xref: /sqlite-3.40.0/src/vdbeapi.c (revision 44723ce0)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 /*
57 ** The following routine destroys a virtual machine that is created by
58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
59 ** success/failure code that describes the result of executing the virtual
60 ** machine.
61 **
62 ** This routine sets the error code and string returned by
63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
64 */
65 int sqlite3_finalize(sqlite3_stmt *pStmt){
66   int rc;
67   if( pStmt==0 ){
68     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
69     ** pointer is a harmless no-op. */
70     rc = SQLITE_OK;
71   }else{
72     Vdbe *v = (Vdbe*)pStmt;
73     sqlite3 *db = v->db;
74     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
75     sqlite3_mutex_enter(db->mutex);
76     rc = sqlite3VdbeFinalize(v);
77     rc = sqlite3ApiExit(db, rc);
78     sqlite3LeaveMutexAndCloseZombie(db);
79   }
80   return rc;
81 }
82 
83 /*
84 ** Terminate the current execution of an SQL statement and reset it
85 ** back to its starting state so that it can be reused. A success code from
86 ** the prior execution is returned.
87 **
88 ** This routine sets the error code and string returned by
89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
90 */
91 int sqlite3_reset(sqlite3_stmt *pStmt){
92   int rc;
93   if( pStmt==0 ){
94     rc = SQLITE_OK;
95   }else{
96     Vdbe *v = (Vdbe*)pStmt;
97     sqlite3_mutex_enter(v->db->mutex);
98     rc = sqlite3VdbeReset(v);
99     sqlite3VdbeRewind(v);
100     assert( (rc & (v->db->errMask))==rc );
101     rc = sqlite3ApiExit(v->db, rc);
102     sqlite3_mutex_leave(v->db->mutex);
103   }
104   return rc;
105 }
106 
107 /*
108 ** Set all the parameters in the compiled SQL statement to NULL.
109 */
110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
111   int i;
112   int rc = SQLITE_OK;
113   Vdbe *p = (Vdbe*)pStmt;
114 #if SQLITE_THREADSAFE
115   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
116 #endif
117   sqlite3_mutex_enter(mutex);
118   for(i=0; i<p->nVar; i++){
119     sqlite3VdbeMemRelease(&p->aVar[i]);
120     p->aVar[i].flags = MEM_Null;
121   }
122   if( p->isPrepareV2 && p->expmask ){
123     p->expired = 1;
124   }
125   sqlite3_mutex_leave(mutex);
126   return rc;
127 }
128 
129 
130 /**************************** sqlite3_value_  *******************************
131 ** The following routines extract information from a Mem or sqlite3_value
132 ** structure.
133 */
134 const void *sqlite3_value_blob(sqlite3_value *pVal){
135   Mem *p = (Mem*)pVal;
136   if( p->flags & (MEM_Blob|MEM_Str) ){
137     sqlite3VdbeMemExpandBlob(p);
138     p->flags |= MEM_Blob;
139     return p->n ? p->z : 0;
140   }else{
141     return sqlite3_value_text(pVal);
142   }
143 }
144 int sqlite3_value_bytes(sqlite3_value *pVal){
145   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
146 }
147 int sqlite3_value_bytes16(sqlite3_value *pVal){
148   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
149 }
150 double sqlite3_value_double(sqlite3_value *pVal){
151   return sqlite3VdbeRealValue((Mem*)pVal);
152 }
153 int sqlite3_value_int(sqlite3_value *pVal){
154   return (int)sqlite3VdbeIntValue((Mem*)pVal);
155 }
156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
157   return sqlite3VdbeIntValue((Mem*)pVal);
158 }
159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
160   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
161 }
162 #ifndef SQLITE_OMIT_UTF16
163 const void *sqlite3_value_text16(sqlite3_value* pVal){
164   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
165 }
166 const void *sqlite3_value_text16be(sqlite3_value *pVal){
167   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
168 }
169 const void *sqlite3_value_text16le(sqlite3_value *pVal){
170   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
171 }
172 #endif /* SQLITE_OMIT_UTF16 */
173 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
174 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
175 ** point number string BLOB NULL
176 */
177 int sqlite3_value_type(sqlite3_value* pVal){
178   static const u8 aType[] = {
179      SQLITE_BLOB,     /* 0x00 */
180      SQLITE_NULL,     /* 0x01 */
181      SQLITE_TEXT,     /* 0x02 */
182      SQLITE_NULL,     /* 0x03 */
183      SQLITE_INTEGER,  /* 0x04 */
184      SQLITE_NULL,     /* 0x05 */
185      SQLITE_INTEGER,  /* 0x06 */
186      SQLITE_NULL,     /* 0x07 */
187      SQLITE_FLOAT,    /* 0x08 */
188      SQLITE_NULL,     /* 0x09 */
189      SQLITE_FLOAT,    /* 0x0a */
190      SQLITE_NULL,     /* 0x0b */
191      SQLITE_INTEGER,  /* 0x0c */
192      SQLITE_NULL,     /* 0x0d */
193      SQLITE_INTEGER,  /* 0x0e */
194      SQLITE_NULL,     /* 0x0f */
195      SQLITE_BLOB,     /* 0x10 */
196      SQLITE_NULL,     /* 0x11 */
197      SQLITE_TEXT,     /* 0x12 */
198      SQLITE_NULL,     /* 0x13 */
199      SQLITE_INTEGER,  /* 0x14 */
200      SQLITE_NULL,     /* 0x15 */
201      SQLITE_INTEGER,  /* 0x16 */
202      SQLITE_NULL,     /* 0x17 */
203      SQLITE_FLOAT,    /* 0x18 */
204      SQLITE_NULL,     /* 0x19 */
205      SQLITE_FLOAT,    /* 0x1a */
206      SQLITE_NULL,     /* 0x1b */
207      SQLITE_INTEGER,  /* 0x1c */
208      SQLITE_NULL,     /* 0x1d */
209      SQLITE_INTEGER,  /* 0x1e */
210      SQLITE_NULL,     /* 0x1f */
211   };
212   return aType[pVal->flags&MEM_AffMask];
213 }
214 
215 /**************************** sqlite3_result_  *******************************
216 ** The following routines are used by user-defined functions to specify
217 ** the function result.
