xref: /sqlite-3.40.0/src/vdbeapi.c (revision 5d00d0a8)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 **
16 ** $Id: vdbeapi.c,v 1.167 2009/06/25 01:47:12 drh Exp $
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifndef SQLITE_OMIT_DEPRECATED
22 /*
23 ** Return TRUE (non-zero) of the statement supplied as an argument needs
24 ** to be recompiled.  A statement needs to be recompiled whenever the
25 ** execution environment changes in a way that would alter the program
26 ** that sqlite3_prepare() generates.  For example, if new functions or
27 ** collating sequences are registered or if an authorizer function is
28 ** added or changed.
29 */
30 int sqlite3_expired(sqlite3_stmt *pStmt){
31   Vdbe *p = (Vdbe*)pStmt;
32   return p==0 || p->expired;
33 }
34 #endif
35 
36 /*
37 ** The following routine destroys a virtual machine that is created by
38 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
39 ** success/failure code that describes the result of executing the virtual
40 ** machine.
41 **
42 ** This routine sets the error code and string returned by
43 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
44 */
45 int sqlite3_finalize(sqlite3_stmt *pStmt){
46   int rc;
47   if( pStmt==0 ){
48     rc = SQLITE_OK;
49   }else{
50     Vdbe *v = (Vdbe*)pStmt;
51     sqlite3 *db = v->db;
52 #if SQLITE_THREADSAFE
53     sqlite3_mutex *mutex = v->db->mutex;
54 #endif
55     sqlite3_mutex_enter(mutex);
56     rc = sqlite3VdbeFinalize(v);
57     rc = sqlite3ApiExit(db, rc);
58     sqlite3_mutex_leave(mutex);
59   }
60   return rc;
61 }
62 
63 /*
64 ** Terminate the current execution of an SQL statement and reset it
65 ** back to its starting state so that it can be reused. A success code from
66 ** the prior execution is returned.
67 **
68 ** This routine sets the error code and string returned by
69 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
70 */
71 int sqlite3_reset(sqlite3_stmt *pStmt){
72   int rc;
73   if( pStmt==0 ){
74     rc = SQLITE_OK;
75   }else{
76     Vdbe *v = (Vdbe*)pStmt;
77     sqlite3_mutex_enter(v->db->mutex);
78     rc = sqlite3VdbeReset(v);
79     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
80     assert( (rc & (v->db->errMask))==rc );
81     rc = sqlite3ApiExit(v->db, rc);
82     sqlite3_mutex_leave(v->db->mutex);
83   }
84   return rc;
85 }
86 
87 /*
88 ** Set all the parameters in the compiled SQL statement to NULL.
89 */
90 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
91   int i;
92   int rc = SQLITE_OK;
93   Vdbe *p = (Vdbe*)pStmt;
94 #if SQLITE_THREADSAFE
95   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
96 #endif
97   sqlite3_mutex_enter(mutex);
98   for(i=0; i<p->nVar; i++){
99     sqlite3VdbeMemRelease(&p->aVar[i]);
100     p->aVar[i].flags = MEM_Null;
101   }
102   sqlite3_mutex_leave(mutex);
103   return rc;
104 }
105 
106 
107 /**************************** sqlite3_value_  *******************************
108 ** The following routines extract information from a Mem or sqlite3_value
109 ** structure.
110 */
111 const void *sqlite3_value_blob(sqlite3_value *pVal){
112   Mem *p = (Mem*)pVal;
113   if( p->flags & (MEM_Blob|MEM_Str) ){
114     sqlite3VdbeMemExpandBlob(p);
115     p->flags &= ~MEM_Str;
116     p->flags |= MEM_Blob;
117     return p->z;
118   }else{
119     return sqlite3_value_text(pVal);
120   }
121 }
122 int sqlite3_value_bytes(sqlite3_value *pVal){
123   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
124 }
125 int sqlite3_value_bytes16(sqlite3_value *pVal){
126   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
127 }
128 double sqlite3_value_double(sqlite3_value *pVal){
129   return sqlite3VdbeRealValue((Mem*)pVal);
130 }
131 int sqlite3_value_int(sqlite3_value *pVal){
132   return (int)sqlite3VdbeIntValue((Mem*)pVal);
133 }
134 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
135   return sqlite3VdbeIntValue((Mem*)pVal);
136 }
137 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
138   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
139 }
140 #ifndef SQLITE_OMIT_UTF16
141 const void *sqlite3_value_text16(sqlite3_value* pVal){
142   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
143 }
144 const void *sqlite3_value_text16be(sqlite3_value *pVal){
145   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
146 }
147 const void *sqlite3_value_text16le(sqlite3_value *pVal){
148   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
149 }
150 #endif /* SQLITE_OMIT_UTF16 */
151 int sqlite3_value_type(sqlite3_value* pVal){
152   return pVal->type;
153 }
154 
155 /**************************** sqlite3_result_  *******************************
156 ** The following routines are used by user-defined functions to specify
157 ** the function result.
