xref: /sqlite-3.40.0/src/vdbeapi.c (revision 2b0ea020)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71   if( db->xProfile ){
72     db->xProfile(db->pProfileArg, p->zSql, iElapse);
73   }
74 #endif
75   if( db->mTrace & SQLITE_TRACE_PROFILE ){
76     db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
77   }
78   p->startTime = 0;
79 }
80 /*
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
83 */
84 # define checkProfileCallback(DB,P) \
85    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P)  /*no-op*/
88 #endif
89 
90 /*
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
95 **
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
98 */
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100   int rc;
101   if( pStmt==0 ){
102     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103     ** pointer is a harmless no-op. */
104     rc = SQLITE_OK;
105   }else{
106     Vdbe *v = (Vdbe*)pStmt;
107     sqlite3 *db = v->db;
108     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109     sqlite3_mutex_enter(db->mutex);
110     checkProfileCallback(db, v);
111     rc = sqlite3VdbeFinalize(v);
112     rc = sqlite3ApiExit(db, rc);
113     sqlite3LeaveMutexAndCloseZombie(db);
114   }
115   return rc;
116 }
117 
118 /*
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
122 **
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
125 */
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127   int rc;
128   if( pStmt==0 ){
129     rc = SQLITE_OK;
130   }else{
131     Vdbe *v = (Vdbe*)pStmt;
132     sqlite3 *db = v->db;
133     sqlite3_mutex_enter(db->mutex);
134     checkProfileCallback(db, v);
135     rc = sqlite3VdbeReset(v);
136     sqlite3VdbeRewind(v);
137     assert( (rc & (db->errMask))==rc );
138     rc = sqlite3ApiExit(db, rc);
139     sqlite3_mutex_leave(db->mutex);
140   }
141   return rc;
142 }
143 
144 /*
145 ** Set all the parameters in the compiled SQL statement to NULL.
146 */
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148   int i;
149   int rc = SQLITE_OK;
150   Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154   sqlite3_mutex_enter(mutex);
155   for(i=0; i<p->nVar; i++){
156     sqlite3VdbeMemRelease(&p->aVar[i]);
157     p->aVar[i].flags = MEM_Null;
158   }
159   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160   if( p->expmask ){
161     p->expired = 1;
162   }
163   sqlite3_mutex_leave(mutex);
164   return rc;
165 }
166 
167 
168 /**************************** sqlite3_value_  *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
171 */
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173   Mem *p = (Mem*)pVal;
174   if( p->flags & (MEM_Blob|MEM_Str) ){
175     if( ExpandBlob(p)!=SQLITE_OK ){
176       assert( p->flags==MEM_Null && p->z==0 );
177       return 0;
178     }
179     p->flags |= MEM_Blob;
180     return p->n ? p->z : 0;
181   }else{
182     return sqlite3_value_text(pVal);
183   }
184 }
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
187 }
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
190 }
191 double sqlite3_value_double(sqlite3_value *pVal){
192   return sqlite3VdbeRealValue((Mem*)pVal);
193 }
194 int sqlite3_value_int(sqlite3_value *pVal){
195   return (int)sqlite3VdbeIntValue((Mem*)pVal);
196 }
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198   return sqlite3VdbeIntValue((Mem*)pVal);
199 }
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201   Mem *pMem = (Mem*)pVal;
202   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
203 }
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205   Mem *p = (Mem*)pVal;
206   if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207                  (MEM_Null|MEM_Term|MEM_Subtype)
208    && zPType!=0
209    && p->eSubtype=='p'
210    && strcmp(p->u.zPType, zPType)==0
211   ){
212     return (void*)p->z;
213   }else{
214     return 0;
215   }
216 }
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
219 }
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
223 }
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
226 }
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
229 }
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
234 */
235 int sqlite3_value_type(sqlite3_value* pVal){
236   static const u8 aType[] = {
237      SQLITE_BLOB,     /* 0x00 (not possible) */
238      SQLITE_NULL,     /* 0x01 NULL */
239      SQLITE_TEXT,     /* 0x02 TEXT */
240      SQLITE_NULL,     /* 0x03 (not possible) */
241      SQLITE_INTEGER,  /* 0x04 INTEGER */
242      SQLITE_NULL,     /* 0x05 (not possible) */
243      SQLITE_INTEGER,  /* 0x06 INTEGER + TEXT */
244      SQLITE_NULL,     /* 0x07 (not possible) */
245      SQLITE_FLOAT,    /* 0x08 FLOAT */
246      SQLITE_NULL,     /* 0x09 (not possible) */
247      SQLITE_FLOAT,    /* 0x0a FLOAT + TEXT */
248      SQLITE_NULL,     /* 0x0b (not possible) */
249      SQLITE_INTEGER,  /* 0x0c (not possible) */