218 **
219 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
220 ** result as a string or blob but if the string or blob is too large, it
221 ** then sets the error code to SQLITE_TOOBIG
222 **
223 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
224 ** on value P is not going to be used and need to be destroyed.
225 */
226 static void setResultStrOrError(
227   sqlite3_context *pCtx,  /* Function context */
228   const char *z,          /* String pointer */
229   int n,                  /* Bytes in string, or negative */
230   u8 enc,                 /* Encoding of z.  0 for BLOBs */
231   void (*xDel)(void*)     /* Destructor function */
232 ){
233   if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
234     sqlite3_result_error_toobig(pCtx);
235   }
236 }
237 static int invokeValueDestructor(
238   const void *p,             /* Value to destroy */
239   void (*xDel)(void*),       /* The destructor */
240   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
241 ){
242   assert( xDel!=SQLITE_DYNAMIC );
243   if( xDel==0 ){
244     /* noop */
245   }else if( xDel==SQLITE_TRANSIENT ){
246     /* noop */
247   }else{
248     xDel((void*)p);
249   }
250   if( pCtx ) sqlite3_result_error_toobig(pCtx);
251   return SQLITE_TOOBIG;
252 }
253 void sqlite3_result_blob(
254   sqlite3_context *pCtx,
255   const void *z,
256   int n,
257   void (*xDel)(void *)
258 ){
259   assert( n>=0 );
260   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
261   setResultStrOrError(pCtx, z, n, 0, xDel);
262 }
263 void sqlite3_result_blob64(
264   sqlite3_context *pCtx,
265   const void *z,
266   sqlite3_uint64 n,
267   void (*xDel)(void *)
268 ){
269   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
270   assert( xDel!=SQLITE_DYNAMIC );
271   if( n>0x7fffffff ){
272     (void)invokeValueDestructor(z, xDel, pCtx);
273   }else{
274     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
275   }
276 }
277 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
278   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
279   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
280 }
281 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
282   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
283   pCtx->isError = SQLITE_ERROR;
284   pCtx->fErrorOrAux = 1;
285   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
286 }
287 #ifndef SQLITE_OMIT_UTF16
288 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
289   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
290   pCtx->isError = SQLITE_ERROR;
291   pCtx->fErrorOrAux = 1;
292   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
293 }
294 #endif
295 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
296   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
297   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
298 }
299 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
300   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
301   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
302 }
303 void sqlite3_result_null(sqlite3_context *pCtx){
304   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
305   sqlite3VdbeMemSetNull(pCtx->pOut);
306 }
307 void sqlite3_result_text(
308   sqlite3_context *pCtx,
309   const char *z,
310   int n,
311   void (*xDel)(void *)
312 ){
313   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
314   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
315 }
316 void sqlite3_result_text64(
317   sqlite3_context *pCtx,
318   const char *z,
319   sqlite3_uint64 n,
320   void (*xDel)(void *),
321   unsigned char enc
322 ){
323   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
324   assert( xDel!=SQLITE_DYNAMIC );
325   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
326   if( n>0x7fffffff ){
327     (void)invokeValueDestructor(z, xDel, pCtx);
328   }else{
329     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
330   }
331 }
332 #ifndef SQLITE_OMIT_UTF16
333 void sqlite3_result_text16(
334   sqlite3_context *pCtx,
335   const void *z,
336   int n,
337   void (*xDel)(void *)
338 ){
339   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
340   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
341 }
342 void sqlite3_result_text16be(
343   sqlite3_context *pCtx,
344   const void *z,
345   int n,
346   void (*xDel)(void *)
347 ){
348   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
349   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
350 }
351 void sqlite3_result_text16le(
352   sqlite3_context *pCtx,
353   const void *z,
354   int n,
355   void (*xDel)(void *)
356 ){
357   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
358   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
359 }
360 #endif /* SQLITE_OMIT_UTF16 */
361 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
362   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
363   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
364 }
365 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
366   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
367   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
368 }
369 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
370   pCtx->isError = errCode;
371   pCtx->fErrorOrAux = 1;
372 #ifdef SQLITE_DEBUG
373   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
374 #endif
375   if( pCtx->pOut->flags & MEM_Null ){
376     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
377                          SQLITE_UTF8, SQLITE_STATIC);
378   }
379 }
380 
381 /* Force an SQLITE_TOOBIG error. */
382 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
383   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
384   pCtx->isError = SQLITE_TOOBIG;
385   pCtx->fErrorOrAux = 1;
386   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
387                        SQLITE_UTF8, SQLITE_STATIC);
388 }
389 
390 /* An SQLITE_NOMEM error. */
391 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
392   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
393   sqlite3VdbeMemSetNull(pCtx->pOut);
394   pCtx->isError = SQLITE_NOMEM;
395   pCtx->fErrorOrAux = 1;
396   pCtx->pOut->db->mallocFailed = 1;
397 }
398 
399 /*
400 ** This function is called after a transaction has been committed. It
401 ** invokes callbacks registered with sqlite3_wal_hook() as required.
402 */
403 static int doWalCallbacks(sqlite3 *db){
404   int rc = SQLITE_OK;
405 #ifndef SQLITE_OMIT_WAL
406   int i;
407   for(i=0; i<db->nDb; i++){
408     Btree *pBt = db->aDb[i].pBt;
409     if( pBt ){
410       int nEntry;
411       sqlite3BtreeEnter(pBt);
412       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
413       sqlite3BtreeLeave(pBt);
414       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
415         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
416       }
417     }
418   }
419 #endif
420   return rc;
421 }
422 
423 /*
424 ** Execute the statement pStmt, either until a row of data is ready, the
425 ** statement is completely executed or an error occurs.
426 **
427 ** This routine implements the bulk of the logic behind the sqlite_step()
428 ** API.  The only thing omitted is the automatic recompile if a
429 ** schema change has occurred.  That detail is handled by the
430 ** outer sqlite3_step() wrapper procedure.
