1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 if( db->xProfile ){ 71 db->xProfile(db->pProfileArg, p->zSql, iElapse); 72 } 73 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 75 } 76 p->startTime = 0; 77 } 78 /* 79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 80 ** is needed, and it invokes the callback if it is needed. 81 */ 82 # define checkProfileCallback(DB,P) \ 83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 84 #else 85 # define checkProfileCallback(DB,P) /*no-op*/ 86 #endif 87 88 /* 89 ** The following routine destroys a virtual machine that is created by 90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 91 ** success/failure code that describes the result of executing the virtual 92 ** machine. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_finalize(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 101 ** pointer is a harmless no-op. */ 102 rc = SQLITE_OK; 103 }else{ 104 Vdbe *v = (Vdbe*)pStmt; 105 sqlite3 *db = v->db; 106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 107 sqlite3_mutex_enter(db->mutex); 108 checkProfileCallback(db, v); 109 rc = sqlite3VdbeFinalize(v); 110 rc = sqlite3ApiExit(db, rc); 111 sqlite3LeaveMutexAndCloseZombie(db); 112 } 113 return rc; 114 } 115 116 /* 117 ** Terminate the current execution of an SQL statement and reset it 118 ** back to its starting state so that it can be reused. A success code from 119 ** the prior execution is returned. 120 ** 121 ** This routine sets the error code and string returned by 122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 123 */ 124 int sqlite3_reset(sqlite3_stmt *pStmt){ 125 int rc; 126 if( pStmt==0 ){ 127 rc = SQLITE_OK; 128 }else{ 129 Vdbe *v = (Vdbe*)pStmt; 130 sqlite3 *db = v->db; 131 sqlite3_mutex_enter(db->mutex); 132 checkProfileCallback(db, v); 133 rc = sqlite3VdbeReset(v); 134 sqlite3VdbeRewind(v); 135 assert( (rc & (db->errMask))==rc ); 136 rc = sqlite3ApiExit(db, rc); 137 sqlite3_mutex_leave(db->mutex); 138 } 139 return rc; 140 } 141 142 /* 143 ** Set all the parameters in the compiled SQL statement to NULL. 144 */ 145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 146 int i; 147 int rc = SQLITE_OK; 148 Vdbe *p = (Vdbe*)pStmt; 149 #if SQLITE_THREADSAFE 150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 151 #endif 152 sqlite3_mutex_enter(mutex); 153 for(i=0; i<p->nVar; i++){ 154 sqlite3VdbeMemRelease(&p->aVar[i]); 155 p->aVar[i].flags = MEM_Null; 156 } 157 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 158 if( p->expmask ){ 159 p->expired = 1; 160 } 161 sqlite3_mutex_leave(mutex); 162 return rc; 163 } 164 165 166 /**************************** sqlite3_value_ ******************************* 167 ** The following routines extract information from a Mem or sqlite3_value 168 ** structure. 169 */ 170 const void *sqlite3_value_blob(sqlite3_value *pVal){ 171 Mem *p = (Mem*)pVal; 172 if( p->flags & (MEM_Blob|MEM_Str) ){ 173 if( ExpandBlob(p)!=SQLITE_OK ){ 174 assert( p->flags==MEM_Null && p->z==0 ); 175 return 0; 176 } 177 p->flags |= MEM_Blob; 178 return p->n ? p->z : 0; 179 }else{ 180 return sqlite3_value_text(pVal); 181 } 182 } 183 int sqlite3_value_bytes(sqlite3_value *pVal){ 184 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 185 } 186 int sqlite3_value_bytes16(sqlite3_value *pVal){ 187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 188 } 189 double sqlite3_value_double(sqlite3_value *pVal){ 190 return sqlite3VdbeRealValue((Mem*)pVal); 191 } 192 int sqlite3_value_int(sqlite3_value *pVal){ 193 return (int)sqlite3VdbeIntValue((Mem*)pVal); 194 } 195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 196 return sqlite3VdbeIntValue((Mem*)pVal); 197 } 198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 199 Mem *pMem = (Mem*)pVal; 200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 201 } 202 void *sqlite3_value_pointer(sqlite3_value *pVal){ 203 Mem *p = (Mem*)pVal; 204 if( (p->flags & MEM_TypeMask)==(MEM_Null|MEM_Subtype) && p->eSubtype=='p' ){ 205 return p->u.pPtr; 206 }else{ 207 return 0; 208 } 209 } 210 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 211 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 212 } 213 #ifndef SQLITE_OMIT_UTF16 214 const void *sqlite3_value_text16(sqlite3_value* pVal){ 215 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 216 } 217 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 218 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 219 } 220 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 221 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 222 } 223 #endif /* SQLITE_OMIT_UTF16 */ 224 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 225 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 226 ** point number string BLOB NULL 227 */ 228 int sqlite3_value_type(sqlite3_value* pVal){ 229 static const u8 aType[] = { 230 SQLITE_BLOB, /* 0x00 */ 231 SQLITE_NULL, /* 0x01 */ 232 SQLITE_TEXT, /* 0x02 */ 233 SQLITE_NULL, /* 0x03 */ 234 SQLITE_INTEGER, /* 0x04 */ 235 SQLITE_NULL, /* 0x05 */ 236 SQLITE_INTEGER, /* 0x06 */ 237 SQLITE_NULL, /* 0x07 */ 238 SQLITE_FLOAT, /* 0x08 */ 239 SQLITE_NULL, /* 0x09 */ 240 SQLITE_FLOAT, /* 0x0a */ 241 SQLITE_NULL, /* 0x0b */ 242 SQLITE_INTEGER, /* 0x0c */ 243 SQLITE_NULL, /* 0x0d */ 244 SQLITE_INTEGER, /* 0x0e */ 245 SQLITE_NULL, /* 0x0f */ 246 SQLITE_BLOB, /* 0x10 */ 247 SQLITE_NULL, /* 0x11 */ 248 SQLITE_TEXT, /* 0x12 */ 249 SQLITE_NULL, /* 0x13 */ 250 SQLITE_INTEGER, /* 0x14 */ 251 SQLITE_NULL, /* 0x15 */ 252 SQLITE_INTEGER, /* 0x16 */ 253 SQLITE_NULL, /* 0x17 */ 254 SQLITE_FLOAT, /* 0x18 */ 255 SQLITE_NULL, /* 0x19 */ 256 SQLITE_FLOAT, /* 0x1a */ 257 SQLITE_NULL, /* 0x1b */ 258 SQLITE_INTEGER, /* 0x1c */ 259 SQLITE_NULL, /* 0x1d */ 260 SQLITE_INTEGER, /* 0x1e */ 261 SQLITE_NULL, /* 0x1f */ 262 }; 263 return aType[pVal->flags&MEM_AffMask]; 264 } 265 266 /* Make a copy of an sqlite3_value object 267 */ 268 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 269 sqlite3_value *pNew; 270 if( pOrig==0 ) return 0; 271 pNew = sqlite3_malloc( sizeof(*pNew) ); 272 if( pNew==0 ) return 0; 273 memset(pNew, 0, sizeof(*pNew)); 274 memcpy(pNew, pOrig, MEMCELLSIZE); 275 pNew->flags &= ~MEM_Dyn; 276 pNew->db = 0; 277 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 278 pNew->flags &= ~(MEM_Static|MEM_Dyn); 279 pNew->flags |= MEM_Ephem; 280 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 281 sqlite3ValueFree(pNew); 282 pNew = 0; 283 } 284 } 285 return pNew; 286 } 287 288 /* Destroy an sqlite3_value object previously obtained from 289 ** sqlite3_value_dup(). 290 */ 291 void sqlite3_value_free(sqlite3_value *pOld){ 292 sqlite3ValueFree(pOld); 293 } 294 295 296 /**************************** sqlite3_result_ ******************************* 297 ** The following routines are used by user-defined functions to specify 298 ** the function result. 299 ** 300 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 301 ** result as a string or blob but if the string or blob is too large, it 302 ** then sets the error code to SQLITE_TOOBIG 303 ** 304 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 305 ** on value P is not going to be used and need to be destroyed. 