1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 ** 16 ** $Id: vdbeapi.c,v 1.134 2008/06/19 02:52:25 drh Exp $ 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 22 /* 23 ** The following structure contains pointers to the end points of a 24 ** doubly-linked list of all compiled SQL statements that may be holding 25 ** buffers eligible for release when the sqlite3_release_memory() interface is 26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 27 ** mutex. 28 ** 29 ** Statements are added to the end of this list when sqlite3_reset() is 30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize() 31 ** is called. When statements are added to this list, the associated 32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that 33 ** can be freed using sqlite3VdbeReleaseMemory(). 34 ** 35 ** When statements are added or removed from this list, the mutex 36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is 37 ** already held. The LRU2 mutex is then obtained, blocking if necessary, 38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished. 39 */ 40 struct StatementLruList { 41 Vdbe *pFirst; 42 Vdbe *pLast; 43 }; 44 static struct StatementLruList sqlite3LruStatements; 45 46 /* 47 ** Check that the list looks to be internally consistent. This is used 48 ** as part of an assert() statement as follows: 49 ** 50 ** assert( stmtLruCheck() ); 51 */ 52 #ifndef NDEBUG 53 static int stmtLruCheck(){ 54 Vdbe *p; 55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ 56 assert(p->pLruNext || p==sqlite3LruStatements.pLast); 57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p); 58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); 59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); 60 } 61 return 1; 62 } 63 #endif 64 65 /* 66 ** Add vdbe p to the end of the statement lru list. It is assumed that 67 ** p is not already part of the list when this is called. The lru list 68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. 69 */ 70 static void stmtLruAdd(Vdbe *p){ 71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 72 73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ 74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 75 return; 76 } 77 78 assert( stmtLruCheck() ); 79 80 if( !sqlite3LruStatements.pFirst ){ 81 assert( !sqlite3LruStatements.pLast ); 82 sqlite3LruStatements.pFirst = p; 83 sqlite3LruStatements.pLast = p; 84 }else{ 85 assert( !sqlite3LruStatements.pLast->pLruNext ); 86 p->pLruPrev = sqlite3LruStatements.pLast; 87 sqlite3LruStatements.pLast->pLruNext = p; 88 sqlite3LruStatements.pLast = p; 89 } 90 91 assert( stmtLruCheck() ); 92 93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 94 } 95 96 /* 97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove 98 ** statement p from the least-recently-used statement list. If the 99 ** statement is not currently part of the list, this call is a no-op. 100 */ 101 static void stmtLruRemoveNomutex(Vdbe *p){ 102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ 103 assert( stmtLruCheck() ); 104 if( p->pLruNext ){ 105 p->pLruNext->pLruPrev = p->pLruPrev; 106 }else{ 107 sqlite3LruStatements.pLast = p->pLruPrev; 108 } 109 if( p->pLruPrev ){ 110 p->pLruPrev->pLruNext = p->pLruNext; 111 }else{ 112 sqlite3LruStatements.pFirst = p->pLruNext; 113 } 114 p->pLruNext = 0; 115 p->pLruPrev = 0; 116 assert( stmtLruCheck() ); 117 } 118 } 119 120 /* 121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove 122 ** statement p from the least-recently-used statement list. If the 123 ** statement is not currently part of the list, this call is a no-op. 124 */ 125 static void stmtLruRemove(Vdbe *p){ 126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 127 stmtLruRemoveNomutex(p); 128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 129 } 130 131 /* 132 ** Try to release n bytes of memory by freeing buffers associated 133 ** with the memory registers of currently unused vdbes. 134 */ 135 int sqlite3VdbeReleaseMemory(int n){ 136 Vdbe *p; 137 Vdbe *pNext; 138 int nFree = 0; 139 140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){ 142 pNext = p->pLruNext; 143 144 /* For each statement handle in the lru list, attempt to obtain the 145 ** associated database mutex. If it cannot be obtained, continue 146 ** to the next statement handle. It is not possible to block on 147 ** the database mutex - that could cause deadlock. 148 */ 149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ 150 nFree += sqlite3VdbeReleaseBuffers(p); 151 stmtLruRemoveNomutex(p); 152 sqlite3_mutex_leave(p->db->mutex); 153 } 154 } 155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 156 157 return nFree; 158 } 159 160 /* 161 ** Call sqlite3Reprepare() on the statement. Remove it from the 162 ** lru list before doing so, as Reprepare() will free all the 163 ** memory register buffers anyway. 