431 */
432 static int sqlite3Step(Vdbe *p){
433   sqlite3 *db;
434   int rc;
435 
436   assert(p);
437   if( p->magic!=VDBE_MAGIC_RUN ){
438     /* We used to require that sqlite3_reset() be called before retrying
439     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
440     ** with version 3.7.0, we changed this so that sqlite3_reset() would
441     ** be called automatically instead of throwing the SQLITE_MISUSE error.
442     ** This "automatic-reset" change is not technically an incompatibility,
443     ** since any application that receives an SQLITE_MISUSE is broken by
444     ** definition.
445     **
446     ** Nevertheless, some published applications that were originally written
447     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
448     ** returns, and those were broken by the automatic-reset change.  As a
449     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
450     ** legacy behavior of returning SQLITE_MISUSE for cases where the
451     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
452     ** or SQLITE_BUSY error.
453     */
454 #ifdef SQLITE_OMIT_AUTORESET
455     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
456       sqlite3_reset((sqlite3_stmt*)p);
457     }else{
458       return SQLITE_MISUSE_BKPT;
459     }
460 #else
461     sqlite3_reset((sqlite3_stmt*)p);
462 #endif
463   }
464 
465   /* Check that malloc() has not failed. If it has, return early. */
466   db = p->db;
467   if( db->mallocFailed ){
468     p->rc = SQLITE_NOMEM;
469     return SQLITE_NOMEM;
470   }
471 
472   if( p->pc<=0 && p->expired ){
473     p->rc = SQLITE_SCHEMA;
474     rc = SQLITE_ERROR;
475     goto end_of_step;
476   }
477   if( p->pc<0 ){
478     /* If there are no other statements currently running, then
479     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
480     ** from interrupting a statement that has not yet started.
481     */
482     if( db->nVdbeActive==0 ){
483       db->u1.isInterrupted = 0;
484     }
485 
486     assert( db->nVdbeWrite>0 || db->autoCommit==0
487         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
488     );
489 
490 #ifndef SQLITE_OMIT_TRACE
491     if( db->xProfile && !db->init.busy ){
492       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
493     }
494 #endif
495 
496     db->nVdbeActive++;
497     if( p->readOnly==0 ) db->nVdbeWrite++;
498     if( p->bIsReader ) db->nVdbeRead++;
499     p->pc = 0;
500   }
501 #ifdef SQLITE_DEBUG
502   p->rcApp = SQLITE_OK;
503 #endif
504 #ifndef SQLITE_OMIT_EXPLAIN
505   if( p->explain ){
506     rc = sqlite3VdbeList(p);
507   }else
508 #endif /* SQLITE_OMIT_EXPLAIN */
509   {
510     db->nVdbeExec++;
511     rc = sqlite3VdbeExec(p);
512     db->nVdbeExec--;
513   }
514 
515 #ifndef SQLITE_OMIT_TRACE
516   /* Invoke the profile callback if there is one
517   */
518   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
519     sqlite3_int64 iNow;
520     sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
521     db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
522   }
523 #endif
524 
525   if( rc==SQLITE_DONE ){
526     assert( p->rc==SQLITE_OK );
527     p->rc = doWalCallbacks(db);
528     if( p->rc!=SQLITE_OK ){
529       rc = SQLITE_ERROR;
530     }
531   }
532 
533   db->errCode = rc;
534   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
535     p->rc = SQLITE_NOMEM;
536   }
537 end_of_step:
538   /* At this point local variable rc holds the value that should be
539   ** returned if this statement was compiled using the legacy
540   ** sqlite3_prepare() interface. According to the docs, this can only
541   ** be one of the values in the first assert() below. Variable p->rc
542   ** contains the value that would be returned if sqlite3_finalize()
543   ** were called on statement p.
544   */
545   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
546        || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
547   );
548   assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
549   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
550     /* If this statement was prepared using sqlite3_prepare_v2(), and an
551     ** error has occurred, then return the error code in p->rc to the
552     ** caller. Set the error code in the database handle to the same value.
553     */
554     rc = sqlite3VdbeTransferError(p);
555   }
556   return (rc&db->errMask);
557 }
558 
559 /*
560 ** This is the top-level implementation of sqlite3_step().  Call
561 ** sqlite3Step() to do most of the work.  If a schema error occurs,
562 ** call sqlite3Reprepare() and try again.
563 */
564 int sqlite3_step(sqlite3_stmt *pStmt){
565   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
566   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
567   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
568   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
569   sqlite3 *db;             /* The database connection */
570 
571   if( vdbeSafetyNotNull(v) ){
572     return SQLITE_MISUSE_BKPT;
573   }
574   db = v->db;
575   sqlite3_mutex_enter(db->mutex);
576   v->doingRerun = 0;
577   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
578          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
579     int savedPc = v->pc;
580     rc2 = rc = sqlite3Reprepare(v);
581     if( rc!=SQLITE_OK) break;
582     sqlite3_reset(pStmt);
583     if( savedPc>=0 ) v->doingRerun = 1;
584     assert( v->expired==0 );
585   }
586   if( rc2!=SQLITE_OK ){
587     /* This case occurs after failing to recompile an sql statement.
588     ** The error message from the SQL compiler has already been loaded
589     ** into the database handle. This block copies the error message
590     ** from the database handle into the statement and sets the statement
591     ** program counter to 0 to ensure that when the statement is
592     ** finalized or reset the parser error message is available via
593     ** sqlite3_errmsg() and sqlite3_errcode().
594     */
595     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
596     sqlite3DbFree(db, v->zErrMsg);
597     if( !db->mallocFailed ){
598       v->zErrMsg = sqlite3DbStrDup(db, zErr);
599       v->rc = rc2;
600     } else {
601       v->zErrMsg = 0;
602       v->rc = rc = SQLITE_NOMEM;
603     }
604   }
605   rc = sqlite3ApiExit(db, rc);
606   sqlite3_mutex_leave(db->mutex);
607   return rc;
608 }
609 
610 
611 /*
612 ** Extract the user data from a sqlite3_context structure and return a
613 ** pointer to it.