306 */ 307 static void setResultStrOrError( 308 sqlite3_context *pCtx, /* Function context */ 309 const char *z, /* String pointer */ 310 int n, /* Bytes in string, or negative */ 311 u8 enc, /* Encoding of z. 0 for BLOBs */ 312 void (*xDel)(void*) /* Destructor function */ 313 ){ 314 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 315 sqlite3_result_error_toobig(pCtx); 316 } 317 } 318 static int invokeValueDestructor( 319 const void *p, /* Value to destroy */ 320 void (*xDel)(void*), /* The destructor */ 321 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 322 ){ 323 assert( xDel!=SQLITE_DYNAMIC ); 324 if( xDel==0 ){ 325 /* noop */ 326 }else if( xDel==SQLITE_TRANSIENT ){ 327 /* noop */ 328 }else{ 329 xDel((void*)p); 330 } 331 if( pCtx ) sqlite3_result_error_toobig(pCtx); 332 return SQLITE_TOOBIG; 333 } 334 void sqlite3_result_blob( 335 sqlite3_context *pCtx, 336 const void *z, 337 int n, 338 void (*xDel)(void *) 339 ){ 340 assert( n>=0 ); 341 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 342 setResultStrOrError(pCtx, z, n, 0, xDel); 343 } 344 void sqlite3_result_blob64( 345 sqlite3_context *pCtx, 346 const void *z, 347 sqlite3_uint64 n, 348 void (*xDel)(void *) 349 ){ 350 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 351 assert( xDel!=SQLITE_DYNAMIC ); 352 if( n>0x7fffffff ){ 353 (void)invokeValueDestructor(z, xDel, pCtx); 354 }else{ 355 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 356 } 357 } 358 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 359 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 360 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 361 } 362 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 363 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 364 pCtx->isError = SQLITE_ERROR; 365 pCtx->fErrorOrAux = 1; 366 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 367 } 368 #ifndef SQLITE_OMIT_UTF16 369 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 370 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 371 pCtx->isError = SQLITE_ERROR; 372 pCtx->fErrorOrAux = 1; 373 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 374 } 375 #endif 376 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 377 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 378 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 379 } 380 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 381 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 382 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 383 } 384 void sqlite3_result_null(sqlite3_context *pCtx){ 385 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 386 sqlite3VdbeMemSetNull(pCtx->pOut); 387 } 388 void sqlite3_result_pointer(sqlite3_context *pCtx, void *pPtr){ 389 Mem *pOut = pCtx->pOut; 390 assert( sqlite3_mutex_held(pOut->db->mutex) ); 391 sqlite3VdbeMemSetNull(pOut); 392 sqlite3VdbeMemSetPointer(pOut, pPtr); 393 } 394 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 395 Mem *pOut = pCtx->pOut; 396 assert( sqlite3_mutex_held(pOut->db->mutex) ); 397 pOut->eSubtype = eSubtype & 0xff; 398 pOut->flags |= MEM_Subtype; 399 } 400 void sqlite3_result_text( 401 sqlite3_context *pCtx, 402 const char *z, 403 int n, 404 void (*xDel)(void *) 405 ){ 406 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 407 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 408 } 409 void sqlite3_result_text64( 410 sqlite3_context *pCtx, 411 const char *z, 412 sqlite3_uint64 n, 413 void (*xDel)(void *), 414 unsigned char enc 415 ){ 416 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 417 assert( xDel!=SQLITE_DYNAMIC ); 418 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 419 if( n>0x7fffffff ){ 420 (void)invokeValueDestructor(z, xDel, pCtx); 421 }else{ 422 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 423 } 424 } 425 #ifndef SQLITE_OMIT_UTF16 426 void sqlite3_result_text16( 427 sqlite3_context *pCtx, 428 const void *z, 429 int n, 430 void (*xDel)(void *) 431 ){ 432 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 433 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 434 } 435 void sqlite3_result_text16be( 436 sqlite3_context *pCtx, 437 const void *z, 438 int n, 439 void (*xDel)(void *) 440 ){ 441 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 442 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 443 } 444 void sqlite3_result_text16le( 445 sqlite3_context *pCtx, 446 const void *z, 447 int n, 448 void (*xDel)(void *) 449 ){ 450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 451 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 452 } 453 #endif /* SQLITE_OMIT_UTF16 */ 454 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 456 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 457 } 458 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 459 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 460 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 461 } 462 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 463 Mem *pOut = pCtx->pOut; 464 assert( sqlite3_mutex_held(pOut->db->mutex) ); 465 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 466 return SQLITE_TOOBIG; 467 } 468 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 469 return SQLITE_OK; 470 } 471 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 472 pCtx->isError = errCode; 473 pCtx->fErrorOrAux = 1; 474 #ifdef SQLITE_DEBUG 475 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 476 #endif 477 if( pCtx->pOut->flags & MEM_Null ){ 478 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 479 SQLITE_UTF8, SQLITE_STATIC); 480 } 481 } 482 483 /* Force an SQLITE_TOOBIG error. */ 484 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 485 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 486 pCtx->isError = SQLITE_TOOBIG; 487 pCtx->fErrorOrAux = 1; 488 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 489 SQLITE_UTF8, SQLITE_STATIC); 490 } 491 492 /* An SQLITE_NOMEM error. */ 493 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 494 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 495 sqlite3VdbeMemSetNull(pCtx->pOut); 496 pCtx->isError = SQLITE_NOMEM_BKPT; 497 pCtx->fErrorOrAux = 1; 498 sqlite3OomFault(pCtx->pOut->db); 499 } 500 501 /* 502 ** This function is called after a transaction has been committed. It 503 ** invokes callbacks registered with sqlite3_wal_hook() as required. 504 */ 505 static int doWalCallbacks(sqlite3 *db){ 506 int rc = SQLITE_OK; 507 #ifndef SQLITE_OMIT_WAL 508 int i; 509 for(i=0; i<db->nDb; i++){ 510 Btree *pBt = db->aDb[i].pBt; 511 if( pBt ){ 512 int nEntry; 513 sqlite3BtreeEnter(pBt); 514 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 515 sqlite3BtreeLeave(pBt); 516 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 517 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 518 } 519 } 520 } 521 #endif 522 return rc; 523 } 524 525 526 /* 527 ** Execute the statement pStmt, either until a row of data is ready, the 528 ** statement is completely executed or an error occurs. 529 ** 530 ** This routine implements the bulk of the logic behind the sqlite_step() 531 ** API. The only thing omitted is the automatic recompile if a 532 ** schema change has occurred. That detail is handled by the 533 ** outer sqlite3_step() wrapper procedure. 534 */ 535 static int sqlite3Step(Vdbe *p){ 536 sqlite3 *db; 537 int rc; 538 539 assert(p); 540 if( p->magic!=VDBE_MAGIC_RUN ){ 541 /* We used to require that sqlite3_reset() be called before retrying 542 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 543 ** with version 3.7.0, we changed this so that sqlite3_reset() would 544 ** be called automatically instead of throwing the SQLITE_MISUSE error. 