1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags |= MEM_Blob; 139 return p->n ? p->z : 0; 140 }else{ 141 return sqlite3_value_text(pVal); 142 } 143 } 144 int sqlite3_value_bytes(sqlite3_value *pVal){ 145 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 146 } 147 int sqlite3_value_bytes16(sqlite3_value *pVal){ 148 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 149 } 150 double sqlite3_value_double(sqlite3_value *pVal){ 151 return sqlite3VdbeRealValue((Mem*)pVal); 152 } 153 int sqlite3_value_int(sqlite3_value *pVal){ 154 return (int)sqlite3VdbeIntValue((Mem*)pVal); 155 } 156 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 157 return sqlite3VdbeIntValue((Mem*)pVal); 158 } 159 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 160 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 161 } 162 #ifndef SQLITE_OMIT_UTF16 163 const void *sqlite3_value_text16(sqlite3_value* pVal){ 164 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 165 } 166 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 167 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 168 } 169 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 170 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 171 } 172 #endif /* SQLITE_OMIT_UTF16 */ 173 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 174 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 175 ** point number string BLOB NULL 176 */ 177 int sqlite3_value_type(sqlite3_value* pVal){ 178 static const u8 aType[] = { 179 SQLITE_BLOB, /* 0x00 */ 180 SQLITE_NULL, /* 0x01 */ 181 SQLITE_TEXT, /* 0x02 */ 182 SQLITE_NULL, /* 0x03 */ 183 SQLITE_INTEGER, /* 0x04 */ 184 SQLITE_NULL, /* 0x05 */ 185 SQLITE_INTEGER, /* 0x06 */ 186 SQLITE_NULL, /* 0x07 */ 187 SQLITE_FLOAT, /* 0x08 */ 188 SQLITE_NULL, /* 0x09 */ 189 SQLITE_FLOAT, /* 0x0a */ 190 SQLITE_NULL, /* 0x0b */ 191 SQLITE_INTEGER, /* 0x0c */ 192 SQLITE_NULL, /* 0x0d */ 193 SQLITE_INTEGER, /* 0x0e */ 194 SQLITE_NULL, /* 0x0f */ 195 SQLITE_BLOB, /* 0x10 */ 196 SQLITE_NULL, /* 0x11 */ 197 SQLITE_TEXT, /* 0x12 */ 198 SQLITE_NULL, /* 0x13 */ 199 SQLITE_INTEGER, /* 0x14 */ 200 SQLITE_NULL, /* 0x15 */ 201 SQLITE_INTEGER, /* 0x16 */ 202 SQLITE_NULL, /* 0x17 */ 203 SQLITE_FLOAT, /* 0x18 */ 204 SQLITE_NULL, /* 0x19 */ 205 SQLITE_FLOAT, /* 0x1a */ 206 SQLITE_NULL, /* 0x1b */ 207 SQLITE_INTEGER, /* 0x1c */ 208 SQLITE_NULL, /* 0x1d */ 209 SQLITE_INTEGER, /* 0x1e */ 210 SQLITE_NULL, /* 0x1f */ 211 }; 212 return aType[pVal->flags&MEM_AffMask]; 213 } 214 215 /* Make a copy of an sqlite3_value object 216 */ 217 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 218 sqlite3_value *pNew; 219 if( pOrig==0 ) return 0; 220 pNew = sqlite3_malloc( sizeof(*pNew) ); 221 if( pNew==0 ) return 0; 222 memset(pNew, 0, sizeof(*pNew)); 223 memcpy(pNew, pOrig, MEMCELLSIZE); 224 pNew->flags &= ~MEM_Dyn; 225 pNew->db = 0; 226 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 227 pNew->flags &= ~(MEM_Static|MEM_Dyn); 228 pNew->flags |= MEM_Ephem; 229 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 230 sqlite3ValueFree(pNew); 231 pNew = 0; 232 } 233 } 234 return pNew; 235 } 236 237 /* Destroy an sqlite3_value object previously obtained from 238 ** sqlite3_value_dup(). 239 */ 240 void sqlite3_value_free(sqlite3_value *pOld){ 241 sqlite3ValueFree(pOld); 242 } 243 244 245 /**************************** sqlite3_result_ ******************************* 246 ** The following routines are used by user-defined functions to specify 247 ** the function result. 248 ** 249 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 250 ** result as a string or blob but if the string or blob is too large, it 251 ** then sets the error code to SQLITE_TOOBIG 252 ** 253 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 254 ** on value P is not going to be used and need to be destroyed. 255 */ 256 static void setResultStrOrError( 257 sqlite3_context *pCtx, /* Function context */ 258 const char *z, /* String pointer */ 259 int n, /* Bytes in string, or negative */ 260 u8 enc, /* Encoding of z. 0 for BLOBs */ 261 void (*xDel)(void*) /* Destructor function */ 262 ){ 263 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 264 sqlite3_result_error_toobig(pCtx); 265 } 266 } 267 static int invokeValueDestructor( 268 const void *p, /* Value to destroy */ 269 void (*xDel)(void*), /* The destructor */ 270 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 271 ){ 272 assert( xDel!=SQLITE_DYNAMIC ); 273 if( xDel==0 ){ 274 /* noop */ 275 }else if( xDel==SQLITE_TRANSIENT ){ 276 /* noop */ 277 }else{ 278 xDel((void*)p); 279 } 280 if( pCtx ) sqlite3_result_error_toobig(pCtx); 281 return SQLITE_TOOBIG; 282 } 283 void sqlite3_result_blob( 284 sqlite3_context *pCtx, 285 const void *z, 286 int n, 287 void (*xDel)(void *) 288 ){ 289 assert( n>=0 ); 290 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 291 setResultStrOrError(pCtx, z, n, 0, xDel); 292 } 293 void sqlite3_result_blob64( 294 sqlite3_context *pCtx, 295 const void *z, 296 sqlite3_uint64 n, 297 void (*xDel)(void *) 298 ){ 299 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 300 assert( xDel!