1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags |= MEM_Blob; 139 return p->n ? p->z : 0; 140 }else{ 141 return sqlite3_value_text(pVal); 142 } 143 } 144 int sqlite3_value_bytes(sqlite3_value *pVal){ 145 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 146 } 147 int sqlite3_value_bytes16(sqlite3_value *pVal){ 148 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 149 } 150 double sqlite3_value_double(sqlite3_value *pVal){ 151 return sqlite3VdbeRealValue((Mem*)pVal); 152 } 153 int sqlite3_value_int(sqlite3_value *pVal){ 154 return (int)sqlite3VdbeIntValue((Mem*)pVal); 155 } 156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 157 return sqlite3VdbeIntValue((Mem*)pVal); 158 } 159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 160 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 161 } 162 #ifndef SQLITE_OMIT_UTF16 163 const void *sqlite3_value_text16(sqlite3_value* pVal){ 164 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 165 } 166 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 167 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 168 } 169 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 170 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 171 } 172 #endif /* SQLITE_OMIT_UTF16 */ 173 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 174 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 175 ** point number string BLOB NULL 176 */ 177 int sqlite3_value_type(sqlite3_value* pVal){ 178 static const u8 aType[] = { 179 SQLITE_BLOB, /* 0x00 */ 180 SQLITE_NULL, /* 0x01 */ 181 SQLITE_TEXT, /* 0x02 */ 182 SQLITE_NULL, /* 0x03 */ 183 SQLITE_INTEGER, /* 0x04 */ 184 SQLITE_NULL, /* 0x05 */ 185 SQLITE_INTEGER, /* 0x06 */ 186 SQLITE_NULL, /* 0x07 */ 187 SQLITE_FLOAT, /* 0x08 */ 188 SQLITE_NULL, /* 0x09 */ 189 SQLITE_FLOAT, /* 0x0a */ 190 SQLITE_NULL, /* 0x0b */ 191 SQLITE_INTEGER, /* 0x0c */ 192 SQLITE_NULL, /* 0x0d */ 193 SQLITE_INTEGER, /* 0x0e */ 194 SQLITE_NULL, /* 0x0f */ 195 SQLITE_BLOB, /* 0x10 */ 196 SQLITE_NULL, /* 0x11 */ 197 SQLITE_TEXT, /* 0x12 */ 198 SQLITE_NULL, /* 0x13 */ 199 SQLITE_INTEGER, /* 0x14 */ 200 SQLITE_NULL, /* 0x15 */ 201 SQLITE_INTEGER, /* 0x16 */ 202 SQLITE_NULL, /* 0x17 */ 203 SQLITE_FLOAT, /* 0x18 */ 204 SQLITE_NULL, /* 0x19 */ 205 SQLITE_FLOAT, /* 0x1a */ 206 SQLITE_NULL, /* 0x1b */ 207 SQLITE_INTEGER, /* 0x1c */ 208 SQLITE_NULL, /* 0x1d */ 209 SQLITE_INTEGER, /* 0x1e */ 210 SQLITE_NULL, /* 0x1f */ 211 }; 212 return aType[pVal->flags&MEM_AffMask]; 213 } 214 215 /**************************** sqlite3_result_ ******************************* 216 ** The following routines are used by user-defined functions to specify 217 ** the function result. 218 ** 219 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 220 ** result as a string or blob but if the string or blob is too large, it 221 ** then sets the error code to SQLITE_TOOBIG 222 ** 223 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 224 ** on value P is not going to be used and need to be destroyed. 225 */ 226 static void setResultStrOrError( 227 sqlite3_context *pCtx, /* Function context */ 228 const char *z, /* String pointer */ 229 int n, /* Bytes in string, or negative */ 230 u8 enc, /* Encoding of z. 0 for BLOBs */ 231 void (*xDel)(void*) /* Destructor function */ 232 ){ 233 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 234 sqlite3_result_error_toobig(pCtx); 235 } 236 } 237 static int invokeValueDestructor( 238 const void *p, /* Value to destroy */ 239 void (*xDel)(void*), /* The destructor */ 240 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 241 ){ 242 assert( xDel!=SQLITE_DYNAMIC ); 243 if( xDel==0 ){ 244 /* noop */ 245 }else if( xDel==SQLITE_TRANSIENT ){ 246 /* noop */ 247 }else{ 248 xDel((void*)p); 249 } 250 if( pCtx ) sqlite3_result_error_toobig(pCtx); 251 return SQLITE_TOOBIG; 252 } 253 void sqlite3_result_blob( 254 sqlite3_context *pCtx, 255 const void *z, 256 int n, 257 void (*xDel)(void *) 258 ){ 259 assert( n>=0 ); 260 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 261 setResultStrOrError(pCtx, z, n, 0, xDel); 262 } 263 void sqlite3_result_blob64( 264 sqlite3_context *pCtx, 265 const void *z, 266 sqlite3_uint64 n, 267 void (*xDel)(void *) 268 ){ 269 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 270 assert( xDel!=SQLITE_DYNAMIC ); 271 if( n>0x7fffffff ){ 272 (void)invokeValueDestructor(z, xDel, pCtx); 273 }else{ 274 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 275 } 276 } 277 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 278 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 279 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 280 } 281 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 282 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 283 pCtx->isError = SQLITE_ERROR; 284 pCtx->fErrorOrAux = 1; 285 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 286 } 287 #ifndef SQLITE_OMIT_UTF16 288 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 289 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 290 pCtx->isError = SQLITE_ERROR; 291 pCtx->fErrorOrAux = 1; 292 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 293 } 294 #endif 295 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 296 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 297 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 298 } 299 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 300 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 301 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 302 } 303 void sqlite3_result_null(sqlite3_context *pCtx){ 304 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 305 sqlite3VdbeMemSetNull(pCtx->pOut); 306 } 307 void sqlite3_result_text( 308 sqlite3_context *pCtx, 309 const char *z, 310 int n, 311 void (*xDel)(void *) 312 ){ 313 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 314 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 315 } 316 void sqlite3_result_text64( 317 sqlite3_context *pCtx, 318 const char *z, 319 sqlite3_uint64 n, 320 void (*xDel)(void *), 321 unsigned char enc 322 ){ 323 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 324 assert( xDel!