xref: /sqlite-3.40.0/src/vdbeapi.c (revision 30e314e4)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 (not possible) */
238      SQLITE_NULL,     /* 0x01 NULL */
239      SQLITE_TEXT,     /* 0x02 TEXT */
240      SQLITE_NULL,     /* 0x03 (not possible) */
241      SQLITE_INTEGER,  /* 0x04 INTEGER */
242      SQLITE_NULL,     /* 0x05 (not possible) */
243      SQLITE_INTEGER,  /* 0x06 INTEGER + TEXT */
244      SQLITE_NULL,     /* 0x07 (not possible) */
245      SQLITE_FLOAT,    /* 0x08 FLOAT */
246      SQLITE_NULL,     /* 0x09 (not possible) */
247      SQLITE_FLOAT,    /* 0x0a FLOAT + TEXT */
248      SQLITE_NULL,     /* 0x0b (not possible) */
249      SQLITE_INTEGER,  /* 0x0c (not possible) */
250      SQLITE_NULL,     /* 0x0d (not possible) */
251      SQLITE_INTEGER,  /* 0x0e (not possible) */
252      SQLITE_NULL,     /* 0x0f (not possible) */
253      SQLITE_BLOB,     /* 0x10 BLOB */
254      SQLITE_NULL,     /* 0x11 (not possible) */
255      SQLITE_TEXT,     /* 0x12 (not possible) */
256      SQLITE_NULL,     /* 0x13 (not possible) */
257      SQLITE_INTEGER,  /* 0x14 INTEGER + BLOB */
258      SQLITE_NULL,     /* 0x15 (not possible) */
259      SQLITE_INTEGER,  /* 0x16 (not possible) */
260      SQLITE_NULL,     /* 0x17 (not possible) */
261      SQLITE_FLOAT,    /* 0x18 FLOAT + BLOB */
262      SQLITE_NULL,     /* 0x19 (not possible) */
263      SQLITE_FLOAT,    /* 0x1a (not possible) */
264      SQLITE_NULL,     /* 0x1b (not possible) */
265      SQLITE_INTEGER,  /* 0x1c (not possible) */
266      SQLITE_NULL,     /* 0x1d (not possible) */
267      SQLITE_INTEGER,  /* 0x1e (not possible) */
268      SQLITE_NULL,     /* 0x1f (not possible) */
269      SQLITE_FLOAT,    /* 0x20 INTREAL */
270      SQLITE_NULL,     /* 0x21 (not possible) */
271      SQLITE_TEXT,     /* 0x22 INTREAL + TEXT */
272      SQLITE_NULL,     /* 0x23 (not possible) */
273      SQLITE_FLOAT,    /* 0x24 (not possible) */
274      SQLITE_NULL,     /* 0x25 (not possible) */
275      SQLITE_FLOAT,    /* 0x26 (not possible) */
276      SQLITE_NULL,     /* 0x27 (not possible) */
277      SQLITE_FLOAT,    /* 0x28 (not possible) */
278      SQLITE_NULL,     /* 0x29 (not possible) */
279      SQLITE_FLOAT,    /* 0x2a (not possible) */
280      SQLITE_NULL,     /* 0x2b (not possible) */
281      SQLITE_FLOAT,    /* 0x2c (not possible) */
282      SQLITE_NULL,     /* 0x2d (not possible) */
283      SQLITE_FLOAT,    /* 0x2e (not possible) */
284      SQLITE_NULL,     /* 0x2f (not possible) */
285      SQLITE_BLOB,     /* 0x30 (not possible) */
286      SQLITE_NULL,     /* 0x31 (not possible) */
287      SQLITE_TEXT,     /* 0x32 (not possible) */
288      SQLITE_NULL,     /* 0x33 (not possible) */
289      SQLITE_FLOAT,    /* 0x34 (not possible) */
290      SQLITE_NULL,     /* 0x35 (not possible) */
291      SQLITE_FLOAT,    /* 0x36 (not possible) */
292      SQLITE_NULL,     /* 0x37 (not possible) */
293      SQLITE_FLOAT,    /* 0x38 (not possible) */
294      SQLITE_NULL,     /* 0x39 (not possible) */
295      SQLITE_FLOAT,    /* 0x3a (not possible) */
296      SQLITE_NULL,     /* 0x3b (not possible) */
297      SQLITE_FLOAT,    /* 0x3c (not possible) */
298      SQLITE_NULL,     /* 0x3d (not possible) */
299      SQLITE_FLOAT,    /* 0x3e (not possible) */
300      SQLITE_NULL,     /* 0x3f (not possible) */
301   };
302 #ifdef SQLITE_DEBUG
303   {
304     int eType = SQLITE_BLOB;
305     if( pVal->flags & MEM_Null ){
306       eType = SQLITE_NULL;
307     }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308       eType = SQLITE_FLOAT;
309     }else if( pVal->flags & MEM_Int ){
310       eType = SQLITE_INTEGER;
311     }else if( pVal->flags & MEM_Str ){
312       eType = SQLITE_TEXT;
313     }
314     assert( eType == aType[pVal->flags&MEM_AffMask] );
315   }
316 #endif
317   return aType[pVal->flags&MEM_AffMask];
318 }
319 
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
323 }
324 
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327   return (pVal->flags&MEM_FromBind)!=0;
328 }
329 
330 /* Make a copy of an sqlite3_value object
331 */
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333   sqlite3_value *pNew;
334   if( pOrig==0 ) return 0;
335   pNew = sqlite3_malloc( sizeof(*pNew) );
336   if( pNew==0 ) return 0;
337   memset(pNew, 0, sizeof(*pNew));
338   memcpy(pNew, pOrig, MEMCELLSIZE);
339   pNew->flags &= ~MEM_Dyn;
340   pNew->db = 0;
341   if( pNew->flags&(MEM_Str|MEM_Blob) ){
342     pNew->flags &= ~(MEM_Static|MEM_Dyn);
343     pNew->flags |= MEM_Ephem;
344     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345       sqlite3ValueFree(pNew);
346       pNew = 0;
347     }
348   }
349   return pNew;
350 }
351 
352 /* Destroy an sqlite3_value object previously obtained from
353 ** sqlite3_value_dup().
354 */
355 void sqlite3_value_free(sqlite3_value *pOld){
356   sqlite3ValueFree(pOld);
357 }
358 
359 
360 /**************************** sqlite3_result_  *******************************
361 ** The following routines are used by user-defined functions to specify
362 ** the function result.
363 **
364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
365 ** result as a string or blob.  Appropriate errors are set if the string/blob
366 ** is too big or if an OOM occurs.
367 **
368 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
369 ** on value P is not going to be used and need to be destroyed.