250      SQLITE_NULL,     /* 0x0d (not possible) */
251      SQLITE_INTEGER,  /* 0x0e (not possible) */
252      SQLITE_NULL,     /* 0x0f (not possible) */
253      SQLITE_BLOB,     /* 0x10 BLOB */
254      SQLITE_NULL,     /* 0x11 (not possible) */
255      SQLITE_TEXT,     /* 0x12 (not possible) */
256      SQLITE_NULL,     /* 0x13 (not possible) */
257      SQLITE_INTEGER,  /* 0x14 INTEGER + BLOB */
258      SQLITE_NULL,     /* 0x15 (not possible) */
259      SQLITE_INTEGER,  /* 0x16 (not possible) */
260      SQLITE_NULL,     /* 0x17 (not possible) */
261      SQLITE_FLOAT,    /* 0x18 FLOAT + BLOB */
262      SQLITE_NULL,     /* 0x19 (not possible) */
263      SQLITE_FLOAT,    /* 0x1a (not possible) */
264      SQLITE_NULL,     /* 0x1b (not possible) */
265      SQLITE_INTEGER,  /* 0x1c (not possible) */
266      SQLITE_NULL,     /* 0x1d (not possible) */
267      SQLITE_INTEGER,  /* 0x1e (not possible) */
268      SQLITE_NULL,     /* 0x1f (not possible) */
269      SQLITE_FLOAT,    /* 0x20 INTREAL */
270      SQLITE_NULL,     /* 0x21 (not possible) */
271      SQLITE_TEXT,     /* 0x22 INTREAL + TEXT */
272      SQLITE_NULL,     /* 0x23 (not possible) */
273      SQLITE_FLOAT,    /* 0x24 (not possible) */
274      SQLITE_NULL,     /* 0x25 (not possible) */
275      SQLITE_FLOAT,    /* 0x26 (not possible) */
276      SQLITE_NULL,     /* 0x27 (not possible) */
277      SQLITE_FLOAT,    /* 0x28 (not possible) */
278      SQLITE_NULL,     /* 0x29 (not possible) */
279      SQLITE_FLOAT,    /* 0x2a (not possible) */
280      SQLITE_NULL,     /* 0x2b (not possible) */
281      SQLITE_FLOAT,    /* 0x2c (not possible) */
282      SQLITE_NULL,     /* 0x2d (not possible) */
283      SQLITE_FLOAT,    /* 0x2e (not possible) */
284      SQLITE_NULL,     /* 0x2f (not possible) */
285      SQLITE_BLOB,     /* 0x30 (not possible) */
286      SQLITE_NULL,     /* 0x31 (not possible) */
287      SQLITE_TEXT,     /* 0x32 (not possible) */
288      SQLITE_NULL,     /* 0x33 (not possible) */
289      SQLITE_FLOAT,    /* 0x34 (not possible) */
290      SQLITE_NULL,     /* 0x35 (not possible) */
291      SQLITE_FLOAT,    /* 0x36 (not possible) */
292      SQLITE_NULL,     /* 0x37 (not possible) */
293      SQLITE_FLOAT,    /* 0x38 (not possible) */
294      SQLITE_NULL,     /* 0x39 (not possible) */
295      SQLITE_FLOAT,    /* 0x3a (not possible) */
296      SQLITE_NULL,     /* 0x3b (not possible) */
297      SQLITE_FLOAT,    /* 0x3c (not possible) */
298      SQLITE_NULL,     /* 0x3d (not possible) */
299      SQLITE_FLOAT,    /* 0x3e (not possible) */
300      SQLITE_NULL,     /* 0x3f (not possible) */
301   };
302 #ifdef SQLITE_DEBUG
303   {
304     int eType = SQLITE_BLOB;
305     if( pVal->flags & MEM_Null ){
306       eType = SQLITE_NULL;
307     }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308       eType = SQLITE_FLOAT;
309     }else if( pVal->flags & MEM_Int ){
310       eType = SQLITE_INTEGER;
311     }else if( pVal->flags & MEM_Str ){
312       eType = SQLITE_TEXT;
313     }
314     assert( eType == aType[pVal->flags&MEM_AffMask] );
315   }
316 #endif
317   return aType[pVal->flags&MEM_AffMask];
318 }
319 
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322   return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
323 }
324 
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327   return (pVal->flags&MEM_FromBind)!=0;
328 }
329 
330 /* Make a copy of an sqlite3_value object
331 */
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333   sqlite3_value *pNew;
334   if( pOrig==0 ) return 0;
335   pNew = sqlite3_malloc( sizeof(*pNew) );
336   if( pNew==0 ) return 0;
337   memset(pNew, 0, sizeof(*pNew));
338   memcpy(pNew, pOrig, MEMCELLSIZE);
339   pNew->flags &= ~MEM_Dyn;
340   pNew->db = 0;
341   if( pNew->flags&(MEM_Str|MEM_Blob) ){
342     pNew->flags &= ~(MEM_Static|MEM_Dyn);
343     pNew->flags |= MEM_Ephem;
344     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345       sqlite3ValueFree(pNew);
346       pNew = 0;
347     }
348   }else if( pNew->flags & MEM_Null ){
349     /* Do not duplicate pointer values */
350     pNew->flags &= ~(MEM_Term|MEM_Subtype);
351   }
352   return pNew;
353 }
354 
355 /* Destroy an sqlite3_value object previously obtained from
356 ** sqlite3_value_dup().
357 */
358 void sqlite3_value_free(sqlite3_value *pOld){
359   sqlite3ValueFree(pOld);
360 }
361 
362 
363 /**************************** sqlite3_result_  *******************************
364 ** The following routines are used by user-defined functions to specify
365 ** the function result.
366 **
367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
368 ** result as a string or blob.  Appropriate errors are set if the string/blob
369 ** is too big or if an OOM occurs.
370 **
371 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
372 ** on value P is not going to be used and need to be destroyed.
