1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 } 349 return pNew; 350 } 351 352 /* Destroy an sqlite3_value object previously obtained from 353 ** sqlite3_value_dup(). 354 */ 355 void sqlite3_value_free(sqlite3_value *pOld){ 356 sqlite3ValueFree(pOld); 357 } 358 359 360 /**************************** sqlite3_result_ ******************************* 361 ** The following routines are used by user-defined functions to specify 362 ** the function result. 363 ** 364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 365 ** result as a string or blob. Appropriate errors are set if the string/blob 366 ** is too big or if an OOM occurs. 367 ** 368 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 369 ** on value P is not going to be used and need to be destroyed. 370 */ 371 static void setResultStrOrError( 372 sqlite3_context *pCtx, /* Function context */ 373 const char *z, /* String pointer */ 374 int n, /* Bytes in string, or negative */ 375 u8 enc, /* Encoding of z. 0 for BLOBs */ 376 void (*xDel)(void*) /* Destructor function */ 377 ){ 378 int rc = sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel); 379 if( rc ){ 380 if( rc==SQLITE_TOOBIG ){ 381 sqlite3_result_error_toobig(pCtx); 382 }else{ 383 /* The only errors possible from sqlite3VdbeMemSetStr are 384 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 385 assert( rc==SQLITE_NOMEM ); 386 sqlite3_result_error_nomem(pCtx); 387 } 388 } 389 } 390 static int invokeValueDestructor( 391 const void *p, /* Value to destroy */ 392 void (*xDel)(void*), /* The destructor */ 393 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 394 ){ 395 assert( xDel!=SQLITE_DYNAMIC ); 396 if( xDel==0 ){ 397 /* noop */ 398 }else if( xDel==SQLITE_TRANSIENT ){ 399 /* noop */ 400 }else{ 401 xDel((void*)p); 402 } 403 sqlite3_result_error_toobig(pCtx); 404 return SQLITE_TOOBIG; 405 } 406 void sqlite3_result_blob( 407 sqlite3_context *pCtx, 408 const void *z, 409 int n, 410 void (*xDel)(void *) 411 ){ 412 assert( n>=0 ); 413 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 414 setResultStrOrError(pCtx, z, n, 0, xDel); 415 } 416 void sqlite3_result_blob64( 417 sqlite3_context *pCtx, 418 const void *z, 419 sqlite3_uint64 n, 420 void (*xDel)(void *) 421 ){ 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 assert( xDel!=SQLITE_DYNAMIC ); 424 if( n>0x7fffffff ){ 425 (void)invokeValueDestructor(z, xDel, pCtx); 426 }else{ 427 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 428 } 429 } 430 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 433 } 434 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 435 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 436 pCtx->isError = SQLITE_ERROR; 437 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 438 } 439 #ifndef SQLITE_OMIT_UTF16 440 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 441 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 442 pCtx->isError = SQLITE_ERROR; 443 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 444 } 445 #endif 446 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 448 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 449 } 450 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 451 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 452 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 453 } 454 void sqlite3_result_null(sqlite3_context *pCtx){ 455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 456 sqlite3VdbeMemSetNull(pCtx->pOut); 457 } 458 void sqlite3_result_pointer( 459 sqlite3_context *pCtx, 460 void *pPtr, 461 const char *zPType, 462 void (*xDestructor)(void*) 463 ){ 464 Mem *pOut = pCtx->pOut; 465 assert( sqlite3_mutex_held(pOut->db->mutex) ); 466 sqlite3VdbeMemRelease(pOut); 467 pOut->flags = MEM_Null; 468 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 469 } 470 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 471 Mem *pOut = pCtx->pOut; 472 assert( sqlite3_mutex_held(pOut->db->mutex) ); 473 pOut->eSubtype = eSubtype & 0xff; 474 pOut->flags |= MEM_Subtype; 475 } 476 void sqlite3_result_text( 477 sqlite3_context *pCtx, 478 const char *z, 479 int n, 480 void (*xDel)(void *) 481 ){ 482 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 483 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 484 } 485 void sqlite3_result_text64( 486 sqlite3_context *pCtx, 487 const char *z, 488 sqlite3_uint64 n, 489 void (*xDel)(void *), 490 unsigned char enc 491 ){ 492 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 493 assert( xDel!=SQLITE_DYNAMIC ); 494 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 495 if( n>0x7fffffff ){ 496 (void)invokeValueDestructor(z, xDel, pCtx); 497 }else{ 498 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 499 } 500 } 501 #ifndef SQLITE_OMIT_UTF16 502 void sqlite3_result_text16( 503 sqlite3_context *pCtx, 504 const void *z, 505 int n, 506 void (*xDel)(void *) 507 ){ 508 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 509 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 510 } 511 void sqlite3_result_text16be( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 519 } 520 void sqlite3_result_text16le( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 528 } 529 #endif /* SQLITE_OMIT_UTF16 */ 530 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 531 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 532 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 533 } 534 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 537 } 538 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 539 Mem *pOut = pCtx->pOut; 540 assert( sqlite3_mutex_held(pOut->db->mutex) ); 541 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 542 return SQLITE_TOOBIG; 543 } 544 #ifndef SQLITE_OMIT_INCRBLOB 545 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 546 return SQLITE_OK; 547 #else 548 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 549 #endif 550 } 551 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 552 pCtx->isError = errCode ? errCode : -1; 553 #ifdef SQLITE_DEBUG 554 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 555 #endif 556 if( pCtx->pOut->flags & MEM_Null ){ 557 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 558 SQLITE_UTF8, SQLITE_STATIC); 559 } 560 } 561 562 /* Force an SQLITE_TOOBIG error. */ 563 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 564 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 565 pCtx->isError = SQLITE_TOOBIG; 566 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 567 SQLITE_UTF8, SQLITE_STATIC); 568 } 569 570 /* An SQLITE_NOMEM error. */ 571 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 572 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 573 sqlite3VdbeMemSetNull(pCtx->pOut); 574 pCtx->isError = SQLITE_NOMEM_BKPT; 575 sqlite3OomFault(pCtx->pOut->db); 576 } 577 578 #ifndef SQLITE_UNTESTABLE 579 /* Force the INT64 value currently stored as the result to be 580 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 581 ** test-control. 