=SQLITE_DYNAMIC ); 325 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 326 if( n>0x7fffffff ){ 327 (void)invokeValueDestructor(z, xDel, pCtx); 328 }else{ 329 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 330 } 331 } 332 #ifndef SQLITE_OMIT_UTF16 333 void sqlite3_result_text16( 334 sqlite3_context *pCtx, 335 const void *z, 336 int n, 337 void (*xDel)(void *) 338 ){ 339 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 340 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 341 } 342 void sqlite3_result_text16be( 343 sqlite3_context *pCtx, 344 const void *z, 345 int n, 346 void (*xDel)(void *) 347 ){ 348 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 349 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 350 } 351 void sqlite3_result_text16le( 352 sqlite3_context *pCtx, 353 const void *z, 354 int n, 355 void (*xDel)(void *) 356 ){ 357 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 358 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 359 } 360 #endif /* SQLITE_OMIT_UTF16 */ 361 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 362 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 363 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 364 } 365 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 366 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 367 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 368 } 369 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 370 pCtx->isError = errCode; 371 pCtx->fErrorOrAux = 1; 372 #ifdef SQLITE_DEBUG 373 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 374 #endif 375 if( pCtx->pOut->flags & MEM_Null ){ 376 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 377 SQLITE_UTF8, SQLITE_STATIC); 378 } 379 } 380 381 /* Force an SQLITE_TOOBIG error. */ 382 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 383 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 384 pCtx->isError = SQLITE_TOOBIG; 385 pCtx->fErrorOrAux = 1; 386 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 387 SQLITE_UTF8, SQLITE_STATIC); 388 } 389 390 /* An SQLITE_NOMEM error. */ 391 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 392 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 393 sqlite3VdbeMemSetNull(pCtx->pOut); 394 pCtx->isError = SQLITE_NOMEM; 395 pCtx->fErrorOrAux = 1; 396 pCtx->pOut->db->mallocFailed = 1; 397 } 398 399 /* 400 ** This function is called after a transaction has been committed. It 401 ** invokes callbacks registered with sqlite3_wal_hook() as required. 402 */ 403 static int doWalCallbacks(sqlite3 *db){ 404 int rc = SQLITE_OK; 405 #ifndef SQLITE_OMIT_WAL 406 int i; 407 for(i=0; i<db->nDb; i++){ 408 Btree *pBt = db->aDb[i].pBt; 409 if( pBt ){ 410 int nEntry; 411 sqlite3BtreeEnter(pBt); 412 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 413 sqlite3BtreeLeave(pBt); 414 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 415 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 416 } 417 } 418 } 419 #endif 420 return rc; 421 } 422 423 /* 424 ** Execute the statement pStmt, either until a row of data is ready, the 425 ** statement is completely executed or an error occurs. 426 ** 427 ** This routine implements the bulk of the logic behind the sqlite_step() 428 ** API. The only thing omitted is the automatic recompile if a 429 ** schema change has occurred. That detail is handled by the 430 ** outer sqlite3_step() wrapper procedure. 431 */ 432 static int sqlite3Step(Vdbe *p){ 433 sqlite3 *db; 434 int rc; 435 436 assert(p); 437 if( p->magic!=VDBE_MAGIC_RUN ){ 438 /* We used to require that sqlite3_reset() be called before retrying 439 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 440 ** with version 3.7.0, we changed this so that sqlite3_reset() would 441 ** be called automatically instead of throwing the SQLITE_MISUSE error. 442 ** This "automatic-reset" change is not technically an incompatibility, 443 ** since any application that receives an SQLITE_MISUSE is broken by 444 ** definition. 445 ** 446 ** Nevertheless, some published applications that were originally written 447 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 448 ** returns, and those were broken by the automatic-reset change. As a 449 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 450 ** legacy behavior of returning SQLITE_MISUSE for cases where the 451 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 452 ** or SQLITE_BUSY error. 453 */ 454 #ifdef SQLITE_OMIT_AUTORESET 455 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 456 sqlite3_reset((sqlite3_stmt*)p); 457 }else{ 458 return SQLITE_MISUSE_BKPT; 459 } 460 #else 461 sqlite3_reset((sqlite3_stmt*)p); 462 #endif 463 } 464 465 /* Check that malloc() has not failed. If it has, return early. */ 466 db = p->db; 467 if( db->mallocFailed ){ 468 p->rc = SQLITE_NOMEM; 469 return SQLITE_NOMEM; 470 } 471 472 if( p->pc<=0 && p->expired ){ 473 p->rc = SQLITE_SCHEMA; 474 rc = SQLITE_ERROR; 475 goto end_of_step; 476 } 477 if( p->pc<0 ){ 478 /* If there are no other statements currently running, then 479 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 480 ** from interrupting a statement that has not yet started. 