=SQLITE_DYNAMIC ); 301 if( n>0x7fffffff ){ 302 (void)invokeValueDestructor(z, xDel, pCtx); 303 }else{ 304 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 305 } 306 } 307 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 308 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 309 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 310 } 311 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 312 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 313 pCtx->isError = SQLITE_ERROR; 314 pCtx->fErrorOrAux = 1; 315 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 316 } 317 #ifndef SQLITE_OMIT_UTF16 318 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 319 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 320 pCtx->isError = SQLITE_ERROR; 321 pCtx->fErrorOrAux = 1; 322 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 323 } 324 #endif 325 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 326 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 327 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 328 } 329 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 330 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 331 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 332 } 333 void sqlite3_result_null(sqlite3_context *pCtx){ 334 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 335 sqlite3VdbeMemSetNull(pCtx->pOut); 336 } 337 void sqlite3_result_text( 338 sqlite3_context *pCtx, 339 const char *z, 340 int n, 341 void (*xDel)(void *) 342 ){ 343 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 344 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 345 } 346 void sqlite3_result_text64( 347 sqlite3_context *pCtx, 348 const char *z, 349 sqlite3_uint64 n, 350 void (*xDel)(void *), 351 unsigned char enc 352 ){ 353 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 354 assert( xDel!=SQLITE_DYNAMIC ); 355 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 356 if( n>0x7fffffff ){ 357 (void)invokeValueDestructor(z, xDel, pCtx); 358 }else{ 359 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 360 } 361 } 362 #ifndef SQLITE_OMIT_UTF16 363 void sqlite3_result_text16( 364 sqlite3_context *pCtx, 365 const void *z, 366 int n, 367 void (*xDel)(void *) 368 ){ 369 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 370 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 371 } 372 void sqlite3_result_text16be( 373 sqlite3_context *pCtx, 374 const void *z, 375 int n, 376 void (*xDel)(void *) 377 ){ 378 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 379 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 380 } 381 void sqlite3_result_text16le( 382 sqlite3_context *pCtx, 383 const void *z, 384 int n, 385 void (*xDel)(void *) 386 ){ 387 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 388 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 389 } 390 #endif /* SQLITE_OMIT_UTF16 */ 391 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 392 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 393 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 394 } 395 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 396 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 397 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 398 } 399 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 400 pCtx->isError = errCode; 401 pCtx->fErrorOrAux = 1; 402 #ifdef SQLITE_DEBUG 403 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 404 #endif 405 if( pCtx->pOut->flags & MEM_Null ){ 406 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 407 SQLITE_UTF8, SQLITE_STATIC); 408 } 409 } 410 411 /* Force an SQLITE_TOOBIG error. */ 412 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 413 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 414 pCtx->isError = SQLITE_TOOBIG; 415 pCtx->fErrorOrAux = 1; 416 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 417 SQLITE_UTF8, SQLITE_STATIC); 418 } 419 420 /* An SQLITE_NOMEM error. */ 421 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 sqlite3VdbeMemSetNull(pCtx->pOut); 424 pCtx->isError = SQLITE_NOMEM; 425 pCtx->fErrorOrAux = 1; 426 pCtx->pOut->db->mallocFailed = 1; 427 } 428 429 /* 430 ** This function is called after a transaction has been committed. It 431 ** invokes callbacks registered with sqlite3_wal_hook() as required. 432 */ 433 static int doWalCallbacks(sqlite3 *db){ 434 int rc = SQLITE_OK; 435 #ifndef SQLITE_OMIT_WAL 436 int i; 437 for(i=0; i<db->nDb; i++){ 438 Btree *pBt = db->aDb[i].pBt; 439 if( pBt ){ 440 int nEntry; 441 sqlite3BtreeEnter(pBt); 442 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 443 sqlite3BtreeLeave(pBt); 444 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 445 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 446 } 447 } 448 } 449 #endif 450 return rc; 451 } 452 453 /* 454 ** Execute the statement pStmt, either until a row of data is ready, the 455 ** statement is completely executed or an error occurs. 456 ** 457 ** This routine implements the bulk of the logic behind the sqlite_step() 458 ** API. The only thing omitted is the automatic recompile if a 459 ** schema change has occurred. That detail is handled by the 460 ** outer sqlite3_step() wrapper procedure. 461 */ 462 static int sqlite3Step(Vdbe *p){ 463 sqlite3 *db; 464 int rc; 465 466 assert(p); 467 if( p->magic!=VDBE_MAGIC_RUN ){ 468 /* We used to require that sqlite3_reset() be called before retrying 469 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 470 ** with version 3.7.0, we changed this so that sqlite3_reset() would 471 ** be called automatically instead of throwing the SQLITE_MISUSE error. 472 ** This "automatic-reset" change is not technically an incompatibility, 473 ** since any application that receives an SQLITE_MISUSE is broken by 474 ** definition. 475 ** 476 ** Nevertheless, some published applications that were originally written 477 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 478 ** returns, and those were broken by the automatic-reset change. As a 479 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 480 ** legacy behavior of returning SQLITE_MISUSE for cases where the 481 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 482 ** or SQLITE_BUSY error. 