1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 #if SQLITE_THREADSAFE 75 sqlite3_mutex *mutex; 76 #endif 77 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 78 #if SQLITE_THREADSAFE 79 mutex = v->db->mutex; 80 #endif 81 sqlite3_mutex_enter(mutex); 82 rc = sqlite3VdbeFinalize(v); 83 rc = sqlite3ApiExit(db, rc); 84 sqlite3_mutex_leave(mutex); 85 } 86 return rc; 87 } 88 89 /* 90 ** Terminate the current execution of an SQL statement and reset it 91 ** back to its starting state so that it can be reused. A success code from 92 ** the prior execution is returned. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_reset(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 rc = SQLITE_OK; 101 }else{ 102 Vdbe *v = (Vdbe*)pStmt; 103 sqlite3_mutex_enter(v->db->mutex); 104 rc = sqlite3VdbeReset(v); 105 sqlite3VdbeRewind(v); 106 assert( (rc & (v->db->errMask))==rc ); 107 rc = sqlite3ApiExit(v->db, rc); 108 sqlite3_mutex_leave(v->db->mutex); 109 } 110 return rc; 111 } 112 113 /* 114 ** Set all the parameters in the compiled SQL statement to NULL. 115 */ 116 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 117 int i; 118 int rc = SQLITE_OK; 119 Vdbe *p = (Vdbe*)pStmt; 120 #if SQLITE_THREADSAFE 121 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 122 #endif 123 sqlite3_mutex_enter(mutex); 124 for(i=0; i<p->nVar; i++){ 125 sqlite3VdbeMemRelease(&p->aVar[i]); 126 p->aVar[i].flags = MEM_Null; 127 } 128 if( p->isPrepareV2 && p->expmask ){ 129 p->expired = 1; 130 } 131 sqlite3_mutex_leave(mutex); 132 return rc; 133 } 134 135 136 /**************************** sqlite3_value_ ******************************* 137 ** The following routines extract information from a Mem or sqlite3_value 138 ** structure. 139 */ 140 const void *sqlite3_value_blob(sqlite3_value *pVal){ 141 Mem *p = (Mem*)pVal; 142 if( p->flags & (MEM_Blob|MEM_Str) ){ 143 sqlite3VdbeMemExpandBlob(p); 144 p->flags &= ~MEM_Str; 145 p->flags |= MEM_Blob; 146 return p->n ? p->z : 0; 147 }else{ 148 return sqlite3_value_text(pVal); 149 } 150 } 151 int sqlite3_value_bytes(sqlite3_value *pVal){ 152 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 153 } 154 int sqlite3_value_bytes16(sqlite3_value *pVal){ 155 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 156 } 157 double sqlite3_value_double(sqlite3_value *pVal){ 158 return sqlite3VdbeRealValue((Mem*)pVal); 159 } 160 int sqlite3_value_int(sqlite3_value *pVal){ 161 return (int)sqlite3VdbeIntValue((Mem*)pVal); 162 } 163 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 164 return sqlite3VdbeIntValue((Mem*)pVal); 165 } 166 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 167 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 168 } 169 #ifndef SQLITE_OMIT_UTF16 170 const void *sqlite3_value_text16(sqlite3_value* pVal){ 171 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 172 } 173 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 174 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 175 } 176 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 177 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 178 } 179 #endif /* SQLITE_OMIT_UTF16 */ 180 int sqlite3_value_type(sqlite3_value* pVal){ 181 return pVal->type; 182 } 183 184 /**************************** sqlite3_result_ ******************************* 185 ** The following routines are used by user-defined functions to specify 186 ** the function result. 187 ** 188 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 189 ** result as a string or blob but if the string or blob is too large, it 190 ** then sets the error code to SQLITE_TOOBIG 191 */ 192 static void setResultStrOrError( 193 sqlite3_context *pCtx, /* Function context */ 194 const char *z, /* String pointer */ 195 int n, /* Bytes in string, or negative */ 196 u8 enc, /* Encoding of z. 0 for BLOBs */ 197 void (*xDel)(void*) /* Destructor function */ 198 ){ 199 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 200 sqlite3_result_error_toobig(pCtx); 201 } 202 } 203 void sqlite3_result_blob( 204 sqlite3_context *pCtx, 205 const void *z, 206 int n, 207 void (*xDel)(void *) 208 ){ 209 assert( n>=0 ); 210 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 211 setResultStrOrError(pCtx, z, n, 0, xDel); 212 } 213 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 214 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 215 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 216 } 217 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 pCtx->isError = SQLITE_ERROR; 220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 221 } 222 #ifndef SQLITE_OMIT_UTF16 223 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 225 pCtx->isError = SQLITE_ERROR; 226 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 227 } 228 #endif 229 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 230 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 231 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 232 } 233 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 