370 */
371 static void setResultStrOrError(
372   sqlite3_context *pCtx,  /* Function context */
373   const char *z,          /* String pointer */
374   int n,                  /* Bytes in string, or negative */
375   u8 enc,                 /* Encoding of z.  0 for BLOBs */
376   void (*xDel)(void*)     /* Destructor function */
377 ){
378   int rc = sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel);
379   if( rc ){
380     if( rc==SQLITE_TOOBIG ){
381       sqlite3_result_error_toobig(pCtx);
382     }else{
383       /* The only errors possible from sqlite3VdbeMemSetStr are
384       ** SQLITE_TOOBIG and SQLITE_NOMEM */
385       assert( rc==SQLITE_NOMEM );
386       sqlite3_result_error_nomem(pCtx);
387     }
388   }
389 }
390 static int invokeValueDestructor(
391   const void *p,             /* Value to destroy */
392   void (*xDel)(void*),       /* The destructor */
393   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
394 ){
395   assert( xDel!=SQLITE_DYNAMIC );
396   if( xDel==0 ){
397     /* noop */
398   }else if( xDel==SQLITE_TRANSIENT ){
399     /* noop */
400   }else{
401     xDel((void*)p);
402   }
403   sqlite3_result_error_toobig(pCtx);
404   return SQLITE_TOOBIG;
405 }
406 void sqlite3_result_blob(
407   sqlite3_context *pCtx,
408   const void *z,
409   int n,
410   void (*xDel)(void *)
411 ){
412   assert( n>=0 );
413   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
414   setResultStrOrError(pCtx, z, n, 0, xDel);
415 }
416 void sqlite3_result_blob64(
417   sqlite3_context *pCtx,
418   const void *z,
419   sqlite3_uint64 n,
420   void (*xDel)(void *)
421 ){
422   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
423   assert( xDel!=SQLITE_DYNAMIC );
424   if( n>0x7fffffff ){
425     (void)invokeValueDestructor(z, xDel, pCtx);
426   }else{
427     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
428   }
429 }
430 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
431   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
432   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
433 }
434 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
435   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
436   pCtx->isError = SQLITE_ERROR;
437   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
438 }
439 #ifndef SQLITE_OMIT_UTF16
440 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
441   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
442   pCtx->isError = SQLITE_ERROR;
443   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
444 }
445 #endif
446 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
447   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
448   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
449 }
450 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
451   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
452   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
453 }
454 void sqlite3_result_null(sqlite3_context *pCtx){
455   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
456   sqlite3VdbeMemSetNull(pCtx->pOut);
457 }
458 void sqlite3_result_pointer(
459   sqlite3_context *pCtx,
460   void *pPtr,
461   const char *zPType,
462   void (*xDestructor)(void*)
463 ){
464   Mem *pOut = pCtx->pOut;
465   assert( sqlite3_mutex_held(pOut->db->mutex) );
466   sqlite3VdbeMemRelease(pOut);
467   pOut->flags = MEM_Null;
468   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
469 }
470 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
471   Mem *pOut = pCtx->pOut;
472   assert( sqlite3_mutex_held(pOut->db->mutex) );
473   pOut->eSubtype = eSubtype & 0xff;
474   pOut->flags |= MEM_Subtype;
475 }
476 void sqlite3_result_text(
477   sqlite3_context *pCtx,
478   const char *z,
479   int n,
480   void (*xDel)(void *)
481 ){
482   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
483   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
484 }
485 void sqlite3_result_text64(
486   sqlite3_context *pCtx,
487   const char *z,
488   sqlite3_uint64 n,
489   void (*xDel)(void *),
490   unsigned char enc
491 ){
492   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
493   assert( xDel!=SQLITE_DYNAMIC );
494   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
495   if( n>0x7fffffff ){
496     (void)invokeValueDestructor(z, xDel, pCtx);
497   }else{
498     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
499   }
500 }
501 #ifndef SQLITE_OMIT_UTF16
502 void sqlite3_result_text16(
503   sqlite3_context *pCtx,
504   const void *z,
505   int n,
506   void (*xDel)(void *)
507 ){
508   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
509   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
510 }
511 void sqlite3_result_text16be(
512   sqlite3_context *pCtx,
513   const void *z,
514   int n,
515   void (*xDel)(void *)
516 ){
517   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
518   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
519 }
520 void sqlite3_result_text16le(
521   sqlite3_context *pCtx,
522   const void *z,
523   int n,
524   void (*xDel)(void *)
525 ){
526   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
527   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
528 }
529 #endif /* SQLITE_OMIT_UTF16 */
530 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
531   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
532   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
533 }
534 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
535   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
536   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
537 }
538 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
539   Mem *pOut = pCtx->pOut;
540   assert( sqlite3_mutex_held(pOut->db->mutex) );
541   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
542     return SQLITE_TOOBIG;
543   }
544 #ifndef SQLITE_OMIT_INCRBLOB
545   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
546   return SQLITE_OK;
547 #else
548   return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
549 #endif
550 }
551 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
552   pCtx->isError = errCode ? errCode : -1;
553 #ifdef SQLITE_DEBUG
554   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
555 #endif
556   if( pCtx->pOut->flags & MEM_Null ){
557     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
558                          SQLITE_UTF8, SQLITE_STATIC);
559   }
560 }
561 
562 /* Force an SQLITE_TOOBIG error. */
563 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
564   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
565   pCtx->isError = SQLITE_TOOBIG;
566   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
567                        SQLITE_UTF8, SQLITE_STATIC);
568 }
569 
570 /* An SQLITE_NOMEM error. */
571 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
572   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
573   sqlite3VdbeMemSetNull(pCtx->pOut);
574   pCtx->isError = SQLITE_NOMEM_BKPT;
575   sqlite3OomFault(pCtx->pOut->db);
576 }
577 
578 #ifndef SQLITE_UNTESTABLE
579 /* Force the INT64 value currently stored as the result to be
580 ** a MEM_IntReal value.  See the SQLITE_TESTCTRL_RESULT_INTREAL
581 ** test-control.
582 */
583 void sqlite3ResultIntReal(sqlite3_context *pCtx){
584   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
585   if( pCtx->pOut->flags & MEM_Int ){
586     pCtx->pOut->flags &= ~MEM_Int;
587     pCtx->pOut->flags |= MEM_IntReal;
588   }
589 }
590 #endif
591 
592 
593 /*
594 ** This function is called after a transaction has been committed. It
595 ** invokes callbacks registered with sqlite3_wal_hook() as required.
596 */
597 static int doWalCallbacks(sqlite3 *db){
598   int rc = SQLITE_OK;
599 #ifndef SQLITE_OMIT_WAL
600   int i;
601   for(i=0; i<db->nDb; i++){
602     Btree *pBt = db->aDb[i].pBt;
603     if( pBt ){
604       int nEntry;
605       sqlite3BtreeEnter(pBt);
606       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
607       sqlite3BtreeLeave(pBt);
608       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
609         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
610       }
611     }
612   }
613 #endif
614   return rc;
615 }
616 
617 
618 /*
619 ** Execute the statement pStmt, either until a row of data is ready, the
620 ** statement is completely executed or an error occurs.
621 **
622 ** This routine implements the bulk of the logic behind the sqlite_step()
623 ** API.  The only thing omitted is the automatic recompile if a
624 ** schema change has occurred.  That detail is handled by the
625 ** outer sqlite3_step() wrapper procedure.
626 */
627 static int sqlite3Step(Vdbe *p){
628   sqlite3 *db;
629   int rc;
630 
631   assert(p);
632   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
633     /* We used to require that sqlite3_reset() be called before retrying
634     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
635     ** with version 3.7.0, we changed this so that sqlite3_reset() would
636     ** be called automatically instead of throwing the SQLITE_MISUSE error.
637     ** This "automatic-reset" change is not technically an incompatibility,
638     ** since any application that receives an SQLITE_MISUSE is broken by
639     ** definition.
640     **
641     ** Nevertheless, some published applications that were originally written
642     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
643     ** returns, and those were broken by the automatic-reset change.  As a
644     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
645     ** legacy behavior of returning SQLITE_MISUSE for cases where the
646     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
647     ** or SQLITE_BUSY error.
648     */
649 #ifdef SQLITE_OMIT_AUTORESET
650     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
651       sqlite3_reset((sqlite3_stmt*)p);
652     }else{
653       return SQLITE_MISUSE_BKPT;
654     }
655 #else
656     sqlite3_reset((sqlite3_stmt*)p);
657 #endif
658   }
659 
660   /* Check that malloc() has not failed. If it has, return early. */
661   db = p->db;
662   if( db->mallocFailed ){
663     p->rc = SQLITE_NOMEM;
664     return SQLITE_NOMEM_BKPT;
665   }
666 
667   if( p->pc<0 && p->expired ){
668     p->rc = SQLITE_SCHEMA;
669     rc = SQLITE_ERROR;
670     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
671       /* If this statement was prepared using saved SQL and an
672       ** error has occurred, then return the error code in p->rc to the
673       ** caller. Set the error code in the database handle to the same value.
674       */
675       rc = sqlite3VdbeTransferError(p);
676     }
677     goto end_of_step;
678   }
679   if( p->pc<0 ){
680     /* If there are no other statements currently running, then
681     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
682     ** from interrupting a statement that has not yet started.