483 */ 484 #ifdef SQLITE_OMIT_AUTORESET 485 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 486 sqlite3_reset((sqlite3_stmt*)p); 487 }else{ 488 return SQLITE_MISUSE_BKPT; 489 } 490 #else 491 sqlite3_reset((sqlite3_stmt*)p); 492 #endif 493 } 494 495 /* Check that malloc() has not failed. If it has, return early. */ 496 db = p->db; 497 if( db->mallocFailed ){ 498 p->rc = SQLITE_NOMEM; 499 return SQLITE_NOMEM; 500 } 501 502 if( p->pc<=0 && p->expired ){ 503 p->rc = SQLITE_SCHEMA; 504 rc = SQLITE_ERROR; 505 goto end_of_step; 506 } 507 if( p->pc<0 ){ 508 /* If there are no other statements currently running, then 509 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 510 ** from interrupting a statement that has not yet started. 511 */ 512 if( db->nVdbeActive==0 ){ 513 db->u1.isInterrupted = 0; 514 } 515 516 assert( db->nVdbeWrite>0 || db->autoCommit==0 517 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 518 ); 519 520 #ifndef SQLITE_OMIT_TRACE 521 if( db->xProfile && !db->init.busy ){ 522 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 523 } 524 #endif 525 526 db->nVdbeActive++; 527 if( p->readOnly==0 ) db->nVdbeWrite++; 528 if( p->bIsReader ) db->nVdbeRead++; 529 p->pc = 0; 530 } 531 #ifdef SQLITE_DEBUG 532 p->rcApp = SQLITE_OK; 533 #endif 534 #ifndef SQLITE_OMIT_EXPLAIN 535 if( p->explain ){ 536 rc = sqlite3VdbeList(p); 537 }else 538 #endif /* SQLITE_OMIT_EXPLAIN */ 539 { 540 db->nVdbeExec++; 541 rc = sqlite3VdbeExec(p); 542 db->nVdbeExec--; 543 } 544 545 #ifndef SQLITE_OMIT_TRACE 546 /* Invoke the profile callback if there is one 547 */ 548 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 549 sqlite3_int64 iNow; 550 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 551 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 552 } 553 #endif 554 555 if( rc==SQLITE_DONE ){ 556 assert( p->rc==SQLITE_OK ); 557 p->rc = doWalCallbacks(db); 558 if( p->rc!=SQLITE_OK ){ 559 rc = SQLITE_ERROR; 560 } 561 } 562 563 db->errCode = rc; 564 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 565 p->rc = SQLITE_NOMEM; 566 } 567 end_of_step: 568 /* At this point local variable rc holds the value that should be 569 ** returned if this statement was compiled using the legacy 570 ** sqlite3_prepare() interface. According to the docs, this can only 571 ** be one of the values in the first assert() below. Variable p->rc 572 ** contains the value that would be returned if sqlite3_finalize() 573 ** were called on statement p. 574 */ 575 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 576 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 577 ); 578 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 579 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 580 /* If this statement was prepared using sqlite3_prepare_v2(), and an 581 ** error has occurred, then return the error code in p->rc to the 582 ** caller. Set the error code in the database handle to the same value. 583 */ 584 rc = sqlite3VdbeTransferError(p); 585 } 586 return (rc&db->errMask); 587 } 588 589 /* 590 ** This is the top-level implementation of sqlite3_step(). Call 591 ** sqlite3Step() to do most of the work. If a schema error occurs, 592 ** call sqlite3Reprepare() and try again. 593 */ 594 int sqlite3_step(sqlite3_stmt *pStmt){ 595 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 596 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 597 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 598 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 599 sqlite3 *db; /* The database connection */ 600 601 if( vdbeSafetyNotNull(v) ){ 602 return SQLITE_MISUSE_BKPT; 603 } 604 db = v->db; 605 sqlite3_mutex_enter(db->mutex); 606 v->doingRerun = 0; 607 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 608 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 609 int savedPc = v->pc; 610 rc2 = rc = sqlite3Reprepare(v); 611 if( rc!=SQLITE_OK) break; 612 sqlite3_reset(pStmt); 613 if( savedPc>=0 ) v->doingRerun = 1; 614 assert( v->expired==0 ); 615 } 616 if( rc2!=SQLITE_OK ){ 617 /* This case occurs after failing to recompile an sql statement. 618 ** The error message from the SQL compiler has already been loaded 619 ** into the database handle. This block copies the error message 620 ** from the database handle into the statement and sets the statement 621 ** program counter to 0 to ensure that when the statement is 622 ** finalized or reset the parser error message is available via 623 ** sqlite3_errmsg() and sqlite3_errcode(). 624 */ 625 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 626 sqlite3DbFree(db, v->zErrMsg); 627 if( !db->mallocFailed ){ 628 v->zErrMsg = sqlite3DbStrDup(db, zErr); 629 v->rc = rc2; 630 } else { 631 v->zErrMsg = 0; 632 v->rc = rc = SQLITE_NOMEM; 633 } 634 } 635 rc = sqlite3ApiExit(db, rc); 636 sqlite3_mutex_leave(db->mutex); 637 return rc; 638 } 639 640 641 /* 642 ** Extract the user data from a sqlite3_context structure and return a 643 ** pointer to it. 644 */ 645 void *sqlite3_user_data(sqlite3_context *p){ 646 assert( p && p->pFunc ); 647 return p->pFunc->pUserData; 648 } 649 650 /* 651 ** Extract the user data from a sqlite3_context structure and return a 652 ** pointer to it. 653 ** 654 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 655 ** returns a copy of the pointer to the database connection (the 1st 656 ** parameter) of the sqlite3_create_function() and 657 ** sqlite3_create_function16() routines that originally registered the 658 ** application defined function. 659 */ 660 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 661 assert( p && p->pFunc ); 662 return p->pOut->db; 663 } 664 665 /* 666 ** Return the current time for a statement. If the current time 667 ** is requested more than once within the same run of a single prepared 668 ** statement, the exact same time is returned for each invocation regardless 669 ** of the amount of time that elapses between invocations. In other words, 670 ** the time returned is always the time of the first call. 671 */ 672 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 673 int rc; 674 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 675 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 676 assert( p->pVdbe!