234 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 235 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 236 } 237 void sqlite3_result_null(sqlite3_context *pCtx){ 238 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 239 sqlite3VdbeMemSetNull(&pCtx->s); 240 } 241 void sqlite3_result_text( 242 sqlite3_context *pCtx, 243 const char *z, 244 int n, 245 void (*xDel)(void *) 246 ){ 247 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 248 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 249 } 250 #ifndef SQLITE_OMIT_UTF16 251 void sqlite3_result_text16( 252 sqlite3_context *pCtx, 253 const void *z, 254 int n, 255 void (*xDel)(void *) 256 ){ 257 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 258 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 259 } 260 void sqlite3_result_text16be( 261 sqlite3_context *pCtx, 262 const void *z, 263 int n, 264 void (*xDel)(void *) 265 ){ 266 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 267 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 268 } 269 void sqlite3_result_text16le( 270 sqlite3_context *pCtx, 271 const void *z, 272 int n, 273 void (*xDel)(void *) 274 ){ 275 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 276 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 277 } 278 #endif /* SQLITE_OMIT_UTF16 */ 279 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 280 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 281 sqlite3VdbeMemCopy(&pCtx->s, pValue); 282 } 283 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 284 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 285 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 286 } 287 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 288 pCtx->isError = errCode; 289 if( pCtx->s.flags & MEM_Null ){ 290 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 291 SQLITE_UTF8, SQLITE_STATIC); 292 } 293 } 294 295 /* Force an SQLITE_TOOBIG error. */ 296 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 297 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 298 pCtx->isError = SQLITE_TOOBIG; 299 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 300 SQLITE_UTF8, SQLITE_STATIC); 301 } 302 303 /* An SQLITE_NOMEM error. */ 304 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 305 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 306 sqlite3VdbeMemSetNull(&pCtx->s); 307 pCtx->isError = SQLITE_NOMEM; 308 pCtx->s.db->mallocFailed = 1; 309 } 310 311 /* 312 ** This function is called after a transaction has been committed. It 313 ** invokes callbacks registered with sqlite3_wal_hook() as required. 314 */ 315 static int doWalCallbacks(sqlite3 *db){ 316 int rc = SQLITE_OK; 317 #ifndef SQLITE_OMIT_WAL 318 int i; 319 for(i=0; i<db->nDb; i++){ 320 Btree *pBt = db->aDb[i].pBt; 321 if( pBt ){ 322 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 323 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 324 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 325 } 326 } 327 } 328 #endif 329 return rc; 330 } 331 332 /* 333 ** Execute the statement pStmt, either until a row of data is ready, the 334 ** statement is completely executed or an error occurs. 335 ** 336 ** This routine implements the bulk of the logic behind the sqlite_step() 337 ** API. The only thing omitted is the automatic recompile if a 338 ** schema change has occurred. That detail is handled by the 339 ** outer sqlite3_step() wrapper procedure. 340 */ 341 static int sqlite3Step(Vdbe *p){ 342 sqlite3 *db; 343 int rc; 344 345 assert(p); 346 if( p->magic!=VDBE_MAGIC_RUN ){ 347 /* We used to require that sqlite3_reset() be called before retrying 348 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 349 ** with version 3.7.0, we changed this so that sqlite3_reset() would 350 ** be called automatically instead of throwing the SQLITE_MISUSE error. 351 ** This "automatic-reset" change is not technically an incompatibility, 352 ** since any application that receives an SQLITE_MISUSE is broken by 353 ** definition. 354 ** 355 ** Nevertheless, some published applications that were originally written 356 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 357 ** returns, and those were broken by the automatic-reset change. As a 358 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 359 ** legacy behavior of returning SQLITE_MISUSE for cases where the 360 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 361 ** or SQLITE_BUSY error. 362 */ 363 #ifdef SQLITE_OMIT_AUTORESET 364 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 365 sqlite3_reset((sqlite3_stmt*)p); 366 }else{ 367 return SQLITE_MISUSE_BKPT; 368 } 369 #else 370 sqlite3_reset((sqlite3_stmt*)p); 371 #endif 372 } 373 374 /* Check that malloc() has not failed. If it has, return early. */ 375 db = p->db; 376 if( db->mallocFailed ){ 377 p->rc = SQLITE_NOMEM; 378 return SQLITE_NOMEM; 379 } 380 381 if( p->pc<=0 && p->expired ){ 382 p->rc = SQLITE_SCHEMA; 383 rc = SQLITE_ERROR; 384 goto end_of_step; 385 } 386 if( p->pc<0 ){ 387 /* If there are no other statements currently running, then 388 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 389 ** from interrupting a statement that has not yet started. 