xref: /sqlite-3.40.0/src/vdbeapi.c (revision 4249b3f5)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 **
16 ** $Id: vdbeapi.c,v 1.134 2008/06/19 02:52:25 drh Exp $
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
22 /*
23 ** The following structure contains pointers to the end points of a
24 ** doubly-linked list of all compiled SQL statements that may be holding
25 ** buffers eligible for release when the sqlite3_release_memory() interface is
26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
27 ** mutex.
28 **
29 ** Statements are added to the end of this list when sqlite3_reset() is
30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
31 ** is called. When statements are added to this list, the associated
32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
33 ** can be freed using sqlite3VdbeReleaseMemory().
34 **
35 ** When statements are added or removed from this list, the mutex
36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
39 */
40 struct StatementLruList {
41   Vdbe *pFirst;
42   Vdbe *pLast;
43 };
44 static struct StatementLruList sqlite3LruStatements;
45 
46 /*
47 ** Check that the list looks to be internally consistent. This is used
48 ** as part of an assert() statement as follows:
49 **
50 **   assert( stmtLruCheck() );
51 */
52 #ifndef NDEBUG
53 static int stmtLruCheck(){
54   Vdbe *p;
55   for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
56     assert(p->pLruNext || p==sqlite3LruStatements.pLast);
57     assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
58     assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
59     assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
60   }
61   return 1;
62 }
63 #endif
64 
65 /*
66 ** Add vdbe p to the end of the statement lru list. It is assumed that
67 ** p is not already part of the list when this is called. The lru list
68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
69 */
70 static void stmtLruAdd(Vdbe *p){
71   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
72 
73   if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
74     sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
75     return;
76   }
77 
78   assert( stmtLruCheck() );
79 
80   if( !sqlite3LruStatements.pFirst ){
81     assert( !sqlite3LruStatements.pLast );
82     sqlite3LruStatements.pFirst = p;
83     sqlite3LruStatements.pLast = p;
84   }else{
85     assert( !sqlite3LruStatements.pLast->pLruNext );
86     p->pLruPrev = sqlite3LruStatements.pLast;
87     sqlite3LruStatements.pLast->pLruNext = p;
88     sqlite3LruStatements.pLast = p;
89   }
90 
91   assert( stmtLruCheck() );
92 
93   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
94 }
95 
96 /*
97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
98 ** statement p from the least-recently-used statement list. If the
99 ** statement is not currently part of the list, this call is a no-op.
100 */
101 static void stmtLruRemoveNomutex(Vdbe *p){
102   if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
103     assert( stmtLruCheck() );
104     if( p->pLruNext ){
105       p->pLruNext->pLruPrev = p->pLruPrev;
106     }else{
107       sqlite3LruStatements.pLast = p->pLruPrev;
108     }
109     if( p->pLruPrev ){
110       p->pLruPrev->pLruNext = p->pLruNext;
111     }else{
112       sqlite3LruStatements.pFirst = p->pLruNext;
113     }
114     p->pLruNext = 0;
115     p->pLruPrev = 0;
116     assert( stmtLruCheck() );
117   }
118 }
119 
120 /*
121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
122 ** statement p from the least-recently-used statement list. If the
123 ** statement is not currently part of the list, this call is a no-op.
124 */
125 static void stmtLruRemove(Vdbe *p){
126   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
127   stmtLruRemoveNomutex(p);
128   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
129 }
130 
131 /*
132 ** Try to release n bytes of memory by freeing buffers associated
133 ** with the memory registers of currently unused vdbes.
134 */
135 int sqlite3VdbeReleaseMemory(int n){
136   Vdbe *p;
137   Vdbe *pNext;
138   int nFree = 0;
139 
140   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
141   for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
142     pNext = p->pLruNext;
143 
144     /* For each statement handle in the lru list, attempt to obtain the
145     ** associated database mutex. If it cannot be obtained, continue
146     ** to the next statement handle. It is not possible to block on
147     ** the database mutex - that could cause deadlock.
148     */
149     if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
150       nFree += sqlite3VdbeReleaseBuffers(p);
151       stmtLruRemoveNomutex(p);
152       sqlite3_mutex_leave(p->db->mutex);
153     }
154   }
155   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
156 
157   return nFree;
158 }
159 
160 /*
161 ** Call sqlite3Reprepare() on the statement. Remove it from the
162 ** lru list before doing so, as Reprepare() will free all the
163 ** memory register buffers anyway.
164 */
165 int vdbeReprepare(Vdbe *p){
166   stmtLruRemove(p);
167   return sqlite3Reprepare(p);
168 }
169 
170 #else       /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
171   #define stmtLruRemove(x)
172   #define stmtLruAdd(x)
173   #define vdbeReprepare(x) sqlite3Reprepare(x)
174 #endif
175 
176 
177 /*
178 ** Return TRUE (non-zero) of the statement supplied as an argument needs
179 ** to be recompiled.  A statement needs to be recompiled whenever the
180 ** execution environment changes in a way that would alter the program
181 ** that sqlite3_prepare() generates.  For example, if new functions or
182 ** collating sequences are registered or if an authorizer function is
183 ** added or changed.
