef SQLITE_OMIT_DECLTYPE 814 /* 815 ** Return the column declaration type (if applicable) of the 'i'th column 816 ** of the result set of SQL statement pStmt. 817 */ 818 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 819 return columnName( 820 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 821 } 822 #ifndef SQLITE_OMIT_UTF16 823 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 824 return columnName( 825 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 826 } 827 #endif /* SQLITE_OMIT_UTF16 */ 828 #endif /* SQLITE_OMIT_DECLTYPE */ 829 830 #ifdef SQLITE_ENABLE_COLUMN_METADATA 831 /* 832 ** Return the name of the database from which a result column derives. 833 ** NULL is returned if the result column is an expression or constant or 834 ** anything else which is not an unabiguous reference to a database column. 835 */ 836 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 837 return columnName( 838 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 839 } 840 #ifndef SQLITE_OMIT_UTF16 841 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 842 return columnName( 843 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 844 } 845 #endif /* SQLITE_OMIT_UTF16 */ 846 847 /* 848 ** Return the name of the table from which a result column derives. 849 ** NULL is returned if the result column is an expression or constant or 850 ** anything else which is not an unabiguous reference to a database column. 851 */ 852 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 853 return columnName( 854 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 855 } 856 #ifndef SQLITE_OMIT_UTF16 857 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 858 return columnName( 859 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 860 } 861 #endif /* SQLITE_OMIT_UTF16 */ 862 863 /* 864 ** Return the name of the table column from which a result column derives. 865 ** NULL is returned if the result column is an expression or constant or 866 ** anything else which is not an unabiguous reference to a database column. 867 */ 868 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 869 return columnName( 870 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 871 } 872 #ifndef SQLITE_OMIT_UTF16 873 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 874 return columnName( 875 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 876 } 877 #endif /* SQLITE_OMIT_UTF16 */ 878 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 879 880 881 /******************************* sqlite3_bind_ *************************** 882 ** 883 ** Routines used to attach values to wildcards in a compiled SQL statement. 884 */ 885 /* 886 ** Unbind the value bound to variable i in virtual machine p. This is the 887 ** the same as binding a NULL value to the column. If the "i" parameter is 888 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 889 ** 890 ** A successful evaluation of this routine acquires the mutex on p. 891 ** the mutex is released if any kind of error occurs. 892 ** 893 ** The error code stored in database p->db is overwritten with the return 894 ** value in any case. 895 */ 896 static int vdbeUnbind(Vdbe *p, int i){ 897 Mem *pVar; 898 if( p==0 ) return SQLITE_MISUSE; 899 sqlite3_mutex_enter(p->db->mutex); 900 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 901 sqlite3Error(p->db, SQLITE_MISUSE, 0); 902 sqlite3_mutex_leave(p->db->mutex); 903 return SQLITE_MISUSE; 904 } 905 if( i<1 || i>p->nVar ){ 906 sqlite3Error(p->db, SQLITE_RANGE, 0); 907 sqlite3_mutex_leave(p->db->mutex); 908 return SQLITE_RANGE; 909 } 910 i--; 911 pVar = &p->aVar[i]; 912 sqlite3VdbeMemRelease(pVar); 913 pVar->flags = MEM_Null; 914 sqlite3Error(p->db, SQLITE_OK, 0); 915 return SQLITE_OK; 916 } 917 918 /* 919 ** Bind a text or BLOB value. 