481 */ 482 if( db->nVdbeActive==0 ){ 483 db->u1.isInterrupted = 0; 484 } 485 486 assert( db->nVdbeWrite>0 || db->autoCommit==0 487 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 488 ); 489 490 #ifndef SQLITE_OMIT_TRACE 491 if( db->xProfile && !db->init.busy ){ 492 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 493 } 494 #endif 495 496 db->nVdbeActive++; 497 if( p->readOnly==0 ) db->nVdbeWrite++; 498 if( p->bIsReader ) db->nVdbeRead++; 499 p->pc = 0; 500 } 501 #ifdef SQLITE_DEBUG 502 p->rcApp = SQLITE_OK; 503 #endif 504 #ifndef SQLITE_OMIT_EXPLAIN 505 if( p->explain ){ 506 rc = sqlite3VdbeList(p); 507 }else 508 #endif /* SQLITE_OMIT_EXPLAIN */ 509 { 510 db->nVdbeExec++; 511 rc = sqlite3VdbeExec(p); 512 db->nVdbeExec--; 513 } 514 515 #ifndef SQLITE_OMIT_TRACE 516 /* Invoke the profile callback if there is one 517 */ 518 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 519 sqlite3_int64 iNow; 520 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 521 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 522 } 523 #endif 524 525 if( rc==SQLITE_DONE ){ 526 assert( p->rc==SQLITE_OK ); 527 p->rc = doWalCallbacks(db); 528 if( p->rc!=SQLITE_OK ){ 529 rc = SQLITE_ERROR; 530 } 531 } 532 533 db->errCode = rc; 534 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 535 p->rc = SQLITE_NOMEM; 536 } 537 end_of_step: 538 /* At this point local variable rc holds the value that should be 539 ** returned if this statement was compiled using the legacy 540 ** sqlite3_prepare() interface. According to the docs, this can only 541 ** be one of the values in the first assert() below. Variable p->rc 542 ** contains the value that would be returned if sqlite3_finalize() 543 ** were called on statement p. 544 */ 545 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 546 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 547 ); 548 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 549 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 550 /* If this statement was prepared using sqlite3_prepare_v2(), and an 551 ** error has occurred, then return the error code in p->rc to the 552 ** caller. Set the error code in the database handle to the same value. 553 */ 554 rc = sqlite3VdbeTransferError(p); 555 } 556 return (rc&db->errMask); 557 } 558 559 /* 560 ** This is the top-level implementation of sqlite3_step(). Call 561 ** sqlite3Step() to do most of the work. If a schema error occurs, 562 ** call sqlite3Reprepare() and try again. 563 */ 564 int sqlite3_step(sqlite3_stmt *pStmt){ 565 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 566 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 567 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 568 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 569 sqlite3 *db; /* The database connection */ 570 571 if( vdbeSafetyNotNull(v) ){ 572 return SQLITE_MISUSE_BKPT; 573 } 574 db = v->db; 575 sqlite3_mutex_enter(db->mutex); 576 v->doingRerun = 0; 577 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 578 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 579 int savedPc = v->pc; 580 rc2 = rc = sqlite3Reprepare(v); 581 if( rc!=SQLITE_OK) break; 582 sqlite3_reset(pStmt); 583 if( savedPc>=0 ) v->doingRerun = 1; 584 assert( v->expired==0 ); 585 } 586 if( rc2!=SQLITE_OK ){ 587 /* This case occurs after failing to recompile an sql statement. 588 ** The error message from the SQL compiler has already been loaded 589 ** into the database handle. This block copies the error message 590 ** from the database handle into the statement and sets the statement 591 ** program counter to 0 to ensure that when the statement is 592 ** finalized or reset the parser error message is available via 593 ** sqlite3_errmsg() and sqlite3_errcode(). 594 */ 595 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 596 sqlite3DbFree(db, v->zErrMsg); 597 if( !db->mallocFailed ){ 598 v->zErrMsg = sqlite3DbStrDup(db, zErr); 599 v->rc = rc2; 600 } else { 601 v->zErrMsg = 0; 602 v->rc = rc = SQLITE_NOMEM; 603 } 604 } 605 rc = sqlite3ApiExit(db, rc); 606 sqlite3_mutex_leave(db->mutex); 607 return rc; 608 } 609 610 611 /* 612 ** Extract the user data from a sqlite3_context structure and return a 613 ** pointer to it. 614 */ 615 void *sqlite3_user_data(sqlite3_context *p){ 616 assert( p && p->pFunc ); 617 return p->pFunc->pUserData; 618 } 619 620 /* 621 ** Extract the user data from a sqlite3_context structure and return a 622 ** pointer to it. 623 ** 624 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 625 ** returns a copy of the pointer to the database connection (the 1st 626 ** parameter) of the sqlite3_create_function() and 627 ** sqlite3_create_function16() routines that originally registered the 628 ** application defined function. 629 */ 630 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 631 assert( p && p->pFunc ); 632 return p->pOut->db; 633 } 634 635 /* 636 ** Return the current time for a statement. If the current time 637 ** is requested more than once within the same run of a single prepared 638 ** statement, the exact same time is returned for each invocation regardless 639 ** of the amount of time that elapses between invocations. In other words, 640 ** the time returned is always the time of the first call. 641 */ 642 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 643 int rc; 644 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 645 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 646 assert( p->pVdbe!