164 */ 165 int vdbeReprepare(Vdbe *p){ 166 stmtLruRemove(p); 167 return sqlite3Reprepare(p); 168 } 169 170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ 171 #define stmtLruRemove(x) 172 #define stmtLruAdd(x) 173 #define vdbeReprepare(x) sqlite3Reprepare(x) 174 #endif 175 176 177 /* 178 ** Return TRUE (non-zero) of the statement supplied as an argument needs 179 ** to be recompiled. A statement needs to be recompiled whenever the 180 ** execution environment changes in a way that would alter the program 181 ** that sqlite3_prepare() generates. For example, if new functions or 182 ** collating sequences are registered or if an authorizer function is 183 ** added or changed. 184 */ 185 int sqlite3_expired(sqlite3_stmt *pStmt){ 186 Vdbe *p = (Vdbe*)pStmt; 187 return p==0 || p->expired; 188 } 189 190 /* 191 ** The following routine destroys a virtual machine that is created by 192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 193 ** success/failure code that describes the result of executing the virtual 194 ** machine. 195 ** 196 ** This routine sets the error code and string returned by 197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 198 */ 199 int sqlite3_finalize(sqlite3_stmt *pStmt){ 200 int rc; 201 if( pStmt==0 ){ 202 rc = SQLITE_OK; 203 }else{ 204 Vdbe *v = (Vdbe*)pStmt; 205 #ifndef SQLITE_MUTEX_NOOP 206 sqlite3_mutex *mutex = v->db->mutex; 207 #endif 208 sqlite3_mutex_enter(mutex); 209 stmtLruRemove(v); 210 rc = sqlite3VdbeFinalize(v); 211 sqlite3_mutex_leave(mutex); 212 } 213 return rc; 214 } 215 216 /* 217 ** Terminate the current execution of an SQL statement and reset it 218 ** back to its starting state so that it can be reused. A success code from 219 ** the prior execution is returned. 220 ** 221 ** This routine sets the error code and string returned by 222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 223 */ 224 int sqlite3_reset(sqlite3_stmt *pStmt){ 225 int rc; 226 if( pStmt==0 ){ 227 rc = SQLITE_OK; 228 }else{ 229 Vdbe *v = (Vdbe*)pStmt; 230 sqlite3_mutex_enter(v->db->mutex); 231 rc = sqlite3VdbeReset(v, 1); 232 stmtLruAdd(v); 233 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 234 assert( (rc & (v->db->errMask))==rc ); 235 sqlite3_mutex_leave(v->db->mutex); 236 } 237 return rc; 238 } 239 240 /* 241 ** Set all the parameters in the compiled SQL statement to NULL. 242 */ 243 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 244 int i; 245 int rc = SQLITE_OK; 246 Vdbe *p = (Vdbe*)pStmt; 247 #ifndef SQLITE_MUTEX_NOOP 248 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 249 #endif 250 sqlite3_mutex_enter(mutex); 251 for(i=0; i<p->nVar; i++){ 252 sqlite3VdbeMemRelease(&p->aVar[i]); 253 p->aVar[i].flags = MEM_Null; 254 } 255 sqlite3_mutex_leave(mutex); 256 return rc; 257 } 258 259 260 /**************************** sqlite3_value_ ******************************* 261 ** The following routines extract information from a Mem or sqlite3_value 262 ** structure. 263 */ 264 const void *sqlite3_value_blob(sqlite3_value *pVal){ 265 Mem *p = (Mem*)pVal; 266 if( p->flags & (MEM_Blob|MEM_Str) ){ 267 sqlite3VdbeMemExpandBlob(p); 268 p->flags &= ~MEM_Str; 269 p->flags |= MEM_Blob; 270 return p->z; 271 }else{ 272 return sqlite3_value_text(pVal); 273 } 274 } 275 int sqlite3_value_bytes(sqlite3_value *pVal){ 276 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 277 } 278 int sqlite3_value_bytes16(sqlite3_value *pVal){ 279 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 280 } 281 double sqlite3_value_double(sqlite3_value *pVal){ 282 return sqlite3VdbeRealValue((Mem*)pVal); 283 } 284 int sqlite3_value_int(sqlite3_value *pVal){ 285 return sqlite3VdbeIntValue((Mem*)pVal); 286 } 287 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 288 return sqlite3VdbeIntValue((Mem*)pVal); 289 } 290 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 291 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 292 } 293 #ifndef SQLITE_OMIT_UTF16 294 const void *sqlite3_value_text16(sqlite3_value* pVal){ 295 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 296 } 297 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 298 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 299 } 300 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 301 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 302 } 303 #endif /* SQLITE_OMIT_UTF16 */ 304 int sqlite3_value_type(sqlite3_value* pVal){ 305 return pVal->type; 306 } 307 308 /**************************** sqlite3_result_ ******************************* 309 ** The following routines are used by user-defined functions to specify 310 ** the function result. 