545 ** This "automatic-reset" change is not technically an incompatibility, 546 ** since any application that receives an SQLITE_MISUSE is broken by 547 ** definition. 548 ** 549 ** Nevertheless, some published applications that were originally written 550 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 551 ** returns, and those were broken by the automatic-reset change. As a 552 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 553 ** legacy behavior of returning SQLITE_MISUSE for cases where the 554 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 555 ** or SQLITE_BUSY error. 556 */ 557 #ifdef SQLITE_OMIT_AUTORESET 558 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 559 sqlite3_reset((sqlite3_stmt*)p); 560 }else{ 561 return SQLITE_MISUSE_BKPT; 562 } 563 #else 564 sqlite3_reset((sqlite3_stmt*)p); 565 #endif 566 } 567 568 /* Check that malloc() has not failed. If it has, return early. */ 569 db = p->db; 570 if( db->mallocFailed ){ 571 p->rc = SQLITE_NOMEM; 572 return SQLITE_NOMEM_BKPT; 573 } 574 575 if( p->pc<=0 && p->expired ){ 576 p->rc = SQLITE_SCHEMA; 577 rc = SQLITE_ERROR; 578 goto end_of_step; 579 } 580 if( p->pc<0 ){ 581 /* If there are no other statements currently running, then 582 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 583 ** from interrupting a statement that has not yet started. 584 */ 585 if( db->nVdbeActive==0 ){ 586 db->u1.isInterrupted = 0; 587 } 588 589 assert( db->nVdbeWrite>0 || db->autoCommit==0 590 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 591 ); 592 593 #ifndef SQLITE_OMIT_TRACE 594 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0) 595 && !db->init.busy && p->zSql ){ 596 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 597 }else{ 598 assert( p->startTime==0 ); 599 } 600 #endif 601 602 db->nVdbeActive++; 603 if( p->readOnly==0 ) db->nVdbeWrite++; 604 if( p->bIsReader ) db->nVdbeRead++; 605 p->pc = 0; 606 } 607 #ifdef SQLITE_DEBUG 608 p->rcApp = SQLITE_OK; 609 #endif 610 #ifndef SQLITE_OMIT_EXPLAIN 611 if( p->explain ){ 612 rc = sqlite3VdbeList(p); 613 }else 614 #endif /* SQLITE_OMIT_EXPLAIN */ 615 { 616 db->nVdbeExec++; 617 rc = sqlite3VdbeExec(p); 618 db->nVdbeExec--; 619 } 620 621 #ifndef SQLITE_OMIT_TRACE 622 /* If the statement completed successfully, invoke the profile callback */ 623 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 624 #endif 625 626 if( rc==SQLITE_DONE ){ 627 assert( p->rc==SQLITE_OK ); 628 p->rc = doWalCallbacks(db); 629 if( p->rc!=SQLITE_OK ){ 630 rc = SQLITE_ERROR; 631 } 632 } 633 634 db->errCode = rc; 635 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 636 p->rc = SQLITE_NOMEM_BKPT; 637 } 638 end_of_step: 639 /* At this point local variable rc holds the value that should be 640 ** returned if this statement was compiled using the legacy 641 ** sqlite3_prepare() interface. According to the docs, this can only 642 ** be one of the values in the first assert() below. Variable p->rc 643 ** contains the value that would be returned if sqlite3_finalize() 644 ** were called on statement p. 645 */ 646 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 647 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 648 ); 649 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 650 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 651 && rc!=SQLITE_ROW 652 && rc!=SQLITE_DONE 653 ){ 654 /* If this statement was prepared using saved SQL and an 655 ** error has occurred, then return the error code in p->rc to the 656 ** caller. Set the error code in the database handle to the same value. 657 */ 658 rc = sqlite3VdbeTransferError(p); 659 } 660 return (rc&db->errMask); 661 } 662 663 /* 664 ** This is the top-level implementation of sqlite3_step(). Call 665 ** sqlite3Step() to do most of the work. If a schema error occurs, 666 ** call sqlite3Reprepare() and try again. 667 */ 668 int sqlite3_step(sqlite3_stmt *pStmt){ 669 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 670 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 671 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 672 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 673 sqlite3 *db; /* The database connection */ 674 675 if( vdbeSafetyNotNull(v) ){ 676 return SQLITE_MISUSE_BKPT; 677 } 678 db = v->db; 679 sqlite3_mutex_enter(db->mutex); 680 v->doingRerun = 0; 681 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 682 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 683 int savedPc = v->pc; 684 rc2 = rc = sqlite3Reprepare(v); 685 if( rc!=SQLITE_OK) break; 686 sqlite3_reset(pStmt); 687 if( savedPc>=0 ) v->doingRerun = 1; 688 assert( v->expired==0 ); 689 } 690 if( rc2!=SQLITE_OK ){ 691 /* This case occurs after failing to recompile an sql statement. 692 ** The error message from the SQL compiler has already been loaded 693 ** into the database handle. This block copies the error message 694 ** from the database handle into the statement and sets the statement 695 ** program counter to 0 to ensure that when the statement is 696 ** finalized or reset the parser error message is available via 697 ** sqlite3_errmsg() and sqlite3_errcode(). 698 */ 699 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 700 sqlite3DbFree(db, v->zErrMsg); 701 if( !db->mallocFailed ){ 702 v->zErrMsg = sqlite3DbStrDup(db, zErr); 703 v->rc = rc2; 704 } else { 705 v->zErrMsg = 0; 706 v->rc = rc = SQLITE_NOMEM_BKPT; 707 } 708 } 709 rc = sqlite3ApiExit(db, rc); 710 sqlite3_mutex_leave(db->mutex); 711 return rc; 712 } 713 714 715 /* 716 ** Extract the user data from a sqlite3_context structure and return a 717 ** pointer to it. 718 */ 719 void *sqlite3_user_data(sqlite3_context *p){ 720 assert( p && p->pFunc ); 721 return p->pFunc->pUserData; 722 } 723 724 /* 725 ** Extract the user data from a sqlite3_context structure and return a 726 ** pointer to it. 727 ** 728 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 729 ** returns a copy of the pointer to the database connection (the 1st 730 ** parameter) of the sqlite3_create_function() and 731 ** sqlite3_create_function16() routines that originally registered the 732 ** application defined function. 733 */ 734 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 735 assert( p && p->pOut ); 736 return p->pOut->db; 737 } 738 739 /* 740 ** Return the current time for a statement. If the current time 741 ** is requested more than once within the same run of a single prepared 742 ** statement, the exact same time is returned for each invocation regardless 743 ** of the amount of time that elapses between invocations. In other words, 744 ** the time returned is always the time of the first call. 745 */ 746 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 747 int rc; 748 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 749 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 750 assert( p->pVdbe!=0 ); 751 #else 752 sqlite3_int64 iTime = 0; 753 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 754 #endif 755 if( *piTime==0 ){ 756 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 757 if( rc ) *piTime = 0; 758 } 759 return *piTime; 760 } 761 762 /* 763 ** The following is the implementation of an SQL function that always 764 ** fails with an error message stating that the function is used in the 765 ** wrong context. The sqlite3_overload_function() API might construct 766 ** SQL function that use this routine so that the functions will exist 767 ** for name resolution but are actually overloaded by the xFindFunction 768 ** method of virtual tables. 