=0 ); 677 #else 678 sqlite3_int64 iTime = 0; 679 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 680 #endif 681 if( *piTime==0 ){ 682 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 683 if( rc ) *piTime = 0; 684 } 685 return *piTime; 686 } 687 688 /* 689 ** The following is the implementation of an SQL function that always 690 ** fails with an error message stating that the function is used in the 691 ** wrong context. The sqlite3_overload_function() API might construct 692 ** SQL function that use this routine so that the functions will exist 693 ** for name resolution but are actually overloaded by the xFindFunction 694 ** method of virtual tables. 695 */ 696 void sqlite3InvalidFunction( 697 sqlite3_context *context, /* The function calling context */ 698 int NotUsed, /* Number of arguments to the function */ 699 sqlite3_value **NotUsed2 /* Value of each argument */ 700 ){ 701 const char *zName = context->pFunc->zName; 702 char *zErr; 703 UNUSED_PARAMETER2(NotUsed, NotUsed2); 704 zErr = sqlite3_mprintf( 705 "unable to use function %s in the requested context", zName); 706 sqlite3_result_error(context, zErr, -1); 707 sqlite3_free(zErr); 708 } 709 710 /* 711 ** Create a new aggregate context for p and return a pointer to 712 ** its pMem->z element. 713 */ 714 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 715 Mem *pMem = p->pMem; 716 assert( (pMem->flags & MEM_Agg)==0 ); 717 if( nByte<=0 ){ 718 sqlite3VdbeMemSetNull(pMem); 719 pMem->z = 0; 720 }else{ 721 sqlite3VdbeMemClearAndResize(pMem, nByte); 722 pMem->flags = MEM_Agg; 723 pMem->u.pDef = p->pFunc; 724 if( pMem->z ){ 725 memset(pMem->z, 0, nByte); 726 } 727 } 728 return (void*)pMem->z; 729 } 730 731 /* 732 ** Allocate or return the aggregate context for a user function. A new 733 ** context is allocated on the first call. Subsequent calls return the 734 ** same context that was returned on prior calls. 735 */ 736 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 737 assert( p && p->pFunc && p->pFunc->xStep ); 738 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 739 testcase( nByte<0 ); 740 if( (p->pMem->flags & MEM_Agg)==0 ){ 741 return createAggContext(p, nByte); 742 }else{ 743 return (void*)p->pMem->z; 744 } 745 } 746 747 /* 748 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 749 ** the user-function defined by pCtx. 750 */ 751 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 752 AuxData *pAuxData; 753 754 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 755 #if SQLITE_ENABLE_STAT3_OR_STAT4 756 if( pCtx->pVdbe==0 ) return 0; 757 #else 758 assert( pCtx->pVdbe!=0 ); 759 #endif 760 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 761 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 762 } 763 764 return (pAuxData ? pAuxData->pAux : 0); 765 } 766 767 /* 768 ** Set the auxiliary data pointer and delete function, for the iArg'th 769 ** argument to the user-function defined by pCtx. Any previous value is 770 ** deleted by calling the delete function specified when it was set. 771 */ 772 void sqlite3_set_auxdata( 773 sqlite3_context *pCtx, 774 int iArg, 775 void *pAux, 776 void (*xDelete)(void*) 777 ){ 778 AuxData *pAuxData; 779 Vdbe *pVdbe = pCtx->pVdbe; 780 781 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 782 if( iArg<0 ) goto failed; 783 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 784 if( pVdbe==0 ) goto failed; 785 #else 786 assert( pVdbe!=0 ); 787 #endif 788 789 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 790 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 791 } 792 if( pAuxData==0 ){ 793 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 794 if( !pAuxData ) goto failed; 795 pAuxData->iOp = pCtx->iOp; 796 pAuxData->iArg = iArg; 797 pAuxData->pNext = pVdbe->pAuxData; 798 pVdbe->pAuxData = pAuxData; 799 if( pCtx->fErrorOrAux==0 ){ 800 pCtx->isError = 0; 801 pCtx->fErrorOrAux = 1; 802 } 803 }else if( pAuxData->xDelete ){ 804 pAuxData->xDelete(pAuxData->pAux); 805 } 806 807 pAuxData->pAux = pAux; 808 pAuxData->xDelete = xDelete; 809 return; 810 811 failed: 812 if( xDelete ){ 813 xDelete(pAux); 814 } 815 } 816 817 #ifndef SQLITE_OMIT_DEPRECATED 818 /* 819 ** Return the number of times the Step function of an aggregate has been 820 ** called. 821 ** 822 ** This function is deprecated. Do not use it for new code. It is 823 ** provide only to avoid breaking legacy code. New aggregate function 824 ** implementations should keep their own counts within their aggregate 825 ** context. 826 */ 827 int sqlite3_aggregate_count(sqlite3_context *p){ 828 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 829 return p->pMem->n; 830 } 831 #endif 832 833 /* 834 ** Return the number of columns in the result set for the statement pStmt. 835 */ 836 int sqlite3_column_count(sqlite3_stmt *pStmt){ 837 Vdbe *pVm = (Vdbe *)pStmt; 838 return pVm ? pVm->nResColumn : 0; 839 } 840 841 /* 842 ** Return the number of values available from the current row of the 843 ** currently executing statement pStmt. 844 */ 845 int sqlite3_data_count(sqlite3_stmt *pStmt){ 846 Vdbe *pVm = (Vdbe *)pStmt; 847 if( pVm==0 || pVm->pResultSet==0 ) return 0; 848 return pVm->nResColumn; 849 } 850 851 /* 852 ** Return a pointer to static memory containing an SQL NULL value. 