184 */
185 int sqlite3_expired(sqlite3_stmt *pStmt){
186   Vdbe *p = (Vdbe*)pStmt;
187   return p==0 || p->expired;
188 }
189 
190 /*
191 ** The following routine destroys a virtual machine that is created by
192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
193 ** success/failure code that describes the result of executing the virtual
194 ** machine.
195 **
196 ** This routine sets the error code and string returned by
197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
198 */
199 int sqlite3_finalize(sqlite3_stmt *pStmt){
200   int rc;
201   if( pStmt==0 ){
202     rc = SQLITE_OK;
203   }else{
204     Vdbe *v = (Vdbe*)pStmt;
205 #ifndef SQLITE_MUTEX_NOOP
206     sqlite3_mutex *mutex = v->db->mutex;
207 #endif
208     sqlite3_mutex_enter(mutex);
209     stmtLruRemove(v);
210     rc = sqlite3VdbeFinalize(v);
211     sqlite3_mutex_leave(mutex);
212   }
213   return rc;
214 }
215 
216 /*
217 ** Terminate the current execution of an SQL statement and reset it
218 ** back to its starting state so that it can be reused. A success code from
219 ** the prior execution is returned.
220 **
221 ** This routine sets the error code and string returned by
222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
223 */
224 int sqlite3_reset(sqlite3_stmt *pStmt){
225   int rc;
226   if( pStmt==0 ){
227     rc = SQLITE_OK;
228   }else{
229     Vdbe *v = (Vdbe*)pStmt;
230     sqlite3_mutex_enter(v->db->mutex);
231     rc = sqlite3VdbeReset(v, 1);
232     stmtLruAdd(v);
233     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
234     assert( (rc & (v->db->errMask))==rc );
235     sqlite3_mutex_leave(v->db->mutex);
236   }
237   return rc;
238 }
239 
240 /*
241 ** Set all the parameters in the compiled SQL statement to NULL.
242 */
243 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
244   int i;
245   int rc = SQLITE_OK;
246   Vdbe *p = (Vdbe*)pStmt;
247 #ifndef SQLITE_MUTEX_NOOP
248   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
249 #endif
250   sqlite3_mutex_enter(mutex);
251   for(i=0; i<p->nVar; i++){
252     sqlite3VdbeMemRelease(&p->aVar[i]);
253     p->aVar[i].flags = MEM_Null;
254   }
255   sqlite3_mutex_leave(mutex);
256   return rc;
257 }
258 
259 
260 /**************************** sqlite3_value_  *******************************
261 ** The following routines extract information from a Mem or sqlite3_value
262 ** structure.
263 */
264 const void *sqlite3_value_blob(sqlite3_value *pVal){
265   Mem *p = (Mem*)pVal;
266   if( p->flags & (MEM_Blob|MEM_Str) ){
267     sqlite3VdbeMemExpandBlob(p);
268     p->flags &= ~MEM_Str;
269     p->flags |= MEM_Blob;
270     return p->z;
271   }else{
272     return sqlite3_value_text(pVal);
273   }
274 }
275 int sqlite3_value_bytes(sqlite3_value *pVal){
276   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
277 }
278 int sqlite3_value_bytes16(sqlite3_value *pVal){
279   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
280 }
281 double sqlite3_value_double(sqlite3_value *pVal){
282   return sqlite3VdbeRealValue((Mem*)pVal);
283 }
284 int sqlite3_value_int(sqlite3_value *pVal){
285   return sqlite3VdbeIntValue((Mem*)pVal);
286 }
287 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
288   return sqlite3VdbeIntValue((Mem*)pVal);
289 }
290 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
291   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
292 }
293 #ifndef SQLITE_OMIT_UTF16
294 const void *sqlite3_value_text16(sqlite3_value* pVal){
295   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
296 }
297 const void *sqlite3_value_text16be(sqlite3_value *pVal){
298   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
299 }
300 const void *sqlite3_value_text16le(sqlite3_value *pVal){
301   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
302 }
303 #endif /* SQLITE_OMIT_UTF16 */
304 int sqlite3_value_type(sqlite3_value* pVal){
305   return pVal->type;
306 }
307 
308 /**************************** sqlite3_result_  *******************************
309 ** The following routines are used by user-defined functions to specify
310 ** the function result.