390 */ 391 if( db->activeVdbeCnt==0 ){ 392 db->u1.isInterrupted = 0; 393 } 394 395 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); 396 397 #ifndef SQLITE_OMIT_TRACE 398 if( db->xProfile && !db->init.busy ){ 399 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 400 } 401 #endif 402 403 db->activeVdbeCnt++; 404 if( p->readOnly==0 ) db->writeVdbeCnt++; 405 p->pc = 0; 406 } 407 #ifndef SQLITE_OMIT_EXPLAIN 408 if( p->explain ){ 409 rc = sqlite3VdbeList(p); 410 }else 411 #endif /* SQLITE_OMIT_EXPLAIN */ 412 { 413 db->vdbeExecCnt++; 414 rc = sqlite3VdbeExec(p); 415 db->vdbeExecCnt--; 416 } 417 418 #ifndef SQLITE_OMIT_TRACE 419 /* Invoke the profile callback if there is one 420 */ 421 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 422 sqlite3_int64 iNow; 423 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 424 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 425 } 426 #endif 427 428 if( rc==SQLITE_DONE ){ 429 assert( p->rc==SQLITE_OK ); 430 p->rc = doWalCallbacks(db); 431 if( p->rc!=SQLITE_OK ){ 432 rc = SQLITE_ERROR; 433 } 434 } 435 436 db->errCode = rc; 437 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 438 p->rc = SQLITE_NOMEM; 439 } 440 end_of_step: 441 /* At this point local variable rc holds the value that should be 442 ** returned if this statement was compiled using the legacy 443 ** sqlite3_prepare() interface. According to the docs, this can only 444 ** be one of the values in the first assert() below. Variable p->rc 445 ** contains the value that would be returned if sqlite3_finalize() 446 ** were called on statement p. 447 */ 448 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 449 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 450 ); 451 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 452 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 453 /* If this statement was prepared using sqlite3_prepare_v2(), and an 454 ** error has occured, then return the error code in p->rc to the 455 ** caller. Set the error code in the database handle to the same value. 456 */ 457 rc = sqlite3VdbeTransferError(p); 458 } 459 return (rc&db->errMask); 460 } 461 462 /* 463 ** The maximum number of times that a statement will try to reparse 464 ** itself before giving up and returning SQLITE_SCHEMA. 465 */ 466 #ifndef SQLITE_MAX_SCHEMA_RETRY 467 # define SQLITE_MAX_SCHEMA_RETRY 5 468 #endif 469 470 /* 471 ** This is the top-level implementation of sqlite3_step(). Call 472 ** sqlite3Step() to do most of the work. If a schema error occurs, 473 ** call sqlite3Reprepare() and try again. 474 */ 475 int sqlite3_step(sqlite3_stmt *pStmt){ 476 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 477 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 478 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 479 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 480 sqlite3 *db; /* The database connection */ 481 482 if( vdbeSafetyNotNull(v) ){ 483 return SQLITE_MISUSE_BKPT; 484 } 485 db = v->db; 486 sqlite3_mutex_enter(db->mutex); 487 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 488 && cnt++ < SQLITE_MAX_SCHEMA_RETRY 489 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 490 sqlite3_reset(pStmt); 491 assert( v->expired==0 ); 492 } 493 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 494 /* This case occurs after failing to recompile an sql statement. 495 ** The error message from the SQL compiler has already been loaded 496 ** into the database handle. This block copies the error message 497 ** from the database handle into the statement and sets the statement 498 ** program counter to 0 to ensure that when the statement is 499 ** finalized or reset the parser error message is available via 500 ** sqlite3_errmsg() and sqlite3_errcode(). 501 */ 502 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 503 sqlite3DbFree(db, v->zErrMsg); 504 if( !db->mallocFailed ){ 505 v->zErrMsg = sqlite3DbStrDup(db, zErr); 506 v->rc = rc2; 507 } else { 508 v->zErrMsg = 0; 509 v->rc = rc = SQLITE_NOMEM; 510 } 511 } 512 rc = sqlite3ApiExit(db, rc); 513 sqlite3_mutex_leave(db->mutex); 514 return rc; 515 } 516 517 /* 518 ** Extract the user data from a sqlite3_context structure and return a 519 ** pointer to it. 520 */ 521 void *sqlite3_user_data(sqlite3_context *p){ 522 assert( p && p->pFunc ); 523 return p->pFunc->pUserData; 524 } 525 526 /* 527 ** Extract the user data from a sqlite3_context structure and return a 528 ** pointer to it. 529 ** 530 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 531 ** returns a copy of the pointer to the database connection (the 1st 532 ** parameter) of the sqlite3_create_function() and 533 ** sqlite3_create_function16() routines that originally registered the 534 ** application defined function. 