769 */ 770 void sqlite3InvalidFunction( 771 sqlite3_context *context, /* The function calling context */ 772 int NotUsed, /* Number of arguments to the function */ 773 sqlite3_value **NotUsed2 /* Value of each argument */ 774 ){ 775 const char *zName = context->pFunc->zName; 776 char *zErr; 777 UNUSED_PARAMETER2(NotUsed, NotUsed2); 778 zErr = sqlite3_mprintf( 779 "unable to use function %s in the requested context", zName); 780 sqlite3_result_error(context, zErr, -1); 781 sqlite3_free(zErr); 782 } 783 784 /* 785 ** Create a new aggregate context for p and return a pointer to 786 ** its pMem->z element. 787 */ 788 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 789 Mem *pMem = p->pMem; 790 assert( (pMem->flags & MEM_Agg)==0 ); 791 if( nByte<=0 ){ 792 sqlite3VdbeMemSetNull(pMem); 793 pMem->z = 0; 794 }else{ 795 sqlite3VdbeMemClearAndResize(pMem, nByte); 796 pMem->flags = MEM_Agg; 797 pMem->u.pDef = p->pFunc; 798 if( pMem->z ){ 799 memset(pMem->z, 0, nByte); 800 } 801 } 802 return (void*)pMem->z; 803 } 804 805 /* 806 ** Allocate or return the aggregate context for a user function. A new 807 ** context is allocated on the first call. Subsequent calls return the 808 ** same context that was returned on prior calls. 809 */ 810 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 811 assert( p && p->pFunc && p->pFunc->xFinalize ); 812 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 813 testcase( nByte<0 ); 814 if( (p->pMem->flags & MEM_Agg)==0 ){ 815 return createAggContext(p, nByte); 816 }else{ 817 return (void*)p->pMem->z; 818 } 819 } 820 821 /* 822 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 823 ** the user-function defined by pCtx. 824 ** 825 ** The left-most argument is 0. 826 ** 827 ** Undocumented behavior: If iArg is negative then access a cache of 828 ** auxiliary data pointers that is available to all functions within a 829 ** single prepared statement. The iArg values must match. 830 */ 831 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 832 AuxData *pAuxData; 833 834 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 835 #if SQLITE_ENABLE_STAT3_OR_STAT4 836 if( pCtx->pVdbe==0 ) return 0; 837 #else 838 assert( pCtx->pVdbe!=0 ); 839 #endif 840 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 841 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 842 return pAuxData->pAux; 843 } 844 } 845 return 0; 846 } 847 848 /* 849 ** Set the auxiliary data pointer and delete function, for the iArg'th 850 ** argument to the user-function defined by pCtx. Any previous value is 851 ** deleted by calling the delete function specified when it was set. 852 ** 853 ** The left-most argument is 0. 854 ** 855 ** Undocumented behavior: If iArg is negative then make the data available 856 ** to all functions within the current prepared statement using iArg as an 857 ** access code. 858 */ 859 void sqlite3_set_auxdata( 860 sqlite3_context *pCtx, 861 int iArg, 862 void *pAux, 863 void (*xDelete)(void*) 864 ){ 865 AuxData *pAuxData; 866 Vdbe *pVdbe = pCtx->pVdbe; 867 868 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 869 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 870 if( pVdbe==0 ) goto failed; 871 #else 872 assert( pVdbe!=0 ); 873 #endif 874 875 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 876 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 877 break; 878 } 879 } 880 if( pAuxData==0 ){ 881 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 882 if( !pAuxData ) goto failed; 883 pAuxData->iAuxOp = pCtx->iOp; 884 pAuxData->iAuxArg = iArg; 885 pAuxData->pNextAux = pVdbe->pAuxData; 886 pVdbe->pAuxData = pAuxData; 887 if( pCtx->fErrorOrAux==0 ){ 888 pCtx->isError = 0; 889 pCtx->fErrorOrAux = 1; 890 } 891 }else if( pAuxData->xDeleteAux ){ 892 pAuxData->xDeleteAux(pAuxData->pAux); 893 } 894 895 pAuxData->pAux = pAux; 896 pAuxData->xDeleteAux = xDelete; 897 return; 898 899 failed: 900 if( xDelete ){ 901 xDelete(pAux); 902 } 903 } 904 905 #ifndef SQLITE_OMIT_DEPRECATED 906 /* 907 ** Return the number of times the Step function of an aggregate has been 908 ** called. 909 ** 910 ** This function is deprecated. Do not use it for new code. It is 911 ** provide only to avoid breaking legacy code. New aggregate function 912 ** implementations should keep their own counts within their aggregate 913 ** context. 914 */ 915 int sqlite3_aggregate_count(sqlite3_context *p){ 916 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 917 return p->pMem->n; 918 } 919 #endif 920 921 /* 922 ** Return the number of columns in the result set for the statement pStmt. 923 */ 924 int sqlite3_column_count(sqlite3_stmt *pStmt){ 925 Vdbe *pVm = (Vdbe *)pStmt; 926 return pVm ? pVm->nResColumn : 0; 927 } 928 929 /* 930 ** Return the number of values available from the current row of the 931 ** currently executing statement pStmt. 932 */ 933 int sqlite3_data_count(sqlite3_stmt *pStmt){ 934 Vdbe *pVm = (Vdbe *)pStmt; 935 if( pVm==0 || pVm->pResultSet==0 ) return 0; 936 return pVm->nResColumn; 937 } 938 939 /* 940 ** Return a pointer to static memory containing an SQL NULL value. 941 */ 942 static const Mem *columnNullValue(void){ 943 /* Even though the Mem structure contains an element 944 ** of type i64, on certain architectures (x86) with certain compiler 945 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 946 ** instead of an 8-byte one. This all works fine, except that when 947 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 948 ** that a Mem structure is located on an 8-byte boundary. To prevent 949 ** these assert()s from failing, when building with SQLITE_DEBUG defined 950 ** using gcc, we force nullMem to be 8-byte aligned using the magical 951 ** __attribute__((aligned(8))) macro. */ 952 static const Mem nullMem 953 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 954 __attribute__((aligned(8))) 955 #endif 956 = { 957 /* .u = */ {0}, 958 /* .flags = */ (u16)MEM_Null, 959 /* .enc = */ (u8)0, 960 /* .eSubtype = */ (u8)0, 961 /* .n = */ (int)0, 962 /* .z = */ (char*)0, 963 /* .zMalloc = */ (char*)0, 964 /* .szMalloc = */ (int)0, 965 /* .uTemp = */ (u32)0, 966 /* .db = */ (sqlite3*)0, 967 /* .xDel = */ (void(*)(void*))0, 968 #ifdef SQLITE_DEBUG 969 /* .pScopyFrom = */ (Mem*)0, 970 /* .pFiller = */ (void*)0, 971 #endif 972 }; 973 return &nullMem; 974 } 975 976 /* 977 ** Check to see if column iCol of the given statement is valid. If 978 ** it is, return a pointer to the Mem for the value of that column. 979 ** If iCol is not valid, return a pointer to a Mem which has a value 980 ** of NULL. 981 */ 982 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 983 Vdbe *pVm; 984 Mem *pOut; 985 986 pVm = (Vdbe *)pStmt; 987 if( pVm==0 ) return (Mem*)columnNullValue(); 988 assert( pVm->db ); 989 sqlite3_mutex_enter(pVm->db->mutex); 990 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 991 pOut = &pVm->pResultSet[i]; 992 }else{ 993 sqlite3Error(pVm->db, SQLITE_RANGE); 994 pOut = (Mem*)columnNullValue(); 995 } 996 return pOut; 997 } 998 999 /* 1000 ** This function is called after invoking an sqlite3_value_XXX function on a 1001 ** column value (i.e. a value returned by evaluating an SQL expression in the 1002 ** select list of a SELECT statement) that may cause a malloc() failure. If 1003 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1004 ** code of statement pStmt set to SQLITE_NOMEM. 