373 */
374 static void setResultStrOrError(
375   sqlite3_context *pCtx,  /* Function context */
376   const char *z,          /* String pointer */
377   int n,                  /* Bytes in string, or negative */
378   u8 enc,                 /* Encoding of z.  0 for BLOBs */
379   void (*xDel)(void*)     /* Destructor function */
380 ){
381   Mem *pOut = pCtx->pOut;
382   int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
383   if( rc ){
384     if( rc==SQLITE_TOOBIG ){
385       sqlite3_result_error_toobig(pCtx);
386     }else{
387       /* The only errors possible from sqlite3VdbeMemSetStr are
388       ** SQLITE_TOOBIG and SQLITE_NOMEM */
389       assert( rc==SQLITE_NOMEM );
390       sqlite3_result_error_nomem(pCtx);
391     }
392     return;
393   }
394   sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
395   if( sqlite3VdbeMemTooBig(pOut) ){
396     sqlite3_result_error_toobig(pCtx);
397   }
398 }
399 static int invokeValueDestructor(
400   const void *p,             /* Value to destroy */
401   void (*xDel)(void*),       /* The destructor */
402   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
403 ){
404   assert( xDel!=SQLITE_DYNAMIC );
405   if( xDel==0 ){
406     /* noop */
407   }else if( xDel==SQLITE_TRANSIENT ){
408     /* noop */
409   }else{
410     xDel((void*)p);
411   }
412   sqlite3_result_error_toobig(pCtx);
413   return SQLITE_TOOBIG;
414 }
415 void sqlite3_result_blob(
416   sqlite3_context *pCtx,
417   const void *z,
418   int n,
419   void (*xDel)(void *)
420 ){
421   assert( n>=0 );
422   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
423   setResultStrOrError(pCtx, z, n, 0, xDel);
424 }
425 void sqlite3_result_blob64(
426   sqlite3_context *pCtx,
427   const void *z,
428   sqlite3_uint64 n,
429   void (*xDel)(void *)
430 ){
431   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
432   assert( xDel!=SQLITE_DYNAMIC );
433   if( n>0x7fffffff ){
434     (void)invokeValueDestructor(z, xDel, pCtx);
435   }else{
436     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
437   }
438 }
439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
440   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
441   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
442 }
443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
444   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
445   pCtx->isError = SQLITE_ERROR;
446   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
447 }
448 #ifndef SQLITE_OMIT_UTF16
449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
450   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
451   pCtx->isError = SQLITE_ERROR;
452   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
453 }
454 #endif
455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
456   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
457   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
458 }
459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
460   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
461   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
462 }
463 void sqlite3_result_null(sqlite3_context *pCtx){
464   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
465   sqlite3VdbeMemSetNull(pCtx->pOut);
466 }
467 void sqlite3_result_pointer(
468   sqlite3_context *pCtx,
469   void *pPtr,
470   const char *zPType,
471   void (*xDestructor)(void*)
472 ){
473   Mem *pOut = pCtx->pOut;
474   assert( sqlite3_mutex_held(pOut->db->mutex) );
475   sqlite3VdbeMemRelease(pOut);
476   pOut->flags = MEM_Null;
477   sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
478 }
479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
480   Mem *pOut = pCtx->pOut;
481   assert( sqlite3_mutex_held(pOut->db->mutex) );
482   pOut->eSubtype = eSubtype & 0xff;
483   pOut->flags |= MEM_Subtype;
484 }
485 void sqlite3_result_text(
486   sqlite3_context *pCtx,
487   const char *z,
488   int n,
489   void (*xDel)(void *)
490 ){
491   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
492   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
493 }
494 void sqlite3_result_text64(
495   sqlite3_context *pCtx,
496   const char *z,
497   sqlite3_uint64 n,
498   void (*xDel)(void *),
499   unsigned char enc
500 ){
501   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
502   assert( xDel!=SQLITE_DYNAMIC );
503   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
504   if( n>0x7fffffff ){
505     (void)invokeValueDestructor(z, xDel, pCtx);
506   }else{
507     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
508   }
509 }
510 #ifndef SQLITE_OMIT_UTF16
511 void sqlite3_result_text16(
512   sqlite3_context *pCtx,
513   const void *z,
514   int n,
515   void (*xDel)(void *)
516 ){
517   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
518   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
519 }
520 void sqlite3_result_text16be(
521   sqlite3_context *pCtx,
522   const void *z,
523   int n,
524   void (*xDel)(void *)
525 ){
526   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
527   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
528 }
529 void sqlite3_result_text16le(
530   sqlite3_context *pCtx,
531   const void *z,
532   int n,
533   void (*xDel)(void *)
534 ){
535   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
536   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
537 }
538 #endif /* SQLITE_OMIT_UTF16 */
539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
540   Mem *pOut = pCtx->pOut;
541   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
542   sqlite3VdbeMemCopy(pOut, pValue);
543   sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
544   if( sqlite3VdbeMemTooBig(pOut) ){
545     sqlite3_result_error_toobig(pCtx);
546   }
547 }
548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
549   sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
550 }
551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
552   Mem *pOut = pCtx->pOut;
553   assert( sqlite3_mutex_held(pOut->db->mutex) );
554   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
555     sqlite3_result_error_toobig(pCtx);
556     return SQLITE_TOOBIG;
557   }
558 #ifndef SQLITE_OMIT_INCRBLOB
559   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
560   return SQLITE_OK;
561 #else
562   return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
563 #endif
564 }
565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
566   pCtx->isError = errCode ? errCode : -1;
567 #ifdef SQLITE_DEBUG
568   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
569 #endif
570   if( pCtx->pOut->flags & MEM_Null ){
571     setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
572                         SQLITE_STATIC);
573   }
574 }
575 
576 /* Force an SQLITE_TOOBIG error. */
577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
578   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
579   pCtx->isError = SQLITE_TOOBIG;
580   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
581                        SQLITE_UTF8, SQLITE_STATIC);
582 }
583 
584 /* An SQLITE_NOMEM error. */
585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
586   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
587   sqlite3VdbeMemSetNull(pCtx->pOut);
588   pCtx->isError = SQLITE_NOMEM_BKPT;
589   sqlite3OomFault(pCtx->pOut->db);
590 }
591 
592 #ifndef SQLITE_UNTESTABLE
593 /* Force the INT64 value currently stored as the result to be
594 ** a MEM_IntReal value.  See the SQLITE_TESTCTRL_RESULT_INTREAL
595 ** test-control.
596 */
597 void sqlite3ResultIntReal(sqlite3_context *pCtx){
598   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
599   if( pCtx->pOut->flags & MEM_Int ){
600     pCtx->pOut->flags &= ~MEM_Int;
601     pCtx->pOut->flags |= MEM_IntReal;
602   }
603 }
604 #endif
605 
606 
607 /*
608 ** This function is called after a transaction has been committed. It
609 ** invokes callbacks registered with sqlite3_wal_hook() as required.