158 **
159 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
160 ** result as a string or blob but if the string or blob is too large, it
161 ** then sets the error code to SQLITE_TOOBIG
162 */
163 static void setResultStrOrError(
164   sqlite3_context *pCtx,  /* Function context */
165   const char *z,          /* String pointer */
166   int n,                  /* Bytes in string, or negative */
167   u8 enc,                 /* Encoding of z.  0 for BLOBs */
168   void (*xDel)(void*)     /* Destructor function */
169 ){
170   if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
171     sqlite3_result_error_toobig(pCtx);
172   }
173 }
174 void sqlite3_result_blob(
175   sqlite3_context *pCtx,
176   const void *z,
177   int n,
178   void (*xDel)(void *)
179 ){
180   assert( n>=0 );
181   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
182   setResultStrOrError(pCtx, z, n, 0, xDel);
183 }
184 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
185   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
186   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
187 }
188 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
189   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
190   pCtx->isError = SQLITE_ERROR;
191   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
192 }
193 #ifndef SQLITE_OMIT_UTF16
194 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
195   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
196   pCtx->isError = SQLITE_ERROR;
197   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
198 }
199 #endif
200 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
201   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
202   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
203 }
204 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
205   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
206   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
207 }
208 void sqlite3_result_null(sqlite3_context *pCtx){
209   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
210   sqlite3VdbeMemSetNull(&pCtx->s);
211 }
212 void sqlite3_result_text(
213   sqlite3_context *pCtx,
214   const char *z,
215   int n,
216   void (*xDel)(void *)
217 ){
218   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
220 }
221 #ifndef SQLITE_OMIT_UTF16
222 void sqlite3_result_text16(
223   sqlite3_context *pCtx,
224   const void *z,
225   int n,
226   void (*xDel)(void *)
227 ){
228   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
229   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
230 }
231 void sqlite3_result_text16be(
232   sqlite3_context *pCtx,
233   const void *z,
234   int n,
235   void (*xDel)(void *)
236 ){
237   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
238   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
239 }
240 void sqlite3_result_text16le(
241   sqlite3_context *pCtx,
242   const void *z,
243   int n,
244   void (*xDel)(void *)
245 ){
246   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
247   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
248 }
249 #endif /* SQLITE_OMIT_UTF16 */
250 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
251   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
252   sqlite3VdbeMemCopy(&pCtx->s, pValue);
253 }
254 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
255   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
256   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
257 }
258 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
259   pCtx->isError = errCode;
260   if( pCtx->s.flags & MEM_Null ){
261     sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
262                          SQLITE_UTF8, SQLITE_STATIC);
263   }
264 }
265 
266 /* Force an SQLITE_TOOBIG error. */
267 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
268   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
269   pCtx->isError = SQLITE_TOOBIG;
270   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
271                        SQLITE_UTF8, SQLITE_STATIC);
272 }
273 
274 /* An SQLITE_NOMEM error. */
275 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
276   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
277   sqlite3VdbeMemSetNull(&pCtx->s);
278   pCtx->isError = SQLITE_NOMEM;
279   pCtx->s.db->mallocFailed = 1;
280 }
281 
282 /*
283 ** Execute the statement pStmt, either until a row of data is ready, the
284 ** statement is completely executed or an error occurs.
285 **
286 ** This routine implements the bulk of the logic behind the sqlite_step()
287 ** API.  The only thing omitted is the automatic recompile if a
288 ** schema change has occurred.  That detail is handled by the
289 ** outer sqlite3_step() wrapper procedure.
290 */
291 static int sqlite3Step(Vdbe *p){
292   sqlite3 *db;
293   int rc;
294 
295   assert(p);
296   if( p->magic!=VDBE_MAGIC_RUN ){
297     return SQLITE_MISUSE;
298   }
299 
300   /* Assert that malloc() has not failed */
301   db = p->db;
302   if( db->mallocFailed ){
303     return SQLITE_NOMEM;
304   }
305 
306   if( p->pc<=0 && p->expired ){
307     if( ALWAYS(p->rc==SQLITE_OK) ){
308       p->rc = SQLITE_SCHEMA;
309     }
310     rc = SQLITE_ERROR;
311     goto end_of_step;
312   }
313   if( sqlite3SafetyOn(db) ){
314     p->rc = SQLITE_MISUSE;
315     return SQLITE_MISUSE;
316   }
317   if( p->pc<0 ){
318     /* If there are no other statements currently running, then
319     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
320     ** from interrupting a statement that has not yet started.