582 */ 583 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 584 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 585 if( pCtx->pOut->flags & MEM_Int ){ 586 pCtx->pOut->flags &= ~MEM_Int; 587 pCtx->pOut->flags |= MEM_IntReal; 588 } 589 } 590 #endif 591 592 593 /* 594 ** This function is called after a transaction has been committed. It 595 ** invokes callbacks registered with sqlite3_wal_hook() as required. 596 */ 597 static int doWalCallbacks(sqlite3 *db){ 598 int rc = SQLITE_OK; 599 #ifndef SQLITE_OMIT_WAL 600 int i; 601 for(i=0; i<db->nDb; i++){ 602 Btree *pBt = db->aDb[i].pBt; 603 if( pBt ){ 604 int nEntry; 605 sqlite3BtreeEnter(pBt); 606 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 607 sqlite3BtreeLeave(pBt); 608 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 609 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 610 } 611 } 612 } 613 #endif 614 return rc; 615 } 616 617 618 /* 619 ** Execute the statement pStmt, either until a row of data is ready, the 620 ** statement is completely executed or an error occurs. 621 ** 622 ** This routine implements the bulk of the logic behind the sqlite_step() 623 ** API. The only thing omitted is the automatic recompile if a 624 ** schema change has occurred. That detail is handled by the 625 ** outer sqlite3_step() wrapper procedure. 626 */ 627 static int sqlite3Step(Vdbe *p){ 628 sqlite3 *db; 629 int rc; 630 631 assert(p); 632 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 633 /* We used to require that sqlite3_reset() be called before retrying 634 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 635 ** with version 3.7.0, we changed this so that sqlite3_reset() would 636 ** be called automatically instead of throwing the SQLITE_MISUSE error. 637 ** This "automatic-reset" change is not technically an incompatibility, 638 ** since any application that receives an SQLITE_MISUSE is broken by 639 ** definition. 640 ** 641 ** Nevertheless, some published applications that were originally written 642 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 643 ** returns, and those were broken by the automatic-reset change. As a 644 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 645 ** legacy behavior of returning SQLITE_MISUSE for cases where the 646 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 647 ** or SQLITE_BUSY error. 648 */ 649 #ifdef SQLITE_OMIT_AUTORESET 650 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 651 sqlite3_reset((sqlite3_stmt*)p); 652 }else{ 653 return SQLITE_MISUSE_BKPT; 654 } 655 #else 656 sqlite3_reset((sqlite3_stmt*)p); 657 #endif 658 } 659 660 /* Check that malloc() has not failed. If it has, return early. */ 661 db = p->db; 662 if( db->mallocFailed ){ 663 p->rc = SQLITE_NOMEM; 664 return SQLITE_NOMEM_BKPT; 665 } 666 667 if( p->pc<0 && p->expired ){ 668 p->rc = SQLITE_SCHEMA; 669 rc = SQLITE_ERROR; 670 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 671 /* If this statement was prepared using saved SQL and an 672 ** error has occurred, then return the error code in p->rc to the 673 ** caller. Set the error code in the database handle to the same value. 674 */ 675 rc = sqlite3VdbeTransferError(p); 676 } 677 goto end_of_step; 678 } 679 if( p->pc<0 ){ 680 /* If there are no other statements currently running, then 681 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 682 ** from interrupting a statement that has not yet started. 683 */ 684 if( db->nVdbeActive==0 ){ 685 AtomicStore(&db->u1.isInterrupted, 0); 686 } 687 688 assert( db->nVdbeWrite>0 || db->autoCommit==0 689 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 690 ); 691 692 #ifndef SQLITE_OMIT_TRACE 693 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 694 && !db->init.busy && p->zSql ){ 695 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 696 }else{ 697 assert( p->startTime==0 ); 698 } 699 #endif 700 701 db->nVdbeActive++; 702 if( p->readOnly==0 ) db->nVdbeWrite++; 703 if( p->bIsReader ) db->nVdbeRead++; 704 p->pc = 0; 705 } 706 #ifdef SQLITE_DEBUG 707 p->rcApp = SQLITE_OK; 708 #endif 709 #ifndef SQLITE_OMIT_EXPLAIN 710 if( p->explain ){ 711 rc = sqlite3VdbeList(p); 712 }else 713 #endif /* SQLITE_OMIT_EXPLAIN */ 714 { 715 db->nVdbeExec++; 716 rc = sqlite3VdbeExec(p); 717 db->nVdbeExec--; 718 } 719 720 if( rc!=SQLITE_ROW ){ 721 #ifndef SQLITE_OMIT_TRACE 722 /* If the statement completed successfully, invoke the profile callback */ 723 checkProfileCallback(db, p); 724 #endif 725 726 if( rc==SQLITE_DONE && db->autoCommit ){ 727 assert( p->rc==SQLITE_OK ); 728 p->rc = doWalCallbacks(db); 729 if( p->rc!=SQLITE_OK ){ 730 rc = SQLITE_ERROR; 731 } 732 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 733 /* If this statement was prepared using saved SQL and an 734 ** error has occurred, then return the error code in p->rc to the 735 ** caller. Set the error code in the database handle to the same value. 736 */ 737 rc = sqlite3VdbeTransferError(p); 738 } 739 } 740 741 db->errCode = rc; 742 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 743 p->rc = SQLITE_NOMEM_BKPT; 744 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 745 } 746 end_of_step: 747 /* There are only a limited number of result codes allowed from the 748 ** statements prepared using the legacy sqlite3_prepare() interface */ 749 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 750 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 751 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 752 ); 753 return (rc&db->errMask); 754 } 755 756 /* 757 ** This is the top-level implementation of sqlite3_step(). Call 758 ** sqlite3Step() to do most of the work. If a schema error occurs, 759 ** call sqlite3Reprepare() and try again. 760 */ 761 int sqlite3_step(sqlite3_stmt *pStmt){ 762 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 763 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 764 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 765 sqlite3 *db; /* The database connection */ 766 767 if( vdbeSafetyNotNull(v) ){ 768 return SQLITE_MISUSE_BKPT; 769 } 770 db = v->db; 771 sqlite3_mutex_enter(db->mutex); 772 v->doingRerun = 0; 773 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 774 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 775 int savedPc = v->pc; 776 rc = sqlite3Reprepare(v); 777 if( rc!=SQLITE_OK ){ 778 /* This case occurs after failing to recompile an sql statement. 779 ** The error message from the SQL compiler has already been loaded 780 ** into the database handle. This block copies the error message 781 ** from the database handle into the statement and sets the statement 782 ** program counter to 0 to ensure that when the statement is 783 ** finalized or reset the parser error message is available via 784 ** sqlite3_errmsg() and sqlite3_errcode(). 