311 */ 312 void sqlite3_result_blob( 313 sqlite3_context *pCtx, 314 const void *z, 315 int n, 316 void (*xDel)(void *) 317 ){ 318 assert( n>=0 ); 319 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 320 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); 321 } 322 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 323 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 324 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 325 } 326 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 327 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 328 pCtx->isError = SQLITE_ERROR; 329 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 330 } 331 #ifndef SQLITE_OMIT_UTF16 332 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 333 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 334 pCtx->isError = SQLITE_ERROR; 335 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 336 } 337 #endif 338 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 339 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 340 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 341 } 342 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 343 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 344 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 345 } 346 void sqlite3_result_null(sqlite3_context *pCtx){ 347 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 348 sqlite3VdbeMemSetNull(&pCtx->s); 349 } 350 void sqlite3_result_text( 351 sqlite3_context *pCtx, 352 const char *z, 353 int n, 354 void (*xDel)(void *) 355 ){ 356 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 357 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); 358 } 359 #ifndef SQLITE_OMIT_UTF16 360 void sqlite3_result_text16( 361 sqlite3_context *pCtx, 362 const void *z, 363 int n, 364 void (*xDel)(void *) 365 ){ 366 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 367 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); 368 } 369 void sqlite3_result_text16be( 370 sqlite3_context *pCtx, 371 const void *z, 372 int n, 373 void (*xDel)(void *) 374 ){ 375 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 376 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); 377 } 378 void sqlite3_result_text16le( 379 sqlite3_context *pCtx, 380 const void *z, 381 int n, 382 void (*xDel)(void *) 383 ){ 384 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 385 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); 386 } 387 #endif /* SQLITE_OMIT_UTF16 */ 388 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 389 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 390 sqlite3VdbeMemCopy(&pCtx->s, pValue); 391 } 392 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 393 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 394 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 395 } 396 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 397 pCtx->isError = errCode; 398 } 399 400 /* Force an SQLITE_TOOBIG error. */ 401 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 402 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 403 pCtx->isError = SQLITE_TOOBIG; 404 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 405 SQLITE_UTF8, SQLITE_STATIC); 406 } 407 408 /* An SQLITE_NOMEM error. */ 409 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 410 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 411 sqlite3VdbeMemSetNull(&pCtx->s); 412 pCtx->isError = SQLITE_NOMEM; 413 pCtx->s.db->mallocFailed = 1; 414 } 415 416 /* 417 ** Execute the statement pStmt, either until a row of data is ready, the 418 ** statement is completely executed or an error occurs. 419 ** 420 ** This routine implements the bulk of the logic behind the sqlite_step() 421 ** API. The only thing omitted is the automatic recompile if a 422 ** schema change has occurred. That detail is handled by the 423 ** outer sqlite3_step() wrapper procedure. 424 */ 425 static int sqlite3Step(Vdbe *p){ 426 sqlite3 *db; 427 int rc; 428 429 assert(p); 430 if( p->magic!=VDBE_MAGIC_RUN ){ 431 return SQLITE_MISUSE; 432 } 433 434 /* Assert that malloc() has not failed */ 435 db = p->db; 436 assert( !db->mallocFailed ); 437 438 if( p->aborted ){ 439 return SQLITE_ABORT; 440 } 441 if( p->pc<=0 && p->expired ){ 442 if( p->rc==SQLITE_OK ){ 443 p->rc = SQLITE_SCHEMA; 444 } 445 rc = SQLITE_ERROR; 446 goto end_of_step; 447 } 448 if( sqlite3SafetyOn(db) ){ 449 p->rc = SQLITE_MISUSE; 450 return SQLITE_MISUSE; 451 } 452 if( p->pc<0 ){ 453 /* If there are no other statements currently running, then 454 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 455 ** from interrupting a statement that has not yet started. 