321     */
322     if( db->activeVdbeCnt==0 ){
323       db->u1.isInterrupted = 0;
324     }
325 
326 #ifndef SQLITE_OMIT_TRACE
327     if( db->xProfile && !db->init.busy ){
328       double rNow;
329       sqlite3OsCurrentTime(db->pVfs, &rNow);
330       p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
331     }
332 #endif
333 
334     db->activeVdbeCnt++;
335     if( p->readOnly==0 ) db->writeVdbeCnt++;
336     p->pc = 0;
337   }
338 #ifndef SQLITE_OMIT_EXPLAIN
339   if( p->explain ){
340     rc = sqlite3VdbeList(p);
341   }else
342 #endif /* SQLITE_OMIT_EXPLAIN */
343   {
344     rc = sqlite3VdbeExec(p);
345   }
346 
347   if( sqlite3SafetyOff(db) ){
348     rc = SQLITE_MISUSE;
349   }
350 
351 #ifndef SQLITE_OMIT_TRACE
352   /* Invoke the profile callback if there is one
353   */
354   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
355     double rNow;
356     u64 elapseTime;
357 
358     sqlite3OsCurrentTime(db->pVfs, &rNow);
359     elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
360     elapseTime -= p->startTime;
361     db->xProfile(db->pProfileArg, p->zSql, elapseTime);
362   }
363 #endif
364 
365   db->errCode = rc;
366   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
367     p->rc = SQLITE_NOMEM;
368   }
369 end_of_step:
370   /* At this point local variable rc holds the value that should be
371   ** returned if this statement was compiled using the legacy
372   ** sqlite3_prepare() interface. According to the docs, this can only
373   ** be one of the values in the first assert() below. Variable p->rc
374   ** contains the value that would be returned if sqlite3_finalize()
375   ** were called on statement p.
376   */
377   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
378        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
379   );
380   assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
381   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
382     /* If this statement was prepared using sqlite3_prepare_v2(), and an
383     ** error has occured, then return the error code in p->rc to the
384     ** caller. Set the error code in the database handle to the same value.
385     */
386     rc = db->errCode = p->rc;
387   }
388   return (rc&db->errMask);
389 }
390 
391 /*
392 ** This is the top-level implementation of sqlite3_step().  Call
393 ** sqlite3Step() to do most of the work.  If a schema error occurs,
394 ** call sqlite3Reprepare() and try again.
395 */
396 int sqlite3_step(sqlite3_stmt *pStmt){
397   int rc = SQLITE_MISUSE;
398   if( pStmt ){
399     int cnt = 0;
400     Vdbe *v = (Vdbe*)pStmt;
401     sqlite3 *db = v->db;
402     sqlite3_mutex_enter(db->mutex);
403     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
404            && cnt++ < 5
405            && (rc = sqlite3Reprepare(v))==SQLITE_OK ){
406       sqlite3_reset(pStmt);
407       v->expired = 0;
408     }
409     if( rc==SQLITE_SCHEMA && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
410       /* This case occurs after failing to recompile an sql statement.
411       ** The error message from the SQL compiler has already been loaded
412       ** into the database handle. This block copies the error message
413       ** from the database handle into the statement and sets the statement
414       ** program counter to 0 to ensure that when the statement is
415       ** finalized or reset the parser error message is available via
416       ** sqlite3_errmsg() and sqlite3_errcode().
417       */
418       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
419       sqlite3DbFree(db, v->zErrMsg);
420       if( !db->mallocFailed ){
421         v->zErrMsg = sqlite3DbStrDup(db, zErr);
422       } else {
423         v->zErrMsg = 0;
424         v->rc = SQLITE_NOMEM;
425       }
426     }
427     rc = sqlite3ApiExit(db, rc);
428     sqlite3_mutex_leave(db->mutex);
429   }
430   return rc;
431 }
432 
433 /*
434 ** Extract the user data from a sqlite3_context structure and return a
435 ** pointer to it.
436 */
437 void *sqlite3_user_data(sqlite3_context *p){
438   assert( p && p->pFunc );
439   return p->pFunc->pUserData;
440 }
441 
442 /*
443 ** Extract the user data from a sqlite3_context structure and return a
444 ** pointer to it.
445 */
446 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
447   assert( p && p->pFunc );
448   return p->s.db;
449 }
450 
451 /*
452 ** The following is the implementation of an SQL function that always
453 ** fails with an error message stating that the function is used in the
454 ** wrong context.  The sqlite3_overload_function() API might construct
455 ** SQL function that use this routine so that the functions will exist
456 ** for name resolution but are actually overloaded by the xFindFunction
457 ** method of virtual tables.