785 */ 786 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 787 sqlite3DbFree(db, v->zErrMsg); 788 if( !db->mallocFailed ){ 789 v->zErrMsg = sqlite3DbStrDup(db, zErr); 790 v->rc = rc = sqlite3ApiExit(db, rc); 791 } else { 792 v->zErrMsg = 0; 793 v->rc = rc = SQLITE_NOMEM_BKPT; 794 } 795 break; 796 } 797 sqlite3_reset(pStmt); 798 if( savedPc>=0 ) v->doingRerun = 1; 799 assert( v->expired==0 ); 800 } 801 sqlite3_mutex_leave(db->mutex); 802 return rc; 803 } 804 805 806 /* 807 ** Extract the user data from a sqlite3_context structure and return a 808 ** pointer to it. 809 */ 810 void *sqlite3_user_data(sqlite3_context *p){ 811 assert( p && p->pFunc ); 812 return p->pFunc->pUserData; 813 } 814 815 /* 816 ** Extract the user data from a sqlite3_context structure and return a 817 ** pointer to it. 818 ** 819 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 820 ** returns a copy of the pointer to the database connection (the 1st 821 ** parameter) of the sqlite3_create_function() and 822 ** sqlite3_create_function16() routines that originally registered the 823 ** application defined function. 824 */ 825 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 826 assert( p && p->pOut ); 827 return p->pOut->db; 828 } 829 830 /* 831 ** If this routine is invoked from within an xColumn method of a virtual 832 ** table, then it returns true if and only if the the call is during an 833 ** UPDATE operation and the value of the column will not be modified 834 ** by the UPDATE. 835 ** 836 ** If this routine is called from any context other than within the 837 ** xColumn method of a virtual table, then the return value is meaningless 838 ** and arbitrary. 839 ** 840 ** Virtual table implements might use this routine to optimize their 841 ** performance by substituting a NULL result, or some other light-weight 842 ** value, as a signal to the xUpdate routine that the column is unchanged. 843 */ 844 int sqlite3_vtab_nochange(sqlite3_context *p){ 845 assert( p ); 846 return sqlite3_value_nochange(p->pOut); 847 } 848 849 /* 850 ** Return the current time for a statement. If the current time 851 ** is requested more than once within the same run of a single prepared 852 ** statement, the exact same time is returned for each invocation regardless 853 ** of the amount of time that elapses between invocations. In other words, 854 ** the time returned is always the time of the first call. 855 */ 856 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 857 int rc; 858 #ifndef SQLITE_ENABLE_STAT4 859 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 860 assert( p->pVdbe!=0 ); 861 #else 862 sqlite3_int64 iTime = 0; 863 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 864 #endif 865 if( *piTime==0 ){ 866 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 867 if( rc ) *piTime = 0; 868 } 869 return *piTime; 870 } 871 872 /* 873 ** Create a new aggregate context for p and return a pointer to 874 ** its pMem->z element. 875 */ 876 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 877 Mem *pMem = p->pMem; 878 assert( (pMem->flags & MEM_Agg)==0 ); 879 if( nByte<=0 ){ 880 sqlite3VdbeMemSetNull(pMem); 881 pMem->z = 0; 882 }else{ 883 sqlite3VdbeMemClearAndResize(pMem, nByte); 884 pMem->flags = MEM_Agg; 885 pMem->u.pDef = p->pFunc; 886 if( pMem->z ){ 887 memset(pMem->z, 0, nByte); 888 } 889 } 890 return (void*)pMem->z; 891 } 892 893 /* 894 ** Allocate or return the aggregate context for a user function. A new 895 ** context is allocated on the first call. Subsequent calls return the 896 ** same context that was returned on prior calls. 897 */ 898 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 899 assert( p && p->pFunc && p->pFunc->xFinalize ); 900 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 901 testcase( nByte<0 ); 902 if( (p->pMem->flags & MEM_Agg)==0 ){ 903 return createAggContext(p, nByte); 904 }else{ 905 return (void*)p->pMem->z; 906 } 907 } 908 909 /* 910 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 911 ** the user-function defined by pCtx. 912 ** 913 ** The left-most argument is 0. 914 ** 915 ** Undocumented behavior: If iArg is negative then access a cache of 916 ** auxiliary data pointers that is available to all functions within a 917 ** single prepared statement. The iArg values must match. 918 */ 919 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 920 AuxData *pAuxData; 921 922 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 923 #if SQLITE_ENABLE_STAT4 924 if( pCtx->pVdbe==0 ) return 0; 925 #else 926 assert( pCtx->pVdbe!=0 ); 927 #endif 928 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 929 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 930 return pAuxData->pAux; 931 } 932 } 933 return 0; 934 } 935 936 /* 937 ** Set the auxiliary data pointer and delete function, for the iArg'th 938 ** argument to the user-function defined by pCtx. Any previous value is 939 ** deleted by calling the delete function specified when it was set. 940 ** 941 ** The left-most argument is 0. 942 ** 943 ** Undocumented behavior: If iArg is negative then make the data available 944 ** to all functions within the current prepared statement using iArg as an 945 ** access code. 946 */ 947 void sqlite3_set_auxdata( 948 sqlite3_context *pCtx, 949 int iArg, 950 void *pAux, 951 void (*xDelete)(void*) 952 ){ 953 AuxData *pAuxData; 954 Vdbe *pVdbe = pCtx->pVdbe; 955 956 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 957 #ifdef SQLITE_ENABLE_STAT4 958 if( pVdbe==0 ) goto failed; 959 #else 960 assert( pVdbe!=0 ); 961 #endif 962 963 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 964 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 965 break; 966 } 967 } 968 if( pAuxData==0 ){ 969 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 970 if( !pAuxData ) goto failed; 971 pAuxData->iAuxOp = pCtx->iOp; 972 pAuxData->iAuxArg = iArg; 973 pAuxData->pNextAux = pVdbe->pAuxData; 974 pVdbe->pAuxData = pAuxData; 975 if( pCtx->isError==0 ) pCtx->isError = -1; 976 }else if( pAuxData->xDeleteAux ){ 977 pAuxData->xDeleteAux(pAuxData->pAux); 978 } 979 980 pAuxData->pAux = pAux; 981 pAuxData->xDeleteAux = xDelete; 982 return; 983 984 failed: 985 if( xDelete ){ 986 xDelete(pAux); 987 } 988 } 989 990 #ifndef SQLITE_OMIT_DEPRECATED 991 /* 992 ** Return the number of times the Step function of an aggregate has been 993 ** called. 994 ** 995 ** This function is deprecated. Do not use it for new code. It is 996 ** provide only to avoid breaking legacy code. New aggregate function 997 ** implementations should keep their own counts within their aggregate 998 ** context. 