=0 ); 647 #else 648 sqlite3_int64 iTime = 0; 649 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 650 #endif 651 if( *piTime==0 ){ 652 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 653 if( rc ) *piTime = 0; 654 } 655 return *piTime; 656 } 657 658 /* 659 ** The following is the implementation of an SQL function that always 660 ** fails with an error message stating that the function is used in the 661 ** wrong context. The sqlite3_overload_function() API might construct 662 ** SQL function that use this routine so that the functions will exist 663 ** for name resolution but are actually overloaded by the xFindFunction 664 ** method of virtual tables. 665 */ 666 void sqlite3InvalidFunction( 667 sqlite3_context *context, /* The function calling context */ 668 int NotUsed, /* Number of arguments to the function */ 669 sqlite3_value **NotUsed2 /* Value of each argument */ 670 ){ 671 const char *zName = context->pFunc->zName; 672 char *zErr; 673 UNUSED_PARAMETER2(NotUsed, NotUsed2); 674 zErr = sqlite3_mprintf( 675 "unable to use function %s in the requested context", zName); 676 sqlite3_result_error(context, zErr, -1); 677 sqlite3_free(zErr); 678 } 679 680 /* 681 ** Create a new aggregate context for p and return a pointer to 682 ** its pMem->z element. 683 */ 684 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 685 Mem *pMem = p->pMem; 686 assert( (pMem->flags & MEM_Agg)==0 ); 687 if( nByte<=0 ){ 688 sqlite3VdbeMemSetNull(pMem); 689 pMem->z = 0; 690 }else{ 691 sqlite3VdbeMemClearAndResize(pMem, nByte); 692 pMem->flags = MEM_Agg; 693 pMem->u.pDef = p->pFunc; 694 if( pMem->z ){ 695 memset(pMem->z, 0, nByte); 696 } 697 } 698 return (void*)pMem->z; 699 } 700 701 /* 702 ** Allocate or return the aggregate context for a user function. A new 703 ** context is allocated on the first call. Subsequent calls return the 704 ** same context that was returned on prior calls. 705 */ 706 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 707 assert( p && p->pFunc && p->pFunc->xStep ); 708 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 709 testcase( nByte<0 ); 710 if( (p->pMem->flags & MEM_Agg)==0 ){ 711 return createAggContext(p, nByte); 712 }else{ 713 return (void*)p->pMem->z; 714 } 715 } 716 717 /* 718 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 719 ** the user-function defined by pCtx. 720 */ 721 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 722 AuxData *pAuxData; 723 724 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 725 #if SQLITE_ENABLE_STAT3_OR_STAT4 726 if( pCtx->pVdbe==0 ) return 0; 727 #else 728 assert( pCtx->pVdbe!=0 ); 729 #endif 730 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 731 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 732 } 733 734 return (pAuxData ? pAuxData->pAux : 0); 735 } 736 737 /* 738 ** Set the auxiliary data pointer and delete function, for the iArg'th 739 ** argument to the user-function defined by pCtx. Any previous value is 740 ** deleted by calling the delete function specified when it was set. 741 */ 742 void sqlite3_set_auxdata( 743 sqlite3_context *pCtx, 744 int iArg, 745 void *pAux, 746 void (*xDelete)(void*) 747 ){ 748 AuxData *pAuxData; 749 Vdbe *pVdbe = pCtx->pVdbe; 750 751 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 752 if( iArg<0 ) goto failed; 753 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 754 if( pVdbe==0 ) goto failed; 755 #else 756 assert( pVdbe!=0 ); 757 #endif 758 759 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 760 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 761 } 762 if( pAuxData==0 ){ 763 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 764 if( !pAuxData ) goto failed; 765 pAuxData->iOp = pCtx->iOp; 766 pAuxData->iArg = iArg; 767 pAuxData->pNext = pVdbe->pAuxData; 768 pVdbe->pAuxData = pAuxData; 769 if( pCtx->fErrorOrAux==0 ){ 770 pCtx->isError = 0; 771 pCtx->fErrorOrAux = 1; 772 } 773 }else if( pAuxData->xDelete ){ 774 pAuxData->xDelete(pAuxData->pAux); 775 } 776 777 pAuxData->pAux = pAux; 778 pAuxData->xDelete = xDelete; 779 return; 780 781 failed: 782 if( xDelete ){ 783 xDelete(pAux); 784 } 785 } 786 787 #ifndef SQLITE_OMIT_DEPRECATED 788 /* 789 ** Return the number of times the Step function of an aggregate has been 790 ** called. 791 ** 792 ** This function is deprecated. Do not use it for new code. It is 793 ** provide only to avoid breaking legacy code. New aggregate function 794 ** implementations should keep their own counts within their aggregate 795 ** context. 796 */ 797 int sqlite3_aggregate_count(sqlite3_context *p){ 798 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 799 return p->pMem->n; 800 } 801 #endif 802 803 /* 804 ** Return the number of columns in the result set for the statement pStmt. 805 */ 806 int sqlite3_column_count(sqlite3_stmt *pStmt){ 807 Vdbe *pVm = (Vdbe *)pStmt; 808 return pVm ? pVm->nResColumn : 0; 809 } 810 811 /* 812 ** Return the number of values available from the current row of the 813 ** currently executing statement pStmt. 814 */ 815 int sqlite3_data_count(sqlite3_stmt *pStmt){ 816 Vdbe *pVm = (Vdbe *)pStmt; 817 if( pVm==0 || pVm->pResultSet==0 ) return 0; 818 return pVm->nResColumn; 819 } 820 821 /* 822 ** Return a pointer to static memory containing an SQL NULL value. 