683     */
684     if( db->nVdbeActive==0 ){
685       AtomicStore(&db->u1.isInterrupted, 0);
686     }
687 
688     assert( db->nVdbeWrite>0 || db->autoCommit==0
689         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
690     );
691 
692 #ifndef SQLITE_OMIT_TRACE
693     if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
694         && !db->init.busy && p->zSql ){
695       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
696     }else{
697       assert( p->startTime==0 );
698     }
699 #endif
700 
701     db->nVdbeActive++;
702     if( p->readOnly==0 ) db->nVdbeWrite++;
703     if( p->bIsReader ) db->nVdbeRead++;
704     p->pc = 0;
705   }
706 #ifdef SQLITE_DEBUG
707   p->rcApp = SQLITE_OK;
708 #endif
709 #ifndef SQLITE_OMIT_EXPLAIN
710   if( p->explain ){
711     rc = sqlite3VdbeList(p);
712   }else
713 #endif /* SQLITE_OMIT_EXPLAIN */
714   {
715     db->nVdbeExec++;
716     rc = sqlite3VdbeExec(p);
717     db->nVdbeExec--;
718   }
719 
720   if( rc!=SQLITE_ROW ){
721 #ifndef SQLITE_OMIT_TRACE
722     /* If the statement completed successfully, invoke the profile callback */
723     checkProfileCallback(db, p);
724 #endif
725 
726     if( rc==SQLITE_DONE && db->autoCommit ){
727       assert( p->rc==SQLITE_OK );
728       p->rc = doWalCallbacks(db);
729       if( p->rc!=SQLITE_OK ){
730         rc = SQLITE_ERROR;
731       }
732     }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
733       /* If this statement was prepared using saved SQL and an
734       ** error has occurred, then return the error code in p->rc to the
735       ** caller. Set the error code in the database handle to the same value.
736       */
737       rc = sqlite3VdbeTransferError(p);
738     }
739   }
740 
741   db->errCode = rc;
742   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
743     p->rc = SQLITE_NOMEM_BKPT;
744     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
745   }
746 end_of_step:
747   /* There are only a limited number of result codes allowed from the
748   ** statements prepared using the legacy sqlite3_prepare() interface */
749   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
750        || rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
751        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
752   );
753   return (rc&db->errMask);
754 }
755 
756 /*
757 ** This is the top-level implementation of sqlite3_step().  Call
758 ** sqlite3Step() to do most of the work.  If a schema error occurs,
759 ** call sqlite3Reprepare() and try again.
760 */
761 int sqlite3_step(sqlite3_stmt *pStmt){
762   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
763   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
764   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
765   sqlite3 *db;             /* The database connection */
766 
767   if( vdbeSafetyNotNull(v) ){
768     return SQLITE_MISUSE_BKPT;
769   }
770   db = v->db;
771   sqlite3_mutex_enter(db->mutex);
772   v->doingRerun = 0;
773   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
774          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
775     int savedPc = v->pc;
776     rc = sqlite3Reprepare(v);
777     if( rc!=SQLITE_OK ){
778       /* This case occurs after failing to recompile an sql statement.
779       ** The error message from the SQL compiler has already been loaded
780       ** into the database handle. This block copies the error message
781       ** from the database handle into the statement and sets the statement
782       ** program counter to 0 to ensure that when the statement is
783       ** finalized or reset the parser error message is available via
784       ** sqlite3_errmsg() and sqlite3_errcode().
785       */
786       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
787       sqlite3DbFree(db, v->zErrMsg);
788       if( !db->mallocFailed ){
789         v->zErrMsg = sqlite3DbStrDup(db, zErr);
790         v->rc = rc = sqlite3ApiExit(db, rc);
791       } else {
792         v->zErrMsg = 0;
793         v->rc = rc = SQLITE_NOMEM_BKPT;
794       }
795       break;
796     }
797     sqlite3_reset(pStmt);
798     if( savedPc>=0 ) v->doingRerun = 1;
799     assert( v->expired==0 );
800   }
801   sqlite3_mutex_leave(db->mutex);
802   return rc;
803 }
804 
805 
806 /*
807 ** Extract the user data from a sqlite3_context structure and return a
808 ** pointer to it.
809 */
810 void *sqlite3_user_data(sqlite3_context *p){
811   assert( p && p->pFunc );
812   return p->pFunc->pUserData;
813 }
814 
815 /*
816 ** Extract the user data from a sqlite3_context structure and return a
817 ** pointer to it.
818 **
819 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
820 ** returns a copy of the pointer to the database connection (the 1st
821 ** parameter) of the sqlite3_create_function() and
822 ** sqlite3_create_function16() routines that originally registered the
823 ** application defined function.
824 */
825 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
826   assert( p && p->pOut );
827   return p->pOut->db;
828 }
829 
830 /*
831 ** If this routine is invoked from within an xColumn method of a virtual
832 ** table, then it returns true if and only if the the call is during an
833 ** UPDATE operation and the value of the column will not be modified
834 ** by the UPDATE.
835 **
836 ** If this routine is called from any context other than within the
837 ** xColumn method of a virtual table, then the return value is meaningless
838 ** and arbitrary.
839 **
840 ** Virtual table implements might use this routine to optimize their
841 ** performance by substituting a NULL result, or some other light-weight
842 ** value, as a signal to the xUpdate routine that the column is unchanged.
843 */
844 int sqlite3_vtab_nochange(sqlite3_context *p){
845   assert( p );
846   return sqlite3_value_nochange(p->pOut);
847 }
848 
849 /*
850 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
851 ** sqlite3_vtab_in_next() (if bNext!=0).
852 */
853 static int valueFromValueList(
854   sqlite3_value *pVal,        /* Pointer to the ValueList object */
855   sqlite3_value **ppOut,      /* Store the next value from the list here */
856   int bNext                   /* 1 for _next(). 0 for _first() */
857 ){
858   int rc;
859   ValueList *pRhs;
860 
861   *ppOut = 0;
862   if( pVal==0 ) return SQLITE_MISUSE;
863   pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
864   if( pRhs==0 ) return SQLITE_MISUSE;
865   if( bNext ){
866     rc = sqlite3BtreeNext(pRhs->pCsr, 0);
867   }else{
868     int dummy = 0;
869     rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
870     if( rc==SQLITE_OK && sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
871   }
872   if( rc==SQLITE_OK ){
873     u32 sz;       /* Size of current row in bytes */
874     Mem sMem;     /* Raw content of current row */
875     memset(&sMem, 0, sizeof(sMem));
876     sz = sqlite3BtreePayloadSize(pRhs->pCsr);
877     rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
878     if( rc==SQLITE_OK ){
879       u8 *zBuf = (u8*)sMem.z;
880       u32 iSerial;
881       sqlite3_value *pOut = pRhs->pOut;
882       int iOff = 1 + getVarint32(&zBuf[1], iSerial);
883       sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
884       if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
885         rc = SQLITE_NOMEM;
886       }else{
887         *ppOut = pOut;
888       }
889     }
890     sqlite3VdbeMemRelease(&sMem);
891   }
892   return rc;
893 }
894 
895 /*
896 ** Set the iterator value pVal to point to the first value in the set.
897 ** Set (*ppOut) to point to this value before returning.
898 */
899 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
900   return valueFromValueList(pVal, ppOut, 0);
901 }
902 
903 /*
904 ** Set the iterator value pVal to point to the next value in the set.
905 ** Set (*ppOut) to point to this value before returning.
906 */
907 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
908   return valueFromValueList(pVal, ppOut, 1);
909 }
910 
911 /*
912 ** Return the current time for a statement.  If the current time
913 ** is requested more than once within the same run of a single prepared
914 ** statement, the exact same time is returned for each invocation regardless
915 ** of the amount of time that elapses between invocations.  In other words,
916 ** the time returned is always the time of the first call.