999 */ 1000 int sqlite3_aggregate_count(sqlite3_context *p){ 1001 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1002 return p->pMem->n; 1003 } 1004 #endif 1005 1006 /* 1007 ** Return the number of columns in the result set for the statement pStmt. 1008 */ 1009 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1010 Vdbe *pVm = (Vdbe *)pStmt; 1011 return pVm ? pVm->nResColumn : 0; 1012 } 1013 1014 /* 1015 ** Return the number of values available from the current row of the 1016 ** currently executing statement pStmt. 1017 */ 1018 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1019 Vdbe *pVm = (Vdbe *)pStmt; 1020 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1021 return pVm->nResColumn; 1022 } 1023 1024 /* 1025 ** Return a pointer to static memory containing an SQL NULL value. 1026 */ 1027 static const Mem *columnNullValue(void){ 1028 /* Even though the Mem structure contains an element 1029 ** of type i64, on certain architectures (x86) with certain compiler 1030 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1031 ** instead of an 8-byte one. This all works fine, except that when 1032 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1033 ** that a Mem structure is located on an 8-byte boundary. To prevent 1034 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1035 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1036 ** __attribute__((aligned(8))) macro. */ 1037 static const Mem nullMem 1038 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1039 __attribute__((aligned(8))) 1040 #endif 1041 = { 1042 /* .u = */ {0}, 1043 /* .flags = */ (u16)MEM_Null, 1044 /* .enc = */ (u8)0, 1045 /* .eSubtype = */ (u8)0, 1046 /* .n = */ (int)0, 1047 /* .z = */ (char*)0, 1048 /* .zMalloc = */ (char*)0, 1049 /* .szMalloc = */ (int)0, 1050 /* .uTemp = */ (u32)0, 1051 /* .db = */ (sqlite3*)0, 1052 /* .xDel = */ (void(*)(void*))0, 1053 #ifdef SQLITE_DEBUG 1054 /* .pScopyFrom = */ (Mem*)0, 1055 /* .mScopyFlags= */ 0, 1056 #endif 1057 }; 1058 return &nullMem; 1059 } 1060 1061 /* 1062 ** Check to see if column iCol of the given statement is valid. If 1063 ** it is, return a pointer to the Mem for the value of that column. 1064 ** If iCol is not valid, return a pointer to a Mem which has a value 1065 ** of NULL. 1066 */ 1067 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1068 Vdbe *pVm; 1069 Mem *pOut; 1070 1071 pVm = (Vdbe *)pStmt; 1072 if( pVm==0 ) return (Mem*)columnNullValue(); 1073 assert( pVm->db ); 1074 sqlite3_mutex_enter(pVm->db->mutex); 1075 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1076 pOut = &pVm->pResultSet[i]; 1077 }else{ 1078 sqlite3Error(pVm->db, SQLITE_RANGE); 1079 pOut = (Mem*)columnNullValue(); 1080 } 1081 return pOut; 1082 } 1083 1084 /* 1085 ** This function is called after invoking an sqlite3_value_XXX function on a 1086 ** column value (i.e. a value returned by evaluating an SQL expression in the 1087 ** select list of a SELECT statement) that may cause a malloc() failure. If 1088 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1089 ** code of statement pStmt set to SQLITE_NOMEM. 1090 ** 1091 ** Specifically, this is called from within: 1092 ** 1093 ** sqlite3_column_int() 1094 ** sqlite3_column_int64() 1095 ** sqlite3_column_text() 1096 ** sqlite3_column_text16() 1097 ** sqlite3_column_real() 1098 ** sqlite3_column_bytes() 1099 ** sqlite3_column_bytes16() 1100 ** sqiite3_column_blob() 1101 */ 1102 static void columnMallocFailure(sqlite3_stmt *pStmt) 1103 { 1104 /* If malloc() failed during an encoding conversion within an 1105 ** sqlite3_column_XXX API, then set the return code of the statement to 1106 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1107 ** and _finalize() will return NOMEM. 1108 */ 1109 Vdbe *p = (Vdbe *)pStmt; 1110 if( p ){ 1111 assert( p->db!=0 ); 1112 assert( sqlite3_mutex_held(p->db->mutex) ); 1113 p->rc = sqlite3ApiExit(p->db, p->rc); 1114 sqlite3_mutex_leave(p->db->mutex); 1115 } 1116 } 1117 1118 /**************************** sqlite3_column_ ******************************* 1119 ** The following routines are used to access elements of the current row 1120 ** in the result set. 1121 */ 1122 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1123 const void *val; 1124 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1125 /* Even though there is no encoding conversion, value_blob() might 1126 ** need to call malloc() to expand the result of a zeroblob() 1127 ** expression. 1128 */ 1129 columnMallocFailure(pStmt); 1130 return val; 1131 } 1132 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1133 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1134 columnMallocFailure(pStmt); 1135 return val; 1136 } 1137 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1138 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1139 columnMallocFailure(pStmt); 1140 return val; 1141 } 1142 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1143 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1144 columnMallocFailure(pStmt); 1145 return val; 1146 } 1147 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1148 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1149 columnMallocFailure(pStmt); 1150 return val; 1151 } 1152 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1153 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1154 columnMallocFailure(pStmt); 1155 return val; 1156 } 1157 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1158 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1159 columnMallocFailure(pStmt); 1160 return val; 1161 } 1162 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1163 Mem *pOut = columnMem(pStmt, i); 1164 if( pOut->flags&MEM_Static ){ 1165 pOut->flags &= ~MEM_Static; 1166 pOut->flags |= MEM_Ephem; 1167 } 1168 columnMallocFailure(pStmt); 1169 return (sqlite3_value *)pOut; 1170 } 1171 #ifndef SQLITE_OMIT_UTF16 1172 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1173 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1174 columnMallocFailure(pStmt); 1175 return val; 1176 } 1177 #endif /* SQLITE_OMIT_UTF16 */ 1178 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1179 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1180 columnMallocFailure(pStmt); 1181 return iType; 1182 } 1183 1184 /* 1185 ** Convert the N-th element of pStmt->pColName[] into a string using 1186 ** xFunc() then return that string. If N is out of range, return 0. 