456 */ 457 if( db->activeVdbeCnt==0 ){ 458 db->u1.isInterrupted = 0; 459 } 460 461 #ifndef SQLITE_OMIT_TRACE 462 if( db->xProfile && !db->init.busy ){ 463 double rNow; 464 sqlite3OsCurrentTime(db->pVfs, &rNow); 465 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; 466 } 467 #endif 468 469 db->activeVdbeCnt++; 470 p->pc = 0; 471 stmtLruRemove(p); 472 } 473 #ifndef SQLITE_OMIT_EXPLAIN 474 if( p->explain ){ 475 rc = sqlite3VdbeList(p); 476 }else 477 #endif /* SQLITE_OMIT_EXPLAIN */ 478 { 479 rc = sqlite3VdbeExec(p); 480 } 481 482 if( sqlite3SafetyOff(db) ){ 483 rc = SQLITE_MISUSE; 484 } 485 486 #ifndef SQLITE_OMIT_TRACE 487 /* Invoke the profile callback if there is one 488 */ 489 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 490 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ 491 double rNow; 492 u64 elapseTime; 493 494 sqlite3OsCurrentTime(db->pVfs, &rNow); 495 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; 496 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); 497 } 498 #endif 499 500 sqlite3Error(p->db, rc, 0); 501 p->rc = sqlite3ApiExit(p->db, p->rc); 502 end_of_step: 503 assert( (rc&0xff)==rc ); 504 if( p->zSql && (rc&0xff)<SQLITE_ROW ){ 505 /* This behavior occurs if sqlite3_prepare_v2() was used to build 506 ** the prepared statement. Return error codes directly */ 507 sqlite3Error(p->db, p->rc, 0); 508 return p->rc; 509 }else{ 510 /* This is for legacy sqlite3_prepare() builds and when the code 511 ** is SQLITE_ROW or SQLITE_DONE */ 512 return rc; 513 } 514 } 515 516 /* 517 ** This is the top-level implementation of sqlite3_step(). Call 518 ** sqlite3Step() to do most of the work. If a schema error occurs, 519 ** call sqlite3Reprepare() and try again. 520 */ 521 #ifdef SQLITE_OMIT_PARSER 522 int sqlite3_step(sqlite3_stmt *pStmt){ 523 int rc = SQLITE_MISUSE; 524 if( pStmt ){ 525 Vdbe *v; 526 v = (Vdbe*)pStmt; 527 sqlite3_mutex_enter(v->db->mutex); 528 rc = sqlite3Step(v); 529 sqlite3_mutex_leave(v->db->mutex); 530 } 531 return rc; 532 } 533 #else 534 int sqlite3_step(sqlite3_stmt *pStmt){ 535 int rc = SQLITE_MISUSE; 536 if( pStmt ){ 537 int cnt = 0; 538 Vdbe *v = (Vdbe*)pStmt; 539 sqlite3 *db = v->db; 540 sqlite3_mutex_enter(db->mutex); 541 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 542 && cnt++ < 5 543 && vdbeReprepare(v) ){ 544 sqlite3_reset(pStmt); 545 v->expired = 0; 546 } 547 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ 548 /* This case occurs after failing to recompile an sql statement. 549 ** The error message from the SQL compiler has already been loaded 550 ** into the database handle. This block copies the error message 551 ** from the database handle into the statement and sets the statement 552 ** program counter to 0 to ensure that when the statement is 553 ** finalized or reset the parser error message is available via 554 ** sqlite3_errmsg() and sqlite3_errcode(). 555 */ 556 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 557 sqlite3_free(v->zErrMsg); 558 if( !db->mallocFailed ){ 559 v->zErrMsg = sqlite3DbStrDup(db, zErr); 560 } else { 561 v->zErrMsg = 0; 562 v->rc = SQLITE_NOMEM; 563 } 564 } 565 rc = sqlite3ApiExit(db, rc); 566 sqlite3_mutex_leave(db->mutex); 567 } 568 return rc; 569 } 570 #endif 571 572 /* 573 ** Extract the user data from a sqlite3_context structure and return a 574 ** pointer to it. 575 */ 576 void *sqlite3_user_data(sqlite3_context *p){ 577 assert( p && p->pFunc ); 578 return p->pFunc->pUserData; 579 } 580 581 /* 582 ** Extract the user data from a sqlite3_context structure and return a 583 ** pointer to it. 584 */ 585 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 586 assert( p && p->pFunc ); 587 return p->s.db; 588 } 589 590 /* 591 ** The following is the implementation of an SQL function that always 592 ** fails with an error message stating that the function is used in the 593 ** wrong context. The sqlite3_overload_function() API might construct 594 ** SQL function that use this routine so that the functions will exist 595 ** for name resolution but are actually overloaded by the xFindFunction 596 ** method of virtual tables. 597 */ 598 void sqlite3InvalidFunction( 599 sqlite3_context *context, /* The function calling context */ 600 int argc, /* Number of arguments to the function */ 601 sqlite3_value **argv /* Value of each argument */ 602 ){ 603 const char *zName = context->pFunc->zName; 604 char *zErr; 605 zErr = sqlite3MPrintf(0, 606 "unable to use function %s in the requested context", zName); 607 sqlite3_result_error(context, zErr, -1); 608 sqlite3_free(zErr); 609 } 610 611 /* 612 ** Allocate or return the aggregate context for a user function. A new 613 ** context is allocated on the first call. Subsequent calls return the 614 ** same context that was returned on prior calls. 615 */ 616 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 617 Mem *pMem; 618 assert( p && p->pFunc && p->pFunc->xStep ); 619 assert( sqlite3_mutex_held(p->s.db->mutex) ); 620 pMem = p->pMem; 621 if( (pMem->flags & MEM_Agg)==0 ){ 622 if( nByte==0 ){ 623 sqlite3VdbeMemReleaseExternal(pMem); 624 pMem->flags = MEM_Null; 625 pMem->z = 0; 626 }else{ 627 sqlite3VdbeMemGrow(pMem, nByte, 0); 628 pMem->flags = MEM_Agg; 629 pMem->u.pDef = p->pFunc; 630 if( pMem->z ){ 631 memset(pMem->z, 0, nByte); 632 } 633 } 634 } 635 return (void*)pMem->z; 636 } 637 638 /* 639 ** Return the auxilary data pointer, if any, for the iArg'th argument to 640 ** the user-function defined by pCtx. 641 */ 642 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 643 VdbeFunc *pVdbeFunc; 644 645 