823 */ 824 static const Mem *columnNullValue(void){ 825 /* Even though the Mem structure contains an element 826 ** of type i64, on certain architectures (x86) with certain compiler 827 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 828 ** instead of an 8-byte one. This all works fine, except that when 829 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 830 ** that a Mem structure is located on an 8-byte boundary. To prevent 831 ** these assert()s from failing, when building with SQLITE_DEBUG defined 832 ** using gcc, we force nullMem to be 8-byte aligned using the magical 833 ** __attribute__((aligned(8))) macro. */ 834 static const Mem nullMem 835 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 836 __attribute__((aligned(8))) 837 #endif 838 = { 839 /* .u = */ {0}, 840 /* .flags = */ MEM_Null, 841 /* .enc = */ 0, 842 /* .n = */ 0, 843 /* .z = */ 0, 844 /* .zMalloc = */ 0, 845 /* .szMalloc = */ 0, 846 /* .iPadding1 = */ 0, 847 /* .db = */ 0, 848 /* .xDel = */ 0, 849 #ifdef SQLITE_DEBUG 850 /* .pScopyFrom = */ 0, 851 /* .pFiller = */ 0, 852 #endif 853 }; 854 return &nullMem; 855 } 856 857 /* 858 ** Check to see if column iCol of the given statement is valid. If 859 ** it is, return a pointer to the Mem for the value of that column. 860 ** If iCol is not valid, return a pointer to a Mem which has a value 861 ** of NULL. 862 */ 863 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 864 Vdbe *pVm; 865 Mem *pOut; 866 867 pVm = (Vdbe *)pStmt; 868 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 869 sqlite3_mutex_enter(pVm->db->mutex); 870 pOut = &pVm->pResultSet[i]; 871 }else{ 872 if( pVm && ALWAYS(pVm->db) ){ 873 sqlite3_mutex_enter(pVm->db->mutex); 874 sqlite3Error(pVm->db, SQLITE_RANGE); 875 } 876 pOut = (Mem*)columnNullValue(); 877 } 878 return pOut; 879 } 880 881 /* 882 ** This function is called after invoking an sqlite3_value_XXX function on a 883 ** column value (i.e. a value returned by evaluating an SQL expression in the 884 ** select list of a SELECT statement) that may cause a malloc() failure. If 885 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 886 ** code of statement pStmt set to SQLITE_NOMEM. 887 ** 888 ** Specifically, this is called from within: 889 ** 890 ** sqlite3_column_int() 891 ** sqlite3_column_int64() 892 ** sqlite3_column_text() 893 ** sqlite3_column_text16() 894 ** sqlite3_column_real() 895 ** sqlite3_column_bytes() 896 ** sqlite3_column_bytes16() 897 ** sqiite3_column_blob() 898 */ 899 static void columnMallocFailure(sqlite3_stmt *pStmt) 900 { 901 /* If malloc() failed during an encoding conversion within an 902 ** sqlite3_column_XXX API, then set the return code of the statement to 903 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 904 ** and _finalize() will return NOMEM. 905 */ 906 Vdbe *p = (Vdbe *)pStmt; 907 if( p ){ 908 p->rc = sqlite3ApiExit(p->db, p->rc); 909 sqlite3_mutex_leave(p->db->mutex); 910 } 911 } 912 913 /**************************** sqlite3_column_ ******************************* 914 ** The following routines are used to access elements of the current row 915 ** in the result set. 916 */ 917 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 918 const void *val; 919 val = sqlite3_value_blob( columnMem(pStmt,i) ); 920 /* Even though there is no encoding conversion, value_blob() might 921 ** need to call malloc() to expand the result of a zeroblob() 922 ** expression. 923 */ 924 columnMallocFailure(pStmt); 925 return val; 926 } 927 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 928 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 929 columnMallocFailure(pStmt); 930 return val; 931 } 932 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 933 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 934 columnMallocFailure(pStmt); 935 return val; 936 } 937 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 938 double val = sqlite3_value_double( columnMem(pStmt,i) ); 939 columnMallocFailure(pStmt); 940 return val; 941 } 942 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 943 int val = sqlite3_value_int( columnMem(pStmt,i) ); 944 columnMallocFailure(pStmt); 945 return val; 946 } 947 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 948 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 949 columnMallocFailure(pStmt); 950 return val; 951 } 952 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 953 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 954 columnMallocFailure(pStmt); 955 return val; 956 } 957 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 958 Mem *pOut = columnMem(pStmt, i); 959 if( pOut->flags&MEM_Static ){ 960 pOut->flags &= ~MEM_Static; 961 pOut->flags |= MEM_Ephem; 962 } 963 columnMallocFailure(pStmt); 964 return (sqlite3_value *)pOut; 965 } 966 #ifndef SQLITE_OMIT_UTF16 967 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 968 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 969 columnMallocFailure(pStmt); 970 return val; 971 } 972 #endif /* SQLITE_OMIT_UTF16 */ 973 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 974 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 975 columnMallocFailure(pStmt); 976 return iType; 977 } 978 979 /* 980 ** Convert the N-th element of pStmt->pColName[] into a string using 981 ** xFunc() then return that string. If N is out of range, return 0. 982 ** 983 ** There are up to 5 names for each column. useType determines which 984 ** name is returned. Here are the names: 985 ** 986 ** 0 The column name as it should be displayed for output 987 ** 1 The datatype name for the column 988 ** 2 The name of the database that the column derives from 989 ** 3 The name of the table that the column derives from 990 ** 4 The name of the table column that the result column derives from 991 ** 992 ** If the result is not a simple column reference (if it is an expression 993 ** or a constant) then useTypes 2, 3, and 4 return NULL. 994 */ 995 static const void *columnName( 996 sqlite3_stmt *pStmt, 997 int N, 998 const void *(*xFunc)(Mem*), 999 int useType 1000 ){ 1001 const void *ret; 1002 Vdbe *p; 1003 int n; 1004 sqlite3 *db; 1005 #ifdef SQLITE_ENABLE_API_ARMOR 1006 if( pStmt==0 ){ 1007 (void)SQLITE_MISUSE_BKPT; 1008 return 0; 1009 } 1010 #endif 1011 ret = 0; 1012 p = (Vdbe *)pStmt; 1013 db = p->db; 1014 assert( db!