1187 ** 1188 ** There are up to 5 names for each column. useType determines which 1189 ** name is returned. Here are the names: 1190 ** 1191 ** 0 The column name as it should be displayed for output 1192 ** 1 The datatype name for the column 1193 ** 2 The name of the database that the column derives from 1194 ** 3 The name of the table that the column derives from 1195 ** 4 The name of the table column that the result column derives from 1196 ** 1197 ** If the result is not a simple column reference (if it is an expression 1198 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1199 */ 1200 static const void *columnName( 1201 sqlite3_stmt *pStmt, /* The statement */ 1202 int N, /* Which column to get the name for */ 1203 int useUtf16, /* True to return the name as UTF16 */ 1204 int useType /* What type of name */ 1205 ){ 1206 const void *ret; 1207 Vdbe *p; 1208 int n; 1209 sqlite3 *db; 1210 #ifdef SQLITE_ENABLE_API_ARMOR 1211 if( pStmt==0 ){ 1212 (void)SQLITE_MISUSE_BKPT; 1213 return 0; 1214 } 1215 #endif 1216 ret = 0; 1217 p = (Vdbe *)pStmt; 1218 db = p->db; 1219 assert( db!=0 ); 1220 n = sqlite3_column_count(pStmt); 1221 if( N<n && N>=0 ){ 1222 N += useType*n; 1223 sqlite3_mutex_enter(db->mutex); 1224 assert( db->mallocFailed==0 ); 1225 #ifndef SQLITE_OMIT_UTF16 1226 if( useUtf16 ){ 1227 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1228 }else 1229 #endif 1230 { 1231 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1232 } 1233 /* A malloc may have failed inside of the _text() call. If this 1234 ** is the case, clear the mallocFailed flag and return NULL. 1235 */ 1236 if( db->mallocFailed ){ 1237 sqlite3OomClear(db); 1238 ret = 0; 1239 } 1240 sqlite3_mutex_leave(db->mutex); 1241 } 1242 return ret; 1243 } 1244 1245 /* 1246 ** Return the name of the Nth column of the result set returned by SQL 1247 ** statement pStmt. 1248 */ 1249 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1250 return columnName(pStmt, N, 0, COLNAME_NAME); 1251 } 1252 #ifndef SQLITE_OMIT_UTF16 1253 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1254 return columnName(pStmt, N, 1, COLNAME_NAME); 1255 } 1256 #endif 1257 1258 /* 1259 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1260 ** not define OMIT_DECLTYPE. 1261 */ 1262 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1263 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1264 and SQLITE_ENABLE_COLUMN_METADATA" 1265 #endif 1266 1267 #ifndef SQLITE_OMIT_DECLTYPE 1268 /* 1269 ** Return the column declaration type (if applicable) of the 'i'th column 1270 ** of the result set of SQL statement pStmt. 1271 */ 1272 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1273 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1274 } 1275 #ifndef SQLITE_OMIT_UTF16 1276 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1277 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1278 } 1279 #endif /* SQLITE_OMIT_UTF16 */ 1280 #endif /* SQLITE_OMIT_DECLTYPE */ 1281 1282 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1283 /* 1284 ** Return the name of the database from which a result column derives. 1285 ** NULL is returned if the result column is an expression or constant or 1286 ** anything else which is not an unambiguous reference to a database column. 1287 */ 1288 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1289 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1290 } 1291 #ifndef SQLITE_OMIT_UTF16 1292 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1293 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1294 } 1295 #endif /* SQLITE_OMIT_UTF16 */ 1296 1297 /* 1298 ** Return the name of the table from which a result column derives. 1299 ** NULL is returned if the result column is an expression or constant or 1300 ** anything else which is not an unambiguous reference to a database column. 1301 */ 1302 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1303 return columnName(pStmt, N, 0, COLNAME_TABLE); 1304 } 1305 #ifndef SQLITE_OMIT_UTF16 1306 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1307 return columnName(pStmt, N, 1, COLNAME_TABLE); 1308 } 1309 #endif /* SQLITE_OMIT_UTF16 */ 1310 1311 /* 1312 ** Return the name of the table column from which a result column derives. 1313 ** NULL is returned if the result column is an expression or constant or 1314 ** anything else which is not an unambiguous reference to a database column. 1315 */ 1316 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1317 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1318 } 1319 #ifndef SQLITE_OMIT_UTF16 1320 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1321 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1322 } 1323 #endif /* SQLITE_OMIT_UTF16 */ 1324 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1325 1326 1327 /******************************* sqlite3_bind_ *************************** 1328 ** 1329 ** Routines used to attach values to wildcards in a compiled SQL statement. 1330 */ 1331 /* 1332 ** Unbind the value bound to variable i in virtual machine p. This is the 1333 ** the same as binding a NULL value to the column. If the "i" parameter is 1334 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1335 ** 1336 ** A successful evaluation of this routine acquires the mutex on p. 1337 ** the mutex is released if any kind of error occurs. 1338 ** 1339 ** The error code stored in database p->db is overwritten with the return 1340 ** value in any case. 1341 */ 1342 static int vdbeUnbind(Vdbe *p, int i){ 1343 Mem *pVar; 1344 if( vdbeSafetyNotNull(p) ){ 1345 return SQLITE_MISUSE_BKPT; 1346 } 1347 sqlite3_mutex_enter(p->db->mutex); 1348 if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1349 sqlite3Error(p->db, SQLITE_MISUSE); 1350 sqlite3_mutex_leave(p->db->mutex); 1351 sqlite3_log(SQLITE_MISUSE, 1352 "bind on a busy prepared statement: [%s]", p->zSql); 1353 return SQLITE_MISUSE_BKPT; 1354 } 1355 if( i<1 || i>p->nVar ){ 1356 sqlite3Error(p->db, SQLITE_RANGE); 1357 sqlite3_mutex_leave(p->db->mutex); 1358 return SQLITE_RANGE; 1359 } 1360 i--; 1361 pVar = &p->aVar[i]; 1362 sqlite3VdbeMemRelease(pVar); 1363 pVar->flags = MEM_Null; 1364 p->db->errCode = SQLITE_OK; 1365 1366 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1367 ** binding a new value to this variable invalidates the current query plan. 1368 ** 1369 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1370 ** parameter in the WHERE clause might influence the choice of query plan 1371 ** for a statement, then the statement will be automatically recompiled, 1372 ** as if there had been a schema change, on the first sqlite3_step() call 1373 ** following any change to the bindings of that parameter. 1374 */ 1375 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1376 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1377 p->expired = 1; 1378 } 1379 return SQLITE_OK; 1380 } 1381 1382 /* 1383 ** Bind a text or BLOB value. 1384 */ 1385 static int bindText( 1386 sqlite3_stmt *pStmt, /* The statement to bind against */ 1387 int i, /* Index of the parameter to bind */ 1388 const void *zData, /* Pointer to the data to be bound */ 1389 i64 nData, /* Number of bytes of data to be bound */ 1390 void (*xDel)(void*), /* Destructor for the data */ 1391 u8 encoding /* Encoding for the data */ 1392 ){ 1393 Vdbe *p = (Vdbe *)pStmt; 1394 Mem *pVar; 1395 int rc; 1396 1397 rc = vdbeUnbind(p, i); 1398 if( rc==SQLITE_OK ){ 1399 if( zData!