614 */
615 void *sqlite3_user_data(sqlite3_context *p){
616   assert( p && p->pFunc );
617   return p->pFunc->pUserData;
618 }
619 
620 /*
621 ** Extract the user data from a sqlite3_context structure and return a
622 ** pointer to it.
623 **
624 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
625 ** returns a copy of the pointer to the database connection (the 1st
626 ** parameter) of the sqlite3_create_function() and
627 ** sqlite3_create_function16() routines that originally registered the
628 ** application defined function.
629 */
630 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
631   assert( p && p->pFunc );
632   return p->pOut->db;
633 }
634 
635 /*
636 ** Return the current time for a statement.  If the current time
637 ** is requested more than once within the same run of a single prepared
638 ** statement, the exact same time is returned for each invocation regardless
639 ** of the amount of time that elapses between invocations.  In other words,
640 ** the time returned is always the time of the first call.
641 */
642 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
643   int rc;
644 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
645   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
646   assert( p->pVdbe!=0 );
647 #else
648   sqlite3_int64 iTime = 0;
649   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
650 #endif
651   if( *piTime==0 ){
652     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
653     if( rc ) *piTime = 0;
654   }
655   return *piTime;
656 }
657 
658 /*
659 ** The following is the implementation of an SQL function that always
660 ** fails with an error message stating that the function is used in the
661 ** wrong context.  The sqlite3_overload_function() API might construct
662 ** SQL function that use this routine so that the functions will exist
663 ** for name resolution but are actually overloaded by the xFindFunction
664 ** method of virtual tables.
665 */
666 void sqlite3InvalidFunction(
667   sqlite3_context *context,  /* The function calling context */
668   int NotUsed,               /* Number of arguments to the function */
669   sqlite3_value **NotUsed2   /* Value of each argument */
670 ){
671   const char *zName = context->pFunc->zName;
672   char *zErr;
673   UNUSED_PARAMETER2(NotUsed, NotUsed2);
674   zErr = sqlite3_mprintf(
675       "unable to use function %s in the requested context", zName);
676   sqlite3_result_error(context, zErr, -1);
677   sqlite3_free(zErr);
678 }
679 
680 /*
681 ** Create a new aggregate context for p and return a pointer to
682 ** its pMem->z element.
683 */
684 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
685   Mem *pMem = p->pMem;
686   assert( (pMem->flags & MEM_Agg)==0 );
687   if( nByte<=0 ){
688     sqlite3VdbeMemSetNull(pMem);
689     pMem->z = 0;
690   }else{
691     sqlite3VdbeMemClearAndResize(pMem, nByte);
692     pMem->flags = MEM_Agg;
693     pMem->u.pDef = p->pFunc;
694     if( pMem->z ){
695       memset(pMem->z, 0, nByte);
696     }
697   }
698   return (void*)pMem->z;
699 }
700 
701 /*
702 ** Allocate or return the aggregate context for a user function.  A new
703 ** context is allocated on the first call.  Subsequent calls return the
704 ** same context that was returned on prior calls.
705 */
706 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
707   assert( p && p->pFunc && p->pFunc->xStep );
708   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
709   testcase( nByte<0 );
710   if( (p->pMem->flags & MEM_Agg)==0 ){
711     return createAggContext(p, nByte);
712   }else{
713     return (void*)p->pMem->z;
714   }
715 }
716 
717 /*
718 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
719 ** the user-function defined by pCtx.
720 */
721 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
722   AuxData *pAuxData;
723 
724   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
725 #if SQLITE_ENABLE_STAT3_OR_STAT4
726   if( pCtx->pVdbe==0 ) return 0;
727 #else
728   assert( pCtx->pVdbe!=0 );
729 #endif
730   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
731     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
732   }
733 
734   return (pAuxData ? pAuxData->pAux : 0);
735 }
736 
737 /*
738 ** Set the auxiliary data pointer and delete function, for the iArg'th
739 ** argument to the user-function defined by pCtx. Any previous value is
740 ** deleted by calling the delete function specified when it was set.
741 */
742 void sqlite3_set_auxdata(
743   sqlite3_context *pCtx,
744   int iArg,
745   void *pAux,
746   void (*xDelete)(void*)
747 ){
748   AuxData *pAuxData;
749   Vdbe *pVdbe = pCtx->pVdbe;
750 
751   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
752   if( iArg<0 ) goto failed;
753 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
754   if( pVdbe==0 ) goto failed;
755 #else
756   assert( pVdbe!=0 );
757 #endif
758 
759   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
760     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
761   }
762   if( pAuxData==0 ){
763     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
764     if( !pAuxData ) goto failed;
765     pAuxData->iOp = pCtx->iOp;
766     pAuxData->iArg = iArg;
767     pAuxData->pNext = pVdbe->pAuxData;
768     pVdbe->pAuxData = pAuxData;
769     if( pCtx->fErrorOrAux==0 ){
770       pCtx->isError = 0;
771       pCtx->fErrorOrAux = 1;
772     }
773   }else if( pAuxData->xDelete ){
774     pAuxData->xDelete(pAuxData->pAux);
775   }
776 
777   pAuxData->pAux = pAux;
778   pAuxData->xDelete = xDelete;
779   return;
780 
781 failed:
782   if( xDelete ){
783     xDelete(pAux);
784   }
785 }
786 
787 #ifndef SQLITE_OMIT_DEPRECATED
788 /*
789 ** Return the number of times the Step function of an aggregate has been
790 ** called.
791 **
792 ** This function is deprecated.  Do not use it for new code.  It is
793 ** provide only to avoid breaking legacy code.  New aggregate function
794 ** implementations should keep their own counts within their aggregate
795 ** context.
796 */
797 int sqlite3_aggregate_count(sqlite3_context *p){
798   assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
799   return p->pMem->n;
800 }
801 #endif
802 
803 /*
804 ** Return the number of columns in the result set for the statement pStmt.
805 */
806 int sqlite3_column_count(sqlite3_stmt *pStmt){
807   Vdbe *pVm = (Vdbe *)pStmt;
808   return pVm ? pVm->nResColumn : 0;
809 }
810 
811 /*
812 ** Return the number of values available from the current row of the
813 ** currently executing statement pStmt.