458 */
459 void sqlite3InvalidFunction(
460   sqlite3_context *context,  /* The function calling context */
461   int NotUsed,               /* Number of arguments to the function */
462   sqlite3_value **NotUsed2   /* Value of each argument */
463 ){
464   const char *zName = context->pFunc->zName;
465   char *zErr;
466   UNUSED_PARAMETER2(NotUsed, NotUsed2);
467   zErr = sqlite3_mprintf(
468       "unable to use function %s in the requested context", zName);
469   sqlite3_result_error(context, zErr, -1);
470   sqlite3_free(zErr);
471 }
472 
473 /*
474 ** Allocate or return the aggregate context for a user function.  A new
475 ** context is allocated on the first call.  Subsequent calls return the
476 ** same context that was returned on prior calls.
477 */
478 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
479   Mem *pMem;
480   assert( p && p->pFunc && p->pFunc->xStep );
481   assert( sqlite3_mutex_held(p->s.db->mutex) );
482   pMem = p->pMem;
483   if( (pMem->flags & MEM_Agg)==0 ){
484     if( nByte==0 ){
485       sqlite3VdbeMemReleaseExternal(pMem);
486       pMem->flags = MEM_Null;
487       pMem->z = 0;
488     }else{
489       sqlite3VdbeMemGrow(pMem, nByte, 0);
490       pMem->flags = MEM_Agg;
491       pMem->u.pDef = p->pFunc;
492       if( pMem->z ){
493         memset(pMem->z, 0, nByte);
494       }
495     }
496   }
497   return (void*)pMem->z;
498 }
499 
500 /*
501 ** Return the auxilary data pointer, if any, for the iArg'th argument to
502 ** the user-function defined by pCtx.
503 */
504 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
505   VdbeFunc *pVdbeFunc;
506 
507   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
508   pVdbeFunc = pCtx->pVdbeFunc;
509   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
510     return 0;
511   }
512   return pVdbeFunc->apAux[iArg].pAux;
513 }
514 
515 /*
516 ** Set the auxilary data pointer and delete function, for the iArg'th
517 ** argument to the user-function defined by pCtx. Any previous value is
518 ** deleted by calling the delete function specified when it was set.
519 */
520 void sqlite3_set_auxdata(
521   sqlite3_context *pCtx,
522   int iArg,
523   void *pAux,
524   void (*xDelete)(void*)
525 ){
526   struct AuxData *pAuxData;
527   VdbeFunc *pVdbeFunc;
528   if( iArg<0 ) goto failed;
529 
530   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
531   pVdbeFunc = pCtx->pVdbeFunc;
532   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
533     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
534     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
535     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
536     if( !pVdbeFunc ){
537       goto failed;
538     }
539     pCtx->pVdbeFunc = pVdbeFunc;
540     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
541     pVdbeFunc->nAux = iArg+1;
542     pVdbeFunc->pFunc = pCtx->pFunc;
543   }
544 
545   pAuxData = &pVdbeFunc->apAux[iArg];
546   if( pAuxData->pAux && pAuxData->xDelete ){
547     pAuxData->xDelete(pAuxData->pAux);
548   }
549   pAuxData->pAux = pAux;
550   pAuxData->xDelete = xDelete;
551   return;
552 
553 failed:
554   if( xDelete ){
555     xDelete(pAux);
556   }
557 }
558 
559 #ifndef SQLITE_OMIT_DEPRECATED
560 /*
561 ** Return the number of times the Step function of a aggregate has been
562 ** called.
563 **
564 ** This function is deprecated.  Do not use it for new code.  It is
565 ** provide only to avoid breaking legacy code.  New aggregate function
566 ** implementations should keep their own counts within their aggregate
567 ** context.
568 */
569 int sqlite3_aggregate_count(sqlite3_context *p){
570   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
571   return p->pMem->n;
572 }
573 #endif
574 
575 /*
576 ** Return the number of columns in the result set for the statement pStmt.
577 */
578 int sqlite3_column_count(sqlite3_stmt *pStmt){
579   Vdbe *pVm = (Vdbe *)pStmt;
580   return pVm ? pVm->nResColumn : 0;
581 }
582 
583 /*
584 ** Return the number of values available from the current row of the
585 ** currently executing statement pStmt.
586 */
587 int sqlite3_data_count(sqlite3_stmt *pStmt){
588   Vdbe *pVm = (Vdbe *)pStmt;
589   if( pVm==0 || pVm->pResultSet==0 ) return 0;
590   return pVm->nResColumn;
591 }
592 
593 
594 /*
595 ** Check to see if column iCol of the given statement is valid.  If
596 ** it is, return a pointer to the Mem for the value of that column.
597 ** If iCol is not valid, return a pointer to a Mem which has a value
598 ** of NULL.