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 646 pVdbeFunc = pCtx->pVdbeFunc; 647 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 648 return 0; 649 } 650 return pVdbeFunc->apAux[iArg].pAux; 651 } 652 653 /* 654 ** Set the auxilary data pointer and delete function, for the iArg'th 655 ** argument to the user-function defined by pCtx. Any previous value is 656 ** deleted by calling the delete function specified when it was set. 657 */ 658 void sqlite3_set_auxdata( 659 sqlite3_context *pCtx, 660 int iArg, 661 void *pAux, 662 void (*xDelete)(void*) 663 ){ 664 struct AuxData *pAuxData; 665 VdbeFunc *pVdbeFunc; 666 if( iArg<0 ) goto failed; 667 668 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 669 pVdbeFunc = pCtx->pVdbeFunc; 670 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 671 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 672 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 673 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 674 if( !pVdbeFunc ){ 675 goto failed; 676 } 677 pCtx->pVdbeFunc = pVdbeFunc; 678 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 679 pVdbeFunc->nAux = iArg+1; 680 pVdbeFunc->pFunc = pCtx->pFunc; 681 } 682 683 pAuxData = &pVdbeFunc->apAux[iArg]; 684 if( pAuxData->pAux && pAuxData->xDelete ){ 685 pAuxData->xDelete(pAuxData->pAux); 686 } 687 pAuxData->pAux = pAux; 688 pAuxData->xDelete = xDelete; 689 return; 690 691 failed: 692 if( xDelete ){ 693 xDelete(pAux); 694 } 695 } 696 697 /* 698 ** Return the number of times the Step function of a aggregate has been 699 ** called. 700 ** 701 ** This function is deprecated. Do not use it for new code. It is 702 ** provide only to avoid breaking legacy code. New aggregate function 703 ** implementations should keep their own counts within their aggregate 704 ** context. 705 */ 706 int sqlite3_aggregate_count(sqlite3_context *p){ 707 assert( p && p->pFunc && p->pFunc->xStep ); 708 return p->pMem->n; 709 } 710 711 /* 712 ** Return the number of columns in the result set for the statement pStmt. 713 */ 714 int sqlite3_column_count(sqlite3_stmt *pStmt){ 715 Vdbe *pVm = (Vdbe *)pStmt; 716 return pVm ? pVm->nResColumn : 0; 717 } 718 719 /* 720 ** Return the number of values available from the current row of the 721 ** currently executing statement pStmt. 722 */ 723 int sqlite3_data_count(sqlite3_stmt *pStmt){ 724 Vdbe *pVm = (Vdbe *)pStmt; 725 if( pVm==0 || pVm->pResultSet==0 ) return 0; 726 return pVm->nResColumn; 727 } 728 729 730 /* 731 ** Check to see if column iCol of the given statement is valid. If 732 ** it is, return a pointer to the Mem for the value of that column. 733 ** If iCol is not valid, return a pointer to a Mem which has a value 734 ** of NULL. 735 */ 736 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 737 Vdbe *pVm; 738 int vals; 739 Mem *pOut; 740 741 pVm = (Vdbe *)pStmt; 742 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 743 sqlite3_mutex_enter(pVm->db->mutex); 744 vals = sqlite3_data_count(pStmt); 745 pOut = &pVm->pResultSet[i]; 746 }else{ 747 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 748 if( pVm->db ){ 749 sqlite3_mutex_enter(pVm->db->mutex); 750 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 751 } 752 pOut = (Mem*)&nullMem; 753 } 754 return pOut; 755 } 756 757 /* 758 ** This function is called after invoking an sqlite3_value_XXX function on a 759 ** column value (i.e. a value returned by evaluating an SQL expression in the 760 ** select list of a SELECT statement) that may cause a malloc() failure. If 761 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 762 ** code of statement pStmt set to SQLITE_NOMEM. 763 ** 764 ** Specifically, this is called from within: 765 ** 766 ** sqlite3_column_int() 767 ** sqlite3_column_int64() 768 ** sqlite3_column_text() 769 ** sqlite3_column_text16() 770 ** sqlite3_column_real() 771 ** sqlite3_column_bytes() 772 ** sqlite3_column_bytes16() 773 ** 774 ** But not for sqlite3_column_blob(), which never calls malloc(). 775 */ 776 static void columnMallocFailure(sqlite3_stmt *pStmt) 777 { 778 /* If malloc() failed during an encoding conversion within an 779 ** sqlite3_column_XXX API, then set the return code of the statement to 780 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 781 ** and _finalize() will return NOMEM. 782 */ 783 Vdbe *p = (Vdbe *)pStmt; 784 if( p ){ 785 p->rc = sqlite3ApiExit(p->db, p->rc); 786 sqlite3_mutex_leave(p->db->mutex); 787 } 788 } 789 790 /**************************** sqlite3_column_ ******************************* 791 ** The following routines are used to access elements of the current row 792 ** in the result set. 793 */ 794 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 795 const void *val; 796 val = sqlite3_value_blob( columnMem(pStmt,i) ); 797 /* Even though there is no encoding conversion, value_blob() might 798 ** need to call malloc() to expand the result of a zeroblob() 799 ** expression. 