814 */
815 int sqlite3_data_count(sqlite3_stmt *pStmt){
816   Vdbe *pVm = (Vdbe *)pStmt;
817   if( pVm==0 || pVm->pResultSet==0 ) return 0;
818   return pVm->nResColumn;
819 }
820 
821 /*
822 ** Return a pointer to static memory containing an SQL NULL value.
823 */
824 static const Mem *columnNullValue(void){
825   /* Even though the Mem structure contains an element
826   ** of type i64, on certain architectures (x86) with certain compiler
827   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
828   ** instead of an 8-byte one. This all works fine, except that when
829   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
830   ** that a Mem structure is located on an 8-byte boundary. To prevent
831   ** these assert()s from failing, when building with SQLITE_DEBUG defined
832   ** using gcc, we force nullMem to be 8-byte aligned using the magical
833   ** __attribute__((aligned(8))) macro.  */
834   static const Mem nullMem
835 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
836     __attribute__((aligned(8)))
837 #endif
838     = {
839         /* .u          = */ {0},
840         /* .flags      = */ MEM_Null,
841         /* .enc        = */ 0,
842         /* .n          = */ 0,
843         /* .z          = */ 0,
844         /* .zMalloc    = */ 0,
845         /* .szMalloc   = */ 0,
846         /* .iPadding1  = */ 0,
847         /* .db         = */ 0,
848         /* .xDel       = */ 0,
849 #ifdef SQLITE_DEBUG
850         /* .pScopyFrom = */ 0,
851         /* .pFiller    = */ 0,
852 #endif
853       };
854   return &nullMem;
855 }
856 
857 /*
858 ** Check to see if column iCol of the given statement is valid.  If
859 ** it is, return a pointer to the Mem for the value of that column.
860 ** If iCol is not valid, return a pointer to a Mem which has a value
861 ** of NULL.
862 */
863 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
864   Vdbe *pVm;
865   Mem *pOut;
866 
867   pVm = (Vdbe *)pStmt;
868   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
869     sqlite3_mutex_enter(pVm->db->mutex);
870     pOut = &pVm->pResultSet[i];
871   }else{
872     if( pVm && ALWAYS(pVm->db) ){
873       sqlite3_mutex_enter(pVm->db->mutex);
874       sqlite3Error(pVm->db, SQLITE_RANGE);
875     }
876     pOut = (Mem*)columnNullValue();
877   }
878   return pOut;
879 }
880 
881 /*
882 ** This function is called after invoking an sqlite3_value_XXX function on a
883 ** column value (i.e. a value returned by evaluating an SQL expression in the
884 ** select list of a SELECT statement) that may cause a malloc() failure. If
885 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
886 ** code of statement pStmt set to SQLITE_NOMEM.
887 **
888 ** Specifically, this is called from within:
889 **
890 **     sqlite3_column_int()
891 **     sqlite3_column_int64()
892 **     sqlite3_column_text()
893 **     sqlite3_column_text16()
894 **     sqlite3_column_real()
895 **     sqlite3_column_bytes()
896 **     sqlite3_column_bytes16()
897 **     sqiite3_column_blob()
898 */
899 static void columnMallocFailure(sqlite3_stmt *pStmt)
900 {
901   /* If malloc() failed during an encoding conversion within an
902   ** sqlite3_column_XXX API, then set the return code of the statement to
903   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
904   ** and _finalize() will return NOMEM.
905   */
906   Vdbe *p = (Vdbe *)pStmt;
907   if( p ){
908     p->rc = sqlite3ApiExit(p->db, p->rc);
909     sqlite3_mutex_leave(p->db->mutex);
910   }
911 }
912 
913 /**************************** sqlite3_column_  *******************************
914 ** The following routines are used to access elements of the current row
915 ** in the result set.
916 */
917 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
918   const void *val;
919   val = sqlite3_value_blob( columnMem(pStmt,i) );
920   /* Even though there is no encoding conversion, value_blob() might
921   ** need to call malloc() to expand the result of a zeroblob()
922   ** expression.
923   */
924   columnMallocFailure(pStmt);
925   return val;
926 }
927 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
928   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
929   columnMallocFailure(pStmt);
930   return val;
931 }
932 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
933   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
934   columnMallocFailure(pStmt);
935   return val;
936 }
937 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
938   double val = sqlite3_value_double( columnMem(pStmt,i) );
939   columnMallocFailure(pStmt);
940   return val;
941 }
942 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
943   int val = sqlite3_value_int( columnMem(pStmt,i) );
944   columnMallocFailure(pStmt);
945   return val;
946 }
947 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
948   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
949   columnMallocFailure(pStmt);
950   return val;
951 }
952 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
953   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
954   columnMallocFailure(pStmt);
955   return val;
956 }
957 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
958   Mem *pOut = columnMem(pStmt, i);
959   if( pOut->flags&MEM_Static ){
960     pOut->flags &= ~MEM_Static;
961     pOut->flags |= MEM_Ephem;
962   }
963   columnMallocFailure(pStmt);
964   return (sqlite3_value *)pOut;
965 }
966 #ifndef SQLITE_OMIT_UTF16
967 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
968   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
969   columnMallocFailure(pStmt);
970   return val;
971 }
972 #endif /* SQLITE_OMIT_UTF16 */
973 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
974   int iType = sqlite3_value_type( columnMem(pStmt,i) );
975   columnMallocFailure(pStmt);
976   return iType;
977 }
978 
979 /*
980 ** Convert the N-th element of pStmt->pColName[] into a string using
981 ** xFunc() then return that string.  If N is out of range, return 0.
982 **
983 ** There are up to 5 names for each column.  useType determines which
984 ** name is returned.  Here are the names:
985 **
986 **    0      The column name as it should be displayed for output
987 **    1      The datatype name for the column
988 **    2      The name of the database that the column derives from
989 **    3      The name of the table that the column derives from
990 **    4      The name of the table column that the result column derives from
991 **
992 ** If the result is not a simple column reference (if it is an expression
993 ** or a constant) then useTypes 2, 3, and 4 return NULL.