=0 ); 1015 n = sqlite3_column_count(pStmt); 1016 if( N<n && N>=0 ){ 1017 N += useType*n; 1018 sqlite3_mutex_enter(db->mutex); 1019 assert( db->mallocFailed==0 ); 1020 ret = xFunc(&p->aColName[N]); 1021 /* A malloc may have failed inside of the xFunc() call. If this 1022 ** is the case, clear the mallocFailed flag and return NULL. 1023 */ 1024 if( db->mallocFailed ){ 1025 db->mallocFailed = 0; 1026 ret = 0; 1027 } 1028 sqlite3_mutex_leave(db->mutex); 1029 } 1030 return ret; 1031 } 1032 1033 /* 1034 ** Return the name of the Nth column of the result set returned by SQL 1035 ** statement pStmt. 1036 */ 1037 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1038 return columnName( 1039 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1040 } 1041 #ifndef SQLITE_OMIT_UTF16 1042 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1043 return columnName( 1044 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1045 } 1046 #endif 1047 1048 /* 1049 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1050 ** not define OMIT_DECLTYPE. 1051 */ 1052 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1053 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1054 and SQLITE_ENABLE_COLUMN_METADATA" 1055 #endif 1056 1057 #ifndef SQLITE_OMIT_DECLTYPE 1058 /* 1059 ** Return the column declaration type (if applicable) of the 'i'th column 1060 ** of the result set of SQL statement pStmt. 1061 */ 1062 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1063 return columnName( 1064 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1065 } 1066 #ifndef SQLITE_OMIT_UTF16 1067 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1068 return columnName( 1069 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1070 } 1071 #endif /* SQLITE_OMIT_UTF16 */ 1072 #endif /* SQLITE_OMIT_DECLTYPE */ 1073 1074 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1075 /* 1076 ** Return the name of the database from which a result column derives. 1077 ** NULL is returned if the result column is an expression or constant or 1078 ** anything else which is not an unambiguous reference to a database column. 1079 */ 1080 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1081 return columnName( 1082 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1083 } 1084 #ifndef SQLITE_OMIT_UTF16 1085 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1086 return columnName( 1087 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1088 } 1089 #endif /* SQLITE_OMIT_UTF16 */ 1090 1091 /* 1092 ** Return the name of the table from which a result column derives. 1093 ** NULL is returned if the result column is an expression or constant or 1094 ** anything else which is not an unambiguous reference to a database column. 1095 */ 1096 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1097 return columnName( 1098 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1099 } 1100 #ifndef SQLITE_OMIT_UTF16 1101 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1102 return columnName( 1103 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1104 } 1105 #endif /* SQLITE_OMIT_UTF16 */ 1106 1107 /* 1108 ** Return the name of the table column from which a result column derives. 1109 ** NULL is returned if the result column is an expression or constant or 1110 ** anything else which is not an unambiguous reference to a database column. 1111 */ 1112 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1113 return columnName( 1114 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1115 } 1116 #ifndef SQLITE_OMIT_UTF16 1117 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1118 return columnName( 1119 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1120 } 1121 #endif /* SQLITE_OMIT_UTF16 */ 1122 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1123 1124 1125 /******************************* sqlite3_bind_ *************************** 1126 ** 1127 ** Routines used to attach values to wildcards in a compiled SQL statement. 1128 */ 1129 /* 1130 ** Unbind the value bound to variable i in virtual machine p. This is the 1131 ** the same as binding a NULL value to the column. If the "i" parameter is 1132 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1133 ** 1134 ** A successful evaluation of this routine acquires the mutex on p. 1135 ** the mutex is released if any kind of error occurs. 1136 ** 1137 ** The error code stored in database p->db is overwritten with the return 1138 ** value in any case. 1139 */ 1140 static int vdbeUnbind(Vdbe *p, int i){ 1141 Mem *pVar; 1142 if( vdbeSafetyNotNull(p) ){ 1143 return SQLITE_MISUSE_BKPT; 1144 } 1145 sqlite3_mutex_enter(p->db->mutex); 1146 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1147 sqlite3Error(p->db, SQLITE_MISUSE); 1148 sqlite3_mutex_leave(p->db->mutex); 1149 sqlite3_log(SQLITE_MISUSE, 1150 "bind on a busy prepared statement: [%s]", p->zSql); 1151 return SQLITE_MISUSE_BKPT; 1152 } 1153 if( i<1 || i>p->nVar ){ 1154 sqlite3Error(p->db, SQLITE_RANGE); 1155 sqlite3_mutex_leave(p->db->mutex); 1156 return SQLITE_RANGE; 1157 } 1158 i--; 1159 pVar = &p->aVar[i]; 1160 sqlite3VdbeMemRelease(pVar); 1161 pVar->flags = MEM_Null; 1162 sqlite3Error(p->db, SQLITE_OK); 1163 1164 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1165 ** binding a new value to this variable invalidates the current query plan. 1166 ** 1167 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1168 ** parameter in the WHERE clause might influence the choice of query plan 1169 ** for a statement, then the statement will be automatically recompiled, 1170 ** as if there had been a schema change, on the first sqlite3_step() call 1171 ** following any change to the bindings of that parameter. 