599 */
600 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
601   Vdbe *pVm;
602   int vals;
603   Mem *pOut;
604 
605   pVm = (Vdbe *)pStmt;
606   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
607     sqlite3_mutex_enter(pVm->db->mutex);
608     vals = sqlite3_data_count(pStmt);
609     pOut = &pVm->pResultSet[i];
610   }else{
611     /* If the value passed as the second argument is out of range, return
612     ** a pointer to the following static Mem object which contains the
613     ** value SQL NULL. Even though the Mem structure contains an element
614     ** of type i64, on certain architecture (x86) with certain compiler
615     ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
616     ** instead of an 8-byte one. This all works fine, except that when
617     ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
618     ** that a Mem structure is located on an 8-byte boundary. To prevent
619     ** this assert() from failing, when building with SQLITE_DEBUG defined
620     ** using gcc, force nullMem to be 8-byte aligned using the magical
621     ** __attribute__((aligned(8))) macro.  */
622     static const Mem nullMem
623 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
624       __attribute__((aligned(8)))
625 #endif
626       = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
627 
628     if( pVm && ALWAYS(pVm->db) ){
629       sqlite3_mutex_enter(pVm->db->mutex);
630       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
631     }
632     pOut = (Mem*)&nullMem;
633   }
634   return pOut;
635 }
636 
637 /*
638 ** This function is called after invoking an sqlite3_value_XXX function on a
639 ** column value (i.e. a value returned by evaluating an SQL expression in the
640 ** select list of a SELECT statement) that may cause a malloc() failure. If
641 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
642 ** code of statement pStmt set to SQLITE_NOMEM.
643 **
644 ** Specifically, this is called from within:
645 **
646 **     sqlite3_column_int()
647 **     sqlite3_column_int64()
648 **     sqlite3_column_text()
649 **     sqlite3_column_text16()
650 **     sqlite3_column_real()
651 **     sqlite3_column_bytes()
652 **     sqlite3_column_bytes16()
653 **
654 ** But not for sqlite3_column_blob(), which never calls malloc().
655 */
656 static void columnMallocFailure(sqlite3_stmt *pStmt)
657 {
658   /* If malloc() failed during an encoding conversion within an
659   ** sqlite3_column_XXX API, then set the return code of the statement to
660   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
661   ** and _finalize() will return NOMEM.
662   */
663   Vdbe *p = (Vdbe *)pStmt;
664   if( p ){
665     p->rc = sqlite3ApiExit(p->db, p->rc);
666     sqlite3_mutex_leave(p->db->mutex);
667   }
668 }
669 
670 /**************************** sqlite3_column_  *******************************
671 ** The following routines are used to access elements of the current row
672 ** in the result set.
673 */
674 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
675   const void *val;
676   val = sqlite3_value_blob( columnMem(pStmt,i) );
677   /* Even though there is no encoding conversion, value_blob() might
678   ** need to call malloc() to expand the result of a zeroblob()
679   ** expression.
680   */
681   columnMallocFailure(pStmt);
682   return val;
683 }
684 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
685   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
686   columnMallocFailure(pStmt);
687   return val;
688 }
689 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
690   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
691   columnMallocFailure(pStmt);
692   return val;
693 }
694 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
695   double val = sqlite3_value_double( columnMem(pStmt,i) );
696   columnMallocFailure(pStmt);
697   return val;
698 }
699 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
700   int val = sqlite3_value_int( columnMem(pStmt,i) );
701   columnMallocFailure(pStmt);
702   return val;
703 }
704 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
705   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
706   columnMallocFailure(pStmt);
707   return val;
708 }
709 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
710   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
711   columnMallocFailure(pStmt);
712   return val;
713 }
714 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
715   Mem *pOut = columnMem(pStmt, i);
716   if( pOut->flags&MEM_Static ){
717     pOut->flags &= ~MEM_Static;
718     pOut->flags |= MEM_Ephem;
719   }
720   columnMallocFailure(pStmt);
721   return (sqlite3_value *)pOut;
722 }
723 #ifndef SQLITE_OMIT_UTF16
724 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
725   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
726   columnMallocFailure(pStmt);
727   return val;
728 }
729 #endif /* SQLITE_OMIT_UTF16 */
730 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
731   int iType = sqlite3_value_type( columnMem(pStmt,i) );
732   columnMallocFailure(pStmt);
733   return iType;
734 }
735 
736 /* The following function is experimental and subject to change or
737 ** removal */
738 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
739 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
740 **}
741 */
742 
743 /*
744 ** Convert the N-th element of pStmt->pColName[] into a string using
745 ** xFunc() then return that string.  If N is out of range, return 0.
746 **
747 ** There are up to 5 names for each column.  useType determines which
748 ** name is returned.  Here are the names:
749 **
750 **    0      The column name as it should be displayed for output
751 **    1      The datatype name for the column
752 **    2      The name of the database that the column derives from
753 **    3      The name of the table that the column derives from
754 **    4      The name of the table column that the result column derives from
755 **
756 ** If the result is not a simple column reference (if it is an expression
757 ** or a constant) then useTypes 2, 3, and 4 return NULL.