994 */
995 static const void *columnName(
996   sqlite3_stmt *pStmt,
997   int N,
998   const void *(*xFunc)(Mem*),
999   int useType
1000 ){
1001   const void *ret;
1002   Vdbe *p;
1003   int n;
1004   sqlite3 *db;
1005 #ifdef SQLITE_ENABLE_API_ARMOR
1006   if( pStmt==0 ){
1007     (void)SQLITE_MISUSE_BKPT;
1008     return 0;
1009   }
1010 #endif
1011   ret = 0;
1012   p = (Vdbe *)pStmt;
1013   db = p->db;
1014   assert( db!=0 );
1015   n = sqlite3_column_count(pStmt);
1016   if( N<n && N>=0 ){
1017     N += useType*n;
1018     sqlite3_mutex_enter(db->mutex);
1019     assert( db->mallocFailed==0 );
1020     ret = xFunc(&p->aColName[N]);
1021      /* A malloc may have failed inside of the xFunc() call. If this
1022     ** is the case, clear the mallocFailed flag and return NULL.
1023     */
1024     if( db->mallocFailed ){
1025       db->mallocFailed = 0;
1026       ret = 0;
1027     }
1028     sqlite3_mutex_leave(db->mutex);
1029   }
1030   return ret;
1031 }
1032 
1033 /*
1034 ** Return the name of the Nth column of the result set returned by SQL
1035 ** statement pStmt.
1036 */
1037 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1038   return columnName(
1039       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1040 }
1041 #ifndef SQLITE_OMIT_UTF16
1042 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1043   return columnName(
1044       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1045 }
1046 #endif
1047 
1048 /*
1049 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1050 ** not define OMIT_DECLTYPE.
1051 */
1052 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1053 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1054          and SQLITE_ENABLE_COLUMN_METADATA"
1055 #endif
1056 
1057 #ifndef SQLITE_OMIT_DECLTYPE
1058 /*
1059 ** Return the column declaration type (if applicable) of the 'i'th column
1060 ** of the result set of SQL statement pStmt.
1061 */
1062 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1063   return columnName(
1064       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1065 }
1066 #ifndef SQLITE_OMIT_UTF16
1067 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1068   return columnName(
1069       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1070 }
1071 #endif /* SQLITE_OMIT_UTF16 */
1072 #endif /* SQLITE_OMIT_DECLTYPE */
1073 
1074 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1075 /*
1076 ** Return the name of the database from which a result column derives.
1077 ** NULL is returned if the result column is an expression or constant or
1078 ** anything else which is not an unambiguous reference to a database column.
1079 */
1080 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1081   return columnName(
1082       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1083 }
1084 #ifndef SQLITE_OMIT_UTF16
1085 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1086   return columnName(
1087       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1088 }
1089 #endif /* SQLITE_OMIT_UTF16 */
1090 
1091 /*
1092 ** Return the name of the table from which a result column derives.
1093 ** NULL is returned if the result column is an expression or constant or
1094 ** anything else which is not an unambiguous reference to a database column.
1095 */
1096 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1097   return columnName(
1098       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1099 }
1100 #ifndef SQLITE_OMIT_UTF16
1101 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1102   return columnName(
1103       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1104 }
1105 #endif /* SQLITE_OMIT_UTF16 */
1106 
1107 /*
1108 ** Return the name of the table column from which a result column derives.
1109 ** NULL is returned if the result column is an expression or constant or
1110 ** anything else which is not an unambiguous reference to a database column.
1111 */
1112 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1113   return columnName(
1114       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1115 }
1116 #ifndef SQLITE_OMIT_UTF16
1117 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1118   return columnName(
1119       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1120 }
1121 #endif /* SQLITE_OMIT_UTF16 */
1122 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1123 
1124 
1125 /******************************* sqlite3_bind_  ***************************
1126 **
1127 ** Routines used to attach values to wildcards in a compiled SQL statement.
1128 */
1129 /*
1130 ** Unbind the value bound to variable i in virtual machine p. This is the
1131 ** the same as binding a NULL value to the column. If the "i" parameter is
1132 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1133 **
1134 ** A successful evaluation of this routine acquires the mutex on p.
1135 ** the mutex is released if any kind of error occurs.
1136 **
1137 ** The error code stored in database p->db is overwritten with the return
1138 ** value in any case.
1139 */
1140 static int vdbeUnbind(Vdbe *p, int i){
1141   Mem *pVar;
1142   if( vdbeSafetyNotNull(p) ){
1143     return SQLITE_MISUSE_BKPT;
1144   }
1145   sqlite3_mutex_enter(p->db->mutex);
1146   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1147     sqlite3Error(p->db, SQLITE_MISUSE);
1148     sqlite3_mutex_leave(p->db->mutex);
1149     sqlite3_log(SQLITE_MISUSE,
1150         "bind on a busy prepared statement: [%s]", p->zSql);
1151     return SQLITE_MISUSE_BKPT;
1152   }
1153   if( i<1 || i>p->nVar ){
1154     sqlite3Error(p->db, SQLITE_RANGE);
1155     sqlite3_mutex_leave(p->db->mutex);
1156     return SQLITE_RANGE;
1157   }
1158   i--;
1159   pVar = &p->aVar[i];
1160   sqlite3VdbeMemRelease(pVar);
1161   pVar->flags = MEM_Null;
1162   sqlite3Error(p->db, SQLITE_OK);
1163 
1164   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1165   ** binding a new value to this variable invalidates the current query plan.
1166   **
1167   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1168   ** parameter in the WHERE clause might influence the choice of query plan
1169   ** for a statement, then the statement will be automatically recompiled,
1170   ** as if there had been a schema change, on the first sqlite3_step() call
1171   ** following any change to the bindings of that parameter.
1172   */
1173   if( p->isPrepareV2 &&
1174      ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1175   ){
1176     p->expired = 1;
1177   }
1178   return SQLITE_OK;
1179 }
1180 
1181 /*
1182 ** Bind a text or BLOB value.