=0 ){ 1400 pVar = &p->aVar[i-1]; 1401 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1402 if( rc==SQLITE_OK && encoding!=0 ){ 1403 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1404 } 1405 if( rc ){ 1406 sqlite3Error(p->db, rc); 1407 rc = sqlite3ApiExit(p->db, rc); 1408 } 1409 } 1410 sqlite3_mutex_leave(p->db->mutex); 1411 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1412 xDel((void*)zData); 1413 } 1414 return rc; 1415 } 1416 1417 1418 /* 1419 ** Bind a blob value to an SQL statement variable. 1420 */ 1421 int sqlite3_bind_blob( 1422 sqlite3_stmt *pStmt, 1423 int i, 1424 const void *zData, 1425 int nData, 1426 void (*xDel)(void*) 1427 ){ 1428 #ifdef SQLITE_ENABLE_API_ARMOR 1429 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1430 #endif 1431 return bindText(pStmt, i, zData, nData, xDel, 0); 1432 } 1433 int sqlite3_bind_blob64( 1434 sqlite3_stmt *pStmt, 1435 int i, 1436 const void *zData, 1437 sqlite3_uint64 nData, 1438 void (*xDel)(void*) 1439 ){ 1440 assert( xDel!=SQLITE_DYNAMIC ); 1441 return bindText(pStmt, i, zData, nData, xDel, 0); 1442 } 1443 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1444 int rc; 1445 Vdbe *p = (Vdbe *)pStmt; 1446 rc = vdbeUnbind(p, i); 1447 if( rc==SQLITE_OK ){ 1448 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1449 sqlite3_mutex_leave(p->db->mutex); 1450 } 1451 return rc; 1452 } 1453 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1454 return sqlite3_bind_int64(p, i, (i64)iValue); 1455 } 1456 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1457 int rc; 1458 Vdbe *p = (Vdbe *)pStmt; 1459 rc = vdbeUnbind(p, i); 1460 if( rc==SQLITE_OK ){ 1461 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1462 sqlite3_mutex_leave(p->db->mutex); 1463 } 1464 return rc; 1465 } 1466 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1467 int rc; 1468 Vdbe *p = (Vdbe*)pStmt; 1469 rc = vdbeUnbind(p, i); 1470 if( rc==SQLITE_OK ){ 1471 sqlite3_mutex_leave(p->db->mutex); 1472 } 1473 return rc; 1474 } 1475 int sqlite3_bind_pointer( 1476 sqlite3_stmt *pStmt, 1477 int i, 1478 void *pPtr, 1479 const char *zPTtype, 1480 void (*xDestructor)(void*) 1481 ){ 1482 int rc; 1483 Vdbe *p = (Vdbe*)pStmt; 1484 rc = vdbeUnbind(p, i); 1485 if( rc==SQLITE_OK ){ 1486 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1487 sqlite3_mutex_leave(p->db->mutex); 1488 }else if( xDestructor ){ 1489 xDestructor(pPtr); 1490 } 1491 return rc; 1492 } 1493 int sqlite3_bind_text( 1494 sqlite3_stmt *pStmt, 1495 int i, 1496 const char *zData, 1497 int nData, 1498 void (*xDel)(void*) 1499 ){ 1500 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1501 } 1502 int sqlite3_bind_text64( 1503 sqlite3_stmt *pStmt, 1504 int i, 1505 const char *zData, 1506 sqlite3_uint64 nData, 1507 void (*xDel)(void*), 1508 unsigned char enc 1509 ){ 1510 assert( xDel!=SQLITE_DYNAMIC ); 1511 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1512 return bindText(pStmt, i, zData, nData, xDel, enc); 1513 } 1514 #ifndef SQLITE_OMIT_UTF16 1515 int sqlite3_bind_text16( 1516 sqlite3_stmt *pStmt, 1517 int i, 1518 const void *zData, 1519 int nData, 1520 void (*xDel)(void*) 1521 ){ 1522 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1523 } 1524 #endif /* SQLITE_OMIT_UTF16 */ 1525 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1526 int rc; 1527 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1528 case SQLITE_INTEGER: { 1529 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1530 break; 1531 } 1532 case SQLITE_FLOAT: { 1533 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1534 break; 1535 } 1536 case SQLITE_BLOB: { 1537 if( pValue->flags & MEM_Zero ){ 1538 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1539 }else{ 1540 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1541 } 1542 break; 1543 } 1544 case SQLITE_TEXT: { 1545 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1546 pValue->enc); 1547 break; 1548 } 1549 default: { 1550 rc = sqlite3_bind_null(pStmt, i); 1551 break; 1552 } 1553 } 1554 return rc; 1555 } 1556 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1557 int rc; 1558 Vdbe *p = (Vdbe *)pStmt; 1559 rc = vdbeUnbind(p, i); 1560 if( rc==SQLITE_OK ){ 1561 #ifndef SQLITE_OMIT_INCRBLOB 1562 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1563 #else 1564 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1565 #endif 1566 sqlite3_mutex_leave(p->db->mutex); 1567 } 1568 return rc; 1569 } 1570 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1571 int rc; 1572 Vdbe *p = (Vdbe *)pStmt; 1573 sqlite3_mutex_enter(p->db->mutex); 1574 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1575 rc = SQLITE_TOOBIG; 1576 }else{ 1577 assert( (n & 0x7FFFFFFF)==n ); 1578 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1579 } 1580 rc = sqlite3ApiExit(p->db, rc); 1581 sqlite3_mutex_leave(p->db->mutex); 1582 return rc; 1583 } 1584 1585 /* 1586 ** Return the number of wildcards that can be potentially bound to. 1587 ** This routine is added to support DBD::SQLite. 1588 */ 1589 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1590 Vdbe *p = (Vdbe*)pStmt; 1591 return p ? p->nVar : 0; 1592 } 1593 1594 /* 1595 ** Return the name of a wildcard parameter. Return NULL if the index 1596 ** is out of range or if the wildcard is unnamed. 1597 ** 1598 ** The result is always UTF-8. 1599 */ 1600 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1601 Vdbe *p = (Vdbe*)pStmt; 1602 if( p==0 ) return 0; 1603 return sqlite3VListNumToName(p->pVList, i); 1604 } 1605 1606 /* 1607 ** Given a wildcard parameter name, return the index of the variable 1608 ** with that name. If there is no variable with the given name, 1609 ** return 0. 1610 */ 1611 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1612 if( p==0 || zName==0 ) return 0; 1613 return sqlite3VListNameToNum(p->pVList, zName, nName); 1614 } 1615 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1616 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1617 } 1618 1619 /* 1620 ** Transfer all bindings from the first statement over to the second. 1621 */ 1622 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1623 Vdbe *pFrom = (Vdbe*)pFromStmt; 1624 Vdbe *pTo = (Vdbe*)pToStmt; 1625 int i; 1626 assert( pTo->db==pFrom->db ); 1627 assert( pTo->nVar==pFrom->nVar ); 1628 sqlite3_mutex_enter(pTo->db->mutex); 1629 for(i=0; i<pFrom->nVar; i++){ 1630 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1631 } 1632 sqlite3_mutex_leave(pTo->db->mutex); 1633 return SQLITE_OK; 1634 } 1635 1636 #ifndef SQLITE_OMIT_DEPRECATED 1637 /* 1638 ** Deprecated external interface. Internal/core SQLite code 1639 ** should call sqlite3TransferBindings. 