853 */ 854 static const Mem *columnNullValue(void){ 855 /* Even though the Mem structure contains an element 856 ** of type i64, on certain architectures (x86) with certain compiler 857 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 858 ** instead of an 8-byte one. This all works fine, except that when 859 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 860 ** that a Mem structure is located on an 8-byte boundary. To prevent 861 ** these assert()s from failing, when building with SQLITE_DEBUG defined 862 ** using gcc, we force nullMem to be 8-byte aligned using the magical 863 ** __attribute__((aligned(8))) macro. */ 864 static const Mem nullMem 865 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 866 __attribute__((aligned(8))) 867 #endif 868 = { 869 /* .u = */ {0}, 870 /* .flags = */ MEM_Null, 871 /* .enc = */ 0, 872 /* .n = */ 0, 873 /* .z = */ 0, 874 /* .zMalloc = */ 0, 875 /* .szMalloc = */ 0, 876 /* .iPadding1 = */ 0, 877 /* .db = */ 0, 878 /* .xDel = */ 0, 879 #ifdef SQLITE_DEBUG 880 /* .pScopyFrom = */ 0, 881 /* .pFiller = */ 0, 882 #endif 883 }; 884 return &nullMem; 885 } 886 887 /* 888 ** Check to see if column iCol of the given statement is valid. If 889 ** it is, return a pointer to the Mem for the value of that column. 890 ** If iCol is not valid, return a pointer to a Mem which has a value 891 ** of NULL. 892 */ 893 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 894 Vdbe *pVm; 895 Mem *pOut; 896 897 pVm = (Vdbe *)pStmt; 898 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 899 sqlite3_mutex_enter(pVm->db->mutex); 900 pOut = &pVm->pResultSet[i]; 901 }else{ 902 if( pVm && ALWAYS(pVm->db) ){ 903 sqlite3_mutex_enter(pVm->db->mutex); 904 sqlite3Error(pVm->db, SQLITE_RANGE); 905 } 906 pOut = (Mem*)columnNullValue(); 907 } 908 return pOut; 909 } 910 911 /* 912 ** This function is called after invoking an sqlite3_value_XXX function on a 913 ** column value (i.e. a value returned by evaluating an SQL expression in the 914 ** select list of a SELECT statement) that may cause a malloc() failure. If 915 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 916 ** code of statement pStmt set to SQLITE_NOMEM. 917 ** 918 ** Specifically, this is called from within: 919 ** 920 ** sqlite3_column_int() 921 ** sqlite3_column_int64() 922 ** sqlite3_column_text() 923 ** sqlite3_column_text16() 924 ** sqlite3_column_real() 925 ** sqlite3_column_bytes() 926 ** sqlite3_column_bytes16() 927 ** sqiite3_column_blob() 928 */ 929 static void columnMallocFailure(sqlite3_stmt *pStmt) 930 { 931 /* If malloc() failed during an encoding conversion within an 932 ** sqlite3_column_XXX API, then set the return code of the statement to 933 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 934 ** and _finalize() will return NOMEM. 935 */ 936 Vdbe *p = (Vdbe *)pStmt; 937 if( p ){ 938 p->rc = sqlite3ApiExit(p->db, p->rc); 939 sqlite3_mutex_leave(p->db->mutex); 940 } 941 } 942 943 /**************************** sqlite3_column_ ******************************* 944 ** The following routines are used to access elements of the current row 945 ** in the result set. 946 */ 947 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 948 const void *val; 949 val = sqlite3_value_blob( columnMem(pStmt,i) ); 950 /* Even though there is no encoding conversion, value_blob() might 951 ** need to call malloc() to expand the result of a zeroblob() 952 ** expression. 953 */ 954 columnMallocFailure(pStmt); 955 return val; 956 } 957 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 958 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 959 columnMallocFailure(pStmt); 960 return val; 961 } 962 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 963 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 964 columnMallocFailure(pStmt); 965 return val; 966 } 967 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 968 double val = sqlite3_value_double( columnMem(pStmt,i) ); 969 columnMallocFailure(pStmt); 970 return val; 971 } 972 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 973 int val = sqlite3_value_int( columnMem(pStmt,i) ); 974 columnMallocFailure(pStmt); 975 return val; 976 } 977 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 978 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 979 columnMallocFailure(pStmt); 980 return val; 981 } 982 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 983 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 984 columnMallocFailure(pStmt); 985 return val; 986 } 987 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 988 Mem *pOut = columnMem(pStmt, i); 989 if( pOut->flags&MEM_Static ){ 990 pOut->flags &= ~MEM_Static; 991 pOut->flags |= MEM_Ephem; 992 } 993 columnMallocFailure(pStmt); 994 return (sqlite3_value *)pOut; 995 } 996 #ifndef SQLITE_OMIT_UTF16 997 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 998 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 999 columnMallocFailure(pStmt); 1000 return val; 1001 } 1002 #endif /* SQLITE_OMIT_UTF16 */ 1003 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1004 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1005 columnMallocFailure(pStmt); 1006 return iType; 1007 } 1008 1009 /* 1010 ** Convert the N-th element of pStmt->pColName[] into a string using 1011 ** xFunc() then return that string. If N is out of range, return 0. 1012 ** 1013 ** There are up to 5 names for each column. useType determines which 1014 ** name is returned. Here are the names: 1015 ** 1016 ** 0 The column name as it should be displayed for output 1017 ** 1 The datatype name for the column 1018 ** 2 The name of the database that the column derives from 1019 ** 3 The name of the table that the column derives from 1020 ** 4 The name of the table column that the result column derives from 1021 ** 1022 ** If the result is not a simple column reference (if it is an expression 1023 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1024 */ 1025 static const void *columnName( 1026 sqlite3_stmt *pStmt, 1027 int N, 1028 const void *(*xFunc)(Mem*), 1029 int useType 1030 ){ 1031 const void *ret; 1032 Vdbe *p; 1033 int n; 1034 sqlite3 *db; 1035 #ifdef SQLITE_ENABLE_API_ARMOR 1036 if( pStmt==0 ){ 1037 (void)SQLITE_MISUSE_BKPT; 1038 return 0; 1039 } 1040 #endif 1041 ret = 0; 1042 p = (Vdbe *)pStmt; 1043 db = p->db; 1044 assert( db!