535 */ 536 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 537 assert( p && p->pFunc ); 538 return p->s.db; 539 } 540 541 /* 542 ** The following is the implementation of an SQL function that always 543 ** fails with an error message stating that the function is used in the 544 ** wrong context. The sqlite3_overload_function() API might construct 545 ** SQL function that use this routine so that the functions will exist 546 ** for name resolution but are actually overloaded by the xFindFunction 547 ** method of virtual tables. 548 */ 549 void sqlite3InvalidFunction( 550 sqlite3_context *context, /* The function calling context */ 551 int NotUsed, /* Number of arguments to the function */ 552 sqlite3_value **NotUsed2 /* Value of each argument */ 553 ){ 554 const char *zName = context->pFunc->zName; 555 char *zErr; 556 UNUSED_PARAMETER2(NotUsed, NotUsed2); 557 zErr = sqlite3_mprintf( 558 "unable to use function %s in the requested context", zName); 559 sqlite3_result_error(context, zErr, -1); 560 sqlite3_free(zErr); 561 } 562 563 /* 564 ** Allocate or return the aggregate context for a user function. A new 565 ** context is allocated on the first call. Subsequent calls return the 566 ** same context that was returned on prior calls. 567 */ 568 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 569 Mem *pMem; 570 assert( p && p->pFunc && p->pFunc->xStep ); 571 assert( sqlite3_mutex_held(p->s.db->mutex) ); 572 pMem = p->pMem; 573 testcase( nByte<0 ); 574 if( (pMem->flags & MEM_Agg)==0 ){ 575 if( nByte<=0 ){ 576 sqlite3VdbeMemReleaseExternal(pMem); 577 pMem->flags = MEM_Null; 578 pMem->z = 0; 579 }else{ 580 sqlite3VdbeMemGrow(pMem, nByte, 0); 581 pMem->flags = MEM_Agg; 582 pMem->u.pDef = p->pFunc; 583 if( pMem->z ){ 584 memset(pMem->z, 0, nByte); 585 } 586 } 587 } 588 return (void*)pMem->z; 589 } 590 591 /* 592 ** Return the auxilary data pointer, if any, for the iArg'th argument to 593 ** the user-function defined by pCtx. 594 */ 595 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 596 VdbeFunc *pVdbeFunc; 597 598 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 599 pVdbeFunc = pCtx->pVdbeFunc; 600 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 601 return 0; 602 } 603 return pVdbeFunc->apAux[iArg].pAux; 604 } 605 606 /* 607 ** Set the auxilary data pointer and delete function, for the iArg'th 608 ** argument to the user-function defined by pCtx. Any previous value is 609 ** deleted by calling the delete function specified when it was set. 610 */ 611 void sqlite3_set_auxdata( 612 sqlite3_context *pCtx, 613 int iArg, 614 void *pAux, 615 void (*xDelete)(void*) 616 ){ 617 struct AuxData *pAuxData; 618 VdbeFunc *pVdbeFunc; 619 if( iArg<0 ) goto failed; 620 621 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 622 pVdbeFunc = pCtx->pVdbeFunc; 623 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 624 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 625 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 626 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 627 if( !pVdbeFunc ){ 628 goto failed; 629 } 630 pCtx->pVdbeFunc = pVdbeFunc; 631 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 632 pVdbeFunc->nAux = iArg+1; 633 pVdbeFunc->pFunc = pCtx->pFunc; 634 } 635 636 pAuxData = &pVdbeFunc->apAux[iArg]; 637 if( pAuxData->pAux && pAuxData->xDelete ){ 638 pAuxData->xDelete(pAuxData->pAux); 639 } 640 pAuxData->pAux = pAux; 641 pAuxData->xDelete = xDelete; 642 return; 643 644 failed: 645 if( xDelete ){ 646 xDelete(pAux); 647 } 648 } 649 650 #ifndef SQLITE_OMIT_DEPRECATED 651 /* 652 ** Return the number of times the Step function of a aggregate has been 653 ** called. 654 ** 655 ** This function is deprecated. Do not use it for new code. It is 656 ** provide only to avoid breaking legacy code. New aggregate function 657 ** implementations should keep their own counts within their aggregate 658 ** context. 659 */ 660 int sqlite3_aggregate_count(sqlite3_context *p){ 661 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 662 return p->pMem->n; 663 } 664 #endif 665 666 /* 667 ** Return the number of columns in the result set for the statement pStmt. 668 */ 669 int sqlite3_column_count(sqlite3_stmt *pStmt){ 670 Vdbe *pVm = (Vdbe *)pStmt; 671 return pVm ? pVm->nResColumn : 0; 672 } 673 674 /* 675 ** Return the number of values available from the current row of the 676 ** currently executing statement pStmt. 677 */ 678 int sqlite3_data_count(sqlite3_stmt *pStmt){ 679 Vdbe *pVm = (Vdbe *)pStmt; 680 if( pVm==0 || pVm->pResultSet==0 ) return 0; 681 return pVm->nResColumn; 682 } 683 684 685 /* 686 ** Check to see if column iCol of the given statement is valid. If 687 ** it is, return a pointer to the Mem for the value of that column. 