758 */
759 static const void *columnName(
760   sqlite3_stmt *pStmt,
761   int N,
762   const void *(*xFunc)(Mem*),
763   int useType
764 ){
765   const void *ret = 0;
766   Vdbe *p = (Vdbe *)pStmt;
767   int n;
768   sqlite3 *db = p->db;
769 
770   assert( db!=0 );
771   n = sqlite3_column_count(pStmt);
772   if( N<n && N>=0 ){
773     N += useType*n;
774     sqlite3_mutex_enter(db->mutex);
775     assert( db->mallocFailed==0 );
776     ret = xFunc(&p->aColName[N]);
777      /* A malloc may have failed inside of the xFunc() call. If this
778     ** is the case, clear the mallocFailed flag and return NULL.
779     */
780     if( db->mallocFailed ){
781       db->mallocFailed = 0;
782       ret = 0;
783     }
784     sqlite3_mutex_leave(db->mutex);
785   }
786   return ret;
787 }
788 
789 /*
790 ** Return the name of the Nth column of the result set returned by SQL
791 ** statement pStmt.
792 */
793 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
794   return columnName(
795       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
796 }
797 #ifndef SQLITE_OMIT_UTF16
798 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
799   return columnName(
800       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
801 }
802 #endif
803 
804 /*
805 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
806 ** not define OMIT_DECLTYPE.
807 */
808 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
809 # error "Must not define both SQLITE_OMIT_DECLTYPE \
810          and SQLITE_ENABLE_COLUMN_METADATA"
811 #endif
812 
813 #ifndef SQLITE_OMIT_DECLTYPE
814 /*
815 ** Return the column declaration type (if applicable) of the 'i'th column
816 ** of the result set of SQL statement pStmt.
817 */
818 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
819   return columnName(
820       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
821 }
822 #ifndef SQLITE_OMIT_UTF16
823 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
824   return columnName(
825       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
826 }
827 #endif /* SQLITE_OMIT_UTF16 */
828 #endif /* SQLITE_OMIT_DECLTYPE */
829 
830 #ifdef SQLITE_ENABLE_COLUMN_METADATA
831 /*
832 ** Return the name of the database from which a result column derives.
833 ** NULL is returned if the result column is an expression or constant or
834 ** anything else which is not an unabiguous reference to a database column.
835 */
836 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
837   return columnName(
838       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
839 }
840 #ifndef SQLITE_OMIT_UTF16
841 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
842   return columnName(
843       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
844 }
845 #endif /* SQLITE_OMIT_UTF16 */
846 
847 /*
848 ** Return the name of the table from which a result column derives.
849 ** NULL is returned if the result column is an expression or constant or
850 ** anything else which is not an unabiguous reference to a database column.
851 */
852 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
853   return columnName(
854       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
855 }
856 #ifndef SQLITE_OMIT_UTF16
857 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
858   return columnName(
859       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
860 }
861 #endif /* SQLITE_OMIT_UTF16 */
862 
863 /*
864 ** Return the name of the table column from which a result column derives.
865 ** NULL is returned if the result column is an expression or constant or
866 ** anything else which is not an unabiguous reference to a database column.
867 */
868 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
869   return columnName(
870       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
871 }
872 #ifndef SQLITE_OMIT_UTF16
873 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
874   return columnName(
875       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
876 }
877 #endif /* SQLITE_OMIT_UTF16 */
878 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
879 
880 
881 /******************************* sqlite3_bind_  ***************************
882 **
883 ** Routines used to attach values to wildcards in a compiled SQL statement.
884 */
885 /*
886 ** Unbind the value bound to variable i in virtual machine p. This is the
887 ** the same as binding a NULL value to the column. If the "i" parameter is
888 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
889 **
890 ** A successful evaluation of this routine acquires the mutex on p.
891 ** the mutex is released if any kind of error occurs.
892 **
893 ** The error code stored in database p->db is overwritten with the return
894 ** value in any case.
895 */
896 static int vdbeUnbind(Vdbe *p, int i){
897   Mem *pVar;
898   if( p==0 ) return SQLITE_MISUSE;
899   sqlite3_mutex_enter(p->db->mutex);
900   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
901     sqlite3Error(p->db, SQLITE_MISUSE, 0);
902     sqlite3_mutex_leave(p->db->mutex);
903     return SQLITE_MISUSE;
904   }
905   if( i<1 || i>p->nVar ){
906     sqlite3Error(p->db, SQLITE_RANGE, 0);
907     sqlite3_mutex_leave(p->db->mutex);
908     return SQLITE_RANGE;
909   }
910   i--;
911   pVar = &p->aVar[i];
912   sqlite3VdbeMemRelease(pVar);
913   pVar->flags = MEM_Null;
914   sqlite3Error(p->db, SQLITE_OK, 0);
915   return SQLITE_OK;
916 }
917 
918 /*
919 ** Bind a text or BLOB value.