311 */
312 void sqlite3_result_blob(
313   sqlite3_context *pCtx,
314   const void *z,
315   int n,
316   void (*xDel)(void *)
317 ){
318   assert( n>=0 );
319   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
320   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
321 }
322 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
323   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
324   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
325 }
326 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
327   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
328   pCtx->isError = SQLITE_ERROR;
329   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
330 }
331 #ifndef SQLITE_OMIT_UTF16
332 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
333   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
334   pCtx->isError = SQLITE_ERROR;
335   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
336 }
337 #endif
338 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
339   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
340   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
341 }
342 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
343   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
344   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
345 }
346 void sqlite3_result_null(sqlite3_context *pCtx){
347   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
348   sqlite3VdbeMemSetNull(&pCtx->s);
349 }
350 void sqlite3_result_text(
351   sqlite3_context *pCtx,
352   const char *z,
353   int n,
354   void (*xDel)(void *)
355 ){
356   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
357   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
358 }
359 #ifndef SQLITE_OMIT_UTF16
360 void sqlite3_result_text16(
361   sqlite3_context *pCtx,
362   const void *z,
363   int n,
364   void (*xDel)(void *)
365 ){
366   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
367   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
368 }
369 void sqlite3_result_text16be(
370   sqlite3_context *pCtx,
371   const void *z,
372   int n,
373   void (*xDel)(void *)
374 ){
375   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
376   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
377 }
378 void sqlite3_result_text16le(
379   sqlite3_context *pCtx,
380   const void *z,
381   int n,
382   void (*xDel)(void *)
383 ){
384   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
385   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
386 }
387 #endif /* SQLITE_OMIT_UTF16 */
388 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
389   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
390   sqlite3VdbeMemCopy(&pCtx->s, pValue);
391 }
392 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
393   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
394   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
395 }
396 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
397   pCtx->isError = errCode;
398 }
399 
400 /* Force an SQLITE_TOOBIG error. */
401 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
402   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
403   pCtx->isError = SQLITE_TOOBIG;
404   sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
405                        SQLITE_UTF8, SQLITE_STATIC);
406 }
407 
408 /* An SQLITE_NOMEM error. */
409 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
410   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
411   sqlite3VdbeMemSetNull(&pCtx->s);
412   pCtx->isError = SQLITE_NOMEM;
413   pCtx->s.db->mallocFailed = 1;
414 }
415 
416 /*
417 ** Execute the statement pStmt, either until a row of data is ready, the
418 ** statement is completely executed or an error occurs.
419 **
420 ** This routine implements the bulk of the logic behind the sqlite_step()
421 ** API.  The only thing omitted is the automatic recompile if a
422 ** schema change has occurred.  That detail is handled by the
423 ** outer sqlite3_step() wrapper procedure.
424 */
425 static int sqlite3Step(Vdbe *p){
426   sqlite3 *db;
427   int rc;
428 
429   assert(p);
430   if( p->magic!=VDBE_MAGIC_RUN ){
431     return SQLITE_MISUSE;
432   }
433 
434   /* Assert that malloc() has not failed */
435   db = p->db;
436   assert( !db->mallocFailed );
437 
438   if( p->aborted ){
439     return SQLITE_ABORT;
440   }
441   if( p->pc<=0 && p->expired ){
442     if( p->rc==SQLITE_OK ){
443       p->rc = SQLITE_SCHEMA;
444     }
445     rc = SQLITE_ERROR;
446     goto end_of_step;
447   }
448   if( sqlite3SafetyOn(db) ){
449     p->rc = SQLITE_MISUSE;
450     return SQLITE_MISUSE;
451   }
452   if( p->pc<0 ){
453     /* If there are no other statements currently running, then
454     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
455     ** from interrupting a statement that has not yet started.
456     */
457     if( db->activeVdbeCnt==0 ){
458       db->u1.isInterrupted = 0;
459     }
460 
461 #ifndef SQLITE_OMIT_TRACE
462     if( db->xProfile && !db->init.busy ){
463       double rNow;
464       sqlite3OsCurrentTime(db->pVfs, &rNow);
465       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
466     }
467 #endif
468 
469     db->activeVdbeCnt++;
470     p->pc = 0;
471     stmtLruRemove(p);
472   }
473 #ifndef SQLITE_OMIT_EXPLAIN
474   if( p->explain ){
475     rc = sqlite3VdbeList(p);
476   }else
477 #endif /* SQLITE_OMIT_EXPLAIN */
478   {
479     rc = sqlite3VdbeExec(p);
480   }
481 
482   if( sqlite3SafetyOff(db) ){
483     rc = SQLITE_MISUSE;
484   }
485 
486 #ifndef SQLITE_OMIT_TRACE
487   /* Invoke the profile callback if there is one
488   */
489   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
490            && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
491     double rNow;
492     u64 elapseTime;
493 
494     sqlite3OsCurrentTime(db->pVfs, &rNow);
495     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
496     db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
497   }
498 #endif
499 
500   sqlite3Error(p->db, rc, 0);
501   p->rc = sqlite3ApiExit(p->db, p->rc);
502 end_of_step:
503   assert( (rc&0xff)==rc );
504   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
505     /* This behavior occurs if sqlite3_prepare_v2() was used to build
506     ** the prepared statement.  Return error codes directly */
507     sqlite3Error(p->db, p->rc, 0);
508     return p->rc;
509   }else{
510     /* This is for legacy sqlite3_prepare() builds and when the code
511     ** is SQLITE_ROW or SQLITE_DONE */
512     return rc;
513   }
514 }
515 
516 /*
517 ** This is the top-level implementation of sqlite3_step().  Call
518 ** sqlite3Step() to do most of the work.  If a schema error occurs,
519 ** call sqlite3Reprepare() and try again.