920 */ 921 static int bindText( 922 sqlite3_stmt *pStmt, /* The statement to bind against */ 923 int i, /* Index of the parameter to bind */ 924 const void *zData, /* Pointer to the data to be bound */ 925 int nData, /* Number of bytes of data to be bound */ 926 void (*xDel)(void*), /* Destructor for the data */ 927 u8 encoding /* Encoding for the data */ 928 ){ 929 Vdbe *p = (Vdbe *)pStmt; 930 Mem *pVar; 931 int rc; 932 933 rc = vdbeUnbind(p, i); 934 if( rc==SQLITE_OK ){ 935 if( zData!=0 ){ 936 pVar = &p->aVar[i-1]; 937 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 938 if( rc==SQLITE_OK && encoding!=0 ){ 939 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 940 } 941 sqlite3Error(p->db, rc, 0); 942 rc = sqlite3ApiExit(p->db, rc); 943 } 944 sqlite3_mutex_leave(p->db->mutex); 945 } 946 return rc; 947 } 948 949 950 /* 951 ** Bind a blob value to an SQL statement variable. 952 */ 953 int sqlite3_bind_blob( 954 sqlite3_stmt *pStmt, 955 int i, 956 const void *zData, 957 int nData, 958 void (*xDel)(void*) 959 ){ 960 return bindText(pStmt, i, zData, nData, xDel, 0); 961 } 962 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 963 int rc; 964 Vdbe *p = (Vdbe *)pStmt; 965 rc = vdbeUnbind(p, i); 966 if( rc==SQLITE_OK ){ 967 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 968 sqlite3_mutex_leave(p->db->mutex); 969 } 970 return rc; 971 } 972 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 973 return sqlite3_bind_int64(p, i, (i64)iValue); 974 } 975 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 976 int rc; 977 Vdbe *p = (Vdbe *)pStmt; 978 rc = vdbeUnbind(p, i); 979 if( rc==SQLITE_OK ){ 980 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 981 sqlite3_mutex_leave(p->db->mutex); 982 } 983 return rc; 984 } 985 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 986 int rc; 987 Vdbe *p = (Vdbe*)pStmt; 988 rc = vdbeUnbind(p, i); 989 if( rc==SQLITE_OK ){ 990 sqlite3_mutex_leave(p->db->mutex); 991 } 992 return rc; 993 } 994 int sqlite3_bind_text( 995 sqlite3_stmt *pStmt, 996 int i, 997 const char *zData, 998 int nData, 999 void (*xDel)(void*) 1000 ){ 1001 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1002 } 1003 #ifndef SQLITE_OMIT_UTF16 1004 int sqlite3_bind_text16( 1005 sqlite3_stmt *pStmt, 1006 int i, 1007 const void *zData, 1008 int nData, 1009 void (*xDel)(void*) 1010 ){ 1011 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1012 } 1013 #endif /* SQLITE_OMIT_UTF16 */ 1014 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1015 int rc; 1016 switch( pValue->type ){ 1017 case SQLITE_INTEGER: { 1018 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1019 break; 1020 } 1021 case SQLITE_FLOAT: { 1022 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1023 break; 1024 } 1025 case SQLITE_BLOB: { 1026 if( pValue->flags & MEM_Zero ){ 1027 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1028 }else{ 1029 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1030 } 1031 break; 1032 } 1033 case SQLITE_TEXT: { 1034 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1035 pValue->enc); 1036 break; 1037 } 1038 default: { 1039 rc = sqlite3_bind_null(pStmt, i); 1040 break; 1041 } 1042 } 1043 return rc; 1044 } 1045 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1046 int rc; 1047 Vdbe *p = (Vdbe *)pStmt; 1048 rc = vdbeUnbind(p, i); 1049 if( rc==SQLITE_OK ){ 1050 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1051 sqlite3_mutex_leave(p->db->mutex); 1052 } 1053 return rc; 1054 } 1055 1056 /* 1057 ** Return the number of wildcards that can be potentially bound to. 1058 ** This routine is added to support DBD::SQLite. 1059 */ 1060 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1061 Vdbe *p = (Vdbe*)pStmt; 1062 return p ? p->nVar : 0; 1063 } 1064 1065 /* 1066 ** Create a mapping from variable numbers to variable names 1067 ** in the Vdbe.azVar[] array, if such a mapping does not already 1068 ** exist. 1069 */ 1070 static void createVarMap(Vdbe *p){ 1071 if( !p->okVar ){ 1072 int j; 1073 Op *pOp; 1074 sqlite3_mutex_enter(p->db->mutex); 1075 /* The race condition here is harmless. If two threads call this 1076 ** routine on the same Vdbe at the same time, they both might end 1077 ** up initializing the Vdbe.azVar[] array. That is a little extra 1078 ** work but it results in the same answer. 