920 */
921 static int bindText(
922   sqlite3_stmt *pStmt,   /* The statement to bind against */
923   int i,                 /* Index of the parameter to bind */
924   const void *zData,     /* Pointer to the data to be bound */
925   int nData,             /* Number of bytes of data to be bound */
926   void (*xDel)(void*),   /* Destructor for the data */
927   u8 encoding            /* Encoding for the data */
928 ){
929   Vdbe *p = (Vdbe *)pStmt;
930   Mem *pVar;
931   int rc;
932 
933   rc = vdbeUnbind(p, i);
934   if( rc==SQLITE_OK ){
935     if( zData!=0 ){
936       pVar = &p->aVar[i-1];
937       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
938       if( rc==SQLITE_OK && encoding!=0 ){
939         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
940       }
941       sqlite3Error(p->db, rc, 0);
942       rc = sqlite3ApiExit(p->db, rc);
943     }
944     sqlite3_mutex_leave(p->db->mutex);
945   }
946   return rc;
947 }
948 
949 
950 /*
951 ** Bind a blob value to an SQL statement variable.
952 */
953 int sqlite3_bind_blob(
954   sqlite3_stmt *pStmt,
955   int i,
956   const void *zData,
957   int nData,
958   void (*xDel)(void*)
959 ){
960   return bindText(pStmt, i, zData, nData, xDel, 0);
961 }
962 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
963   int rc;
964   Vdbe *p = (Vdbe *)pStmt;
965   rc = vdbeUnbind(p, i);
966   if( rc==SQLITE_OK ){
967     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
968     sqlite3_mutex_leave(p->db->mutex);
969   }
970   return rc;
971 }
972 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
973   return sqlite3_bind_int64(p, i, (i64)iValue);
974 }
975 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
976   int rc;
977   Vdbe *p = (Vdbe *)pStmt;
978   rc = vdbeUnbind(p, i);
979   if( rc==SQLITE_OK ){
980     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
981     sqlite3_mutex_leave(p->db->mutex);
982   }
983   return rc;
984 }
985 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
986   int rc;
987   Vdbe *p = (Vdbe*)pStmt;
988   rc = vdbeUnbind(p, i);
989   if( rc==SQLITE_OK ){
990     sqlite3_mutex_leave(p->db->mutex);
991   }
992   return rc;
993 }
994 int sqlite3_bind_text(
995   sqlite3_stmt *pStmt,
996   int i,
997   const char *zData,
998   int nData,
999   void (*xDel)(void*)
1000 ){
1001   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1002 }
1003 #ifndef SQLITE_OMIT_UTF16
1004 int sqlite3_bind_text16(
1005   sqlite3_stmt *pStmt,
1006   int i,
1007   const void *zData,
1008   int nData,
1009   void (*xDel)(void*)
1010 ){
1011   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1012 }
1013 #endif /* SQLITE_OMIT_UTF16 */
1014 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1015   int rc;
1016   switch( pValue->type ){
1017     case SQLITE_INTEGER: {
1018       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1019       break;
1020     }
1021     case SQLITE_FLOAT: {
1022       rc = sqlite3_bind_double(pStmt, i, pValue->r);
1023       break;
1024     }
1025     case SQLITE_BLOB: {
1026       if( pValue->flags & MEM_Zero ){
1027         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1028       }else{
1029         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1030       }
1031       break;
1032     }
1033     case SQLITE_TEXT: {
1034       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1035                               pValue->enc);
1036       break;
1037     }
1038     default: {
1039       rc = sqlite3_bind_null(pStmt, i);
1040       break;
1041     }
1042   }
1043   return rc;
1044 }
1045 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1046   int rc;
1047   Vdbe *p = (Vdbe *)pStmt;
1048   rc = vdbeUnbind(p, i);
1049   if( rc==SQLITE_OK ){
1050     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1051     sqlite3_mutex_leave(p->db->mutex);
1052   }
1053   return rc;
1054 }
1055 
1056 /*
1057 ** Return the number of wildcards that can be potentially bound to.
1058 ** This routine is added to support DBD::SQLite.
1059 */
1060 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1061   Vdbe *p = (Vdbe*)pStmt;
1062   return p ? p->nVar : 0;
1063 }
1064 
1065 /*
1066 ** Create a mapping from variable numbers to variable names
1067 ** in the Vdbe.azVar[] array, if such a mapping does not already
1068 ** exist.