520 */
521 #ifdef SQLITE_OMIT_PARSER
522 int sqlite3_step(sqlite3_stmt *pStmt){
523   int rc = SQLITE_MISUSE;
524   if( pStmt ){
525     Vdbe *v;
526     v = (Vdbe*)pStmt;
527     sqlite3_mutex_enter(v->db->mutex);
528     rc = sqlite3Step(v);
529     sqlite3_mutex_leave(v->db->mutex);
530   }
531   return rc;
532 }
533 #else
534 int sqlite3_step(sqlite3_stmt *pStmt){
535   int rc = SQLITE_MISUSE;
536   if( pStmt ){
537     int cnt = 0;
538     Vdbe *v = (Vdbe*)pStmt;
539     sqlite3 *db = v->db;
540     sqlite3_mutex_enter(db->mutex);
541     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
542            && cnt++ < 5
543            && vdbeReprepare(v) ){
544       sqlite3_reset(pStmt);
545       v->expired = 0;
546     }
547     if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
548       /* This case occurs after failing to recompile an sql statement.
549       ** The error message from the SQL compiler has already been loaded
550       ** into the database handle. This block copies the error message
551       ** from the database handle into the statement and sets the statement
552       ** program counter to 0 to ensure that when the statement is
553       ** finalized or reset the parser error message is available via
554       ** sqlite3_errmsg() and sqlite3_errcode().
555       */
556       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
557       sqlite3_free(v->zErrMsg);
558       if( !db->mallocFailed ){
559         v->zErrMsg = sqlite3DbStrDup(db, zErr);
560       } else {
561         v->zErrMsg = 0;
562         v->rc = SQLITE_NOMEM;
563       }
564     }
565     rc = sqlite3ApiExit(db, rc);
566     sqlite3_mutex_leave(db->mutex);
567   }
568   return rc;
569 }
570 #endif
571 
572 /*
573 ** Extract the user data from a sqlite3_context structure and return a
574 ** pointer to it.
575 */
576 void *sqlite3_user_data(sqlite3_context *p){
577   assert( p && p->pFunc );
578   return p->pFunc->pUserData;
579 }
580 
581 /*
582 ** Extract the user data from a sqlite3_context structure and return a
583 ** pointer to it.
584 */
585 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
586   assert( p && p->pFunc );
587   return p->s.db;
588 }
589 
590 /*
591 ** The following is the implementation of an SQL function that always
592 ** fails with an error message stating that the function is used in the
593 ** wrong context.  The sqlite3_overload_function() API might construct
594 ** SQL function that use this routine so that the functions will exist
595 ** for name resolution but are actually overloaded by the xFindFunction
596 ** method of virtual tables.
597 */
598 void sqlite3InvalidFunction(
599   sqlite3_context *context,  /* The function calling context */
600   int argc,                  /* Number of arguments to the function */
601   sqlite3_value **argv       /* Value of each argument */
602 ){
603   const char *zName = context->pFunc->zName;
604   char *zErr;
605   zErr = sqlite3MPrintf(0,
606       "unable to use function %s in the requested context", zName);
607   sqlite3_result_error(context, zErr, -1);
608   sqlite3_free(zErr);
609 }
610 
611 /*
612 ** Allocate or return the aggregate context for a user function.  A new
613 ** context is allocated on the first call.  Subsequent calls return the
614 ** same context that was returned on prior calls.
615 */
616 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
617   Mem *pMem;
618   assert( p && p->pFunc && p->pFunc->xStep );
619   assert( sqlite3_mutex_held(p->s.db->mutex) );
620   pMem = p->pMem;
621   if( (pMem->flags & MEM_Agg)==0 ){
622     if( nByte==0 ){
623       sqlite3VdbeMemReleaseExternal(pMem);
624       pMem->flags = MEM_Null;
625       pMem->z = 0;
626     }else{
627       sqlite3VdbeMemGrow(pMem, nByte, 0);
628       pMem->flags = MEM_Agg;
629       pMem->u.pDef = p->pFunc;
630       if( pMem->z ){
631         memset(pMem->z, 0, nByte);
632       }
633     }
634   }
635   return (void*)pMem->z;
636 }
637 
638 /*
639 ** Return the auxilary data pointer, if any, for the iArg'th argument to
640 ** the user-function defined by pCtx.