800 */ 801 columnMallocFailure(pStmt); 802 return val; 803 } 804 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 805 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 806 columnMallocFailure(pStmt); 807 return val; 808 } 809 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 810 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 811 columnMallocFailure(pStmt); 812 return val; 813 } 814 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 815 double val = sqlite3_value_double( columnMem(pStmt,i) ); 816 columnMallocFailure(pStmt); 817 return val; 818 } 819 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 820 int val = sqlite3_value_int( columnMem(pStmt,i) ); 821 columnMallocFailure(pStmt); 822 return val; 823 } 824 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 825 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 826 columnMallocFailure(pStmt); 827 return val; 828 } 829 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 830 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 831 columnMallocFailure(pStmt); 832 return val; 833 } 834 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 835 sqlite3_value *pOut = columnMem(pStmt, i); 836 columnMallocFailure(pStmt); 837 return pOut; 838 } 839 #ifndef SQLITE_OMIT_UTF16 840 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 841 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 842 columnMallocFailure(pStmt); 843 return val; 844 } 845 #endif /* SQLITE_OMIT_UTF16 */ 846 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 847 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 848 columnMallocFailure(pStmt); 849 return iType; 850 } 851 852 /* The following function is experimental and subject to change or 853 ** removal */ 854 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 855 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 856 **} 857 */ 858 859 /* 860 ** Convert the N-th element of pStmt->pColName[] into a string using 861 ** xFunc() then return that string. If N is out of range, return 0. 862 ** 863 ** There are up to 5 names for each column. useType determines which 864 ** name is returned. Here are the names: 865 ** 866 ** 0 The column name as it should be displayed for output 867 ** 1 The datatype name for the column 868 ** 2 The name of the database that the column derives from 869 ** 3 The name of the table that the column derives from 870 ** 4 The name of the table column that the result column derives from 871 ** 872 ** If the result is not a simple column reference (if it is an expression 873 ** or a constant) then useTypes 2, 3, and 4 return NULL. 874 */ 875 static const void *columnName( 876 sqlite3_stmt *pStmt, 877 int N, 878 const void *(*xFunc)(Mem*), 879 int useType 880 ){ 881 const void *ret = 0; 882 Vdbe *p = (Vdbe *)pStmt; 883 int n; 884 885 886 if( p!=0 ){ 887 n = sqlite3_column_count(pStmt); 888 if( N<n && N>=0 ){ 889 N += useType*n; 890 sqlite3_mutex_enter(p->db->mutex); 891 ret = xFunc(&p->aColName[N]); 892 893 /* A malloc may have failed inside of the xFunc() call. If this 894 ** is the case, clear the mallocFailed flag and return NULL. 895 */ 896 if( p->db && p->db->mallocFailed ){ 897 p->db->mallocFailed = 0; 898 ret = 0; 899 } 900 sqlite3_mutex_leave(p->db->mutex); 901 } 902 } 903 return ret; 904 } 905 906 /* 907 ** Return the name of the Nth column of the result set returned by SQL 908 ** statement pStmt. 909 */ 910 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 911 return columnName( 912 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 913 } 914 #ifndef SQLITE_OMIT_UTF16 915 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 916 return columnName( 917 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 918 } 919 #endif 920 921 /* 922 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 923 ** not define OMIT_DECLTYPE. 924 */ 925 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 926 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 927 and SQLITE_ENABLE_COLUMN_METADATA" 928 #endif 929 930 #ifndef SQLITE_OMIT_DECLTYPE 931 /* 932 ** Return the column declaration type (if applicable) of the 'i'th column 933 ** of the result set of SQL statement pStmt. 934 */ 935 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 936 return columnName( 937 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 938 } 939 #ifndef SQLITE_OMIT_UTF16 940 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 941 return columnName( 942 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 943 } 944 #endif /* SQLITE_OMIT_UTF16 */ 945 #endif /* SQLITE_OMIT_DECLTYPE */ 946 947 #ifdef SQLITE_ENABLE_COLUMN_METADATA 948 /* 949 ** Return the name of the database from which a result column derives. 950 ** NULL is returned if the result column is an expression or constant or 951 ** anything else which is not an unabiguous reference to a database column. 