1640 ** 1641 ** It is misuse to call this routine with statements from different 1642 ** database connections. But as this is a deprecated interface, we 1643 ** will not bother to check for that condition. 1644 ** 1645 ** If the two statements contain a different number of bindings, then 1646 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1647 ** SQLITE_OK is returned. 1648 */ 1649 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1650 Vdbe *pFrom = (Vdbe*)pFromStmt; 1651 Vdbe *pTo = (Vdbe*)pToStmt; 1652 if( pFrom->nVar!=pTo->nVar ){ 1653 return SQLITE_ERROR; 1654 } 1655 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1656 if( pTo->expmask ){ 1657 pTo->expired = 1; 1658 } 1659 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1660 if( pFrom->expmask ){ 1661 pFrom->expired = 1; 1662 } 1663 return sqlite3TransferBindings(pFromStmt, pToStmt); 1664 } 1665 #endif 1666 1667 /* 1668 ** Return the sqlite3* database handle to which the prepared statement given 1669 ** in the argument belongs. This is the same database handle that was 1670 ** the first argument to the sqlite3_prepare() that was used to create 1671 ** the statement in the first place. 1672 */ 1673 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1674 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1675 } 1676 1677 /* 1678 ** Return true if the prepared statement is guaranteed to not modify the 1679 ** database. 1680 */ 1681 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1682 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1683 } 1684 1685 /* 1686 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1687 ** statement is an EXPLAIN QUERY PLAN 1688 */ 1689 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1690 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1691 } 1692 1693 /* 1694 ** Return true if the prepared statement is in need of being reset. 1695 */ 1696 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1697 Vdbe *v = (Vdbe*)pStmt; 1698 return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0; 1699 } 1700 1701 /* 1702 ** Return a pointer to the next prepared statement after pStmt associated 1703 ** with database connection pDb. If pStmt is NULL, return the first 1704 ** prepared statement for the database connection. Return NULL if there 1705 ** are no more. 1706 */ 1707 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1708 sqlite3_stmt *pNext; 1709 #ifdef SQLITE_ENABLE_API_ARMOR 1710 if( !sqlite3SafetyCheckOk(pDb) ){ 1711 (void)SQLITE_MISUSE_BKPT; 1712 return 0; 1713 } 1714 #endif 1715 sqlite3_mutex_enter(pDb->mutex); 1716 if( pStmt==0 ){ 1717 pNext = (sqlite3_stmt*)pDb->pVdbe; 1718 }else{ 1719 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1720 } 1721 sqlite3_mutex_leave(pDb->mutex); 1722 return pNext; 1723 } 1724 1725 /* 1726 ** Return the value of a status counter for a prepared statement 1727 */ 1728 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1729 Vdbe *pVdbe = (Vdbe*)pStmt; 1730 u32 v; 1731 #ifdef SQLITE_ENABLE_API_ARMOR 1732 if( !pStmt 1733 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1734 ){ 1735 (void)SQLITE_MISUSE_BKPT; 1736 return 0; 1737 } 1738 #endif 1739 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1740 sqlite3 *db = pVdbe->db; 1741 sqlite3_mutex_enter(db->mutex); 1742 v = 0; 1743 db->pnBytesFreed = (int*)&v; 1744 sqlite3VdbeClearObject(db, pVdbe); 1745 sqlite3DbFree(db, pVdbe); 1746 db->pnBytesFreed = 0; 1747 sqlite3_mutex_leave(db->mutex); 1748 }else{ 1749 v = pVdbe->aCounter[op]; 1750 if( resetFlag ) pVdbe->aCounter[op] = 0; 1751 } 1752 return (int)v; 1753 } 1754 1755 /* 1756 ** Return the SQL associated with a prepared statement 1757 */ 1758 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1759 Vdbe *p = (Vdbe *)pStmt; 1760 return p ? p->zSql : 0; 1761 } 1762 1763 /* 1764 ** Return the SQL associated with a prepared statement with 1765 ** bound parameters expanded. Space to hold the returned string is 1766 ** obtained from sqlite3_malloc(). The caller is responsible for 1767 ** freeing the returned string by passing it to sqlite3_free(). 1768 ** 1769 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1770 ** expanded bound parameters. 1771 */ 1772 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1773 #ifdef SQLITE_OMIT_TRACE 1774 return 0; 1775 #else 1776 char *z = 0; 1777 const char *zSql = sqlite3_sql(pStmt); 1778 if( zSql ){ 1779 Vdbe *p = (Vdbe *)pStmt; 1780 sqlite3_mutex_enter(p->db->mutex); 1781 z = sqlite3VdbeExpandSql(p, zSql); 1782 sqlite3_mutex_leave(p->db->mutex); 1783 } 1784 return z; 1785 #endif 1786 } 1787 1788 #ifdef SQLITE_ENABLE_NORMALIZE 1789 /* 1790 ** Return the normalized SQL associated with a prepared statement. 1791 */ 1792 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1793 Vdbe *p = (Vdbe *)pStmt; 1794 if( p==0 ) return 0; 1795 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1796 sqlite3_mutex_enter(p->db->mutex); 1797 p->zNormSql = sqlite3Normalize(p, p->zSql); 1798 sqlite3_mutex_leave(p->db->mutex); 1799 } 1800 return p->zNormSql; 1801 } 1802 #endif /* SQLITE_ENABLE_NORMALIZE */ 1803 1804 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1805 /* 1806 ** Allocate and populate an UnpackedRecord structure based on the serialized 1807 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1808 ** if successful, or a NULL pointer if an OOM error is encountered. 1809 */ 1810 static UnpackedRecord *vdbeUnpackRecord( 1811 KeyInfo *pKeyInfo, 1812 int nKey, 1813 const void *pKey 1814 ){ 1815 UnpackedRecord *pRet; /* Return value */ 1816 1817 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1818 if( pRet ){ 1819 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1820 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1821 } 1822 return pRet; 1823 } 1824 1825 /* 1826 ** This function is called from within a pre-update callback to retrieve 1827 ** a field of the row currently being updated or deleted. 1828 */ 1829 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1830 PreUpdate *p = db->pPreUpdate; 1831 Mem *pMem; 1832 int rc = SQLITE_OK; 1833 1834 /* Test that this call is being made from within an SQLITE_DELETE or 1835 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1836 if( !p || p->op==SQLITE_INSERT ){ 1837 rc = SQLITE_MISUSE_BKPT; 1838 goto preupdate_old_out; 1839 } 1840 if( p->pPk ){ 1841 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1842 } 1843 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1844 rc = SQLITE_RANGE; 1845 goto preupdate_old_out; 1846 } 1847 1848 /* If the old.* record has not yet been loaded into memory, do so now. */ 1849 if( p->pUnpacked==0 ){ 1850 u32 nRec; 1851 u8 *aRec; 1852 1853 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1854 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1855 aRec = sqlite3DbMallocRaw(db, nRec); 1856 if( !aRec ) goto preupdate_old_out; 1857 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1858 if( rc==SQLITE_OK ){ 1859 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1860 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1861 } 1862 if( rc!