917 */
918 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
919   int rc;
920 #ifndef SQLITE_ENABLE_STAT4
921   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
922   assert( p->pVdbe!=0 );
923 #else
924   sqlite3_int64 iTime = 0;
925   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
926 #endif
927   if( *piTime==0 ){
928     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
929     if( rc ) *piTime = 0;
930   }
931   return *piTime;
932 }
933 
934 /*
935 ** Create a new aggregate context for p and return a pointer to
936 ** its pMem->z element.
937 */
938 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
939   Mem *pMem = p->pMem;
940   assert( (pMem->flags & MEM_Agg)==0 );
941   if( nByte<=0 ){
942     sqlite3VdbeMemSetNull(pMem);
943     pMem->z = 0;
944   }else{
945     sqlite3VdbeMemClearAndResize(pMem, nByte);
946     pMem->flags = MEM_Agg;
947     pMem->u.pDef = p->pFunc;
948     if( pMem->z ){
949       memset(pMem->z, 0, nByte);
950     }
951   }
952   return (void*)pMem->z;
953 }
954 
955 /*
956 ** Allocate or return the aggregate context for a user function.  A new
957 ** context is allocated on the first call.  Subsequent calls return the
958 ** same context that was returned on prior calls.
959 */
960 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
961   assert( p && p->pFunc && p->pFunc->xFinalize );
962   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
963   testcase( nByte<0 );
964   if( (p->pMem->flags & MEM_Agg)==0 ){
965     return createAggContext(p, nByte);
966   }else{
967     return (void*)p->pMem->z;
968   }
969 }
970 
971 /*
972 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
973 ** the user-function defined by pCtx.
974 **
975 ** The left-most argument is 0.
976 **
977 ** Undocumented behavior:  If iArg is negative then access a cache of
978 ** auxiliary data pointers that is available to all functions within a
979 ** single prepared statement.  The iArg values must match.
980 */
981 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
982   AuxData *pAuxData;
983 
984   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
985 #if SQLITE_ENABLE_STAT4
986   if( pCtx->pVdbe==0 ) return 0;
987 #else
988   assert( pCtx->pVdbe!=0 );
989 #endif
990   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
991     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
992       return pAuxData->pAux;
993     }
994   }
995   return 0;
996 }
997 
998 /*
999 ** Set the auxiliary data pointer and delete function, for the iArg'th
1000 ** argument to the user-function defined by pCtx. Any previous value is
1001 ** deleted by calling the delete function specified when it was set.
1002 **
1003 ** The left-most argument is 0.
1004 **
1005 ** Undocumented behavior:  If iArg is negative then make the data available
1006 ** to all functions within the current prepared statement using iArg as an
1007 ** access code.
1008 */
1009 void sqlite3_set_auxdata(
1010   sqlite3_context *pCtx,
1011   int iArg,
1012   void *pAux,
1013   void (*xDelete)(void*)
1014 ){
1015   AuxData *pAuxData;
1016   Vdbe *pVdbe = pCtx->pVdbe;
1017 
1018   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1019 #ifdef SQLITE_ENABLE_STAT4
1020   if( pVdbe==0 ) goto failed;
1021 #else
1022   assert( pVdbe!=0 );
1023 #endif
1024 
1025   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1026     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1027       break;
1028     }
1029   }
1030   if( pAuxData==0 ){
1031     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1032     if( !pAuxData ) goto failed;
1033     pAuxData->iAuxOp = pCtx->iOp;
1034     pAuxData->iAuxArg = iArg;
1035     pAuxData->pNextAux = pVdbe->pAuxData;
1036     pVdbe->pAuxData = pAuxData;
1037     if( pCtx->isError==0 ) pCtx->isError = -1;
1038   }else if( pAuxData->xDeleteAux ){
1039     pAuxData->xDeleteAux(pAuxData->pAux);
1040   }
1041 
1042   pAuxData->pAux = pAux;
1043   pAuxData->xDeleteAux = xDelete;
1044   return;
1045 
1046 failed:
1047   if( xDelete ){
1048     xDelete(pAux);
1049   }
1050 }
1051 
1052 #ifndef SQLITE_OMIT_DEPRECATED
1053 /*
1054 ** Return the number of times the Step function of an aggregate has been
1055 ** called.
1056 **
1057 ** This function is deprecated.  Do not use it for new code.  It is
1058 ** provide only to avoid breaking legacy code.  New aggregate function
1059 ** implementations should keep their own counts within their aggregate
1060 ** context.
1061 */
1062 int sqlite3_aggregate_count(sqlite3_context *p){
1063   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1064   return p->pMem->n;
1065 }
1066 #endif
1067 
1068 /*
1069 ** Return the number of columns in the result set for the statement pStmt.
1070 */
1071 int sqlite3_column_count(sqlite3_stmt *pStmt){
1072   Vdbe *pVm = (Vdbe *)pStmt;
1073   return pVm ? pVm->nResColumn : 0;
1074 }
1075 
1076 /*
1077 ** Return the number of values available from the current row of the
1078 ** currently executing statement pStmt.
1079 */
1080 int sqlite3_data_count(sqlite3_stmt *pStmt){
1081   Vdbe *pVm = (Vdbe *)pStmt;
1082   if( pVm==0 || pVm->pResultSet==0 ) return 0;
1083   return pVm->nResColumn;
1084 }
1085 
1086 /*
1087 ** Return a pointer to static memory containing an SQL NULL value.
1088 */
1089 static const Mem *columnNullValue(void){
1090   /* Even though the Mem structure contains an element
1091   ** of type i64, on certain architectures (x86) with certain compiler
1092   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1093   ** instead of an 8-byte one. This all works fine, except that when
1094   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1095   ** that a Mem structure is located on an 8-byte boundary. To prevent
1096   ** these assert()s from failing, when building with SQLITE_DEBUG defined
1097   ** using gcc, we force nullMem to be 8-byte aligned using the magical
1098   ** __attribute__((aligned(8))) macro.  */
1099   static const Mem nullMem
1100 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1101     __attribute__((aligned(8)))
1102 #endif
1103     = {
1104         /* .u          = */ {0},
1105         /* .flags      = */ (u16)MEM_Null,
1106         /* .enc        = */ (u8)0,
1107         /* .eSubtype   = */ (u8)0,
1108         /* .n          = */ (int)0,
1109         /* .z          = */ (char*)0,
1110         /* .zMalloc    = */ (char*)0,
1111         /* .szMalloc   = */ (int)0,
1112         /* .uTemp      = */ (u32)0,
1113         /* .db         = */ (sqlite3*)0,
1114         /* .xDel       = */ (void(*)(void*))0,
1115 #ifdef SQLITE_DEBUG
1116         /* .pScopyFrom = */ (Mem*)0,
1117         /* .mScopyFlags= */ 0,
1118 #endif
1119       };
1120   return &nullMem;
1121 }
1122 
1123 /*
1124 ** Check to see if column iCol of the given statement is valid.  If
1125 ** it is, return a pointer to the Mem for the value of that column.
1126 ** If iCol is not valid, return a pointer to a Mem which has a value
1127 ** of NULL.
1128 */
1129 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1130   Vdbe *pVm;
1131   Mem *pOut;
1132 
1133   pVm = (Vdbe *)pStmt;
1134   if( pVm==0 ) return (Mem*)columnNullValue();
1135   assert( pVm->db );
1136   sqlite3_mutex_enter(pVm->db->mutex);
1137   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1138     pOut = &pVm->pResultSet[i];
1139   }else{
1140     sqlite3Error(pVm->db, SQLITE_RANGE);
1141     pOut = (Mem*)columnNullValue();
1142   }
1143   return pOut;
1144 }
1145 
1146 /*
1147 ** This function is called after invoking an sqlite3_value_XXX function on a
1148 ** column value (i.e. a value returned by evaluating an SQL expression in the
1149 ** select list of a SELECT statement) that may cause a malloc() failure. If
1150 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1151 ** code of statement pStmt set to SQLITE_NOMEM.