952 */ 953 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 954 return columnName( 955 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 956 } 957 #ifndef SQLITE_OMIT_UTF16 958 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 959 return columnName( 960 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 961 } 962 #endif /* SQLITE_OMIT_UTF16 */ 963 964 /* 965 ** Return the name of the table from which a result column derives. 966 ** NULL is returned if the result column is an expression or constant or 967 ** anything else which is not an unabiguous reference to a database column. 968 */ 969 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 970 return columnName( 971 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 972 } 973 #ifndef SQLITE_OMIT_UTF16 974 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 975 return columnName( 976 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 977 } 978 #endif /* SQLITE_OMIT_UTF16 */ 979 980 /* 981 ** Return the name of the table column from which a result column derives. 982 ** NULL is returned if the result column is an expression or constant or 983 ** anything else which is not an unabiguous reference to a database column. 984 */ 985 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 986 return columnName( 987 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 988 } 989 #ifndef SQLITE_OMIT_UTF16 990 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 991 return columnName( 992 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 993 } 994 #endif /* SQLITE_OMIT_UTF16 */ 995 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 996 997 998 /******************************* sqlite3_bind_ *************************** 999 ** 1000 ** Routines used to attach values to wildcards in a compiled SQL statement. 1001 */ 1002 /* 1003 ** Unbind the value bound to variable i in virtual machine p. This is the 1004 ** the same as binding a NULL value to the column. If the "i" parameter is 1005 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1006 ** 1007 ** The error code stored in database p->db is overwritten with the return 1008 ** value in any case. 1009 */ 1010 static int vdbeUnbind(Vdbe *p, int i){ 1011 Mem *pVar; 1012 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1013 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); 1014 return SQLITE_MISUSE; 1015 } 1016 if( i<1 || i>p->nVar ){ 1017 sqlite3Error(p->db, SQLITE_RANGE, 0); 1018 return SQLITE_RANGE; 1019 } 1020 i--; 1021 pVar = &p->aVar[i]; 1022 sqlite3VdbeMemRelease(pVar); 1023 pVar->flags = MEM_Null; 1024 sqlite3Error(p->db, SQLITE_OK, 0); 1025 return SQLITE_OK; 1026 } 1027 1028 /* 1029 ** Bind a text or BLOB value. 1030 */ 1031 static int bindText( 1032 sqlite3_stmt *pStmt, /* The statement to bind against */ 1033 int i, /* Index of the parameter to bind */ 1034 const void *zData, /* Pointer to the data to be bound */ 1035 int nData, /* Number of bytes of data to be bound */ 1036 void (*xDel)(void*), /* Destructor for the data */ 1037 int encoding /* Encoding for the data */ 1038 ){ 1039 Vdbe *p = (Vdbe *)pStmt; 1040 Mem *pVar; 1041 int rc; 1042 1043 if( p==0 ){ 1044 return SQLITE_MISUSE; 1045 } 1046 sqlite3_mutex_enter(p->db->mutex); 1047 rc = vdbeUnbind(p, i); 1048 if( rc==SQLITE_OK && zData!=0 ){ 1049 pVar = &p->aVar[i-1]; 1050 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1051 if( rc==SQLITE_OK && encoding!=0 ){ 1052 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1053 } 1054 sqlite3Error(p->db, rc, 0); 1055 rc = sqlite3ApiExit(p->db, rc); 1056 } 1057 sqlite3_mutex_leave(p->db->mutex); 1058 return rc; 1059 } 1060 1061 1062 /* 1063 ** Bind a blob value to an SQL statement variable. 1064 */ 1065 int sqlite3_bind_blob( 1066 sqlite3_stmt *pStmt, 1067 int i, 1068 const void *zData, 1069 int nData, 1070 void (*xDel)(void*) 1071 ){ 1072 return bindText(pStmt, i, zData, nData, xDel, 0); 1073 } 1074 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1075 int rc; 1076 Vdbe *p = (Vdbe *)pStmt; 1077 sqlite3_mutex_enter(p->db->mutex); 1078 rc = vdbeUnbind(p, i); 1079 if( rc==SQLITE_OK ){ 1080 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1081 } 1082 sqlite3_mutex_leave(p->db->mutex); 1083 return rc; 1084 } 1085 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1086 return sqlite3_bind_int64(p, i, (i64)iValue); 1087 } 1088 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1089 int rc; 1090 Vdbe *p = (Vdbe *)pStmt; 1091 sqlite3_mutex_enter(p->db->mutex); 1092 rc = vdbeUnbind(p, i); 1093 if( rc==SQLITE_OK ){ 1094 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1095 } 1096 sqlite3_mutex_leave(p->db->mutex); 1097 return rc; 1098 } 1099 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1100 int rc; 1101 Vdbe *p = (Vdbe*)pStmt; 1102 sqlite3_mutex_enter(p->db->mutex); 1103 rc = vdbeUnbind(p, i); 1104 sqlite3_mutex_leave(p->db->mutex); 1105 return rc; 1106 } 1107 int sqlite3_bind_text( 1108 sqlite3_stmt *pStmt, 1109 int