688 ** If iCol is not valid, return a pointer to a Mem which has a value 689 ** of NULL. 690 */ 691 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 692 Vdbe *pVm; 693 Mem *pOut; 694 695 pVm = (Vdbe *)pStmt; 696 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 697 sqlite3_mutex_enter(pVm->db->mutex); 698 pOut = &pVm->pResultSet[i]; 699 }else{ 700 /* If the value passed as the second argument is out of range, return 701 ** a pointer to the following static Mem object which contains the 702 ** value SQL NULL. Even though the Mem structure contains an element 703 ** of type i64, on certain architectures (x86) with certain compiler 704 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 705 ** instead of an 8-byte one. This all works fine, except that when 706 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 707 ** that a Mem structure is located on an 8-byte boundary. To prevent 708 ** these assert()s from failing, when building with SQLITE_DEBUG defined 709 ** using gcc, we force nullMem to be 8-byte aligned using the magical 710 ** __attribute__((aligned(8))) macro. */ 711 static const Mem nullMem 712 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 713 __attribute__((aligned(8))) 714 #endif 715 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, 716 #ifdef SQLITE_DEBUG 717 0, 0, /* pScopyFrom, pFiller */ 718 #endif 719 0, 0 }; 720 721 if( pVm && ALWAYS(pVm->db) ){ 722 sqlite3_mutex_enter(pVm->db->mutex); 723 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 724 } 725 pOut = (Mem*)&nullMem; 726 } 727 return pOut; 728 } 729 730 /* 731 ** This function is called after invoking an sqlite3_value_XXX function on a 732 ** column value (i.e. a value returned by evaluating an SQL expression in the 733 ** select list of a SELECT statement) that may cause a malloc() failure. If 734 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 735 ** code of statement pStmt set to SQLITE_NOMEM. 736 ** 737 ** Specifically, this is called from within: 738 ** 739 ** sqlite3_column_int() 740 ** sqlite3_column_int64() 741 ** sqlite3_column_text() 742 ** sqlite3_column_text16() 743 ** sqlite3_column_real() 744 ** sqlite3_column_bytes() 745 ** sqlite3_column_bytes16() 746 ** sqiite3_column_blob() 747 */ 748 static void columnMallocFailure(sqlite3_stmt *pStmt) 749 { 750 /* If malloc() failed during an encoding conversion within an 751 ** sqlite3_column_XXX API, then set the return code of the statement to 752 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 753 ** and _finalize() will return NOMEM. 754 */ 755 Vdbe *p = (Vdbe *)pStmt; 756 if( p ){ 757 p->rc = sqlite3ApiExit(p->db, p->rc); 758 sqlite3_mutex_leave(p->db->mutex); 759 } 760 } 761 762 /**************************** sqlite3_column_ ******************************* 763 ** The following routines are used to access elements of the current row 764 ** in the result set. 765 */ 766 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 767 const void *val; 768 val = sqlite3_value_blob( columnMem(pStmt,i) ); 769 /* Even though there is no encoding conversion, value_blob() might 770 ** need to call malloc() to expand the result of a zeroblob() 771 ** expression. 772 */ 773 columnMallocFailure(pStmt); 774 return val; 775 } 776 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 777 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 778 columnMallocFailure(pStmt); 779 return val; 780 } 781 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 782 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 783 columnMallocFailure(pStmt); 784 return val; 785 } 786 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 787 double val = sqlite3_value_double( columnMem(pStmt,i) ); 788 columnMallocFailure(pStmt); 789 return val; 790 } 791 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 792 int val = sqlite3_value_int( columnMem(pStmt,i) ); 793 columnMallocFailure(pStmt); 794 return val; 795 } 796 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 797 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 798 columnMallocFailure(pStmt); 799 return val; 800 } 801 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 802 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 803 columnMallocFailure(pStmt); 804 return val; 805 } 806 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 807 Mem *pOut = columnMem(pStmt, i); 808 if( pOut->flags&MEM_Static ){ 809 pOut->flags &= ~MEM_Static; 810 pOut->flags |= MEM_Ephem; 811 } 812 columnMallocFailure(pStmt); 813 return (sqlite3_value *)pOut; 814 } 815 #ifndef SQLITE_OMIT_UTF16 816 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 817 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 818 columnMallocFailure(pStmt); 819 return val; 820 } 821 #endif /* SQLITE_OMIT_UTF16 */ 822 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 823 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 824 columnMallocFailure(pStmt); 825 return iType; 826 } 827 828 /* The following function is experimental and subject to change or 829 ** removal */ 830 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 831 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 832 **} 833 */ 834 835 /* 836 ** Convert the N-th element of pStmt->pColName[] into a string using 837 ** xFunc() then return that string. If N is out of range, return 0. 