1152 **
1153 ** Specifically, this is called from within:
1154 **
1155 **     sqlite3_column_int()
1156 **     sqlite3_column_int64()
1157 **     sqlite3_column_text()
1158 **     sqlite3_column_text16()
1159 **     sqlite3_column_real()
1160 **     sqlite3_column_bytes()
1161 **     sqlite3_column_bytes16()
1162 **     sqiite3_column_blob()
1163 */
1164 static void columnMallocFailure(sqlite3_stmt *pStmt)
1165 {
1166   /* If malloc() failed during an encoding conversion within an
1167   ** sqlite3_column_XXX API, then set the return code of the statement to
1168   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1169   ** and _finalize() will return NOMEM.
1170   */
1171   Vdbe *p = (Vdbe *)pStmt;
1172   if( p ){
1173     assert( p->db!=0 );
1174     assert( sqlite3_mutex_held(p->db->mutex) );
1175     p->rc = sqlite3ApiExit(p->db, p->rc);
1176     sqlite3_mutex_leave(p->db->mutex);
1177   }
1178 }
1179 
1180 /**************************** sqlite3_column_  *******************************
1181 ** The following routines are used to access elements of the current row
1182 ** in the result set.
1183 */
1184 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1185   const void *val;
1186   val = sqlite3_value_blob( columnMem(pStmt,i) );
1187   /* Even though there is no encoding conversion, value_blob() might
1188   ** need to call malloc() to expand the result of a zeroblob()
1189   ** expression.
1190   */
1191   columnMallocFailure(pStmt);
1192   return val;
1193 }
1194 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1195   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1196   columnMallocFailure(pStmt);
1197   return val;
1198 }
1199 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1200   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1201   columnMallocFailure(pStmt);
1202   return val;
1203 }
1204 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1205   double val = sqlite3_value_double( columnMem(pStmt,i) );
1206   columnMallocFailure(pStmt);
1207   return val;
1208 }
1209 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1210   int val = sqlite3_value_int( columnMem(pStmt,i) );
1211   columnMallocFailure(pStmt);
1212   return val;
1213 }
1214 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1215   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1216   columnMallocFailure(pStmt);
1217   return val;
1218 }
1219 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1220   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1221   columnMallocFailure(pStmt);
1222   return val;
1223 }
1224 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1225   Mem *pOut = columnMem(pStmt, i);
1226   if( pOut->flags&MEM_Static ){
1227     pOut->flags &= ~MEM_Static;
1228     pOut->flags |= MEM_Ephem;
1229   }
1230   columnMallocFailure(pStmt);
1231   return (sqlite3_value *)pOut;
1232 }
1233 #ifndef SQLITE_OMIT_UTF16
1234 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1235   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1236   columnMallocFailure(pStmt);
1237   return val;
1238 }
1239 #endif /* SQLITE_OMIT_UTF16 */
1240 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1241   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1242   columnMallocFailure(pStmt);
1243   return iType;
1244 }
1245 
1246 /*
1247 ** Convert the N-th element of pStmt->pColName[] into a string using
1248 ** xFunc() then return that string.  If N is out of range, return 0.
1249 **
1250 ** There are up to 5 names for each column.  useType determines which
1251 ** name is returned.  Here are the names:
1252 **
1253 **    0      The column name as it should be displayed for output
1254 **    1      The datatype name for the column
1255 **    2      The name of the database that the column derives from
1256 **    3      The name of the table that the column derives from
1257 **    4      The name of the table column that the result column derives from
1258 **
1259 ** If the result is not a simple column reference (if it is an expression
1260 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1261 */
1262 static const void *columnName(
1263   sqlite3_stmt *pStmt,     /* The statement */
1264   int N,                   /* Which column to get the name for */
1265   int useUtf16,            /* True to return the name as UTF16 */
1266   int useType              /* What type of name */
1267 ){
1268   const void *ret;
1269   Vdbe *p;
1270   int n;
1271   sqlite3 *db;
1272 #ifdef SQLITE_ENABLE_API_ARMOR
1273   if( pStmt==0 ){
1274     (void)SQLITE_MISUSE_BKPT;
1275     return 0;
1276   }
1277 #endif
1278   ret = 0;
1279   p = (Vdbe *)pStmt;
1280   db = p->db;
1281   assert( db!=0 );
1282   n = sqlite3_column_count(pStmt);
1283   if( N<n && N>=0 ){
1284     N += useType*n;
1285     sqlite3_mutex_enter(db->mutex);
1286     assert( db->mallocFailed==0 );
1287 #ifndef SQLITE_OMIT_UTF16
1288     if( useUtf16 ){
1289       ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1290     }else
1291 #endif
1292     {
1293       ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1294     }
1295     /* A malloc may have failed inside of the _text() call. If this
1296     ** is the case, clear the mallocFailed flag and return NULL.
1297     */
1298     if( db->mallocFailed ){
1299       sqlite3OomClear(db);
1300       ret = 0;
1301     }
1302     sqlite3_mutex_leave(db->mutex);
1303   }
1304   return ret;
1305 }
1306 
1307 /*
1308 ** Return the name of the Nth column of the result set returned by SQL
1309 ** statement pStmt.
1310 */
1311 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1312   return columnName(pStmt, N, 0, COLNAME_NAME);
1313 }
1314 #ifndef SQLITE_OMIT_UTF16
1315 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1316   return columnName(pStmt, N, 1, COLNAME_NAME);
1317 }
1318 #endif
1319 
1320 /*
1321 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1322 ** not define OMIT_DECLTYPE.
1323 */
1324 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1325 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1326          and SQLITE_ENABLE_COLUMN_METADATA"
1327 #endif
1328 
1329 #ifndef SQLITE_OMIT_DECLTYPE
1330 /*
1331 ** Return the column declaration type (if applicable) of the 'i'th column
1332 ** of the result set of SQL statement pStmt.
1333 */
1334 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1335   return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1336 }
1337 #ifndef SQLITE_OMIT_UTF16
1338 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1339   return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1340 }
1341 #endif /* SQLITE_OMIT_UTF16 */
1342 #endif /* SQLITE_OMIT_DECLTYPE */
1343 
1344 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1345 /*
1346 ** Return the name of the database from which a result column derives.
1347 ** NULL is returned if the result column is an expression or constant or
1348 ** anything else which is not an unambiguous reference to a database column.
1349 */
1350 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1351   return columnName(pStmt, N, 0, COLNAME_DATABASE);
1352 }
1353 #ifndef SQLITE_OMIT_UTF16
1354 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1355   return columnName(pStmt, N, 1, COLNAME_DATABASE);
1356 }
1357 #endif /* SQLITE_OMIT_UTF16 */
1358 
1359 /*
1360 ** Return the name of the table from which a result column derives.
1361 ** NULL is returned if the result column is an expression or constant or
1362 ** anything else which is not an unambiguous reference to a database column.
1363 */
1364 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1365   return columnName(pStmt, N, 0, COLNAME_TABLE);
1366 }
1367 #ifndef SQLITE_OMIT_UTF16
1368 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1369   return columnName(pStmt, N, 1, COLNAME_TABLE);
1370 }
1371 #endif /* SQLITE_OMIT_UTF16 */
1372 
1373 /*
1374 ** Return the name of the table column from which a result column derives.
1375 ** NULL is returned if the result column is an expression or constant or
1376 ** anything else which is not an unambiguous reference to a database column.
1377 */
1378 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1379   return columnName(pStmt, N, 0, COLNAME_COLUMN);
1380 }
1381 #ifndef SQLITE_OMIT_UTF16
1382 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1383   return columnName(pStmt, N, 1, COLNAME_COLUMN);
1384 }
1385 #endif /* SQLITE_OMIT_UTF16 */
1386 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1387 
1388 
1389 /******************************* sqlite3_bind_  ***************************
1390 **
1391 ** Routines used to attach values to wildcards in a compiled SQL statement.
1392 */
1393 /*
1394 ** Unbind the value bound to variable i in virtual machine p. This is the
1395 ** the same as binding a NULL value to the column. If the "i" parameter is
1396 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1397 **
1398 ** A successful evaluation of this routine acquires the mutex on p.