=SQLITE_OK ){ 1863 sqlite3DbFree(db, aRec); 1864 goto preupdate_old_out; 1865 } 1866 p->aRecord = aRec; 1867 } 1868 1869 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1870 if( iIdx==p->pTab->iPKey ){ 1871 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1872 }else if( iIdx>=p->pUnpacked->nField ){ 1873 *ppValue = (sqlite3_value *)columnNullValue(); 1874 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1875 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1876 testcase( pMem->flags & MEM_Int ); 1877 testcase( pMem->flags & MEM_IntReal ); 1878 sqlite3VdbeMemRealify(pMem); 1879 } 1880 } 1881 1882 preupdate_old_out: 1883 sqlite3Error(db, rc); 1884 return sqlite3ApiExit(db, rc); 1885 } 1886 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1887 1888 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1889 /* 1890 ** This function is called from within a pre-update callback to retrieve 1891 ** the number of columns in the row being updated, deleted or inserted. 1892 */ 1893 int sqlite3_preupdate_count(sqlite3 *db){ 1894 PreUpdate *p = db->pPreUpdate; 1895 return (p ? p->keyinfo.nKeyField : 0); 1896 } 1897 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1898 1899 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1900 /* 1901 ** This function is designed to be called from within a pre-update callback 1902 ** only. It returns zero if the change that caused the callback was made 1903 ** immediately by a user SQL statement. Or, if the change was made by a 1904 ** trigger program, it returns the number of trigger programs currently 1905 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1906 ** top-level trigger etc.). 1907 ** 1908 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1909 ** or SET DEFAULT action is considered a trigger. 1910 */ 1911 int sqlite3_preupdate_depth(sqlite3 *db){ 1912 PreUpdate *p = db->pPreUpdate; 1913 return (p ? p->v->nFrame : 0); 1914 } 1915 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1916 1917 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1918 /* 1919 ** This function is designed to be called from within a pre-update callback 1920 ** only. 1921 */ 1922 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 1923 PreUpdate *p = db->pPreUpdate; 1924 return (p ? p->iBlobWrite : -1); 1925 } 1926 #endif 1927 1928 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1929 /* 1930 ** This function is called from within a pre-update callback to retrieve 1931 ** a field of the row currently being updated or inserted. 1932 */ 1933 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1934 PreUpdate *p = db->pPreUpdate; 1935 int rc = SQLITE_OK; 1936 Mem *pMem; 1937 1938 if( !p || p->op==SQLITE_DELETE ){ 1939 rc = SQLITE_MISUSE_BKPT; 1940 goto preupdate_new_out; 1941 } 1942 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1943 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1944 } 1945 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1946 rc = SQLITE_RANGE; 1947 goto preupdate_new_out; 1948 } 1949 1950 if( p->op==SQLITE_INSERT ){ 1951 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1952 ** that is being inserted. Deserialize it. */ 1953 UnpackedRecord *pUnpack = p->pNewUnpacked; 1954 if( !pUnpack ){ 1955 Mem *pData = &p->v->aMem[p->iNewReg]; 1956 rc = ExpandBlob(pData); 1957 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1958 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1959 if( !pUnpack ){ 1960 rc = SQLITE_NOMEM; 1961 goto preupdate_new_out; 1962 } 1963 p->pNewUnpacked = pUnpack; 1964 } 1965 pMem = &pUnpack->aMem[iIdx]; 1966 if( iIdx==p->pTab->iPKey ){ 1967 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1968 }else if( iIdx>=pUnpack->nField ){ 1969 pMem = (sqlite3_value *)columnNullValue(); 1970 } 1971 }else{ 1972 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1973 ** value. Make a copy of the cell contents and return a pointer to it. 1974 ** It is not safe to return a pointer to the memory cell itself as the 1975 ** caller may modify the value text encoding. 1976 */ 1977 assert( p->op==SQLITE_UPDATE ); 1978 if( !p->aNew ){ 1979 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1980 if( !p->aNew ){ 1981 rc = SQLITE_NOMEM; 1982 goto preupdate_new_out; 1983 } 1984 } 1985 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1986 pMem = &p->aNew[iIdx]; 1987 if( pMem->flags==0 ){ 1988 if( iIdx==p->pTab->iPKey ){ 1989 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1990 }else{ 1991 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1992 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1993 } 1994 } 1995 } 1996 *ppValue = pMem; 1997 1998 preupdate_new_out: 1999 sqlite3Error(db, rc); 2000 return sqlite3ApiExit(db, rc); 2001 } 2002 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2003 2004 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2005 /* 2006 ** Return status data for a single loop within query pStmt. 2007 */ 2008 int sqlite3_stmt_scanstatus( 2009 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2010 int idx, /* Index of loop to report on */ 2011 int iScanStatusOp, /* Which metric to return */ 2012 void *pOut /* OUT: Write the answer here */ 2013 ){ 2014 Vdbe *p = (Vdbe*)pStmt; 2015 ScanStatus *pScan; 2016 if( idx<0 || idx>=p->nScan ) return 1; 2017 pScan = &p->aScan[idx]; 2018 switch( iScanStatusOp ){ 2019 case SQLITE_SCANSTAT_NLOOP: { 2020 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2021 break; 2022 } 2023 case SQLITE_SCANSTAT_NVISIT: { 2024 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2025 break; 2026 } 2027 case SQLITE_SCANSTAT_EST: { 2028 double r = 1.0; 2029 LogEst x = pScan->nEst; 2030 while( x<100 ){ 2031 x += 10; 2032 r *= 0.5; 2033 } 2034 *(double*)pOut = r*sqlite3LogEstToInt(x); 2035 break; 2036 } 2037 case SQLITE_SCANSTAT_NAME: { 2038 *(const char**)pOut = pScan->zName; 2039 break; 2040 } 2041 case SQLITE_SCANSTAT_EXPLAIN: { 2042 if( pScan->addrExplain ){ 2043 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2044 }else{ 2045 *(const char**)pOut = 0; 2046 } 2047 break; 2048 } 2049 case SQLITE_SCANSTAT_SELECTID: { 2050 if( pScan->addrExplain ){ 2051 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2052 }else{ 2053 *(int*)pOut = -1; 2054 } 2055 break; 2056 } 2057 default: { 2058 return 1; 2059 } 2060 } 2061 return 0; 2062 } 2063 2064 /* 2065 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2066 */ 2067 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2068 Vdbe *p = (Vdbe*)pStmt; 2069 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2070 } 2071 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2072