1005 ** 1006 ** Specifically, this is called from within: 1007 ** 1008 ** sqlite3_column_int() 1009 ** sqlite3_column_int64() 1010 ** sqlite3_column_text() 1011 ** sqlite3_column_text16() 1012 ** sqlite3_column_real() 1013 ** sqlite3_column_bytes() 1014 ** sqlite3_column_bytes16() 1015 ** sqiite3_column_blob() 1016 */ 1017 static void columnMallocFailure(sqlite3_stmt *pStmt) 1018 { 1019 /* If malloc() failed during an encoding conversion within an 1020 ** sqlite3_column_XXX API, then set the return code of the statement to 1021 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1022 ** and _finalize() will return NOMEM. 1023 */ 1024 Vdbe *p = (Vdbe *)pStmt; 1025 if( p ){ 1026 assert( p->db!=0 ); 1027 assert( sqlite3_mutex_held(p->db->mutex) ); 1028 p->rc = sqlite3ApiExit(p->db, p->rc); 1029 sqlite3_mutex_leave(p->db->mutex); 1030 } 1031 } 1032 1033 /**************************** sqlite3_column_ ******************************* 1034 ** The following routines are used to access elements of the current row 1035 ** in the result set. 1036 */ 1037 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1038 const void *val; 1039 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1040 /* Even though there is no encoding conversion, value_blob() might 1041 ** need to call malloc() to expand the result of a zeroblob() 1042 ** expression. 1043 */ 1044 columnMallocFailure(pStmt); 1045 return val; 1046 } 1047 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1048 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1049 columnMallocFailure(pStmt); 1050 return val; 1051 } 1052 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1053 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1054 columnMallocFailure(pStmt); 1055 return val; 1056 } 1057 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1058 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1059 columnMallocFailure(pStmt); 1060 return val; 1061 } 1062 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1063 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1064 columnMallocFailure(pStmt); 1065 return val; 1066 } 1067 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1068 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1069 columnMallocFailure(pStmt); 1070 return val; 1071 } 1072 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1073 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1074 columnMallocFailure(pStmt); 1075 return val; 1076 } 1077 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1078 Mem *pOut = columnMem(pStmt, i); 1079 if( pOut->flags&MEM_Static ){ 1080 pOut->flags &= ~MEM_Static; 1081 pOut->flags |= MEM_Ephem; 1082 } 1083 columnMallocFailure(pStmt); 1084 return (sqlite3_value *)pOut; 1085 } 1086 #ifndef SQLITE_OMIT_UTF16 1087 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1088 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1089 columnMallocFailure(pStmt); 1090 return val; 1091 } 1092 #endif /* SQLITE_OMIT_UTF16 */ 1093 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1094 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1095 columnMallocFailure(pStmt); 1096 return iType; 1097 } 1098 1099 /* 1100 ** Convert the N-th element of pStmt->pColName[] into a string using 1101 ** xFunc() then return that string. If N is out of range, return 0. 1102 ** 1103 ** There are up to 5 names for each column. useType determines which 1104 ** name is returned. Here are the names: 1105 ** 1106 ** 0 The column name as it should be displayed for output 1107 ** 1 The datatype name for the column 1108 ** 2 The name of the database that the column derives from 1109 ** 3 The name of the table that the column derives from 1110 ** 4 The name of the table column that the result column derives from 1111 ** 1112 ** If the result is not a simple column reference (if it is an expression 1113 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1114 */ 1115 static const void *columnName( 1116 sqlite3_stmt *pStmt, 1117 int N, 1118 const void *(*xFunc)(Mem*), 1119 int useType 1120 ){ 1121 const void *ret; 1122 Vdbe *p; 1123 int n; 1124 sqlite3 *db; 1125 #ifdef SQLITE_ENABLE_API_ARMOR 1126 if( pStmt==0 ){ 1127 (void)SQLITE_MISUSE_BKPT; 1128 return 0; 1129 } 1130 #endif 1131 ret = 0; 1132 p = (Vdbe *)pStmt; 1133 db = p->db; 1134 assert( db!=0 ); 1135 n = sqlite3_column_count(pStmt); 1136 if( N<n && N>=0 ){ 1137 N += useType*n; 1138 sqlite3_mutex_enter(db->mutex); 1139 assert( db->mallocFailed==0 ); 1140 ret = xFunc(&p->aColName[N]); 1141 /* A malloc may have failed inside of the xFunc() call. If this 1142 ** is the case, clear the mallocFailed flag and return NULL. 1143 */ 1144 if( db->mallocFailed ){ 1145 sqlite3OomClear(db); 1146 ret = 0; 1147 } 1148 sqlite3_mutex_leave(db->mutex); 1149 } 1150 return ret; 1151 } 1152 1153 /* 1154 ** Return the name of the Nth column of the result set returned by SQL 1155 ** statement pStmt. 1156 */ 1157 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1158 return columnName( 1159 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1160 } 1161 #ifndef SQLITE_OMIT_UTF16 1162 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1163 return columnName( 1164 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1165 } 1166 #endif 1167 1168 /* 1169 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1170 ** not define OMIT_DECLTYPE. 1171 */ 1172 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1173 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1174 and SQLITE_ENABLE_COLUMN_METADATA" 1175 #endif 1176 1177 #ifndef SQLITE_OMIT_DECLTYPE 1178 /* 1179 ** Return the column declaration type (if applicable) of the 'i'th column 1180 ** of the result set of SQL statement pStmt. 1181 */ 1182 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1183 return columnName( 1184 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1185 } 1186 #ifndef SQLITE_OMIT_UTF16 1187 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1188 return columnName( 1189 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1190 } 1191 #endif /* SQLITE_OMIT_UTF16 */ 1192 #endif /* SQLITE_OMIT_DECLTYPE */ 1193 1194 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1195 /* 1196 ** Return the name of the database from which a result column derives. 1197 ** NULL is returned if the result column is an expression or constant or 1198 ** anything else which is not an unambiguous reference to a database column. 1199 */ 1200 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1201 return columnName( 1202 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1203 } 1204 #ifndef SQLITE_OMIT_UTF16 1205 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1206 return columnName( 1207 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1208 } 1209 #endif /* SQLITE_OMIT_UTF16 */ 1210 1211 /* 1212 ** Return the name of the table from which a result column derives. 1213 ** NULL is returned if the result column is an expression or constant or 1214 ** anything else which is not an unambiguous reference to a database column. 1215 */ 1216 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1217 return columnName( 1218 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1219 } 1220 #ifndef SQLITE_OMIT_UTF16 1221 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1222 return columnName( 1223 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1224 } 1225 #endif /* SQLITE_OMIT_UTF16 */ 1226 1227 /* 1228 ** Return the name of the table column from which a result column derives. 