1399 ** the mutex is released if any kind of error occurs.
1400 **
1401 ** The error code stored in database p->db is overwritten with the return
1402 ** value in any case.
1403 */
1404 static int vdbeUnbind(Vdbe *p, int i){
1405   Mem *pVar;
1406   if( vdbeSafetyNotNull(p) ){
1407     return SQLITE_MISUSE_BKPT;
1408   }
1409   sqlite3_mutex_enter(p->db->mutex);
1410   if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1411     sqlite3Error(p->db, SQLITE_MISUSE);
1412     sqlite3_mutex_leave(p->db->mutex);
1413     sqlite3_log(SQLITE_MISUSE,
1414         "bind on a busy prepared statement: [%s]", p->zSql);
1415     return SQLITE_MISUSE_BKPT;
1416   }
1417   if( i<1 || i>p->nVar ){
1418     sqlite3Error(p->db, SQLITE_RANGE);
1419     sqlite3_mutex_leave(p->db->mutex);
1420     return SQLITE_RANGE;
1421   }
1422   i--;
1423   pVar = &p->aVar[i];
1424   sqlite3VdbeMemRelease(pVar);
1425   pVar->flags = MEM_Null;
1426   p->db->errCode = SQLITE_OK;
1427 
1428   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1429   ** binding a new value to this variable invalidates the current query plan.
1430   **
1431   ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1432   ** parameter in the WHERE clause might influence the choice of query plan
1433   ** for a statement, then the statement will be automatically recompiled,
1434   ** as if there had been a schema change, on the first sqlite3_step() call
1435   ** following any change to the bindings of that parameter.
1436   */
1437   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1438   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1439     p->expired = 1;
1440   }
1441   return SQLITE_OK;
1442 }
1443 
1444 /*
1445 ** Bind a text or BLOB value.
1446 */
1447 static int bindText(
1448   sqlite3_stmt *pStmt,   /* The statement to bind against */
1449   int i,                 /* Index of the parameter to bind */
1450   const void *zData,     /* Pointer to the data to be bound */
1451   i64 nData,             /* Number of bytes of data to be bound */
1452   void (*xDel)(void*),   /* Destructor for the data */
1453   u8 encoding            /* Encoding for the data */
1454 ){
1455   Vdbe *p = (Vdbe *)pStmt;
1456   Mem *pVar;
1457   int rc;
1458 
1459   rc = vdbeUnbind(p, i);
1460   if( rc==SQLITE_OK ){
1461     if( zData!=0 ){
1462       pVar = &p->aVar[i-1];
1463       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1464       if( rc==SQLITE_OK && encoding!=0 ){
1465         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1466       }
1467       if( rc ){
1468         sqlite3Error(p->db, rc);
1469         rc = sqlite3ApiExit(p->db, rc);
1470       }
1471     }
1472     sqlite3_mutex_leave(p->db->mutex);
1473   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1474     xDel((void*)zData);
1475   }
1476   return rc;
1477 }
1478 
1479 
1480 /*
1481 ** Bind a blob value to an SQL statement variable.
1482 */
1483 int sqlite3_bind_blob(
1484   sqlite3_stmt *pStmt,
1485   int i,
1486   const void *zData,
1487   int nData,
1488   void (*xDel)(void*)
1489 ){
1490 #ifdef SQLITE_ENABLE_API_ARMOR
1491   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1492 #endif
1493   return bindText(pStmt, i, zData, nData, xDel, 0);
1494 }
1495 int sqlite3_bind_blob64(
1496   sqlite3_stmt *pStmt,
1497   int i,
1498   const void *zData,
1499   sqlite3_uint64 nData,
1500   void (*xDel)(void*)
1501 ){
1502   assert( xDel!=SQLITE_DYNAMIC );
1503   return bindText(pStmt, i, zData, nData, xDel, 0);
1504 }
1505 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1506   int rc;
1507   Vdbe *p = (Vdbe *)pStmt;
1508   rc = vdbeUnbind(p, i);
1509   if( rc==SQLITE_OK ){
1510     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1511     sqlite3_mutex_leave(p->db->mutex);
1512   }
1513   return rc;
1514 }
1515 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1516   return sqlite3_bind_int64(p, i, (i64)iValue);
1517 }
1518 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1519   int rc;
1520   Vdbe *p = (Vdbe *)pStmt;
1521   rc = vdbeUnbind(p, i);
1522   if( rc==SQLITE_OK ){
1523     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1524     sqlite3_mutex_leave(p->db->mutex);
1525   }
1526   return rc;
1527 }
1528 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1529   int rc;
1530   Vdbe *p = (Vdbe*)pStmt;
1531   rc = vdbeUnbind(p, i);
1532   if( rc==SQLITE_OK ){
1533     sqlite3_mutex_leave(p->db->mutex);
1534   }
1535   return rc;
1536 }
1537 int sqlite3_bind_pointer(
1538   sqlite3_stmt *pStmt,
1539   int i,
1540   void *pPtr,
1541   const char *zPTtype,
1542   void (*xDestructor)(void*)
1543 ){
1544   int rc;
1545   Vdbe *p = (Vdbe*)pStmt;
1546   rc = vdbeUnbind(p, i);
1547   if( rc==SQLITE_OK ){
1548     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1549     sqlite3_mutex_leave(p->db->mutex);
1550   }else if( xDestructor ){
1551     xDestructor(pPtr);
1552   }
1553   return rc;
1554 }
1555 int sqlite3_bind_text(
1556   sqlite3_stmt *pStmt,
1557   int i,
1558   const char *zData,
1559   int nData,
1560   void (*xDel)(void*)
1561 ){
1562   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1563 }
1564 int sqlite3_bind_text64(
1565   sqlite3_stmt *pStmt,
1566   int i,
1567   const char *zData,
1568   sqlite3_uint64 nData,
1569   void (*xDel)(void*),
1570   unsigned char enc
1571 ){
1572   assert( xDel!=SQLITE_DYNAMIC );
1573   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1574   return bindText(pStmt, i, zData, nData, xDel, enc);
1575 }
1576 #ifndef SQLITE_OMIT_UTF16
1577 int sqlite3_bind_text16(
1578   sqlite3_stmt *pStmt,
1579   int i,
1580   const void *zData,
1581   int nData,
1582   void (*xDel)(void*)
1583 ){
1584   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1585 }
1586 #endif /* SQLITE_OMIT_UTF16 */
1587 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1588   int rc;
1589   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1590     case SQLITE_INTEGER: {
1591       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1592       break;
1593     }
1594     case SQLITE_FLOAT: {
1595       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1596       break;
1597     }
1598     case SQLITE_BLOB: {
1599       if( pValue->flags & MEM_Zero ){
1600         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1601       }else{
1602         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1603       }
1604       break;
1605     }
1606     case SQLITE_TEXT: {
1607       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1608                               pValue->enc);
1609       break;
1610     }
1611     default: {
1612       rc = sqlite3_bind_null(pStmt, i);
1613       break;
1614     }
1615   }
1616   return rc;
1617 }
1618 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1619   int rc;
1620   Vdbe *p = (Vdbe *)pStmt;
1621   rc = vdbeUnbind(p, i);
1622   if( rc==SQLITE_OK ){
1623 #ifndef SQLITE_OMIT_INCRBLOB
1624     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1625 #else
1626     rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1627 #endif
1628     sqlite3_mutex_leave(p->db->mutex);
1629   }
1630   return rc;
1631 }
1632 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1633   int rc;
1634   Vdbe *p = (Vdbe *)pStmt;
1635   sqlite3_mutex_enter(p->db->mutex);
1636   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1637     rc = SQLITE_TOOBIG;
1638   }else{
1639     assert( (n & 0x7FFFFFFF)==n );
1640     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1641   }
1642   rc = sqlite3ApiExit(p->db, rc);
1643   sqlite3_mutex_leave(p->db->mutex);
1644   return rc;
1645 }
1646 
1647 /*
1648 ** Return the number of wildcards that can be potentially bound to.