610 */
611 static int doWalCallbacks(sqlite3 *db){
612   int rc = SQLITE_OK;
613 #ifndef SQLITE_OMIT_WAL
614   int i;
615   for(i=0; i<db->nDb; i++){
616     Btree *pBt = db->aDb[i].pBt;
617     if( pBt ){
618       int nEntry;
619       sqlite3BtreeEnter(pBt);
620       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
621       sqlite3BtreeLeave(pBt);
622       if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
623         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
624       }
625     }
626   }
627 #endif
628   return rc;
629 }
630 
631 
632 /*
633 ** Execute the statement pStmt, either until a row of data is ready, the
634 ** statement is completely executed or an error occurs.
635 **
636 ** This routine implements the bulk of the logic behind the sqlite_step()
637 ** API.  The only thing omitted is the automatic recompile if a
638 ** schema change has occurred.  That detail is handled by the
639 ** outer sqlite3_step() wrapper procedure.
640 */
641 static int sqlite3Step(Vdbe *p){
642   sqlite3 *db;
643   int rc;
644 
645   assert(p);
646   db = p->db;
647   if( p->eVdbeState!=VDBE_RUN_STATE ){
648     restart_step:
649     if( p->eVdbeState==VDBE_READY_STATE ){
650       if( p->expired ){
651         p->rc = SQLITE_SCHEMA;
652         rc = SQLITE_ERROR;
653         if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
654           /* If this statement was prepared using saved SQL and an
655           ** error has occurred, then return the error code in p->rc to the
656           ** caller. Set the error code in the database handle to the same
657           ** value.
658           */
659           rc = sqlite3VdbeTransferError(p);
660         }
661         goto end_of_step;
662       }
663 
664       /* If there are no other statements currently running, then
665       ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
666       ** from interrupting a statement that has not yet started.
667       */
668       if( db->nVdbeActive==0 ){
669         AtomicStore(&db->u1.isInterrupted, 0);
670       }
671 
672       assert( db->nVdbeWrite>0 || db->autoCommit==0
673           || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
674       );
675 
676 #ifndef SQLITE_OMIT_TRACE
677       if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
678           && !db->init.busy && p->zSql ){
679         sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
680       }else{
681         assert( p->startTime==0 );
682       }
683 #endif
684 
685       db->nVdbeActive++;
686       if( p->readOnly==0 ) db->nVdbeWrite++;
687       if( p->bIsReader ) db->nVdbeRead++;
688       p->pc = 0;
689       p->eVdbeState = VDBE_RUN_STATE;
690     }else
691 
692     if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){
693       /* We used to require that sqlite3_reset() be called before retrying
694       ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
695       ** with version 3.7.0, we changed this so that sqlite3_reset() would
696       ** be called automatically instead of throwing the SQLITE_MISUSE error.
697       ** This "automatic-reset" change is not technically an incompatibility,
698       ** since any application that receives an SQLITE_MISUSE is broken by
699       ** definition.
700       **
701       ** Nevertheless, some published applications that were originally written
702       ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
703       ** returns, and those were broken by the automatic-reset change.  As a
704       ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
705       ** legacy behavior of returning SQLITE_MISUSE for cases where the
706       ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
707       ** or SQLITE_BUSY error.
708       */
709 #ifdef SQLITE_OMIT_AUTORESET
710       if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
711         sqlite3_reset((sqlite3_stmt*)p);
712       }else{
713         return SQLITE_MISUSE_BKPT;
714       }
715 #else
716       sqlite3_reset((sqlite3_stmt*)p);
717 #endif
718       assert( p->eVdbeState==VDBE_READY_STATE );
719       goto restart_step;
720     }
721   }
722 
723 #ifdef SQLITE_DEBUG
724   p->rcApp = SQLITE_OK;
725 #endif
726 #ifndef SQLITE_OMIT_EXPLAIN
727   if( p->explain ){
728     rc = sqlite3VdbeList(p);
729   }else
730 #endif /* SQLITE_OMIT_EXPLAIN */
731   {
732     db->nVdbeExec++;
733     rc = sqlite3VdbeExec(p);
734     db->nVdbeExec--;
735   }
736 
737   if( rc==SQLITE_ROW ){
738     assert( p->rc==SQLITE_OK );
739     assert( db->mallocFailed==0 );
740     db->errCode = SQLITE_ROW;
741     return SQLITE_ROW;
742   }else{
743 #ifndef SQLITE_OMIT_TRACE
744     /* If the statement completed successfully, invoke the profile callback */
745     checkProfileCallback(db, p);
746 #endif
747 
748     if( rc==SQLITE_DONE && db->autoCommit ){
749       assert( p->rc==SQLITE_OK );
750       p->rc = doWalCallbacks(db);
751       if( p->rc!=SQLITE_OK ){
752         rc = SQLITE_ERROR;
753       }
754     }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
755       /* If this statement was prepared using saved SQL and an
756       ** error has occurred, then return the error code in p->rc to the
757       ** caller. Set the error code in the database handle to the same value.
758       */
759       rc = sqlite3VdbeTransferError(p);
760     }
761   }
762 
763   db->errCode = rc;
764   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
765     p->rc = SQLITE_NOMEM_BKPT;
766     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
767   }
768 end_of_step:
769   /* There are only a limited number of result codes allowed from the
770   ** statements prepared using the legacy sqlite3_prepare() interface */
771   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
772        || rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
773        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
774   );
775   return (rc&db->errMask);
776 }
777 
778 /*
779 ** This is the top-level implementation of sqlite3_step().  Call
780 ** sqlite3Step() to do most of the work.  If a schema error occurs,
781 ** call sqlite3Reprepare() and try again.