1079 */ 1080 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1081 if( pOp->opcode==OP_Variable ){ 1082 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1083 p->azVar[pOp->p1-1] = pOp->p4.z; 1084 } 1085 } 1086 p->okVar = 1; 1087 sqlite3_mutex_leave(p->db->mutex); 1088 } 1089 } 1090 1091 /* 1092 ** Return the name of a wildcard parameter. Return NULL if the index 1093 ** is out of range or if the wildcard is unnamed. 1094 ** 1095 ** The result is always UTF-8. 1096 */ 1097 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1098 Vdbe *p = (Vdbe*)pStmt; 1099 if( p==0 || i<1 || i>p->nVar ){ 1100 return 0; 1101 } 1102 createVarMap(p); 1103 return p->azVar[i-1]; 1104 } 1105 1106 /* 1107 ** Given a wildcard parameter name, return the index of the variable 1108 ** with that name. If there is no variable with the given name, 1109 ** return 0. 1110 */ 1111 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1112 Vdbe *p = (Vdbe*)pStmt; 1113 int i; 1114 if( p==0 ){ 1115 return 0; 1116 } 1117 createVarMap(p); 1118 if( zName ){ 1119 for(i=0; i<p->nVar; i++){ 1120 const char *z = p->azVar[i]; 1121 if( z && strcmp(z,zName)==0 ){ 1122 return i+1; 1123 } 1124 } 1125 } 1126 return 0; 1127 } 1128 1129 /* 1130 ** Transfer all bindings from the first statement over to the second. 1131 */ 1132 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1133 Vdbe *pFrom = (Vdbe*)pFromStmt; 1134 Vdbe *pTo = (Vdbe*)pToStmt; 1135 int i; 1136 assert( pTo->db==pFrom->db ); 1137 assert( pTo->nVar==pFrom->nVar ); 1138 sqlite3_mutex_enter(pTo->db->mutex); 1139 for(i=0; i<pFrom->nVar; i++){ 1140 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1141 } 1142 sqlite3_mutex_leave(pTo->db->mutex); 1143 return SQLITE_OK; 1144 } 1145 1146 #ifndef SQLITE_OMIT_DEPRECATED 1147 /* 1148 ** Deprecated external interface. Internal/core SQLite code 1149 ** should call sqlite3TransferBindings. 1150 ** 1151 ** Is is misuse to call this routine with statements from different 1152 ** database connections. But as this is a deprecated interface, we 1153 ** will not bother to check for that condition. 1154 ** 1155 ** If the two statements contain a different number of bindings, then 1156 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1157 ** SQLITE_OK is returned. 1158 */ 1159 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1160 Vdbe *pFrom = (Vdbe*)pFromStmt; 1161 Vdbe *pTo = (Vdbe*)pToStmt; 1162 if( pFrom->nVar!=pTo->nVar ){ 1163 return SQLITE_ERROR; 1164 } 1165 return sqlite3TransferBindings(pFromStmt, pToStmt); 1166 } 1167 #endif 1168 1169 /* 1170 ** Return the sqlite3* database handle to which the prepared statement given 1171 ** in the argument belongs. This is the same database handle that was 1172 ** the first argument to the sqlite3_prepare() that was used to create 1173 ** the statement in the first place. 1174 */ 1175 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1176 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1177 } 1178 1179 /* 1180 ** Return a pointer to the next prepared statement after pStmt associated 1181 ** with database connection pDb. If pStmt is NULL, return the first 1182 ** prepared statement for the database connection. Return NULL if there 1183 ** are no more. 1184 */ 1185 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1186 sqlite3_stmt *pNext; 1187 sqlite3_mutex_enter(pDb->mutex); 1188 if( pStmt==0 ){ 1189 pNext = (sqlite3_stmt*)pDb->pVdbe; 1190 }else{ 1191 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1192 } 1193 sqlite3_mutex_leave(pDb->mutex); 1194 return pNext; 1195 } 1196 1197 /* 1198 ** Return the value of a status counter for a prepared statement 1199 */ 1200 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1201 Vdbe *pVdbe = (Vdbe*)pStmt; 1202 int v = pVdbe->aCounter[op-1]; 1203 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1204 return v; 1205 } 1206