1649 ** This routine is added to support DBD::SQLite.
1650 */
1651 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1652   Vdbe *p = (Vdbe*)pStmt;
1653   return p ? p->nVar : 0;
1654 }
1655 
1656 /*
1657 ** Return the name of a wildcard parameter.  Return NULL if the index
1658 ** is out of range or if the wildcard is unnamed.
1659 **
1660 ** The result is always UTF-8.
1661 */
1662 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1663   Vdbe *p = (Vdbe*)pStmt;
1664   if( p==0 ) return 0;
1665   return sqlite3VListNumToName(p->pVList, i);
1666 }
1667 
1668 /*
1669 ** Given a wildcard parameter name, return the index of the variable
1670 ** with that name.  If there is no variable with the given name,
1671 ** return 0.
1672 */
1673 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1674   if( p==0 || zName==0 ) return 0;
1675   return sqlite3VListNameToNum(p->pVList, zName, nName);
1676 }
1677 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1678   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1679 }
1680 
1681 /*
1682 ** Transfer all bindings from the first statement over to the second.
1683 */
1684 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1685   Vdbe *pFrom = (Vdbe*)pFromStmt;
1686   Vdbe *pTo = (Vdbe*)pToStmt;
1687   int i;
1688   assert( pTo->db==pFrom->db );
1689   assert( pTo->nVar==pFrom->nVar );
1690   sqlite3_mutex_enter(pTo->db->mutex);
1691   for(i=0; i<pFrom->nVar; i++){
1692     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1693   }
1694   sqlite3_mutex_leave(pTo->db->mutex);
1695   return SQLITE_OK;
1696 }
1697 
1698 #ifndef SQLITE_OMIT_DEPRECATED
1699 /*
1700 ** Deprecated external interface.  Internal/core SQLite code
1701 ** should call sqlite3TransferBindings.
1702 **
1703 ** It is misuse to call this routine with statements from different
1704 ** database connections.  But as this is a deprecated interface, we
1705 ** will not bother to check for that condition.
1706 **
1707 ** If the two statements contain a different number of bindings, then
1708 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1709 ** SQLITE_OK is returned.
1710 */
1711 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1712   Vdbe *pFrom = (Vdbe*)pFromStmt;
1713   Vdbe *pTo = (Vdbe*)pToStmt;
1714   if( pFrom->nVar!=pTo->nVar ){
1715     return SQLITE_ERROR;
1716   }
1717   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1718   if( pTo->expmask ){
1719     pTo->expired = 1;
1720   }
1721   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1722   if( pFrom->expmask ){
1723     pFrom->expired = 1;
1724   }
1725   return sqlite3TransferBindings(pFromStmt, pToStmt);
1726 }
1727 #endif
1728 
1729 /*
1730 ** Return the sqlite3* database handle to which the prepared statement given
1731 ** in the argument belongs.  This is the same database handle that was
1732 ** the first argument to the sqlite3_prepare() that was used to create
1733 ** the statement in the first place.
1734 */
1735 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1736   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1737 }
1738 
1739 /*
1740 ** Return true if the prepared statement is guaranteed to not modify the
1741 ** database.
1742 */
1743 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1744   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1745 }
1746 
1747 /*
1748 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1749 ** statement is an EXPLAIN QUERY PLAN
1750 */
1751 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1752   return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1753 }
1754 
1755 /*
1756 ** Return true if the prepared statement is in need of being reset.
1757 */
1758 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1759   Vdbe *v = (Vdbe*)pStmt;
1760   return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0;
1761 }
1762 
1763 /*
1764 ** Return a pointer to the next prepared statement after pStmt associated
1765 ** with database connection pDb.  If pStmt is NULL, return the first
1766 ** prepared statement for the database connection.  Return NULL if there
1767 ** are no more.
1768 */
1769 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1770   sqlite3_stmt *pNext;
1771 #ifdef SQLITE_ENABLE_API_ARMOR
1772   if( !sqlite3SafetyCheckOk(pDb) ){
1773     (void)SQLITE_MISUSE_BKPT;
1774     return 0;
1775   }
1776 #endif
1777   sqlite3_mutex_enter(pDb->mutex);
1778   if( pStmt==0 ){
1779     pNext = (sqlite3_stmt*)pDb->pVdbe;
1780   }else{
1781     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1782   }
1783   sqlite3_mutex_leave(pDb->mutex);
1784   return pNext;
1785 }
1786 
1787 /*
1788 ** Return the value of a status counter for a prepared statement
1789 */
1790 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1791   Vdbe *pVdbe = (Vdbe*)pStmt;
1792   u32 v;
1793 #ifdef SQLITE_ENABLE_API_ARMOR
1794   if( !pStmt
1795    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1796   ){
1797     (void)SQLITE_MISUSE_BKPT;
1798     return 0;
1799   }
1800 #endif
1801   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1802     sqlite3 *db = pVdbe->db;
1803     sqlite3_mutex_enter(db->mutex);
1804     v = 0;
1805     db->pnBytesFreed = (int*)&v;
1806     sqlite3VdbeClearObject(db, pVdbe);
1807     sqlite3DbFree(db, pVdbe);
1808     db->pnBytesFreed = 0;
1809     sqlite3_mutex_leave(db->mutex);
1810   }else{
1811     v = pVdbe->aCounter[op];
1812     if( resetFlag ) pVdbe->aCounter[op] = 0;
1813   }
1814   return (int)v;
1815 }
1816 
1817 /*
1818 ** Return the SQL associated with a prepared statement
1819 */
1820 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1821   Vdbe *p = (Vdbe *)pStmt;
1822   return p ? p->zSql : 0;
1823 }
1824 
1825 /*
1826 ** Return the SQL associated with a prepared statement with
1827 ** bound parameters expanded.  Space to hold the returned string is
1828 ** obtained from sqlite3_malloc().  The caller is responsible for
1829 ** freeing the returned string by passing it to sqlite3_free().
1830 **
1831 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1832 ** expanded bound parameters.
1833 */
1834 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1835 #ifdef SQLITE_OMIT_TRACE
1836   return 0;
1837 #else
1838   char *z = 0;
1839   const char *zSql = sqlite3_sql(pStmt);
1840   if( zSql ){
1841     Vdbe *p = (Vdbe *)pStmt;
1842     sqlite3_mutex_enter(p->db->mutex);
1843     z = sqlite3VdbeExpandSql(p, zSql);
1844     sqlite3_mutex_leave(p->db->mutex);
1845   }
1846   return z;
1847 #endif
1848 }
1849 
1850 #ifdef SQLITE_ENABLE_NORMALIZE
1851 /*
1852 ** Return the normalized SQL associated with a prepared statement.
1853 */
1854 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1855   Vdbe *p = (Vdbe *)pStmt;
1856   if( p==0 ) return 0;
1857   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1858     sqlite3_mutex_enter(p->db->mutex);
1859     p->zNormSql = sqlite3Normalize(p, p->zSql);
1860     sqlite3_mutex_leave(p->db->mutex);
1861   }
1862   return p->zNormSql;
1863 }
1864 #endif /* SQLITE_ENABLE_NORMALIZE */
1865 
1866 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1867 /*
1868 ** Allocate and populate an UnpackedRecord structure based on the serialized
1869 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1870 ** if successful, or a NULL pointer if an OOM error is encountered.
1871 */
1872 static UnpackedRecord *vdbeUnpackRecord(
1873   KeyInfo *pKeyInfo,
1874   int nKey,
1875   const void *pKey
1876 ){
1877   UnpackedRecord *pRet;           /* Return value */
1878 
1879   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1880   if( pRet ){
1881     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1882     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1883   }
1884   return pRet;
1885 }
1886 
1887 /*
1888 ** This function is called from within a pre-update callback to retrieve
1889 ** a field of the row currently being updated or deleted.