i, 1110 const char *zData, 1111 int nData, 1112 void (*xDel)(void*) 1113 ){ 1114 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1115 } 1116 #ifndef SQLITE_OMIT_UTF16 1117 int sqlite3_bind_text16( 1118 sqlite3_stmt *pStmt, 1119 int i, 1120 const void *zData, 1121 int nData, 1122 void (*xDel)(void*) 1123 ){ 1124 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1125 } 1126 #endif /* SQLITE_OMIT_UTF16 */ 1127 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1128 int rc; 1129 Vdbe *p = (Vdbe *)pStmt; 1130 sqlite3_mutex_enter(p->db->mutex); 1131 rc = vdbeUnbind(p, i); 1132 if( rc==SQLITE_OK ){ 1133 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); 1134 if( rc==SQLITE_OK ){ 1135 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db)); 1136 } 1137 } 1138 rc = sqlite3ApiExit(p->db, rc); 1139 sqlite3_mutex_leave(p->db->mutex); 1140 return rc; 1141 } 1142 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1143 int rc; 1144 Vdbe *p = (Vdbe *)pStmt; 1145 sqlite3_mutex_enter(p->db->mutex); 1146 rc = vdbeUnbind(p, i); 1147 if( rc==SQLITE_OK ){ 1148 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1149 } 1150 sqlite3_mutex_leave(p->db->mutex); 1151 return rc; 1152 } 1153 1154 /* 1155 ** Return the number of wildcards that can be potentially bound to. 1156 ** This routine is added to support DBD::SQLite. 1157 */ 1158 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1159 Vdbe *p = (Vdbe*)pStmt; 1160 return p ? p->nVar : 0; 1161 } 1162 1163 /* 1164 ** Create a mapping from variable numbers to variable names 1165 ** in the Vdbe.azVar[] array, if such a mapping does not already 1166 ** exist. 1167 */ 1168 static void createVarMap(Vdbe *p){ 1169 if( !p->okVar ){ 1170 sqlite3_mutex_enter(p->db->mutex); 1171 if( !p->okVar ){ 1172 int j; 1173 Op *pOp; 1174 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1175 if( pOp->opcode==OP_Variable ){ 1176 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1177 p->azVar[pOp->p1-1] = pOp->p4.z; 1178 } 1179 } 1180 p->okVar = 1; 1181 } 1182 sqlite3_mutex_leave(p->db->mutex); 1183 } 1184 } 1185 1186 /* 1187 ** Return the name of a wildcard parameter. Return NULL if the index 1188 ** is out of range or if the wildcard is unnamed. 1189 ** 1190 ** The result is always UTF-8. 1191 */ 1192 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1193 Vdbe *p = (Vdbe*)pStmt; 1194 if( p==0 || i<1 || i>p->nVar ){ 1195 return 0; 1196 } 1197 createVarMap(p); 1198 return p->azVar[i-1]; 1199 } 1200 1201 /* 1202 ** Given a wildcard parameter name, return the index of the variable 1203 ** with that name. If there is no variable with the given name, 1204 ** return 0. 1205 */ 1206 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1207 Vdbe *p = (Vdbe*)pStmt; 1208 int i; 1209 if( p==0 ){ 1210 return 0; 1211 } 1212 createVarMap(p); 1213 if( zName ){ 1214 for(i=0; i<p->nVar; i++){ 1215 const char *z = p->azVar[i]; 1216 if( z && strcmp(z,zName)==0 ){ 1217 return i+1; 1218 } 1219 } 1220 } 1221 return 0; 1222 } 1223 1224 /* 1225 ** Transfer all bindings from the first statement over to the second. 1226 ** If the two statements contain a different number of bindings, then 1227 ** an SQLITE_ERROR is returned. 1228 */ 1229 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1230 Vdbe *pFrom = (Vdbe*)pFromStmt; 1231 Vdbe *pTo = (Vdbe*)pToStmt; 1232 int i, rc = SQLITE_OK; 1233 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) 1234 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) 1235 || pTo->db!=pFrom->db ){ 1236 return SQLITE_MISUSE; 1237 } 1238 if( pFrom->nVar!=pTo->nVar ){ 1239 return SQLITE_ERROR; 1240 } 1241 sqlite3_mutex_enter(pTo->db->mutex); 1242 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ 1243 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1244 } 1245 sqlite3_mutex_leave(pTo->db->mutex); 1246 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1247 return rc; 1248 } 1249 1250 /* 1251 ** Return the sqlite3* database handle to which the prepared statement given 1252 ** in the argument belongs. This is the same database handle that was 1253 ** the first argument to the sqlite3_prepare() that was used to create 1254 ** the statement in the first place. 1255 */ 1256 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1257 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1258 } 1259 1260 /* 1261 ** Return a pointer to the next prepared statement after pStmt associated 1262 ** with database connection pDb. If pStmt is NULL, return the first 1263 ** prepared statement for the database connection. Return NULL if there 1264 ** are no more. 1265 */ 1266 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1267 sqlite3_stmt *pNext; 1268 sqlite3_mutex_enter(pDb->mutex); 1269 if( pStmt==0 ){ 1270 pNext = (sqlite3_stmt*)pDb->pVdbe; 1271 }else{ 1272 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1273 } 1274 sqlite3_mutex_leave(pDb->mutex); 1275 return pNext; 1276 } 1277