1229 ** NULL is returned if the result column is an expression or constant or 1230 ** anything else which is not an unambiguous reference to a database column. 1231 */ 1232 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1233 return columnName( 1234 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1235 } 1236 #ifndef SQLITE_OMIT_UTF16 1237 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1238 return columnName( 1239 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1240 } 1241 #endif /* SQLITE_OMIT_UTF16 */ 1242 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1243 1244 1245 /******************************* sqlite3_bind_ *************************** 1246 ** 1247 ** Routines used to attach values to wildcards in a compiled SQL statement. 1248 */ 1249 /* 1250 ** Unbind the value bound to variable i in virtual machine p. This is the 1251 ** the same as binding a NULL value to the column. If the "i" parameter is 1252 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1253 ** 1254 ** A successful evaluation of this routine acquires the mutex on p. 1255 ** the mutex is released if any kind of error occurs. 1256 ** 1257 ** The error code stored in database p->db is overwritten with the return 1258 ** value in any case. 1259 */ 1260 static int vdbeUnbind(Vdbe *p, int i){ 1261 Mem *pVar; 1262 if( vdbeSafetyNotNull(p) ){ 1263 return SQLITE_MISUSE_BKPT; 1264 } 1265 sqlite3_mutex_enter(p->db->mutex); 1266 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1267 sqlite3Error(p->db, SQLITE_MISUSE); 1268 sqlite3_mutex_leave(p->db->mutex); 1269 sqlite3_log(SQLITE_MISUSE, 1270 "bind on a busy prepared statement: [%s]", p->zSql); 1271 return SQLITE_MISUSE_BKPT; 1272 } 1273 if( i<1 || i>p->nVar ){ 1274 sqlite3Error(p->db, SQLITE_RANGE); 1275 sqlite3_mutex_leave(p->db->mutex); 1276 return SQLITE_RANGE; 1277 } 1278 i--; 1279 pVar = &p->aVar[i]; 1280 sqlite3VdbeMemRelease(pVar); 1281 pVar->flags = MEM_Null; 1282 sqlite3Error(p->db, SQLITE_OK); 1283 1284 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1285 ** binding a new value to this variable invalidates the current query plan. 1286 ** 1287 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1288 ** parameter in the WHERE clause might influence the choice of query plan 1289 ** for a statement, then the statement will be automatically recompiled, 1290 ** as if there had been a schema change, on the first sqlite3_step() call 1291 ** following any change to the bindings of that parameter. 1292 */ 1293 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1294 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1295 p->expired = 1; 1296 } 1297 return SQLITE_OK; 1298 } 1299 1300 /* 1301 ** Bind a text or BLOB value. 1302 */ 1303 static int bindText( 1304 sqlite3_stmt *pStmt, /* The statement to bind against */ 1305 int i, /* Index of the parameter to bind */ 1306 const void *zData, /* Pointer to the data to be bound */ 1307 int nData, /* Number of bytes of data to be bound */ 1308 void (*xDel)(void*), /* Destructor for the data */ 1309 u8 encoding /* Encoding for the data */ 1310 ){ 1311 Vdbe *p = (Vdbe *)pStmt; 1312 Mem *pVar; 1313 int rc; 1314 1315 rc = vdbeUnbind(p, i); 1316 if( rc==SQLITE_OK ){ 1317 if( zData!=0 ){ 1318 pVar = &p->aVar[i-1]; 1319 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1320 if( rc==SQLITE_OK && encoding!=0 ){ 1321 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1322 } 1323 if( rc ){ 1324 sqlite3Error(p->db, rc); 1325 rc = sqlite3ApiExit(p->db, rc); 1326 } 1327 } 1328 sqlite3_mutex_leave(p->db->mutex); 1329 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1330 xDel((void*)zData); 1331 } 1332 return rc; 1333 } 1334 1335 1336 /* 1337 ** Bind a blob value to an SQL statement variable. 1338 */ 1339 int sqlite3_bind_blob( 1340 sqlite3_stmt *pStmt, 1341 int i, 1342 const void *zData, 1343 int nData, 1344 void (*xDel)(void*) 1345 ){ 1346 #ifdef SQLITE_ENABLE_API_ARMOR 1347 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1348 #endif 1349 return bindText(pStmt, i, zData, nData, xDel, 0); 1350 } 1351 int sqlite3_bind_blob64( 1352 sqlite3_stmt *pStmt, 1353 int i, 1354 const void *zData, 1355 sqlite3_uint64 nData, 1356 void (*xDel)(void*) 1357 ){ 1358 assert( xDel!=SQLITE_DYNAMIC ); 1359 if( nData>0x7fffffff ){ 1360 return invokeValueDestructor(zData, xDel, 0); 1361 }else{ 1362 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1363 } 1364 } 1365 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1366 int rc; 1367 Vdbe *p = (Vdbe *)pStmt; 1368 rc = vdbeUnbind(p, i); 1369 if( rc==SQLITE_OK ){ 1370 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1371 sqlite3_mutex_leave(p->db->mutex); 1372 } 1373 return rc; 1374 } 1375 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1376 return sqlite3_bind_int64(p, i, (i64)iValue); 1377 } 1378 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1379 int rc; 1380 Vdbe *p = (Vdbe *)pStmt; 1381 rc = vdbeUnbind(p, i); 1382 if( rc==SQLITE_OK ){ 1383 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1384 sqlite3_mutex_leave(p->db->mutex); 1385 } 1386 return rc; 1387 } 1388 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1389 int rc; 1390 Vdbe *p = (Vdbe*)pStmt; 1391 rc = vdbeUnbind(p, i); 1392 if( rc==SQLITE_OK ){ 1393 sqlite3_mutex_leave(p->db->mutex); 1394 } 1395 return rc; 1396 } 1397 int sqlite3_bind_pointer(sqlite3_stmt *pStmt, int i, void *pPtr){ 1398 int rc; 1399 Vdbe *p = (Vdbe*)pStmt; 1400 rc = vdbeUnbind(p, i); 1401 if( rc==SQLITE_OK ){ 1402 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr); 1403 sqlite3_mutex_leave(p->db->mutex); 1404 } 1405 return rc; 1406 } 1407 int sqlite3_bind_text( 1408 sqlite3_stmt *pStmt, 1409 int i, 1410 const char *zData, 1411 int nData, 1412 void (*xDel)(void*) 1413 ){ 1414 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1415 } 1416 int sqlite3_bind_text64( 1417 sqlite3_stmt *pStmt, 1418 int i, 1419 const char *zData, 1420 sqlite3_uint64 nData, 1421 void (*xDel)(void*), 1422 unsigned char enc 1423 ){ 1424 assert( xDel!=SQLITE_DYNAMIC ); 1425 if( nData>0x7fffffff ){ 1426 return invokeValueDestructor(zData, xDel, 0); 1427 }else{ 1428 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1429 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1430 } 1431 } 1432 #ifndef SQLITE_OMIT_UTF16 1433 int sqlite3_bind_text16( 1434 sqlite3_stmt *pStmt, 1435 int i, 1436 const void *zData, 1437 int nData, 1438 void (*xDel)(void*) 1439 ){ 1440 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1441 } 1442 #endif /* SQLITE_OMIT_UTF16 */ 1443 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1444 int rc; 1445 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1446 case SQLITE_INTEGER: { 1447 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1448 break; 1449 } 1450 case SQLITE_FLOAT: { 1451 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1452 break; 1453 } 1454 case SQLITE_BLOB: { 1455 if( pValue->flags & MEM_Zero ){ 1456 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1457 }else{ 1458 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1459 } 1460 break; 1461 } 1462 case SQLITE_TEXT: { 1463 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1464 pValue->enc); 1465 break; 1466 } 1467 default: { 1468 rc = sqlite3_bind_null(pStmt, i); 1469 break; 1470 } 1471 } 1472 return rc; 1473 } 1474 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1475 int rc; 1476 Vdbe *p = (Vdbe *)pStmt; 1477 rc = vdbeUnbind(p, i); 1478 if( rc==SQLITE_OK ){ 1479 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1480 sqlite3_mutex_leave(p->db->mutex); 1481 } 1482 return rc; 1483 } 1484 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1485 int rc; 1486 Vdbe *p = (Vdbe *)pStmt; 1487 sqlite3_mutex_enter(p->db->mutex); 1488 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1489 rc = SQLITE_TOOBIG; 1490 }else{ 1491 assert( (n & 0x7FFFFFFF)==n ); 1492 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1493 } 1494 rc = sqlite3ApiExit(p->db, rc); 1495 sqlite3_mutex_leave(p->db->mutex); 1496 return rc; 1497 } 1498 1499 /* 1500 ** Return the number of wildcards that can be potentially bound to. 1501 ** This routine is added to support DBD::SQLite. 