1183 */
1184 static int bindText(
1185   sqlite3_stmt *pStmt,   /* The statement to bind against */
1186   int i,                 /* Index of the parameter to bind */
1187   const void *zData,     /* Pointer to the data to be bound */
1188   int nData,             /* Number of bytes of data to be bound */
1189   void (*xDel)(void*),   /* Destructor for the data */
1190   u8 encoding            /* Encoding for the data */
1191 ){
1192   Vdbe *p = (Vdbe *)pStmt;
1193   Mem *pVar;
1194   int rc;
1195 
1196   rc = vdbeUnbind(p, i);
1197   if( rc==SQLITE_OK ){
1198     if( zData!=0 ){
1199       pVar = &p->aVar[i-1];
1200       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1201       if( rc==SQLITE_OK && encoding!=0 ){
1202         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1203       }
1204       sqlite3Error(p->db, rc);
1205       rc = sqlite3ApiExit(p->db, rc);
1206     }
1207     sqlite3_mutex_leave(p->db->mutex);
1208   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1209     xDel((void*)zData);
1210   }
1211   return rc;
1212 }
1213 
1214 
1215 /*
1216 ** Bind a blob value to an SQL statement variable.
1217 */
1218 int sqlite3_bind_blob(
1219   sqlite3_stmt *pStmt,
1220   int i,
1221   const void *zData,
1222   int nData,
1223   void (*xDel)(void*)
1224 ){
1225   return bindText(pStmt, i, zData, nData, xDel, 0);
1226 }
1227 int sqlite3_bind_blob64(
1228   sqlite3_stmt *pStmt,
1229   int i,
1230   const void *zData,
1231   sqlite3_uint64 nData,
1232   void (*xDel)(void*)
1233 ){
1234   assert( xDel!=SQLITE_DYNAMIC );
1235   if( nData>0x7fffffff ){
1236     return invokeValueDestructor(zData, xDel, 0);
1237   }else{
1238     return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1239   }
1240 }
1241 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1242   int rc;
1243   Vdbe *p = (Vdbe *)pStmt;
1244   rc = vdbeUnbind(p, i);
1245   if( rc==SQLITE_OK ){
1246     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1247     sqlite3_mutex_leave(p->db->mutex);
1248   }
1249   return rc;
1250 }
1251 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1252   return sqlite3_bind_int64(p, i, (i64)iValue);
1253 }
1254 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1255   int rc;
1256   Vdbe *p = (Vdbe *)pStmt;
1257   rc = vdbeUnbind(p, i);
1258   if( rc==SQLITE_OK ){
1259     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1260     sqlite3_mutex_leave(p->db->mutex);
1261   }
1262   return rc;
1263 }
1264 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1265   int rc;
1266   Vdbe *p = (Vdbe*)pStmt;
1267   rc = vdbeUnbind(p, i);
1268   if( rc==SQLITE_OK ){
1269     sqlite3_mutex_leave(p->db->mutex);
1270   }
1271   return rc;
1272 }
1273 int sqlite3_bind_text(
1274   sqlite3_stmt *pStmt,
1275   int i,
1276   const char *zData,
1277   int nData,
1278   void (*xDel)(void*)
1279 ){
1280   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1281 }
1282 int sqlite3_bind_text64(
1283   sqlite3_stmt *pStmt,
1284   int i,
1285   const char *zData,
1286   sqlite3_uint64 nData,
1287   void (*xDel)(void*),
1288   unsigned char enc
1289 ){
1290   assert( xDel!=SQLITE_DYNAMIC );
1291   if( nData>0x7fffffff ){
1292     return invokeValueDestructor(zData, xDel, 0);
1293   }else{
1294     if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1295     return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1296   }
1297 }
1298 #ifndef SQLITE_OMIT_UTF16
1299 int sqlite3_bind_text16(
1300   sqlite3_stmt *pStmt,
1301   int i,
1302   const void *zData,
1303   int nData,
1304   void (*xDel)(void*)
1305 ){
1306   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1307 }
1308 #endif /* SQLITE_OMIT_UTF16 */
1309 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1310   int rc;
1311   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1312     case SQLITE_INTEGER: {
1313       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1314       break;
1315     }
1316     case SQLITE_FLOAT: {
1317       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1318       break;
1319     }
1320     case SQLITE_BLOB: {
1321       if( pValue->flags & MEM_Zero ){
1322         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1323       }else{
1324         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1325       }
1326       break;
1327     }
1328     case SQLITE_TEXT: {
1329       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1330                               pValue->enc);
1331       break;
1332     }
1333     default: {
1334       rc = sqlite3_bind_null(pStmt, i);
1335       break;
1336     }
1337   }
1338   return rc;
1339 }
1340 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1341   int rc;
1342   Vdbe *p = (Vdbe *)pStmt;
1343   rc = vdbeUnbind(p, i);
1344   if( rc==SQLITE_OK ){
1345     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1346     sqlite3_mutex_leave(p->db->mutex);
1347   }
1348   return rc;
1349 }
1350 
1351 /*
1352 ** Return the number of wildcards that can be potentially bound to.
1353 ** This routine is added to support DBD::SQLite.
1354 */
1355 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1356   Vdbe *p = (Vdbe*)pStmt;
1357   return p ? p->nVar : 0;
1358 }
1359 
1360 /*
1361 ** Return the name of a wildcard parameter.  Return NULL if the index
1362 ** is out of range or if the wildcard is unnamed.
1363 **
1364 ** The result is always UTF-8.
1365 */
1366 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1367   Vdbe *p = (Vdbe*)pStmt;
1368   if( p==0 || i<1 || i>p->nzVar ){
1369     return 0;
1370   }
1371   return p->azVar[i-1];
1372 }
1373 
1374 /*
1375 ** Given a wildcard parameter name, return the index of the variable
1376 ** with that name.  If there is no variable with the given name,
1377 ** return 0.