782 */
783 int sqlite3_step(sqlite3_stmt *pStmt){
784   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
785   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
786   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
787   sqlite3 *db;             /* The database connection */
788 
789   if( vdbeSafetyNotNull(v) ){
790     return SQLITE_MISUSE_BKPT;
791   }
792   db = v->db;
793   sqlite3_mutex_enter(db->mutex);
794   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
795          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
796     int savedPc = v->pc;
797     rc = sqlite3Reprepare(v);
798     if( rc!=SQLITE_OK ){
799       /* This case occurs after failing to recompile an sql statement.
800       ** The error message from the SQL compiler has already been loaded
801       ** into the database handle. This block copies the error message
802       ** from the database handle into the statement and sets the statement
803       ** program counter to 0 to ensure that when the statement is
804       ** finalized or reset the parser error message is available via
805       ** sqlite3_errmsg() and sqlite3_errcode().
806       */
807       const char *zErr = (const char *)sqlite3_value_text(db->pErr);
808       sqlite3DbFree(db, v->zErrMsg);
809       if( !db->mallocFailed ){
810         v->zErrMsg = sqlite3DbStrDup(db, zErr);
811         v->rc = rc = sqlite3ApiExit(db, rc);
812       } else {
813         v->zErrMsg = 0;
814         v->rc = rc = SQLITE_NOMEM_BKPT;
815       }
816       break;
817     }
818     sqlite3_reset(pStmt);
819     if( savedPc>=0 ){
820       /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
821       ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
822       ** already been done once on a prior invocation that failed due to
823       ** SQLITE_SCHEMA.   tag-20220401a  */
824       v->minWriteFileFormat = 254;
825     }
826     assert( v->expired==0 );
827   }
828   sqlite3_mutex_leave(db->mutex);
829   return rc;
830 }
831 
832 
833 /*
834 ** Extract the user data from a sqlite3_context structure and return a
835 ** pointer to it.
836 */
837 void *sqlite3_user_data(sqlite3_context *p){
838   assert( p && p->pFunc );
839   return p->pFunc->pUserData;
840 }
841 
842 /*
843 ** Extract the user data from a sqlite3_context structure and return a
844 ** pointer to it.
845 **
846 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
847 ** returns a copy of the pointer to the database connection (the 1st
848 ** parameter) of the sqlite3_create_function() and
849 ** sqlite3_create_function16() routines that originally registered the
850 ** application defined function.
851 */
852 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
853   assert( p && p->pOut );
854   return p->pOut->db;
855 }
856 
857 /*
858 ** If this routine is invoked from within an xColumn method of a virtual
859 ** table, then it returns true if and only if the the call is during an
860 ** UPDATE operation and the value of the column will not be modified
861 ** by the UPDATE.
862 **
863 ** If this routine is called from any context other than within the
864 ** xColumn method of a virtual table, then the return value is meaningless
865 ** and arbitrary.
866 **
867 ** Virtual table implements might use this routine to optimize their
868 ** performance by substituting a NULL result, or some other light-weight
869 ** value, as a signal to the xUpdate routine that the column is unchanged.
870 */
871 int sqlite3_vtab_nochange(sqlite3_context *p){
872   assert( p );
873   return sqlite3_value_nochange(p->pOut);
874 }
875 
876 /*
877 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
878 ** sqlite3_vtab_in_next() (if bNext!=0).
879 */
880 static int valueFromValueList(
881   sqlite3_value *pVal,        /* Pointer to the ValueList object */
882   sqlite3_value **ppOut,      /* Store the next value from the list here */
883   int bNext                   /* 1 for _next(). 0 for _first() */
884 ){
885   int rc;
886   ValueList *pRhs;
887 
888   *ppOut = 0;
889   if( pVal==0 ) return SQLITE_MISUSE;
890   pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
891   if( pRhs==0 ) return SQLITE_MISUSE;
892   if( bNext ){
893     rc = sqlite3BtreeNext(pRhs->pCsr, 0);
894   }else{
895     int dummy = 0;
896     rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
897     assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
898     if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
899   }
900   if( rc==SQLITE_OK ){
901     u32 sz;       /* Size of current row in bytes */
902     Mem sMem;     /* Raw content of current row */
903     memset(&sMem, 0, sizeof(sMem));
904     sz = sqlite3BtreePayloadSize(pRhs->pCsr);
905     rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
906     if( rc==SQLITE_OK ){
907       u8 *zBuf = (u8*)sMem.z;
908       u32 iSerial;
909       sqlite3_value *pOut = pRhs->pOut;
910       int iOff = 1 + getVarint32(&zBuf[1], iSerial);
911       sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
912       pOut->enc = ENC(pOut->db);
913       if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
914         rc = SQLITE_NOMEM;
915       }else{
916         *ppOut = pOut;
917       }
918     }
919     sqlite3VdbeMemRelease(&sMem);
920   }
921   return rc;
922 }
923 
924 /*
925 ** Set the iterator value pVal to point to the first value in the set.
926 ** Set (*ppOut) to point to this value before returning.
927 */
928 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
929   return valueFromValueList(pVal, ppOut, 0);
930 }
931 
932 /*
933 ** Set the iterator value pVal to point to the next value in the set.
934 ** Set (*ppOut) to point to this value before returning.
935 */
936 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
937   return valueFromValueList(pVal, ppOut, 1);
938 }
939 
940 /*
941 ** Return the current time for a statement.  If the current time
942 ** is requested more than once within the same run of a single prepared
943 ** statement, the exact same time is returned for each invocation regardless
944 ** of the amount of time that elapses between invocations.  In other words,
945 ** the time returned is always the time of the first call.
946 */
947 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
948   int rc;
949 #ifndef SQLITE_ENABLE_STAT4
950   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
951   assert( p->pVdbe!=0 );
952 #else
953   sqlite3_int64 iTime = 0;
954   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
955 #endif
956   if( *piTime==0 ){
957     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
958     if( rc ) *piTime = 0;
959   }
960   return *piTime;
961 }
962 
963 /*
964 ** Create a new aggregate context for p and return a pointer to
965 ** its pMem->z element.