=0 ); 1045 n = sqlite3_column_count(pStmt); 1046 if( N<n && N>=0 ){ 1047 N += useType*n; 1048 sqlite3_mutex_enter(db->mutex); 1049 assert( db->mallocFailed==0 ); 1050 ret = xFunc(&p->aColName[N]); 1051 /* A malloc may have failed inside of the xFunc() call. If this 1052 ** is the case, clear the mallocFailed flag and return NULL. 1053 */ 1054 if( db->mallocFailed ){ 1055 db->mallocFailed = 0; 1056 ret = 0; 1057 } 1058 sqlite3_mutex_leave(db->mutex); 1059 } 1060 return ret; 1061 } 1062 1063 /* 1064 ** Return the name of the Nth column of the result set returned by SQL 1065 ** statement pStmt. 1066 */ 1067 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1068 return columnName( 1069 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1070 } 1071 #ifndef SQLITE_OMIT_UTF16 1072 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1073 return columnName( 1074 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1075 } 1076 #endif 1077 1078 /* 1079 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1080 ** not define OMIT_DECLTYPE. 1081 */ 1082 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1083 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1084 and SQLITE_ENABLE_COLUMN_METADATA" 1085 #endif 1086 1087 #ifndef SQLITE_OMIT_DECLTYPE 1088 /* 1089 ** Return the column declaration type (if applicable) of the 'i'th column 1090 ** of the result set of SQL statement pStmt. 1091 */ 1092 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1093 return columnName( 1094 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1095 } 1096 #ifndef SQLITE_OMIT_UTF16 1097 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1098 return columnName( 1099 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1100 } 1101 #endif /* SQLITE_OMIT_UTF16 */ 1102 #endif /* SQLITE_OMIT_DECLTYPE */ 1103 1104 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1105 /* 1106 ** Return the name of the database from which a result column derives. 1107 ** NULL is returned if the result column is an expression or constant or 1108 ** anything else which is not an unambiguous reference to a database column. 1109 */ 1110 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1111 return columnName( 1112 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1113 } 1114 #ifndef SQLITE_OMIT_UTF16 1115 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1116 return columnName( 1117 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1118 } 1119 #endif /* SQLITE_OMIT_UTF16 */ 1120 1121 /* 1122 ** Return the name of the table from which a result column derives. 1123 ** NULL is returned if the result column is an expression or constant or 1124 ** anything else which is not an unambiguous reference to a database column. 1125 */ 1126 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1127 return columnName( 1128 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1129 } 1130 #ifndef SQLITE_OMIT_UTF16 1131 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1132 return columnName( 1133 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1134 } 1135 #endif /* SQLITE_OMIT_UTF16 */ 1136 1137 /* 1138 ** Return the name of the table column from which a result column derives. 1139 ** NULL is returned if the result column is an expression or constant or 1140 ** anything else which is not an unambiguous reference to a database column. 1141 */ 1142 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1143 return columnName( 1144 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1145 } 1146 #ifndef SQLITE_OMIT_UTF16 1147 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1148 return columnName( 1149 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1150 } 1151 #endif /* SQLITE_OMIT_UTF16 */ 1152 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1153 1154 1155 /******************************* sqlite3_bind_ *************************** 1156 ** 1157 ** Routines used to attach values to wildcards in a compiled SQL statement. 1158 */ 1159 /* 1160 ** Unbind the value bound to variable i in virtual machine p. This is the 1161 ** the same as binding a NULL value to the column. If the "i" parameter is 1162 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1163 ** 1164 ** A successful evaluation of this routine acquires the mutex on p. 1165 ** the mutex is released if any kind of error occurs. 1166 ** 1167 ** The error code stored in database p->db is overwritten with the return 1168 ** value in any case. 1169 */ 1170 static int vdbeUnbind(Vdbe *p, int i){ 1171 Mem *pVar; 1172 if( vdbeSafetyNotNull(p) ){ 1173 return SQLITE_MISUSE_BKPT; 1174 } 1175 sqlite3_mutex_enter(p->db->mutex); 1176 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1177 sqlite3Error(p->db, SQLITE_MISUSE); 1178 sqlite3_mutex_leave(p->db->mutex); 1179 sqlite3_log(SQLITE_MISUSE, 1180 "bind on a busy prepared statement: [%s]", p->zSql); 1181 return SQLITE_MISUSE_BKPT; 1182 } 1183 if( i<1 || i>p->nVar ){ 1184 sqlite3Error(p->db, SQLITE_RANGE); 1185 sqlite3_mutex_leave(p->db->mutex); 1186 return SQLITE_RANGE; 1187 } 1188 i--; 1189 pVar = &p->aVar[i]; 1190 sqlite3VdbeMemRelease(pVar); 1191 pVar->flags = MEM_Null; 1192 sqlite3Error(p->db, SQLITE_OK); 1193 1194 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1195 ** binding a new value to this variable invalidates the current query plan. 1196 ** 1197 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1198 ** parameter in the WHERE clause might influence the choice of query plan 1199 ** for a statement, then the statement will be automatically recompiled, 1200 ** as if there had been a schema change, on the first sqlite3_step() call 1201 ** following any change to the bindings of that parameter. 