1069 */
1070 static void createVarMap(Vdbe *p){
1071   if( !p->okVar ){
1072     int j;
1073     Op *pOp;
1074     sqlite3_mutex_enter(p->db->mutex);
1075     /* The race condition here is harmless.  If two threads call this
1076     ** routine on the same Vdbe at the same time, they both might end
1077     ** up initializing the Vdbe.azVar[] array.  That is a little extra
1078     ** work but it results in the same answer.
1079     */
1080     for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1081       if( pOp->opcode==OP_Variable ){
1082         assert( pOp->p1>0 && pOp->p1<=p->nVar );
1083         p->azVar[pOp->p1-1] = pOp->p4.z;
1084       }
1085     }
1086     p->okVar = 1;
1087     sqlite3_mutex_leave(p->db->mutex);
1088   }
1089 }
1090 
1091 /*
1092 ** Return the name of a wildcard parameter.  Return NULL if the index
1093 ** is out of range or if the wildcard is unnamed.
1094 **
1095 ** The result is always UTF-8.
1096 */
1097 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1098   Vdbe *p = (Vdbe*)pStmt;
1099   if( p==0 || i<1 || i>p->nVar ){
1100     return 0;
1101   }
1102   createVarMap(p);
1103   return p->azVar[i-1];
1104 }
1105 
1106 /*
1107 ** Given a wildcard parameter name, return the index of the variable
1108 ** with that name.  If there is no variable with the given name,
1109 ** return 0.
1110 */
1111 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1112   Vdbe *p = (Vdbe*)pStmt;
1113   int i;
1114   if( p==0 ){
1115     return 0;
1116   }
1117   createVarMap(p);
1118   if( zName ){
1119     for(i=0; i<p->nVar; i++){
1120       const char *z = p->azVar[i];
1121       if( z && strcmp(z,zName)==0 ){
1122         return i+1;
1123       }
1124     }
1125   }
1126   return 0;
1127 }
1128 
1129 /*
1130 ** Transfer all bindings from the first statement over to the second.
1131 */
1132 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1133   Vdbe *pFrom = (Vdbe*)pFromStmt;
1134   Vdbe *pTo = (Vdbe*)pToStmt;
1135   int i;
1136   assert( pTo->db==pFrom->db );
1137   assert( pTo->nVar==pFrom->nVar );
1138   sqlite3_mutex_enter(pTo->db->mutex);
1139   for(i=0; i<pFrom->nVar; i++){
1140     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1141   }
1142   sqlite3_mutex_leave(pTo->db->mutex);
1143   return SQLITE_OK;
1144 }
1145 
1146 #ifndef SQLITE_OMIT_DEPRECATED
1147 /*
1148 ** Deprecated external interface.  Internal/core SQLite code
1149 ** should call sqlite3TransferBindings.
1150 **
1151 ** Is is misuse to call this routine with statements from different
1152 ** database connections.  But as this is a deprecated interface, we
1153 ** will not bother to check for that condition.
1154 **
1155 ** If the two statements contain a different number of bindings, then
1156 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1157 ** SQLITE_OK is returned.
1158 */
1159 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1160   Vdbe *pFrom = (Vdbe*)pFromStmt;
1161   Vdbe *pTo = (Vdbe*)pToStmt;
1162   if( pFrom->nVar!=pTo->nVar ){
1163     return SQLITE_ERROR;
1164   }
1165   return sqlite3TransferBindings(pFromStmt, pToStmt);
1166 }
1167 #endif
1168 
1169 /*
1170 ** Return the sqlite3* database handle to which the prepared statement given
1171 ** in the argument belongs.  This is the same database handle that was
1172 ** the first argument to the sqlite3_prepare() that was used to create
1173 ** the statement in the first place.
1174 */
1175 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1176   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1177 }
1178 
1179 /*
1180 ** Return a pointer to the next prepared statement after pStmt associated
1181 ** with database connection pDb.  If pStmt is NULL, return the first
1182 ** prepared statement for the database connection.  Return NULL if there
1183 ** are no more.
1184 */
1185 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1186   sqlite3_stmt *pNext;
1187   sqlite3_mutex_enter(pDb->mutex);
1188   if( pStmt==0 ){
1189     pNext = (sqlite3_stmt*)pDb->pVdbe;
1190   }else{
1191     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1192   }
1193   sqlite3_mutex_leave(pDb->mutex);
1194   return pNext;
1195 }
1196 
1197 /*
1198 ** Return the value of a status counter for a prepared statement
1199 */
1200 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1201   Vdbe *pVdbe = (Vdbe*)pStmt;
1202   int v = pVdbe->aCounter[op-1];
1203   if( resetFlag ) pVdbe->aCounter[op-1] = 0;
1204   return v;
1205 }
1206