1502 */ 1503 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1504 Vdbe *p = (Vdbe*)pStmt; 1505 return p ? p->nVar : 0; 1506 } 1507 1508 /* 1509 ** Return the name of a wildcard parameter. Return NULL if the index 1510 ** is out of range or if the wildcard is unnamed. 1511 ** 1512 ** The result is always UTF-8. 1513 */ 1514 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1515 Vdbe *p = (Vdbe*)pStmt; 1516 if( p==0 ) return 0; 1517 return sqlite3VListNumToName(p->pVList, i); 1518 } 1519 1520 /* 1521 ** Given a wildcard parameter name, return the index of the variable 1522 ** with that name. If there is no variable with the given name, 1523 ** return 0. 1524 */ 1525 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1526 if( p==0 || zName==0 ) return 0; 1527 return sqlite3VListNameToNum(p->pVList, zName, nName); 1528 } 1529 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1530 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1531 } 1532 1533 /* 1534 ** Transfer all bindings from the first statement over to the second. 1535 */ 1536 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1537 Vdbe *pFrom = (Vdbe*)pFromStmt; 1538 Vdbe *pTo = (Vdbe*)pToStmt; 1539 int i; 1540 assert( pTo->db==pFrom->db ); 1541 assert( pTo->nVar==pFrom->nVar ); 1542 sqlite3_mutex_enter(pTo->db->mutex); 1543 for(i=0; i<pFrom->nVar; i++){ 1544 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1545 } 1546 sqlite3_mutex_leave(pTo->db->mutex); 1547 return SQLITE_OK; 1548 } 1549 1550 #ifndef SQLITE_OMIT_DEPRECATED 1551 /* 1552 ** Deprecated external interface. Internal/core SQLite code 1553 ** should call sqlite3TransferBindings. 1554 ** 1555 ** It is misuse to call this routine with statements from different 1556 ** database connections. But as this is a deprecated interface, we 1557 ** will not bother to check for that condition. 1558 ** 1559 ** If the two statements contain a different number of bindings, then 1560 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1561 ** SQLITE_OK is returned. 1562 */ 1563 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1564 Vdbe *pFrom = (Vdbe*)pFromStmt; 1565 Vdbe *pTo = (Vdbe*)pToStmt; 1566 if( pFrom->nVar!=pTo->nVar ){ 1567 return SQLITE_ERROR; 1568 } 1569 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1570 if( pTo->expmask ){ 1571 pTo->expired = 1; 1572 } 1573 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1574 if( pFrom->expmask ){ 1575 pFrom->expired = 1; 1576 } 1577 return sqlite3TransferBindings(pFromStmt, pToStmt); 1578 } 1579 #endif 1580 1581 /* 1582 ** Return the sqlite3* database handle to which the prepared statement given 1583 ** in the argument belongs. This is the same database handle that was 1584 ** the first argument to the sqlite3_prepare() that was used to create 1585 ** the statement in the first place. 1586 */ 1587 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1588 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1589 } 1590 1591 /* 1592 ** Return true if the prepared statement is guaranteed to not modify the 1593 ** database. 1594 */ 1595 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1596 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1597 } 1598 1599 /* 1600 ** Return true if the prepared statement is in need of being reset. 1601 */ 1602 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1603 Vdbe *v = (Vdbe*)pStmt; 1604 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1605 } 1606 1607 /* 1608 ** Return a pointer to the next prepared statement after pStmt associated 1609 ** with database connection pDb. If pStmt is NULL, return the first 1610 ** prepared statement for the database connection. Return NULL if there 1611 ** are no more. 1612 */ 1613 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1614 sqlite3_stmt *pNext; 1615 #ifdef SQLITE_ENABLE_API_ARMOR 1616 if( !sqlite3SafetyCheckOk(pDb) ){ 1617 (void)SQLITE_MISUSE_BKPT; 1618 return 0; 1619 } 1620 #endif 1621 sqlite3_mutex_enter(pDb->mutex); 1622 if( pStmt==0 ){ 1623 pNext = (sqlite3_stmt*)pDb->pVdbe; 1624 }else{ 1625 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1626 } 1627 sqlite3_mutex_leave(pDb->mutex); 1628 return pNext; 1629 } 1630 1631 /* 1632 ** Return the value of a status counter for a prepared statement 1633 */ 1634 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1635 Vdbe *pVdbe = (Vdbe*)pStmt; 1636 u32 v; 1637 #ifdef SQLITE_ENABLE_API_ARMOR 1638 if( !pStmt ){ 1639 (void)SQLITE_MISUSE_BKPT; 1640 return 0; 1641 } 1642 #endif 1643 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1644 sqlite3 *db = pVdbe->db; 1645 sqlite3_mutex_enter(db->mutex); 1646 v = 0; 1647 db->pnBytesFreed = (int*)&v; 1648 sqlite3VdbeClearObject(db, pVdbe); 1649 sqlite3DbFree(db, pVdbe); 1650 db->pnBytesFreed = 0; 1651 sqlite3_mutex_leave(db->mutex); 1652 }else{ 1653 v = pVdbe->aCounter[op]; 1654 if( resetFlag ) pVdbe->aCounter[op] = 0; 1655 } 1656 return (int)v; 1657 } 1658 1659 /* 1660 ** Return the SQL associated with a prepared statement 1661 */ 1662 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1663 Vdbe *p = (Vdbe *)pStmt; 1664 return p ? p->zSql : 0; 1665 } 1666 1667 /* 1668 ** Return the SQL associated with a prepared statement with 1669 ** bound parameters expanded. Space to hold the returned string is 1670 ** obtained from sqlite3_malloc(). The caller is responsible for 1671 ** freeing the returned string by passing it to sqlite3_free(). 1672 ** 1673 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1674 ** expanded bound parameters. 1675 */ 1676 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1677 #ifdef SQLITE_OMIT_TRACE 1678 return 0; 1679 #else 1680 char *z = 0; 1681 const char *zSql = sqlite3_sql(pStmt); 1682 if( zSql ){ 1683 Vdbe *p = (Vdbe *)pStmt; 1684 sqlite3_mutex_enter(p->db->mutex); 1685 z = sqlite3VdbeExpandSql(p, zSql); 1686 sqlite3_mutex_leave(p->db->mutex); 1687 } 1688 return z; 1689 #endif 1690 } 1691 1692 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1693 /* 1694 ** Allocate and populate an UnpackedRecord structure based on the serialized 1695 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1696 ** if successful, or a NULL pointer if an OOM error is encountered. 1697 */ 1698 static UnpackedRecord *vdbeUnpackRecord( 1699 KeyInfo *pKeyInfo, 1700 int nKey, 1701 const void *pKey 1702 ){ 1703 UnpackedRecord *pRet; /* Return value */ 1704 1705 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1706 if( pRet ){ 1707 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nField+1)); 1708 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1709 } 1710 return pRet; 1711 } 1712 1713 /* 1714 ** This function is called from within a pre-update callback to retrieve 1715 ** a field of the row currently being updated or deleted. 