1202 */ 1203 if( p->isPrepareV2 && 1204 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1205 ){ 1206 p->expired = 1; 1207 } 1208 return SQLITE_OK; 1209 } 1210 1211 /* 1212 ** Bind a text or BLOB value. 1213 */ 1214 static int bindText( 1215 sqlite3_stmt *pStmt, /* The statement to bind against */ 1216 int i, /* Index of the parameter to bind */ 1217 const void *zData, /* Pointer to the data to be bound */ 1218 int nData, /* Number of bytes of data to be bound */ 1219 void (*xDel)(void*), /* Destructor for the data */ 1220 u8 encoding /* Encoding for the data */ 1221 ){ 1222 Vdbe *p = (Vdbe *)pStmt; 1223 Mem *pVar; 1224 int rc; 1225 1226 rc = vdbeUnbind(p, i); 1227 if( rc==SQLITE_OK ){ 1228 if( zData!=0 ){ 1229 pVar = &p->aVar[i-1]; 1230 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1231 if( rc==SQLITE_OK && encoding!=0 ){ 1232 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1233 } 1234 sqlite3Error(p->db, rc); 1235 rc = sqlite3ApiExit(p->db, rc); 1236 } 1237 sqlite3_mutex_leave(p->db->mutex); 1238 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1239 xDel((void*)zData); 1240 } 1241 return rc; 1242 } 1243 1244 1245 /* 1246 ** Bind a blob value to an SQL statement variable. 1247 */ 1248 int sqlite3_bind_blob( 1249 sqlite3_stmt *pStmt, 1250 int i, 1251 const void *zData, 1252 int nData, 1253 void (*xDel)(void*) 1254 ){ 1255 return bindText(pStmt, i, zData, nData, xDel, 0); 1256 } 1257 int sqlite3_bind_blob64( 1258 sqlite3_stmt *pStmt, 1259 int i, 1260 const void *zData, 1261 sqlite3_uint64 nData, 1262 void (*xDel)(void*) 1263 ){ 1264 assert( xDel!=SQLITE_DYNAMIC ); 1265 if( nData>0x7fffffff ){ 1266 return invokeValueDestructor(zData, xDel, 0); 1267 }else{ 1268 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1269 } 1270 } 1271 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1272 int rc; 1273 Vdbe *p = (Vdbe *)pStmt; 1274 rc = vdbeUnbind(p, i); 1275 if( rc==SQLITE_OK ){ 1276 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1277 sqlite3_mutex_leave(p->db->mutex); 1278 } 1279 return rc; 1280 } 1281 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1282 return sqlite3_bind_int64(p, i, (i64)iValue); 1283 } 1284 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1285 int rc; 1286 Vdbe *p = (Vdbe *)pStmt; 1287 rc = vdbeUnbind(p, i); 1288 if( rc==SQLITE_OK ){ 1289 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1290 sqlite3_mutex_leave(p->db->mutex); 1291 } 1292 return rc; 1293 } 1294 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1295 int rc; 1296 Vdbe *p = (Vdbe*)pStmt; 1297 rc = vdbeUnbind(p, i); 1298 if( rc==SQLITE_OK ){ 1299 sqlite3_mutex_leave(p->db->mutex); 1300 } 1301 return rc; 1302 } 1303 int sqlite3_bind_text( 1304 sqlite3_stmt *pStmt, 1305 int i, 1306 const char *zData, 1307 int nData, 1308 void (*xDel)(void*) 1309 ){ 1310 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1311 } 1312 int sqlite3_bind_text64( 1313 sqlite3_stmt *pStmt, 1314 int i, 1315 const char *zData, 1316 sqlite3_uint64 nData, 1317 void (*xDel)(void*), 1318 unsigned char enc 1319 ){ 1320 assert( xDel!=SQLITE_DYNAMIC ); 1321 if( nData>0x7fffffff ){ 1322 return invokeValueDestructor(zData, xDel, 0); 1323 }else{ 1324 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1325 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1326 } 1327 } 1328 #ifndef SQLITE_OMIT_UTF16 1329 int sqlite3_bind_text16( 1330 sqlite3_stmt *pStmt, 1331 int i, 1332 const void *zData, 1333 int nData, 1334 void (*xDel)(void*) 1335 ){ 1336 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1337 } 1338 #endif /* SQLITE_OMIT_UTF16 */ 1339 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1340 int rc; 1341 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1342 case SQLITE_INTEGER: { 1343 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1344 break; 1345 } 1346 case SQLITE_FLOAT: { 1347 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1348 break; 1349 } 1350 case SQLITE_BLOB: { 1351 if( pValue->flags & MEM_Zero ){ 1352 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1353 }else{ 1354 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1355 } 1356 break; 1357 } 1358 case SQLITE_TEXT: { 1359 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1360 pValue->enc); 1361 break; 1362 } 1363 default: { 1364 rc = sqlite3_bind_null(pStmt, i); 1365 break; 1366 } 1367 } 1368 return rc; 1369 } 1370 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1371 int rc; 1372 Vdbe *p = (Vdbe *)pStmt; 1373 rc = vdbeUnbind(p, i); 1374 if( rc==SQLITE_OK ){ 1375 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1376 sqlite3_mutex_leave(p->db->mutex); 1377 } 1378 return rc; 1379 } 1380 1381 /* 1382 ** Return the number of wildcards that can be potentially bound to. 1383 ** This routine is added to support DBD::SQLite. 1384 */ 1385 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1386 Vdbe *p = (Vdbe*)pStmt; 1387 return p ? p->nVar : 0; 1388 } 1389 1390 /* 1391 ** Return the name of a wildcard parameter. Return NULL if the index 1392 ** is out of range or if the wildcard is unnamed. 1393 ** 1394 ** The result is always UTF-8. 1395 */ 1396 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1397 Vdbe *p = (Vdbe*)pStmt; 1398 if( p==0 || i<1 || i>p->nzVar ){ 1399 return 0; 1400 } 1401 return p->azVar[i-1]; 1402 } 1403 1404 /* 1405 ** Given a wildcard parameter name, return the index of the variable 1406 ** with that name. If there is no variable with the given name, 1407 ** return 0. 