966 */
967 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
968   Mem *pMem = p->pMem;
969   assert( (pMem->flags & MEM_Agg)==0 );
970   if( nByte<=0 ){
971     sqlite3VdbeMemSetNull(pMem);
972     pMem->z = 0;
973   }else{
974     sqlite3VdbeMemClearAndResize(pMem, nByte);
975     pMem->flags = MEM_Agg;
976     pMem->u.pDef = p->pFunc;
977     if( pMem->z ){
978       memset(pMem->z, 0, nByte);
979     }
980   }
981   return (void*)pMem->z;
982 }
983 
984 /*
985 ** Allocate or return the aggregate context for a user function.  A new
986 ** context is allocated on the first call.  Subsequent calls return the
987 ** same context that was returned on prior calls.
988 */
989 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
990   assert( p && p->pFunc && p->pFunc->xFinalize );
991   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
992   testcase( nByte<0 );
993   if( (p->pMem->flags & MEM_Agg)==0 ){
994     return createAggContext(p, nByte);
995   }else{
996     return (void*)p->pMem->z;
997   }
998 }
999 
1000 /*
1001 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
1002 ** the user-function defined by pCtx.
1003 **
1004 ** The left-most argument is 0.
1005 **
1006 ** Undocumented behavior:  If iArg is negative then access a cache of
1007 ** auxiliary data pointers that is available to all functions within a
1008 ** single prepared statement.  The iArg values must match.
1009 */
1010 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
1011   AuxData *pAuxData;
1012 
1013   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1014 #if SQLITE_ENABLE_STAT4
1015   if( pCtx->pVdbe==0 ) return 0;
1016 #else
1017   assert( pCtx->pVdbe!=0 );
1018 #endif
1019   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1020     if(  pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1021       return pAuxData->pAux;
1022     }
1023   }
1024   return 0;
1025 }
1026 
1027 /*
1028 ** Set the auxiliary data pointer and delete function, for the iArg'th
1029 ** argument to the user-function defined by pCtx. Any previous value is
1030 ** deleted by calling the delete function specified when it was set.
1031 **
1032 ** The left-most argument is 0.
1033 **
1034 ** Undocumented behavior:  If iArg is negative then make the data available
1035 ** to all functions within the current prepared statement using iArg as an
1036 ** access code.
1037 */
1038 void sqlite3_set_auxdata(
1039   sqlite3_context *pCtx,
1040   int iArg,
1041   void *pAux,
1042   void (*xDelete)(void*)
1043 ){
1044   AuxData *pAuxData;
1045   Vdbe *pVdbe = pCtx->pVdbe;
1046 
1047   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1048 #ifdef SQLITE_ENABLE_STAT4
1049   if( pVdbe==0 ) goto failed;
1050 #else
1051   assert( pVdbe!=0 );
1052 #endif
1053 
1054   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1055     if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1056       break;
1057     }
1058   }
1059   if( pAuxData==0 ){
1060     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1061     if( !pAuxData ) goto failed;
1062     pAuxData->iAuxOp = pCtx->iOp;
1063     pAuxData->iAuxArg = iArg;
1064     pAuxData->pNextAux = pVdbe->pAuxData;
1065     pVdbe->pAuxData = pAuxData;
1066     if( pCtx->isError==0 ) pCtx->isError = -1;
1067   }else if( pAuxData->xDeleteAux ){
1068     pAuxData->xDeleteAux(pAuxData->pAux);
1069   }
1070 
1071   pAuxData->pAux = pAux;
1072   pAuxData->xDeleteAux = xDelete;
1073   return;
1074 
1075 failed:
1076   if( xDelete ){
1077     xDelete(pAux);
1078   }
1079 }
1080 
1081 #ifndef SQLITE_OMIT_DEPRECATED
1082 /*
1083 ** Return the number of times the Step function of an aggregate has been
1084 ** called.
1085 **
1086 ** This function is deprecated.  Do not use it for new code.  It is
1087 ** provide only to avoid breaking legacy code.  New aggregate function
1088 ** implementations should keep their own counts within their aggregate
1089 ** context.
1090 */
1091 int sqlite3_aggregate_count(sqlite3_context *p){
1092   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1093   return p->pMem->n;
1094 }
1095 #endif
1096 
1097 /*
1098 ** Return the number of columns in the result set for the statement pStmt.
1099 */
1100 int sqlite3_column_count(sqlite3_stmt *pStmt){
1101   Vdbe *pVm = (Vdbe *)pStmt;
1102   return pVm ? pVm->nResColumn : 0;
1103 }
1104 
1105 /*
1106 ** Return the number of values available from the current row of the
1107 ** currently executing statement pStmt.
1108 */
1109 int sqlite3_data_count(sqlite3_stmt *pStmt){
1110   Vdbe *pVm = (Vdbe *)pStmt;
1111   if( pVm==0 || pVm->pResultSet==0 ) return 0;
1112   return pVm->nResColumn;
1113 }
1114 
1115 /*
1116 ** Return a pointer to static memory containing an SQL NULL value.