1172 */ 1173 if( p->isPrepareV2 && 1174 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1175 ){ 1176 p->expired = 1; 1177 } 1178 return SQLITE_OK; 1179 } 1180 1181 /* 1182 ** Bind a text or BLOB value. 1183 */ 1184 static int bindText( 1185 sqlite3_stmt *pStmt, /* The statement to bind against */ 1186 int i, /* Index of the parameter to bind */ 1187 const void *zData, /* Pointer to the data to be bound */ 1188 int nData, /* Number of bytes of data to be bound */ 1189 void (*xDel)(void*), /* Destructor for the data */ 1190 u8 encoding /* Encoding for the data */ 1191 ){ 1192 Vdbe *p = (Vdbe *)pStmt; 1193 Mem *pVar; 1194 int rc; 1195 1196 rc = vdbeUnbind(p, i); 1197 if( rc==SQLITE_OK ){ 1198 if( zData!=0 ){ 1199 pVar = &p->aVar[i-1]; 1200 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1201 if( rc==SQLITE_OK && encoding!=0 ){ 1202 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1203 } 1204 sqlite3Error(p->db, rc); 1205 rc = sqlite3ApiExit(p->db, rc); 1206 } 1207 sqlite3_mutex_leave(p->db->mutex); 1208 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1209 xDel((void*)zData); 1210 } 1211 return rc; 1212 } 1213 1214 1215 /* 1216 ** Bind a blob value to an SQL statement variable. 1217 */ 1218 int sqlite3_bind_blob( 1219 sqlite3_stmt *pStmt, 1220 int i, 1221 const void *zData, 1222 int nData, 1223 void (*xDel)(void*) 1224 ){ 1225 return bindText(pStmt, i, zData, nData, xDel, 0); 1226 } 1227 int sqlite3_bind_blob64( 1228 sqlite3_stmt *pStmt, 1229 int i, 1230 const void *zData, 1231 sqlite3_uint64 nData, 1232 void (*xDel)(void*) 1233 ){ 1234 assert( xDel!=SQLITE_DYNAMIC ); 1235 if( nData>0x7fffffff ){ 1236 return invokeValueDestructor(zData, xDel, 0); 1237 }else{ 1238 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1239 } 1240 } 1241 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1242 int rc; 1243 Vdbe *p = (Vdbe *)pStmt; 1244 rc = vdbeUnbind(p, i); 1245 if( rc==SQLITE_OK ){ 1246 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1247 sqlite3_mutex_leave(p->db->mutex); 1248 } 1249 return rc; 1250 } 1251 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1252 return sqlite3_bind_int64(p, i, (i64)iValue); 1253 } 1254 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1255 int rc; 1256 Vdbe *p = (Vdbe *)pStmt; 1257 rc = vdbeUnbind(p, i); 1258 if( rc==SQLITE_OK ){ 1259 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1260 sqlite3_mutex_leave(p->db->mutex); 1261 } 1262 return rc; 1263 } 1264 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1265 int rc; 1266 Vdbe *p = (Vdbe*)pStmt; 1267 rc = vdbeUnbind(p, i); 1268 if( rc==SQLITE_OK ){ 1269 sqlite3_mutex_leave(p->db->mutex); 1270 } 1271 return rc; 1272 } 1273 int sqlite3_bind_text( 1274 sqlite3_stmt *pStmt, 1275 int i, 1276 const char *zData, 1277 int nData, 1278 void (*xDel)(void*) 1279 ){ 1280 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1281 } 1282 int sqlite3_bind_text64( 1283 sqlite3_stmt *pStmt, 1284 int i, 1285 const char *zData, 1286 sqlite3_uint64 nData, 1287 void (*xDel)(void*), 1288 unsigned char enc 1289 ){ 1290 assert( xDel!=SQLITE_DYNAMIC ); 1291 if( nData>0x7fffffff ){ 1292 return invokeValueDestructor(zData, xDel, 0); 1293 }else{ 1294 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1295 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1296 } 1297 } 1298 #ifndef SQLITE_OMIT_UTF16 1299 int sqlite3_bind_text16( 1300 sqlite3_stmt *pStmt, 1301 int i, 1302 const void *zData, 1303 int nData, 1304 void (*xDel)(void*) 1305 ){ 1306 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1307 } 1308 #endif /* SQLITE_OMIT_UTF16 */ 1309 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1310 int rc; 1311 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1312 case SQLITE_INTEGER: { 1313 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1314 break; 1315 } 1316 case SQLITE_FLOAT: { 1317 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1318 break; 1319 } 1320 case SQLITE_BLOB: { 1321 if( pValue->flags & MEM_Zero ){ 1322 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1323 }else{ 1324 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1325 } 1326 break; 1327 } 1328 case SQLITE_TEXT: { 1329 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1330 pValue->enc); 1331 break; 1332 } 1333 default: { 1334 rc = sqlite3_bind_null(pStmt, i); 1335 break; 1336 } 1337 } 1338 return rc; 1339 } 1340 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1341 int rc; 1342 Vdbe *p = (Vdbe *)pStmt; 1343 rc = vdbeUnbind(p, i); 1344 if( rc==SQLITE_OK ){ 1345 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1346 sqlite3_mutex_leave(p->db->mutex); 1347 } 1348 return rc; 1349 } 1350 1351 /* 1352 ** Return the number of wildcards that can be potentially bound to. 1353 ** This routine is added to support DBD::SQLite. 1354 */ 1355 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1356 Vdbe *p = (Vdbe*)pStmt; 1357 return p ? p->nVar : 0; 1358 } 1359 1360 /* 1361 ** Return the name of a wildcard parameter. Return NULL if the index 1362 ** is out of range or if the wildcard is unnamed. 1363 ** 1364 ** The result is always UTF-8. 1365 */ 1366 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1367 Vdbe *p = (Vdbe*)pStmt; 1368 if( p==0 || i<1 || i>p->nzVar ){ 1369 return 0; 1370 } 1371 return p->azVar[i-1]; 1372 } 1373 1374 /* 1375 ** Given a wildcard parameter name, return the index of the variable 1376 ** with that name. If there is no variable with the given name, 1377 ** return 0. 