641 */
642 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
643   VdbeFunc *pVdbeFunc;
644 
645   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
646   pVdbeFunc = pCtx->pVdbeFunc;
647   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
648     return 0;
649   }
650   return pVdbeFunc->apAux[iArg].pAux;
651 }
652 
653 /*
654 ** Set the auxilary data pointer and delete function, for the iArg'th
655 ** argument to the user-function defined by pCtx. Any previous value is
656 ** deleted by calling the delete function specified when it was set.
657 */
658 void sqlite3_set_auxdata(
659   sqlite3_context *pCtx,
660   int iArg,
661   void *pAux,
662   void (*xDelete)(void*)
663 ){
664   struct AuxData *pAuxData;
665   VdbeFunc *pVdbeFunc;
666   if( iArg<0 ) goto failed;
667 
668   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
669   pVdbeFunc = pCtx->pVdbeFunc;
670   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
671     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
672     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
673     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
674     if( !pVdbeFunc ){
675       goto failed;
676     }
677     pCtx->pVdbeFunc = pVdbeFunc;
678     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
679     pVdbeFunc->nAux = iArg+1;
680     pVdbeFunc->pFunc = pCtx->pFunc;
681   }
682 
683   pAuxData = &pVdbeFunc->apAux[iArg];
684   if( pAuxData->pAux && pAuxData->xDelete ){
685     pAuxData->xDelete(pAuxData->pAux);
686   }
687   pAuxData->pAux = pAux;
688   pAuxData->xDelete = xDelete;
689   return;
690 
691 failed:
692   if( xDelete ){
693     xDelete(pAux);
694   }
695 }
696 
697 /*
698 ** Return the number of times the Step function of a aggregate has been
699 ** called.
700 **
701 ** This function is deprecated.  Do not use it for new code.  It is
702 ** provide only to avoid breaking legacy code.  New aggregate function
703 ** implementations should keep their own counts within their aggregate
704 ** context.
705 */
706 int sqlite3_aggregate_count(sqlite3_context *p){
707   assert( p && p->pFunc && p->pFunc->xStep );
708   return p->pMem->n;
709 }
710 
711 /*
712 ** Return the number of columns in the result set for the statement pStmt.
713 */
714 int sqlite3_column_count(sqlite3_stmt *pStmt){
715   Vdbe *pVm = (Vdbe *)pStmt;
716   return pVm ? pVm->nResColumn : 0;
717 }
718 
719 /*
720 ** Return the number of values available from the current row of the
721 ** currently executing statement pStmt.
722 */
723 int sqlite3_data_count(sqlite3_stmt *pStmt){
724   Vdbe *pVm = (Vdbe *)pStmt;
725   if( pVm==0 || pVm->pResultSet==0 ) return 0;
726   return pVm->nResColumn;
727 }
728 
729 
730 /*
731 ** Check to see if column iCol of the given statement is valid.  If
732 ** it is, return a pointer to the Mem for the value of that column.
733 ** If iCol is not valid, return a pointer to a Mem which has a value
734 ** of NULL.
735 */
736 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
737   Vdbe *pVm;
738   int vals;
739   Mem *pOut;
740 
741   pVm = (Vdbe *)pStmt;
742   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
743     sqlite3_mutex_enter(pVm->db->mutex);
744     vals = sqlite3_data_count(pStmt);
745     pOut = &pVm->pResultSet[i];
746   }else{
747     static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
748     if( pVm->db ){
749       sqlite3_mutex_enter(pVm->db->mutex);
750       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
751     }
752     pOut = (Mem*)&nullMem;
753   }
754   return pOut;
755 }
756 
757 /*
758 ** This function is called after invoking an sqlite3_value_XXX function on a
759 ** column value (i.e. a value returned by evaluating an SQL expression in the
760 ** select list of a SELECT statement) that may cause a malloc() failure. If
761 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
762 ** code of statement pStmt set to SQLITE_NOMEM.
763 **
764 ** Specifically, this is called from within:
765 **
766 **     sqlite3_column_int()
767 **     sqlite3_column_int64()
768 **     sqlite3_column_text()
769 **     sqlite3_column_text16()
770 **     sqlite3_column_real()
771 **     sqlite3_column_bytes()
772 **     sqlite3_column_bytes16()
773 **
774 ** But not for sqlite3_column_blob(), which never calls malloc().
775 */
776 static void columnMallocFailure(sqlite3_stmt *pStmt)
777 {
778   /* If malloc() failed during an encoding conversion within an
779   ** sqlite3_column_XXX API, then set the return code of the statement to
780   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
781   ** and _finalize() will return NOMEM.
782   */
783   Vdbe *p = (Vdbe *)pStmt;
784   if( p ){
785     p->rc = sqlite3ApiExit(p->db, p->rc);
786     sqlite3_mutex_leave(p->db->mutex);
787   }
788 }
789 
790 /**************************** sqlite3_column_  *******************************
791 ** The following routines are used to access elements of the current row
792 ** in the result set.
793 */
794 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
795   const void *val;
796   val = sqlite3_value_blob( columnMem(pStmt,i) );
797   /* Even though there is no encoding conversion, value_blob() might
798   ** need to call malloc() to expand the result of a zeroblob()
799   ** expression.