1117 */
1118 static const Mem *columnNullValue(void){
1119   /* Even though the Mem structure contains an element
1120   ** of type i64, on certain architectures (x86) with certain compiler
1121   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1122   ** instead of an 8-byte one. This all works fine, except that when
1123   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1124   ** that a Mem structure is located on an 8-byte boundary. To prevent
1125   ** these assert()s from failing, when building with SQLITE_DEBUG defined
1126   ** using gcc, we force nullMem to be 8-byte aligned using the magical
1127   ** __attribute__((aligned(8))) macro.  */
1128   static const Mem nullMem
1129 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1130     __attribute__((aligned(8)))
1131 #endif
1132     = {
1133         /* .u          = */ {0},
1134         /* .z          = */ (char*)0,
1135         /* .n          = */ (int)0,
1136         /* .flags      = */ (u16)MEM_Null,
1137         /* .enc        = */ (u8)0,
1138         /* .eSubtype   = */ (u8)0,
1139         /* .db         = */ (sqlite3*)0,
1140         /* .szMalloc   = */ (int)0,
1141         /* .uTemp      = */ (u32)0,
1142         /* .zMalloc    = */ (char*)0,
1143         /* .xDel       = */ (void(*)(void*))0,
1144 #ifdef SQLITE_DEBUG
1145         /* .pScopyFrom = */ (Mem*)0,
1146         /* .mScopyFlags= */ 0,
1147 #endif
1148       };
1149   return &nullMem;
1150 }
1151 
1152 /*
1153 ** Check to see if column iCol of the given statement is valid.  If
1154 ** it is, return a pointer to the Mem for the value of that column.
1155 ** If iCol is not valid, return a pointer to a Mem which has a value
1156 ** of NULL.
1157 */
1158 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1159   Vdbe *pVm;
1160   Mem *pOut;
1161 
1162   pVm = (Vdbe *)pStmt;
1163   if( pVm==0 ) return (Mem*)columnNullValue();
1164   assert( pVm->db );
1165   sqlite3_mutex_enter(pVm->db->mutex);
1166   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1167     pOut = &pVm->pResultSet[i];
1168   }else{
1169     sqlite3Error(pVm->db, SQLITE_RANGE);
1170     pOut = (Mem*)columnNullValue();
1171   }
1172   return pOut;
1173 }
1174 
1175 /*
1176 ** This function is called after invoking an sqlite3_value_XXX function on a
1177 ** column value (i.e. a value returned by evaluating an SQL expression in the
1178 ** select list of a SELECT statement) that may cause a malloc() failure. If
1179 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1180 ** code of statement pStmt set to SQLITE_NOMEM.
1181 **
1182 ** Specifically, this is called from within:
1183 **
1184 **     sqlite3_column_int()
1185 **     sqlite3_column_int64()
1186 **     sqlite3_column_text()
1187 **     sqlite3_column_text16()
1188 **     sqlite3_column_real()
1189 **     sqlite3_column_bytes()
1190 **     sqlite3_column_bytes16()
1191 **     sqiite3_column_blob()
1192 */
1193 static void columnMallocFailure(sqlite3_stmt *pStmt)
1194 {
1195   /* If malloc() failed during an encoding conversion within an
1196   ** sqlite3_column_XXX API, then set the return code of the statement to
1197   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1198   ** and _finalize() will return NOMEM.
1199   */
1200   Vdbe *p = (Vdbe *)pStmt;
1201   if( p ){
1202     assert( p->db!=0 );
1203     assert( sqlite3_mutex_held(p->db->mutex) );
1204     p->rc = sqlite3ApiExit(p->db, p->rc);
1205     sqlite3_mutex_leave(p->db->mutex);
1206   }
1207 }
1208 
1209 /**************************** sqlite3_column_  *******************************
1210 ** The following routines are used to access elements of the current row
1211 ** in the result set.
1212 */
1213 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1214   const void *val;
1215   val = sqlite3_value_blob( columnMem(pStmt,i) );
1216   /* Even though there is no encoding conversion, value_blob() might
1217   ** need to call malloc() to expand the result of a zeroblob()
1218   ** expression.
1219   */
1220   columnMallocFailure(pStmt);
1221   return val;
1222 }
1223 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1224   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1225   columnMallocFailure(pStmt);
1226   return val;
1227 }
1228 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1229   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1230   columnMallocFailure(pStmt);
1231   return val;
1232 }
1233 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1234   double val = sqlite3_value_double( columnMem(pStmt,i) );
1235   columnMallocFailure(pStmt);
1236   return val;
1237 }
1238 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1239   int val = sqlite3_value_int( columnMem(pStmt,i) );
1240   columnMallocFailure(pStmt);
1241   return val;
1242 }
1243 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1244   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1245   columnMallocFailure(pStmt);
1246   return val;
1247 }
1248 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1249   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1250   columnMallocFailure(pStmt);
1251   return val;
1252 }
1253 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1254   Mem *pOut = columnMem(pStmt, i);
1255   if( pOut->flags&MEM_Static ){
1256     pOut->flags &= ~MEM_Static;
1257     pOut->flags |= MEM_Ephem;
1258   }
1259   columnMallocFailure(pStmt);
1260   return (sqlite3_value *)pOut;
1261 }
1262 #ifndef SQLITE_OMIT_UTF16
1263 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1264   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1265   columnMallocFailure(pStmt);
1266   return val;
1267 }
1268 #endif /* SQLITE_OMIT_UTF16 */
1269 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1270   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1271   columnMallocFailure(pStmt);
1272   return iType;
1273 }
1274 
1275 /*
1276 ** Convert the N-th element of pStmt->pColName[] into a string using
1277 ** xFunc() then return that string.  If N is out of range, return 0.