1378 */ 1379 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1380 int i; 1381 if( p==0 ){ 1382 return 0; 1383 } 1384 if( zName ){ 1385 for(i=0; i<p->nzVar; i++){ 1386 const char *z = p->azVar[i]; 1387 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1388 return i+1; 1389 } 1390 } 1391 } 1392 return 0; 1393 } 1394 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1395 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1396 } 1397 1398 /* 1399 ** Transfer all bindings from the first statement over to the second. 1400 */ 1401 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1402 Vdbe *pFrom = (Vdbe*)pFromStmt; 1403 Vdbe *pTo = (Vdbe*)pToStmt; 1404 int i; 1405 assert( pTo->db==pFrom->db ); 1406 assert( pTo->nVar==pFrom->nVar ); 1407 sqlite3_mutex_enter(pTo->db->mutex); 1408 for(i=0; i<pFrom->nVar; i++){ 1409 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1410 } 1411 sqlite3_mutex_leave(pTo->db->mutex); 1412 return SQLITE_OK; 1413 } 1414 1415 #ifndef SQLITE_OMIT_DEPRECATED 1416 /* 1417 ** Deprecated external interface. Internal/core SQLite code 1418 ** should call sqlite3TransferBindings. 1419 ** 1420 ** It is misuse to call this routine with statements from different 1421 ** database connections. But as this is a deprecated interface, we 1422 ** will not bother to check for that condition. 1423 ** 1424 ** If the two statements contain a different number of bindings, then 1425 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1426 ** SQLITE_OK is returned. 1427 */ 1428 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1429 Vdbe *pFrom = (Vdbe*)pFromStmt; 1430 Vdbe *pTo = (Vdbe*)pToStmt; 1431 if( pFrom->nVar!=pTo->nVar ){ 1432 return SQLITE_ERROR; 1433 } 1434 if( pTo->isPrepareV2 && pTo->expmask ){ 1435 pTo->expired = 1; 1436 } 1437 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1438 pFrom->expired = 1; 1439 } 1440 return sqlite3TransferBindings(pFromStmt, pToStmt); 1441 } 1442 #endif 1443 1444 /* 1445 ** Return the sqlite3* database handle to which the prepared statement given 1446 ** in the argument belongs. This is the same database handle that was 1447 ** the first argument to the sqlite3_prepare() that was used to create 1448 ** the statement in the first place. 1449 */ 1450 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1451 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1452 } 1453 1454 /* 1455 ** Return true if the prepared statement is guaranteed to not modify the 1456 ** database. 1457 */ 1458 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1459 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1460 } 1461 1462 /* 1463 ** Return true if the prepared statement is in need of being reset. 1464 */ 1465 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1466 Vdbe *v = (Vdbe*)pStmt; 1467 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1468 } 1469 1470 /* 1471 ** Return a pointer to the next prepared statement after pStmt associated 1472 ** with database connection pDb. If pStmt is NULL, return the first 1473 ** prepared statement for the database connection. Return NULL if there 1474 ** are no more. 1475 */ 1476 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1477 sqlite3_stmt *pNext; 1478 #ifdef SQLITE_ENABLE_API_ARMOR 1479 if( !sqlite3SafetyCheckOk(pDb) ){ 1480 (void)SQLITE_MISUSE_BKPT; 1481 return 0; 1482 } 1483 #endif 1484 sqlite3_mutex_enter(pDb->mutex); 1485 if( pStmt==0 ){ 1486 pNext = (sqlite3_stmt*)pDb->pVdbe; 1487 }else{ 1488 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1489 } 1490 sqlite3_mutex_leave(pDb->mutex); 1491 return pNext; 1492 } 1493 1494 /* 1495 ** Return the value of a status counter for a prepared statement 1496 */ 1497 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1498 Vdbe *pVdbe = (Vdbe*)pStmt; 1499 u32 v; 1500 #ifdef SQLITE_ENABLE_API_ARMOR 1501 if( !pStmt ){ 1502 (void)SQLITE_MISUSE_BKPT; 1503 return 0; 1504 } 1505 #endif 1506 v = pVdbe->aCounter[op]; 1507 if( resetFlag ) pVdbe->aCounter[op] = 0; 1508 return (int)v; 1509 } 1510 1511 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1512 /* 1513 ** Return status data for a single loop within query pStmt. 1514 */ 1515 int sqlite3_stmt_scanstatus( 1516 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1517 int idx, /* Index of loop to report on */ 1518 int iScanStatusOp, /* Which metric to return */ 1519 void *pOut /* OUT: Write the answer here */ 1520 ){ 1521 Vdbe *p = (Vdbe*)pStmt; 1522 ScanStatus *pScan; 1523 if( idx<0 || idx>=p->nScan ) return 1; 1524 pScan = &p->aScan[idx]; 1525 switch( iScanStatusOp ){ 1526 case SQLITE_SCANSTAT_NLOOP: { 1527 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1528 break; 1529 } 1530 case SQLITE_SCANSTAT_NVISIT: { 1531 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1532 break; 1533 } 1534 case SQLITE_SCANSTAT_EST: { 1535 double r = 1.0; 1536 LogEst x = pScan->nEst; 1537 while( x<100 ){ 1538 x += 10; 1539 r *= 0.5; 1540 } 1541 *(double*)pOut = r*sqlite3LogEstToInt(x); 1542 break; 1543 } 1544 case SQLITE_SCANSTAT_NAME: { 1545 *(const char**)pOut = pScan->zName; 1546 break; 1547 } 1548 case SQLITE_SCANSTAT_EXPLAIN: { 1549 if( pScan->addrExplain ){ 1550 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1551 }else{ 1552 *(const char**)pOut = 0; 1553 } 1554 break; 1555 } 1556 case SQLITE_SCANSTAT_SELECTID: { 1557 if( pScan->addrExplain ){ 1558 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1559 }else{ 1560 *(int*)pOut = -1; 1561 } 1562 break; 1563 } 1564 default: { 1565 return 1; 1566 } 1567 } 1568 return 0; 1569 } 1570 1571 /* 1572 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1573 */ 1574 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1575 Vdbe *p = (Vdbe*)pStmt; 1576 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1577 } 1578 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1579