800   */
801   columnMallocFailure(pStmt);
802   return val;
803 }
804 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
805   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
806   columnMallocFailure(pStmt);
807   return val;
808 }
809 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
810   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
811   columnMallocFailure(pStmt);
812   return val;
813 }
814 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
815   double val = sqlite3_value_double( columnMem(pStmt,i) );
816   columnMallocFailure(pStmt);
817   return val;
818 }
819 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
820   int val = sqlite3_value_int( columnMem(pStmt,i) );
821   columnMallocFailure(pStmt);
822   return val;
823 }
824 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
825   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
826   columnMallocFailure(pStmt);
827   return val;
828 }
829 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
830   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
831   columnMallocFailure(pStmt);
832   return val;
833 }
834 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
835   sqlite3_value *pOut = columnMem(pStmt, i);
836   columnMallocFailure(pStmt);
837   return pOut;
838 }
839 #ifndef SQLITE_OMIT_UTF16
840 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
841   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
842   columnMallocFailure(pStmt);
843   return val;
844 }
845 #endif /* SQLITE_OMIT_UTF16 */
846 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
847   int iType = sqlite3_value_type( columnMem(pStmt,i) );
848   columnMallocFailure(pStmt);
849   return iType;
850 }
851 
852 /* The following function is experimental and subject to change or
853 ** removal */
854 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
855 **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
856 **}
857 */
858 
859 /*
860 ** Convert the N-th element of pStmt->pColName[] into a string using
861 ** xFunc() then return that string.  If N is out of range, return 0.
862 **
863 ** There are up to 5 names for each column.  useType determines which
864 ** name is returned.  Here are the names:
865 **
866 **    0      The column name as it should be displayed for output
867 **    1      The datatype name for the column
868 **    2      The name of the database that the column derives from
869 **    3      The name of the table that the column derives from
870 **    4      The name of the table column that the result column derives from
871 **
872 ** If the result is not a simple column reference (if it is an expression
873 ** or a constant) then useTypes 2, 3, and 4 return NULL.
874 */
875 static const void *columnName(
876   sqlite3_stmt *pStmt,
877   int N,
878   const void *(*xFunc)(Mem*),
879   int useType
880 ){
881   const void *ret = 0;
882   Vdbe *p = (Vdbe *)pStmt;
883   int n;
884 
885 
886   if( p!=0 ){
887     n = sqlite3_column_count(pStmt);
888     if( N<n && N>=0 ){
889       N += useType*n;
890       sqlite3_mutex_enter(p->db->mutex);
891       ret = xFunc(&p->aColName[N]);
892 
893       /* A malloc may have failed inside of the xFunc() call. If this
894       ** is the case, clear the mallocFailed flag and return NULL.
895       */
896       if( p->db && p->db->mallocFailed ){
897         p->db->mallocFailed = 0;
898         ret = 0;
899       }
900       sqlite3_mutex_leave(p->db->mutex);
901     }
902   }
903   return ret;
904 }
905 
906 /*
907 ** Return the name of the Nth column of the result set returned by SQL
908 ** statement pStmt.
909 */
910 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
911   return columnName(
912       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
913 }
914 #ifndef SQLITE_OMIT_UTF16
915 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
916   return columnName(
917       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
918 }
919 #endif
920 
921 /*
922 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
923 ** not define OMIT_DECLTYPE.
924 */
925 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
926 # error "Must not define both SQLITE_OMIT_DECLTYPE \
927          and SQLITE_ENABLE_COLUMN_METADATA"
928 #endif
929 
930 #ifndef SQLITE_OMIT_DECLTYPE
931 /*
932 ** Return the column declaration type (if applicable) of the 'i'th column
933 ** of the result set of SQL statement pStmt.
934 */
935 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
936   return columnName(
937       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
938 }
939 #ifndef SQLITE_OMIT_UTF16
940 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
941   return columnName(
942       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
943 }
944 #endif /* SQLITE_OMIT_UTF16 */
945 #endif /* SQLITE_OMIT_DECLTYPE */
946 
947 #ifdef SQLITE_ENABLE_COLUMN_METADATA
948 /*
949 ** Return the name of the database from which a result column derives.
950 ** NULL is returned if the result column is an expression or constant or
951 ** anything else which is not an unabiguous reference to a database column.
952 */
953 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
954   return columnName(
955       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
956 }
957 #ifndef SQLITE_OMIT_UTF16
958 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
959   return columnName(
960       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
961 }
962 #endif /* SQLITE_OMIT_UTF16 */
963 
964 /*
965 ** Return the name of the table from which a result column derives.
966 ** NULL is returned if the result column is an expression or constant or
967 ** anything else which is not an unabiguous reference to a database column.