838 ** 839 ** There are up to 5 names for each column. useType determines which 840 ** name is returned. Here are the names: 841 ** 842 ** 0 The column name as it should be displayed for output 843 ** 1 The datatype name for the column 844 ** 2 The name of the database that the column derives from 845 ** 3 The name of the table that the column derives from 846 ** 4 The name of the table column that the result column derives from 847 ** 848 ** If the result is not a simple column reference (if it is an expression 849 ** or a constant) then useTypes 2, 3, and 4 return NULL. 850 */ 851 static const void *columnName( 852 sqlite3_stmt *pStmt, 853 int N, 854 const void *(*xFunc)(Mem*), 855 int useType 856 ){ 857 const void *ret = 0; 858 Vdbe *p = (Vdbe *)pStmt; 859 int n; 860 sqlite3 *db = p->db; 861 862 assert( db!=0 ); 863 n = sqlite3_column_count(pStmt); 864 if( N<n && N>=0 ){ 865 N += useType*n; 866 sqlite3_mutex_enter(db->mutex); 867 assert( db->mallocFailed==0 ); 868 ret = xFunc(&p->aColName[N]); 869 /* A malloc may have failed inside of the xFunc() call. If this 870 ** is the case, clear the mallocFailed flag and return NULL. 871 */ 872 if( db->mallocFailed ){ 873 db->mallocFailed = 0; 874 ret = 0; 875 } 876 sqlite3_mutex_leave(db->mutex); 877 } 878 return ret; 879 } 880 881 /* 882 ** Return the name of the Nth column of the result set returned by SQL 883 ** statement pStmt. 884 */ 885 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 886 return columnName( 887 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 888 } 889 #ifndef SQLITE_OMIT_UTF16 890 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 891 return columnName( 892 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 893 } 894 #endif 895 896 /* 897 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 898 ** not define OMIT_DECLTYPE. 899 */ 900 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 901 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 902 and SQLITE_ENABLE_COLUMN_METADATA" 903 #endif 904 905 #ifndef SQLITE_OMIT_DECLTYPE 906 /* 907 ** Return the column declaration type (if applicable) of the 'i'th column 908 ** of the result set of SQL statement pStmt. 909 */ 910 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 911 return columnName( 912 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 913 } 914 #ifndef SQLITE_OMIT_UTF16 915 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 916 return columnName( 917 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 918 } 919 #endif /* SQLITE_OMIT_UTF16 */ 920 #endif /* SQLITE_OMIT_DECLTYPE */ 921 922 #ifdef SQLITE_ENABLE_COLUMN_METADATA 923 /* 924 ** Return the name of the database from which a result column derives. 925 ** NULL is returned if the result column is an expression or constant or 926 ** anything else which is not an unabiguous reference to a database column. 927 */ 928 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 929 return columnName( 930 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 931 } 932 #ifndef SQLITE_OMIT_UTF16 933 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 934 return columnName( 935 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 936 } 937 #endif /* SQLITE_OMIT_UTF16 */ 938 939 /* 940 ** Return the name of the table from which a result column derives. 941 ** NULL is returned if the result column is an expression or constant or 942 ** anything else which is not an unabiguous reference to a database column. 943 */ 944 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 945 return columnName( 946 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 947 } 948 #ifndef SQLITE_OMIT_UTF16 949 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 950 return columnName( 951 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 952 } 953 #endif /* SQLITE_OMIT_UTF16 */ 954 955 /* 956 ** Return the name of the table column from which a result column derives. 957 ** NULL is returned if the result column is an expression or constant or 958 ** anything else which is not an unabiguous reference to a database column. 959 */ 960 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 961 return columnName( 962 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 963 } 964 #ifndef SQLITE_OMIT_UTF16 965 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 966 return columnName( 967 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 968 } 969 #endif /* SQLITE_OMIT_UTF16 */ 970 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 971 972 973 /******************************* sqlite3_bind_ *************************** 974 ** 975 ** Routines used to attach values to wildcards in a compiled SQL statement. 