1408 */ 1409 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1410 int i; 1411 if( p==0 ){ 1412 return 0; 1413 } 1414 if( zName ){ 1415 for(i=0; i<p->nzVar; i++){ 1416 const char *z = p->azVar[i]; 1417 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1418 return i+1; 1419 } 1420 } 1421 } 1422 return 0; 1423 } 1424 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1425 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1426 } 1427 1428 /* 1429 ** Transfer all bindings from the first statement over to the second. 1430 */ 1431 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1432 Vdbe *pFrom = (Vdbe*)pFromStmt; 1433 Vdbe *pTo = (Vdbe*)pToStmt; 1434 int i; 1435 assert( pTo->db==pFrom->db ); 1436 assert( pTo->nVar==pFrom->nVar ); 1437 sqlite3_mutex_enter(pTo->db->mutex); 1438 for(i=0; i<pFrom->nVar; i++){ 1439 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1440 } 1441 sqlite3_mutex_leave(pTo->db->mutex); 1442 return SQLITE_OK; 1443 } 1444 1445 #ifndef SQLITE_OMIT_DEPRECATED 1446 /* 1447 ** Deprecated external interface. Internal/core SQLite code 1448 ** should call sqlite3TransferBindings. 1449 ** 1450 ** It is misuse to call this routine with statements from different 1451 ** database connections. But as this is a deprecated interface, we 1452 ** will not bother to check for that condition. 1453 ** 1454 ** If the two statements contain a different number of bindings, then 1455 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1456 ** SQLITE_OK is returned. 1457 */ 1458 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1459 Vdbe *pFrom = (Vdbe*)pFromStmt; 1460 Vdbe *pTo = (Vdbe*)pToStmt; 1461 if( pFrom->nVar!=pTo->nVar ){ 1462 return SQLITE_ERROR; 1463 } 1464 if( pTo->isPrepareV2 && pTo->expmask ){ 1465 pTo->expired = 1; 1466 } 1467 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1468 pFrom->expired = 1; 1469 } 1470 return sqlite3TransferBindings(pFromStmt, pToStmt); 1471 } 1472 #endif 1473 1474 /* 1475 ** Return the sqlite3* database handle to which the prepared statement given 1476 ** in the argument belongs. This is the same database handle that was 1477 ** the first argument to the sqlite3_prepare() that was used to create 1478 ** the statement in the first place. 1479 */ 1480 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1481 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1482 } 1483 1484 /* 1485 ** Return true if the prepared statement is guaranteed to not modify the 1486 ** database. 1487 */ 1488 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1489 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1490 } 1491 1492 /* 1493 ** Return true if the prepared statement is in need of being reset. 1494 */ 1495 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1496 Vdbe *v = (Vdbe*)pStmt; 1497 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN; 1498 } 1499 1500 /* 1501 ** Return a pointer to the next prepared statement after pStmt associated 1502 ** with database connection pDb. If pStmt is NULL, return the first 1503 ** prepared statement for the database connection. Return NULL if there 1504 ** are no more. 1505 */ 1506 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1507 sqlite3_stmt *pNext; 1508 #ifdef SQLITE_ENABLE_API_ARMOR 1509 if( !sqlite3SafetyCheckOk(pDb) ){ 1510 (void)SQLITE_MISUSE_BKPT; 1511 return 0; 1512 } 1513 #endif 1514 sqlite3_mutex_enter(pDb->mutex); 1515 if( pStmt==0 ){ 1516 pNext = (sqlite3_stmt*)pDb->pVdbe; 1517 }else{ 1518 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1519 } 1520 sqlite3_mutex_leave(pDb->mutex); 1521 return pNext; 1522 } 1523 1524 /* 1525 ** Return the value of a status counter for a prepared statement 1526 */ 1527 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1528 Vdbe *pVdbe = (Vdbe*)pStmt; 1529 u32 v; 1530 #ifdef SQLITE_ENABLE_API_ARMOR 1531 if( !pStmt ){ 1532 (void)SQLITE_MISUSE_BKPT; 1533 return 0; 1534 } 1535 #endif 1536 v = pVdbe->aCounter[op]; 1537 if( resetFlag ) pVdbe->aCounter[op] = 0; 1538 return (int)v; 1539 } 1540 1541 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1542 /* 1543 ** Return status data for a single loop within query pStmt. 1544 */ 1545 int sqlite3_stmt_scanstatus( 1546 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1547 int idx, /* Index of loop to report on */ 1548 int iScanStatusOp, /* Which metric to return */ 1549 void *pOut /* OUT: Write the answer here */ 1550 ){ 1551 Vdbe *p = (Vdbe*)pStmt; 1552 ScanStatus *pScan; 1553 if( idx<0 || idx>=p->nScan ) return 1; 1554 pScan = &p->aScan[idx]; 1555 switch( iScanStatusOp ){ 1556 case SQLITE_SCANSTAT_NLOOP: { 1557 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1558 break; 1559 } 1560 case SQLITE_SCANSTAT_NVISIT: { 1561 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1562 break; 1563 } 1564 case SQLITE_SCANSTAT_EST: { 1565 double r = 1.0; 1566 LogEst x = pScan->nEst; 1567 while( x<100 ){ 1568 x += 10; 1569 r *= 0.5; 1570 } 1571 *(double*)pOut = r*sqlite3LogEstToInt(x); 1572 break; 1573 } 1574 case SQLITE_SCANSTAT_NAME: { 1575 *(const char**)pOut = pScan->zName; 1576 break; 1577 } 1578 case SQLITE_SCANSTAT_EXPLAIN: { 1579 if( pScan->addrExplain ){ 1580 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1581 }else{ 1582 *(const char**)pOut = 0; 1583 } 1584 break; 1585 } 1586 case SQLITE_SCANSTAT_SELECTID: { 1587 if( pScan->addrExplain ){ 1588 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1589 }else{ 1590 *(int*)pOut = -1; 1591 } 1592 break; 1593 } 1594 default: { 1595 return 1; 1596 } 1597 } 1598 return 0; 1599 } 1600 1601 /* 1602 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1603 */ 1604 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1605 Vdbe *p = (Vdbe*)pStmt; 1606 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1607 } 1608 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1609