1716 */ 1717 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1718 PreUpdate *p = db->pPreUpdate; 1719 Mem *pMem; 1720 int rc = SQLITE_OK; 1721 1722 /* Test that this call is being made from within an SQLITE_DELETE or 1723 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1724 if( !p || p->op==SQLITE_INSERT ){ 1725 rc = SQLITE_MISUSE_BKPT; 1726 goto preupdate_old_out; 1727 } 1728 if( p->pPk ){ 1729 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1730 } 1731 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1732 rc = SQLITE_RANGE; 1733 goto preupdate_old_out; 1734 } 1735 1736 /* If the old.* record has not yet been loaded into memory, do so now. */ 1737 if( p->pUnpacked==0 ){ 1738 u32 nRec; 1739 u8 *aRec; 1740 1741 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1742 aRec = sqlite3DbMallocRaw(db, nRec); 1743 if( !aRec ) goto preupdate_old_out; 1744 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1745 if( rc==SQLITE_OK ){ 1746 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1747 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1748 } 1749 if( rc!=SQLITE_OK ){ 1750 sqlite3DbFree(db, aRec); 1751 goto preupdate_old_out; 1752 } 1753 p->aRecord = aRec; 1754 } 1755 1756 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1757 if( iIdx==p->pTab->iPKey ){ 1758 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1759 }else if( iIdx>=p->pUnpacked->nField ){ 1760 *ppValue = (sqlite3_value *)columnNullValue(); 1761 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1762 if( pMem->flags & MEM_Int ){ 1763 sqlite3VdbeMemRealify(pMem); 1764 } 1765 } 1766 1767 preupdate_old_out: 1768 sqlite3Error(db, rc); 1769 return sqlite3ApiExit(db, rc); 1770 } 1771 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1772 1773 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1774 /* 1775 ** This function is called from within a pre-update callback to retrieve 1776 ** the number of columns in the row being updated, deleted or inserted. 1777 */ 1778 int sqlite3_preupdate_count(sqlite3 *db){ 1779 PreUpdate *p = db->pPreUpdate; 1780 return (p ? p->keyinfo.nField : 0); 1781 } 1782 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1783 1784 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1785 /* 1786 ** This function is designed to be called from within a pre-update callback 1787 ** only. It returns zero if the change that caused the callback was made 1788 ** immediately by a user SQL statement. Or, if the change was made by a 1789 ** trigger program, it returns the number of trigger programs currently 1790 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1791 ** top-level trigger etc.). 1792 ** 1793 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1794 ** or SET DEFAULT action is considered a trigger. 1795 */ 1796 int sqlite3_preupdate_depth(sqlite3 *db){ 1797 PreUpdate *p = db->pPreUpdate; 1798 return (p ? p->v->nFrame : 0); 1799 } 1800 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1801 1802 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1803 /* 1804 ** This function is called from within a pre-update callback to retrieve 1805 ** a field of the row currently being updated or inserted. 1806 */ 1807 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1808 PreUpdate *p = db->pPreUpdate; 1809 int rc = SQLITE_OK; 1810 Mem *pMem; 1811 1812 if( !p || p->op==SQLITE_DELETE ){ 1813 rc = SQLITE_MISUSE_BKPT; 1814 goto preupdate_new_out; 1815 } 1816 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1817 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1818 } 1819 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1820 rc = SQLITE_RANGE; 1821 goto preupdate_new_out; 1822 } 1823 1824 if( p->op==SQLITE_INSERT ){ 1825 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1826 ** that is being inserted. Deserialize it. */ 1827 UnpackedRecord *pUnpack = p->pNewUnpacked; 1828 if( !pUnpack ){ 1829 Mem *pData = &p->v->aMem[p->iNewReg]; 1830 rc = ExpandBlob(pData); 1831 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1832 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1833 if( !pUnpack ){ 1834 rc = SQLITE_NOMEM; 1835 goto preupdate_new_out; 1836 } 1837 p->pNewUnpacked = pUnpack; 1838 } 1839 pMem = &pUnpack->aMem[iIdx]; 1840 if( iIdx==p->pTab->iPKey ){ 1841 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1842 }else if( iIdx>=pUnpack->nField ){ 1843 pMem = (sqlite3_value *)columnNullValue(); 1844 } 1845 }else{ 1846 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1847 ** value. Make a copy of the cell contents and return a pointer to it. 1848 ** It is not safe to return a pointer to the memory cell itself as the 1849 ** caller may modify the value text encoding. 1850 */ 1851 assert( p->op==SQLITE_UPDATE ); 1852 if( !p->aNew ){ 1853 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1854 if( !p->aNew ){ 1855 rc = SQLITE_NOMEM; 1856 goto preupdate_new_out; 1857 } 1858 } 1859 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1860 pMem = &p->aNew[iIdx]; 1861 if( pMem->flags==0 ){ 1862 if( iIdx==p->pTab->iPKey ){ 1863 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1864 }else{ 1865 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1866 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1867 } 1868 } 1869 } 1870 *ppValue = pMem; 1871 1872 preupdate_new_out: 1873 sqlite3Error(db, rc); 1874 return sqlite3ApiExit(db, rc); 1875 } 1876 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1877 1878 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1879 /* 1880 ** Return status data for a single loop within query pStmt. 1881 */ 1882 int sqlite3_stmt_scanstatus( 1883 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1884 int idx, /* Index of loop to report on */ 1885 int iScanStatusOp, /* Which metric to return */ 1886 void *pOut /* OUT: Write the answer here */ 1887 ){ 1888 Vdbe *p = (Vdbe*)pStmt; 1889 ScanStatus *pScan; 1890 if( idx<0 || idx>=p->nScan ) return 1; 1891 pScan = &p->aScan[idx]; 1892 switch( iScanStatusOp ){ 1893 case SQLITE_SCANSTAT_NLOOP: { 1894 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1895 break; 1896 } 1897 case SQLITE_SCANSTAT_NVISIT: { 1898 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1899 break; 1900 } 1901 case SQLITE_SCANSTAT_EST: { 1902 double r = 1.0; 1903 LogEst x = pScan->nEst; 1904 while( x<100 ){ 1905 x += 10; 1906 r *= 0.5; 1907 } 1908 *(double*)pOut = r*sqlite3LogEstToInt(x); 1909 break; 1910 } 1911 case SQLITE_SCANSTAT_NAME: { 1912 *(const char**)pOut = pScan->zName; 1913 break; 1914 } 1915 case SQLITE_SCANSTAT_EXPLAIN: { 1916 if( pScan->addrExplain ){ 1917 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1918 }else{ 1919 *(const char**)pOut = 0; 1920 } 1921 break; 1922 } 1923 case SQLITE_SCANSTAT_SELECTID: { 1924 if( pScan->addrExplain ){ 1925 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1926 }else{ 1927 *(int*)pOut = -1; 1928 } 1929 break; 1930 } 1931 default: { 1932 return 1; 1933 } 1934 } 1935 return 0; 1936 } 1937 1938 /* 1939 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1940 */ 1941 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1942 Vdbe *p = (Vdbe*)pStmt; 1943 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1944 } 1945 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1946