1378 */
1379 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1380   int i;
1381   if( p==0 ){
1382     return 0;
1383   }
1384   if( zName ){
1385     for(i=0; i<p->nzVar; i++){
1386       const char *z = p->azVar[i];
1387       if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
1388         return i+1;
1389       }
1390     }
1391   }
1392   return 0;
1393 }
1394 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1395   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1396 }
1397 
1398 /*
1399 ** Transfer all bindings from the first statement over to the second.
1400 */
1401 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1402   Vdbe *pFrom = (Vdbe*)pFromStmt;
1403   Vdbe *pTo = (Vdbe*)pToStmt;
1404   int i;
1405   assert( pTo->db==pFrom->db );
1406   assert( pTo->nVar==pFrom->nVar );
1407   sqlite3_mutex_enter(pTo->db->mutex);
1408   for(i=0; i<pFrom->nVar; i++){
1409     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1410   }
1411   sqlite3_mutex_leave(pTo->db->mutex);
1412   return SQLITE_OK;
1413 }
1414 
1415 #ifndef SQLITE_OMIT_DEPRECATED
1416 /*
1417 ** Deprecated external interface.  Internal/core SQLite code
1418 ** should call sqlite3TransferBindings.
1419 **
1420 ** It is misuse to call this routine with statements from different
1421 ** database connections.  But as this is a deprecated interface, we
1422 ** will not bother to check for that condition.
1423 **
1424 ** If the two statements contain a different number of bindings, then
1425 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1426 ** SQLITE_OK is returned.
1427 */
1428 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1429   Vdbe *pFrom = (Vdbe*)pFromStmt;
1430   Vdbe *pTo = (Vdbe*)pToStmt;
1431   if( pFrom->nVar!=pTo->nVar ){
1432     return SQLITE_ERROR;
1433   }
1434   if( pTo->isPrepareV2 && pTo->expmask ){
1435     pTo->expired = 1;
1436   }
1437   if( pFrom->isPrepareV2 && pFrom->expmask ){
1438     pFrom->expired = 1;
1439   }
1440   return sqlite3TransferBindings(pFromStmt, pToStmt);
1441 }
1442 #endif
1443 
1444 /*
1445 ** Return the sqlite3* database handle to which the prepared statement given
1446 ** in the argument belongs.  This is the same database handle that was
1447 ** the first argument to the sqlite3_prepare() that was used to create
1448 ** the statement in the first place.
1449 */
1450 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1451   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1452 }
1453 
1454 /*
1455 ** Return true if the prepared statement is guaranteed to not modify the
1456 ** database.
1457 */
1458 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1459   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1460 }
1461 
1462 /*
1463 ** Return true if the prepared statement is in need of being reset.
1464 */
1465 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1466   Vdbe *v = (Vdbe*)pStmt;
1467   return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
1468 }
1469 
1470 /*
1471 ** Return a pointer to the next prepared statement after pStmt associated
1472 ** with database connection pDb.  If pStmt is NULL, return the first
1473 ** prepared statement for the database connection.  Return NULL if there
1474 ** are no more.
1475 */
1476 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1477   sqlite3_stmt *pNext;
1478 #ifdef SQLITE_ENABLE_API_ARMOR
1479   if( !sqlite3SafetyCheckOk(pDb) ){
1480     (void)SQLITE_MISUSE_BKPT;
1481     return 0;
1482   }
1483 #endif
1484   sqlite3_mutex_enter(pDb->mutex);
1485   if( pStmt==0 ){
1486     pNext = (sqlite3_stmt*)pDb->pVdbe;
1487   }else{
1488     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1489   }
1490   sqlite3_mutex_leave(pDb->mutex);
1491   return pNext;
1492 }
1493 
1494 /*
1495 ** Return the value of a status counter for a prepared statement
1496 */
1497 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1498   Vdbe *pVdbe = (Vdbe*)pStmt;
1499   u32 v;
1500 #ifdef SQLITE_ENABLE_API_ARMOR
1501   if( !pStmt ){
1502     (void)SQLITE_MISUSE_BKPT;
1503     return 0;
1504   }
1505 #endif
1506   v = pVdbe->aCounter[op];
1507   if( resetFlag ) pVdbe->aCounter[op] = 0;
1508   return (int)v;
1509 }
1510 
1511 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1512 /*
1513 ** Return status data for a single loop within query pStmt.
1514 */
1515 int sqlite3_stmt_scanstatus(
1516   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
1517   int idx,                        /* Index of loop to report on */
1518   int iScanStatusOp,              /* Which metric to return */
1519   void *pOut                      /* OUT: Write the answer here */
1520 ){
1521   Vdbe *p = (Vdbe*)pStmt;
1522   ScanStatus *pScan;
1523   if( idx<0 || idx>=p->nScan ) return 1;
1524   pScan = &p->aScan[idx];
1525   switch( iScanStatusOp ){
1526     case SQLITE_SCANSTAT_NLOOP: {
1527       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1528       break;
1529     }
1530     case SQLITE_SCANSTAT_NVISIT: {
1531       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1532       break;
1533     }
1534     case SQLITE_SCANSTAT_EST: {
1535       double r = 1.0;
1536       LogEst x = pScan->nEst;
1537       while( x<100 ){
1538         x += 10;
1539         r *= 0.5;
1540       }
1541       *(double*)pOut = r*sqlite3LogEstToInt(x);
1542       break;
1543     }
1544     case SQLITE_SCANSTAT_NAME: {
1545       *(const char**)pOut = pScan->zName;
1546       break;
1547     }
1548     case SQLITE_SCANSTAT_EXPLAIN: {
1549       if( pScan->addrExplain ){
1550         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1551       }else{
1552         *(const char**)pOut = 0;
1553       }
1554       break;
1555     }
1556     case SQLITE_SCANSTAT_SELECTID: {
1557       if( pScan->addrExplain ){
1558         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1559       }else{
1560         *(int*)pOut = -1;
1561       }
1562       break;
1563     }
1564     default: {
1565       return 1;
1566     }
1567   }
1568   return 0;
1569 }
1570 
1571 /*
1572 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1573 */
1574 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1575   Vdbe *p = (Vdbe*)pStmt;
1576   memset(p->anExec, 0, p->nOp * sizeof(i64));
1577 }
1578 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
1579