976 */ 977 /* 978 ** Unbind the value bound to variable i in virtual machine p. This is the 979 ** the same as binding a NULL value to the column. If the "i" parameter is 980 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 981 ** 982 ** A successful evaluation of this routine acquires the mutex on p. 983 ** the mutex is released if any kind of error occurs. 984 ** 985 ** The error code stored in database p->db is overwritten with the return 986 ** value in any case. 987 */ 988 static int vdbeUnbind(Vdbe *p, int i){ 989 Mem *pVar; 990 if( vdbeSafetyNotNull(p) ){ 991 return SQLITE_MISUSE_BKPT; 992 } 993 sqlite3_mutex_enter(p->db->mutex); 994 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 995 sqlite3Error(p->db, SQLITE_MISUSE, 0); 996 sqlite3_mutex_leave(p->db->mutex); 997 sqlite3_log(SQLITE_MISUSE, 998 "bind on a busy prepared statement: [%s]", p->zSql); 999 return SQLITE_MISUSE_BKPT; 1000 } 1001 if( i<1 || i>p->nVar ){ 1002 sqlite3Error(p->db, SQLITE_RANGE, 0); 1003 sqlite3_mutex_leave(p->db->mutex); 1004 return SQLITE_RANGE; 1005 } 1006 i--; 1007 pVar = &p->aVar[i]; 1008 sqlite3VdbeMemRelease(pVar); 1009 pVar->flags = MEM_Null; 1010 sqlite3Error(p->db, SQLITE_OK, 0); 1011 1012 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1013 ** binding a new value to this variable invalidates the current query plan. 1014 ** 1015 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1016 ** parameter in the WHERE clause might influence the choice of query plan 1017 ** for a statement, then the statement will be automatically recompiled, 1018 ** as if there had been a schema change, on the first sqlite3_step() call 1019 ** following any change to the bindings of that parameter. 1020 */ 1021 if( p->isPrepareV2 && 1022 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1023 ){ 1024 p->expired = 1; 1025 } 1026 return SQLITE_OK; 1027 } 1028 1029 /* 1030 ** Bind a text or BLOB value. 1031 */ 1032 static int bindText( 1033 sqlite3_stmt *pStmt, /* The statement to bind against */ 1034 int i, /* Index of the parameter to bind */ 1035 const void *zData, /* Pointer to the data to be bound */ 1036 int nData, /* Number of bytes of data to be bound */ 1037 void (*xDel)(void*), /* Destructor for the data */ 1038 u8 encoding /* Encoding for the data */ 1039 ){ 1040 Vdbe *p = (Vdbe *)pStmt; 1041 Mem *pVar; 1042 int rc; 1043 1044 rc = vdbeUnbind(p, i); 1045 if( rc==SQLITE_OK ){ 1046 if( zData!=0 ){ 1047 pVar = &p->aVar[i-1]; 1048 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1049 if( rc==SQLITE_OK && encoding!=0 ){ 1050 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1051 } 1052 sqlite3Error(p->db, rc, 0); 1053 rc = sqlite3ApiExit(p->db, rc); 1054 } 1055 sqlite3_mutex_leave(p->db->mutex); 1056 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1057 xDel((void*)zData); 1058 } 1059 return rc; 1060 } 1061 1062 1063 /* 1064 ** Bind a blob value to an SQL statement variable. 1065 */ 1066 int sqlite3_bind_blob( 1067 sqlite3_stmt *pStmt, 1068 int i, 1069 const void *zData, 1070 int nData, 1071 void (*xDel)(void*) 1072 ){ 1073 return bindText(pStmt, i, zData, nData, xDel, 0); 1074 } 1075 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1076 int rc; 1077 Vdbe *p = (Vdbe *)pStmt; 1078 rc = vdbeUnbind(p, i); 1079 if( rc==SQLITE_OK ){ 1080 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1081 sqlite3_mutex_leave(p->db->mutex); 1082 } 1083 return rc; 1084 } 1085 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1086 return sqlite3_bind_int64(p, i, (i64)iValue); 1087 } 1088 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1089 int rc; 1090 Vdbe *p = (Vdbe *)pStmt; 1091 rc = vdbeUnbind(p, i); 1092 if( rc==SQLITE_OK ){ 1093 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1094 sqlite3_mutex_leave(p->db->mutex); 1095 } 1096 return rc; 1097 } 1098 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1099 int rc; 1100 Vdbe *p = (Vdbe*)pStmt; 1101 rc = vdbeUnbind(p, i); 1102 if( rc==SQLITE_OK ){ 1103 sqlite3_mutex_leave(p->db->mutex); 1104 } 1105 return rc; 1106 } 1107 int sqlite3_bind_text( 1108 sqlite3_stmt *pStmt, 1109 int i, 1110 const char *zData, 1111 int nData, 1112 void (*xDel)(void*) 1113 ){ 1114 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1115 } 1116 #ifndef SQLITE_OMIT_UTF16 1117 int sqlite3_bind_text16( 1118 sqlite3_stmt *pStmt, 1119 int i, 1120 const void *zData, 1121 int nData, 1122 void (*xDel)(void*) 1123 ){ 1124 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1125 } 1126 #endif /* SQLITE_OMIT_UTF16 */ 1127 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1128 int rc; 1129 switch( pValue->type ){ 1130 case SQLITE_INTEGER: { 1131 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1132 break; 1133 } 1134 case SQLITE_FLOAT: { 1135 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1136 break; 1137 } 1138 case SQLITE_BLOB: { 1139 if( pValue->flags & MEM_Zero ){ 1140 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1141 }else{ 1142 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1143 } 1144 break; 1145 } 1146 case SQLITE_TEXT: { 1147 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1148 pValue->enc); 1149 break; 1150 } 1151 default: { 1152 rc = sqlite3_bind_null(pStmt, i); 1153 break; 1154 } 1155 } 1156 return rc; 1157 } 1158 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1159 int rc; 1160 Vdbe *p = (Vdbe *)pStmt; 1161 rc = vdbeUnbind(p, i); 1162 if( rc==SQLITE_OK ){ 1163 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1164 sqlite3_mutex_leave(p->db->mutex); 1165 } 1166 return rc; 1167 } 1168 1169 /* 1170 ** Return the number of wildcards that can be potentially bound to. 1171 ** This routine is added to support DBD::SQLite. 