968 */
969 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
970   return columnName(
971       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
972 }
973 #ifndef SQLITE_OMIT_UTF16
974 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
975   return columnName(
976       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
977 }
978 #endif /* SQLITE_OMIT_UTF16 */
979 
980 /*
981 ** Return the name of the table column from which a result column derives.
982 ** NULL is returned if the result column is an expression or constant or
983 ** anything else which is not an unabiguous reference to a database column.
984 */
985 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
986   return columnName(
987       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
988 }
989 #ifndef SQLITE_OMIT_UTF16
990 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
991   return columnName(
992       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
993 }
994 #endif /* SQLITE_OMIT_UTF16 */
995 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
996 
997 
998 /******************************* sqlite3_bind_  ***************************
999 **
1000 ** Routines used to attach values to wildcards in a compiled SQL statement.
1001 */
1002 /*
1003 ** Unbind the value bound to variable i in virtual machine p. This is the
1004 ** the same as binding a NULL value to the column. If the "i" parameter is
1005 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1006 **
1007 ** The error code stored in database p->db is overwritten with the return
1008 ** value in any case.
1009 */
1010 static int vdbeUnbind(Vdbe *p, int i){
1011   Mem *pVar;
1012   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1013     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
1014     return SQLITE_MISUSE;
1015   }
1016   if( i<1 || i>p->nVar ){
1017     sqlite3Error(p->db, SQLITE_RANGE, 0);
1018     return SQLITE_RANGE;
1019   }
1020   i--;
1021   pVar = &p->aVar[i];
1022   sqlite3VdbeMemRelease(pVar);
1023   pVar->flags = MEM_Null;
1024   sqlite3Error(p->db, SQLITE_OK, 0);
1025   return SQLITE_OK;
1026 }
1027 
1028 /*
1029 ** Bind a text or BLOB value.
1030 */
1031 static int bindText(
1032   sqlite3_stmt *pStmt,   /* The statement to bind against */
1033   int i,                 /* Index of the parameter to bind */
1034   const void *zData,     /* Pointer to the data to be bound */
1035   int nData,             /* Number of bytes of data to be bound */
1036   void (*xDel)(void*),   /* Destructor for the data */
1037   int encoding           /* Encoding for the data */
1038 ){
1039   Vdbe *p = (Vdbe *)pStmt;
1040   Mem *pVar;
1041   int rc;
1042 
1043   if( p==0 ){
1044     return SQLITE_MISUSE;
1045   }
1046   sqlite3_mutex_enter(p->db->mutex);
1047   rc = vdbeUnbind(p, i);
1048   if( rc==SQLITE_OK && zData!=0 ){
1049     pVar = &p->aVar[i-1];
1050     rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1051     if( rc==SQLITE_OK && encoding!=0 ){
1052       rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1053     }
1054     sqlite3Error(p->db, rc, 0);
1055     rc = sqlite3ApiExit(p->db, rc);
1056   }
1057   sqlite3_mutex_leave(p->db->mutex);
1058   return rc;
1059 }
1060 
1061 
1062 /*
1063 ** Bind a blob value to an SQL statement variable.
1064 */
1065 int sqlite3_bind_blob(
1066   sqlite3_stmt *pStmt,
1067   int i,
1068   const void *zData,
1069   int nData,
1070   void (*xDel)(void*)
1071 ){
1072   return bindText(pStmt, i, zData, nData, xDel, 0);
1073 }
1074 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1075   int rc;
1076   Vdbe *p = (Vdbe *)pStmt;
1077   sqlite3_mutex_enter(p->db->mutex);
1078   rc = vdbeUnbind(p, i);
1079   if( rc==SQLITE_OK ){
1080     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1081   }
1082   sqlite3_mutex_leave(p->db->mutex);
1083   return rc;
1084 }
1085 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1086   return sqlite3_bind_int64(p, i, (i64)iValue);
1087 }
1088 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1089   int rc;
1090   Vdbe *p = (Vdbe *)pStmt;
1091   sqlite3_mutex_enter(p->db->mutex);
1092   rc = vdbeUnbind(p, i);
1093   if( rc==SQLITE_OK ){
1094     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1095   }
1096   sqlite3_mutex_leave(p->db->mutex);
1097   return rc;
1098 }
1099 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1100   int rc;
1101   Vdbe *p = (Vdbe*)pStmt;
1102   sqlite3_mutex_enter(p->db->mutex);
1103   rc = vdbeUnbind(p, i);
1104   sqlite3_mutex_leave(p->db->mutex);
1105   return rc;
1106 }
1107 int sqlite3_bind_text(
1108   sqlite3_stmt *pStmt,
1109   int i,
1110   const char *zData,
1111   int nData,
1112   void (*xDel)(void*)
1113 ){
1114   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1115 }
1116 #ifndef SQLITE_OMIT_UTF16
1117 int sqlite3_bind_text16(
1118   sqlite3_stmt *pStmt,
1119   int i,
1120   const void *zData,
1121   int nData,
1122   void (*xDel)(void*)
1123 ){
1124   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1125 }
1126 #endif /* SQLITE_OMIT_UTF16 */
1127 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1128   int rc;
1129   Vdbe *p = (Vdbe *)pStmt;
1130   sqlite3_mutex_enter(p->db->mutex);
1131   rc = vdbeUnbind(p, i);
1132   if( rc==SQLITE_OK ){
1133     rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
1134     if( rc==SQLITE_OK ){
1135       rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
1136     }
1137   }
1138   rc = sqlite3ApiExit(p->db, rc);
1139   sqlite3_mutex_leave(p->db->mutex);
1140   return rc;
1141 }
1142 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1143   int rc;
1144   Vdbe *p = (Vdbe *)pStmt;
1145   sqlite3_mutex_enter(p->db->mutex);
1146   rc = vdbeUnbind(p, i);
1147   if( rc==SQLITE_OK ){
1148     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1149   }
1150   sqlite3_mutex_leave(p->db->mutex);
1151   return rc;
1152 }
1153 
1154 /*
1155 ** Return the number of wildcards that can be potentially bound to.