1890 */
1891 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1892   PreUpdate *p = db->pPreUpdate;
1893   Mem *pMem;
1894   int rc = SQLITE_OK;
1895 
1896   /* Test that this call is being made from within an SQLITE_DELETE or
1897   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1898   if( !p || p->op==SQLITE_INSERT ){
1899     rc = SQLITE_MISUSE_BKPT;
1900     goto preupdate_old_out;
1901   }
1902   if( p->pPk ){
1903     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1904   }
1905   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1906     rc = SQLITE_RANGE;
1907     goto preupdate_old_out;
1908   }
1909 
1910   /* If the old.* record has not yet been loaded into memory, do so now. */
1911   if( p->pUnpacked==0 ){
1912     u32 nRec;
1913     u8 *aRec;
1914 
1915     assert( p->pCsr->eCurType==CURTYPE_BTREE );
1916     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1917     aRec = sqlite3DbMallocRaw(db, nRec);
1918     if( !aRec ) goto preupdate_old_out;
1919     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1920     if( rc==SQLITE_OK ){
1921       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1922       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1923     }
1924     if( rc!=SQLITE_OK ){
1925       sqlite3DbFree(db, aRec);
1926       goto preupdate_old_out;
1927     }
1928     p->aRecord = aRec;
1929   }
1930 
1931   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1932   if( iIdx==p->pTab->iPKey ){
1933     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1934   }else if( iIdx>=p->pUnpacked->nField ){
1935     *ppValue = (sqlite3_value *)columnNullValue();
1936   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1937     if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1938       testcase( pMem->flags & MEM_Int );
1939       testcase( pMem->flags & MEM_IntReal );
1940       sqlite3VdbeMemRealify(pMem);
1941     }
1942   }
1943 
1944  preupdate_old_out:
1945   sqlite3Error(db, rc);
1946   return sqlite3ApiExit(db, rc);
1947 }
1948 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1949 
1950 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1951 /*
1952 ** This function is called from within a pre-update callback to retrieve
1953 ** the number of columns in the row being updated, deleted or inserted.
1954 */
1955 int sqlite3_preupdate_count(sqlite3 *db){
1956   PreUpdate *p = db->pPreUpdate;
1957   return (p ? p->keyinfo.nKeyField : 0);
1958 }
1959 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1960 
1961 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1962 /*
1963 ** This function is designed to be called from within a pre-update callback
1964 ** only. It returns zero if the change that caused the callback was made
1965 ** immediately by a user SQL statement. Or, if the change was made by a
1966 ** trigger program, it returns the number of trigger programs currently
1967 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1968 ** top-level trigger etc.).
1969 **
1970 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1971 ** or SET DEFAULT action is considered a trigger.
1972 */
1973 int sqlite3_preupdate_depth(sqlite3 *db){
1974   PreUpdate *p = db->pPreUpdate;
1975   return (p ? p->v->nFrame : 0);
1976 }
1977 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1978 
1979 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1980 /*
1981 ** This function is designed to be called from within a pre-update callback
1982 ** only.
1983 */
1984 int sqlite3_preupdate_blobwrite(sqlite3 *db){
1985   PreUpdate *p = db->pPreUpdate;
1986   return (p ? p->iBlobWrite : -1);
1987 }
1988 #endif
1989 
1990 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1991 /*
1992 ** This function is called from within a pre-update callback to retrieve
1993 ** a field of the row currently being updated or inserted.
1994 */
1995 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1996   PreUpdate *p = db->pPreUpdate;
1997   int rc = SQLITE_OK;
1998   Mem *pMem;
1999 
2000   if( !p || p->op==SQLITE_DELETE ){
2001     rc = SQLITE_MISUSE_BKPT;
2002     goto preupdate_new_out;
2003   }
2004   if( p->pPk && p->op!=SQLITE_UPDATE ){
2005     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2006   }
2007   if( iIdx>=p->pCsr->nField || iIdx<0 ){
2008     rc = SQLITE_RANGE;
2009     goto preupdate_new_out;
2010   }
2011 
2012   if( p->op==SQLITE_INSERT ){
2013     /* For an INSERT, memory cell p->iNewReg contains the serialized record
2014     ** that is being inserted. Deserialize it. */
2015     UnpackedRecord *pUnpack = p->pNewUnpacked;
2016     if( !pUnpack ){
2017       Mem *pData = &p->v->aMem[p->iNewReg];
2018       rc = ExpandBlob(pData);
2019       if( rc!=SQLITE_OK ) goto preupdate_new_out;
2020       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2021       if( !pUnpack ){
2022         rc = SQLITE_NOMEM;
2023         goto preupdate_new_out;
2024       }
2025       p->pNewUnpacked = pUnpack;
2026     }
2027     pMem = &pUnpack->aMem[iIdx];
2028     if( iIdx==p->pTab->iPKey ){
2029       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2030     }else if( iIdx>=pUnpack->nField ){
2031       pMem = (sqlite3_value *)columnNullValue();
2032     }
2033   }else{
2034     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2035     ** value. Make a copy of the cell contents and return a pointer to it.
2036     ** It is not safe to return a pointer to the memory cell itself as the
2037     ** caller may modify the value text encoding.
2038     */
2039     assert( p->op==SQLITE_UPDATE );
2040     if( !p->aNew ){
2041       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2042       if( !p->aNew ){
2043         rc = SQLITE_NOMEM;
2044         goto preupdate_new_out;
2045       }
2046     }
2047     assert( iIdx>=0 && iIdx<p->pCsr->nField );
2048     pMem = &p->aNew[iIdx];
2049     if( pMem->flags==0 ){
2050       if( iIdx==p->pTab->iPKey ){
2051         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2052       }else{
2053         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2054         if( rc!=SQLITE_OK ) goto preupdate_new_out;
2055       }
2056     }
2057   }
2058   *ppValue = pMem;
2059 
2060  preupdate_new_out:
2061   sqlite3Error(db, rc);
2062   return sqlite3ApiExit(db, rc);
2063 }
2064 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2065 
2066 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2067 /*
2068 ** Return status data for a single loop within query pStmt.
2069 */
2070 int sqlite3_stmt_scanstatus(
2071   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
2072   int idx,                        /* Index of loop to report on */
2073   int iScanStatusOp,              /* Which metric to return */
2074   void *pOut                      /* OUT: Write the answer here */
2075 ){
2076   Vdbe *p = (Vdbe*)pStmt;
2077   ScanStatus *pScan;
2078   if( idx<0 || idx>=p->nScan ) return 1;
2079   pScan = &p->aScan[idx];
2080   switch( iScanStatusOp ){
2081     case SQLITE_SCANSTAT_NLOOP: {
2082       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2083       break;
2084     }
2085     case SQLITE_SCANSTAT_NVISIT: {
2086       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2087       break;
2088     }
2089     case SQLITE_SCANSTAT_EST: {
2090       double r = 1.0;
2091       LogEst x = pScan->nEst;
2092       while( x<100 ){
2093         x += 10;
2094         r *= 0.5;
2095       }
2096       *(double*)pOut = r*sqlite3LogEstToInt(x);
2097       break;
2098     }
2099     case SQLITE_SCANSTAT_NAME: {
2100       *(const char**)pOut = pScan->zName;
2101       break;
2102     }
2103     case SQLITE_SCANSTAT_EXPLAIN: {
2104       if( pScan->addrExplain ){
2105         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2106       }else{
2107         *(const char**)pOut = 0;
2108       }
2109       break;
2110     }
2111     case SQLITE_SCANSTAT_SELECTID: {
2112       if( pScan->addrExplain ){
2113         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2114       }else{
2115         *(int*)pOut = -1;
2116       }
2117       break;
2118     }
2119     default: {
2120       return 1;
2121     }
2122   }
2123   return 0;
2124 }
2125 
2126 /*
2127 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2128 */
2129 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2130   Vdbe *p = (Vdbe*)pStmt;
2131   memset(p->anExec, 0, p->nOp * sizeof(i64));
2132 }
2133 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
2134