1172 */ 1173 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1174 Vdbe *p = (Vdbe*)pStmt; 1175 return p ? p->nVar : 0; 1176 } 1177 1178 /* 1179 ** Return the name of a wildcard parameter. Return NULL if the index 1180 ** is out of range or if the wildcard is unnamed. 1181 ** 1182 ** The result is always UTF-8. 1183 */ 1184 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1185 Vdbe *p = (Vdbe*)pStmt; 1186 if( p==0 || i<1 || i>p->nzVar ){ 1187 return 0; 1188 } 1189 return p->azVar[i-1]; 1190 } 1191 1192 /* 1193 ** Given a wildcard parameter name, return the index of the variable 1194 ** with that name. If there is no variable with the given name, 1195 ** return 0. 1196 */ 1197 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1198 int i; 1199 if( p==0 ){ 1200 return 0; 1201 } 1202 if( zName ){ 1203 for(i=0; i<p->nzVar; i++){ 1204 const char *z = p->azVar[i]; 1205 if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){ 1206 return i+1; 1207 } 1208 } 1209 } 1210 return 0; 1211 } 1212 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1213 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1214 } 1215 1216 /* 1217 ** Transfer all bindings from the first statement over to the second. 1218 */ 1219 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1220 Vdbe *pFrom = (Vdbe*)pFromStmt; 1221 Vdbe *pTo = (Vdbe*)pToStmt; 1222 int i; 1223 assert( pTo->db==pFrom->db ); 1224 assert( pTo->nVar==pFrom->nVar ); 1225 sqlite3_mutex_enter(pTo->db->mutex); 1226 for(i=0; i<pFrom->nVar; i++){ 1227 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1228 } 1229 sqlite3_mutex_leave(pTo->db->mutex); 1230 return SQLITE_OK; 1231 } 1232 1233 #ifndef SQLITE_OMIT_DEPRECATED 1234 /* 1235 ** Deprecated external interface. Internal/core SQLite code 1236 ** should call sqlite3TransferBindings. 1237 ** 1238 ** Is is misuse to call this routine with statements from different 1239 ** database connections. But as this is a deprecated interface, we 1240 ** will not bother to check for that condition. 1241 ** 1242 ** If the two statements contain a different number of bindings, then 1243 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1244 ** SQLITE_OK is returned. 1245 */ 1246 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1247 Vdbe *pFrom = (Vdbe*)pFromStmt; 1248 Vdbe *pTo = (Vdbe*)pToStmt; 1249 if( pFrom->nVar!=pTo->nVar ){ 1250 return SQLITE_ERROR; 1251 } 1252 if( pTo->isPrepareV2 && pTo->expmask ){ 1253 pTo->expired = 1; 1254 } 1255 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1256 pFrom->expired = 1; 1257 } 1258 return sqlite3TransferBindings(pFromStmt, pToStmt); 1259 } 1260 #endif 1261 1262 /* 1263 ** Return the sqlite3* database handle to which the prepared statement given 1264 ** in the argument belongs. This is the same database handle that was 1265 ** the first argument to the sqlite3_prepare() that was used to create 1266 ** the statement in the first place. 1267 */ 1268 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1269 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1270 } 1271 1272 /* 1273 ** Return true if the prepared statement is guaranteed to not modify the 1274 ** database. 1275 */ 1276 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1277 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1278 } 1279 1280 /* 1281 ** Return true if the prepared statement is in need of being reset. 1282 */ 1283 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1284 Vdbe *v = (Vdbe*)pStmt; 1285 return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN; 1286 } 1287 1288 /* 1289 ** Return a pointer to the next prepared statement after pStmt associated 1290 ** with database connection pDb. If pStmt is NULL, return the first 1291 ** prepared statement for the database connection. Return NULL if there 1292 ** are no more. 1293 */ 1294 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1295 sqlite3_stmt *pNext; 1296 sqlite3_mutex_enter(pDb->mutex); 1297 if( pStmt==0 ){ 1298 pNext = (sqlite3_stmt*)pDb->pVdbe; 1299 }else{ 1300 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1301 } 1302 sqlite3_mutex_leave(pDb->mutex); 1303 return pNext; 1304 } 1305 1306 /* 1307 ** Return the value of a status counter for a prepared statement 1308 */ 1309 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1310 Vdbe *pVdbe = (Vdbe*)pStmt; 1311 int v = pVdbe->aCounter[op-1]; 1312 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1313 return v; 1314 } 1315