1156 ** This routine is added to support DBD::SQLite.
1157 */
1158 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1159   Vdbe *p = (Vdbe*)pStmt;
1160   return p ? p->nVar : 0;
1161 }
1162 
1163 /*
1164 ** Create a mapping from variable numbers to variable names
1165 ** in the Vdbe.azVar[] array, if such a mapping does not already
1166 ** exist.
1167 */
1168 static void createVarMap(Vdbe *p){
1169   if( !p->okVar ){
1170     sqlite3_mutex_enter(p->db->mutex);
1171     if( !p->okVar ){
1172       int j;
1173       Op *pOp;
1174       for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1175         if( pOp->opcode==OP_Variable ){
1176           assert( pOp->p1>0 && pOp->p1<=p->nVar );
1177           p->azVar[pOp->p1-1] = pOp->p4.z;
1178         }
1179       }
1180       p->okVar = 1;
1181     }
1182     sqlite3_mutex_leave(p->db->mutex);
1183   }
1184 }
1185 
1186 /*
1187 ** Return the name of a wildcard parameter.  Return NULL if the index
1188 ** is out of range or if the wildcard is unnamed.
1189 **
1190 ** The result is always UTF-8.
1191 */
1192 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1193   Vdbe *p = (Vdbe*)pStmt;
1194   if( p==0 || i<1 || i>p->nVar ){
1195     return 0;
1196   }
1197   createVarMap(p);
1198   return p->azVar[i-1];
1199 }
1200 
1201 /*
1202 ** Given a wildcard parameter name, return the index of the variable
1203 ** with that name.  If there is no variable with the given name,
1204 ** return 0.
1205 */
1206 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1207   Vdbe *p = (Vdbe*)pStmt;
1208   int i;
1209   if( p==0 ){
1210     return 0;
1211   }
1212   createVarMap(p);
1213   if( zName ){
1214     for(i=0; i<p->nVar; i++){
1215       const char *z = p->azVar[i];
1216       if( z && strcmp(z,zName)==0 ){
1217         return i+1;
1218       }
1219     }
1220   }
1221   return 0;
1222 }
1223 
1224 /*
1225 ** Transfer all bindings from the first statement over to the second.
1226 ** If the two statements contain a different number of bindings, then
1227 ** an SQLITE_ERROR is returned.
1228 */
1229 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1230   Vdbe *pFrom = (Vdbe*)pFromStmt;
1231   Vdbe *pTo = (Vdbe*)pToStmt;
1232   int i, rc = SQLITE_OK;
1233   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1234     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1235     || pTo->db!=pFrom->db ){
1236     return SQLITE_MISUSE;
1237   }
1238   if( pFrom->nVar!=pTo->nVar ){
1239     return SQLITE_ERROR;
1240   }
1241   sqlite3_mutex_enter(pTo->db->mutex);
1242   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1243     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1244   }
1245   sqlite3_mutex_leave(pTo->db->mutex);
1246   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1247   return rc;
1248 }
1249 
1250 /*
1251 ** Return the sqlite3* database handle to which the prepared statement given
1252 ** in the argument belongs.  This is the same database handle that was
1253 ** the first argument to the sqlite3_prepare() that was used to create
1254 ** the statement in the first place.
1255 */
1256 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1257   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1258 }
1259 
1260 /*
1261 ** Return a pointer to the next prepared statement after pStmt associated
1262 ** with database connection pDb.  If pStmt is NULL, return the first
1263 ** prepared statement for the database connection.  Return NULL if there
1264 ** are no more.
1265 */
1266 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1267   sqlite3_stmt *pNext;
1268   sqlite3_mutex_enter(pDb->mutex);
1269   if( pStmt==0 ){
1270     pNext = (sqlite3_stmt*)pDb->pVdbe;
1271   }else{
1272     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1273   }
1274   sqlite3_mutex_leave(pDb->mutex);
1275   return pNext;
1276 }
1277