1278 **
1279 ** There are up to 5 names for each column.  useType determines which
1280 ** name is returned.  Here are the names:
1281 **
1282 **    0      The column name as it should be displayed for output
1283 **    1      The datatype name for the column
1284 **    2      The name of the database that the column derives from
1285 **    3      The name of the table that the column derives from
1286 **    4      The name of the table column that the result column derives from
1287 **
1288 ** If the result is not a simple column reference (if it is an expression
1289 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1290 */
1291 static const void *columnName(
1292   sqlite3_stmt *pStmt,     /* The statement */
1293   int N,                   /* Which column to get the name for */
1294   int useUtf16,            /* True to return the name as UTF16 */
1295   int useType              /* What type of name */
1296 ){
1297   const void *ret;
1298   Vdbe *p;
1299   int n;
1300   sqlite3 *db;
1301 #ifdef SQLITE_ENABLE_API_ARMOR
1302   if( pStmt==0 ){
1303     (void)SQLITE_MISUSE_BKPT;
1304     return 0;
1305   }
1306 #endif
1307   ret = 0;
1308   p = (Vdbe *)pStmt;
1309   db = p->db;
1310   assert( db!=0 );
1311   n = sqlite3_column_count(pStmt);
1312   if( N<n && N>=0 ){
1313     N += useType*n;
1314     sqlite3_mutex_enter(db->mutex);
1315     assert( db->mallocFailed==0 );
1316 #ifndef SQLITE_OMIT_UTF16
1317     if( useUtf16 ){
1318       ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1319     }else
1320 #endif
1321     {
1322       ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1323     }
1324     /* A malloc may have failed inside of the _text() call. If this
1325     ** is the case, clear the mallocFailed flag and return NULL.
1326     */
1327     if( db->mallocFailed ){
1328       sqlite3OomClear(db);
1329       ret = 0;
1330     }
1331     sqlite3_mutex_leave(db->mutex);
1332   }
1333   return ret;
1334 }
1335 
1336 /*
1337 ** Return the name of the Nth column of the result set returned by SQL
1338 ** statement pStmt.
1339 */
1340 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1341   return columnName(pStmt, N, 0, COLNAME_NAME);
1342 }
1343 #ifndef SQLITE_OMIT_UTF16
1344 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1345   return columnName(pStmt, N, 1, COLNAME_NAME);
1346 }
1347 #endif
1348 
1349 /*
1350 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1351 ** not define OMIT_DECLTYPE.
1352 */
1353 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1354 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1355          and SQLITE_ENABLE_COLUMN_METADATA"
1356 #endif
1357 
1358 #ifndef SQLITE_OMIT_DECLTYPE
1359 /*
1360 ** Return the column declaration type (if applicable) of the 'i'th column
1361 ** of the result set of SQL statement pStmt.
1362 */
1363 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1364   return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1365 }
1366 #ifndef SQLITE_OMIT_UTF16
1367 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1368   return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1369 }
1370 #endif /* SQLITE_OMIT_UTF16 */
1371 #endif /* SQLITE_OMIT_DECLTYPE */
1372 
1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1374 /*
1375 ** Return the name of the database from which a result column derives.
1376 ** NULL is returned if the result column is an expression or constant or
1377 ** anything else which is not an unambiguous reference to a database column.
1378 */
1379 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1380   return columnName(pStmt, N, 0, COLNAME_DATABASE);
1381 }
1382 #ifndef SQLITE_OMIT_UTF16
1383 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1384   return columnName(pStmt, N, 1, COLNAME_DATABASE);
1385 }
1386 #endif /* SQLITE_OMIT_UTF16 */
1387 
1388 /*
1389 ** Return the name of the table from which a result column derives.
1390 ** NULL is returned if the result column is an expression or constant or
1391 ** anything else which is not an unambiguous reference to a database column.
1392 */
1393 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1394   return columnName(pStmt, N, 0, COLNAME_TABLE);
1395 }
1396 #ifndef SQLITE_OMIT_UTF16
1397 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1398   return columnName(pStmt, N, 1, COLNAME_TABLE);
1399 }
1400 #endif /* SQLITE_OMIT_UTF16 */
1401 
1402 /*
1403 ** Return the name of the table column from which a result column derives.
1404 ** NULL is returned if the result column is an expression or constant or
1405 ** anything else which is not an unambiguous reference to a database column.
1406 */
1407 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1408   return columnName(pStmt, N, 0, COLNAME_COLUMN);
1409 }
1410 #ifndef SQLITE_OMIT_UTF16
1411 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1412   return columnName(pStmt, N, 1, COLNAME_COLUMN);
1413 }
1414 #endif /* SQLITE_OMIT_UTF16 */
1415 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1416 
1417 
1418 /******************************* sqlite3_bind_  ***************************
1419 **
1420 ** Routines used to attach values to wildcards in a compiled SQL statement.
1421 */
1422 /*
1423 ** Unbind the value bound to variable i in virtual machine p. This is the
1424 ** the same as binding a NULL value to the column. If the "i" parameter is
1425 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1426 **
1427 ** A successful evaluation of this routine acquires the mutex on p.
1428 ** the mutex is released if any kind of error occurs.
1429 **
1430 ** The error code stored in database p->db is overwritten with the return
1431 ** value in any case.
1432 */
1433 static int vdbeUnbind(Vdbe *p, int i){
1434   Mem *pVar;
1435   if( vdbeSafetyNotNull(p) ){
1436     return SQLITE_MISUSE_BKPT;
1437   }
1438   sqlite3_mutex_enter(p->db->mutex);
1439   if( p->eVdbeState!=VDBE_READY_STATE ){
1440     sqlite3Error(p->db, SQLITE_MISUSE);
1441     sqlite3_mutex_leave(p->db->mutex);
1442     sqlite3_log(SQLITE_MISUSE,
1443         "bind on a busy prepared statement: [%s]", p->zSql);
1444     return SQLITE_MISUSE_BKPT;
1445   }
1446   if( i<1 || i>p->nVar ){
1447     sqlite3Error(p->db, SQLITE_RANGE);
1448     sqlite3_mutex_leave(p->db->mutex);
1449     return SQLITE_RANGE;
1450   }
1451   i--;
1452   pVar = &p->aVar[i];
1453   sqlite3VdbeMemRelease(pVar);
1454   pVar->flags = MEM_Null;
1455   p->db->errCode = SQLITE_OK;
1456 
1457   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1458   ** binding a new value to this variable invalidates the current query plan.
1459   **
1460   ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1461   ** parameter in the WHERE clause might influence the choice of query plan
1462   ** for a statement, then the statement will be automatically recompiled,
1463   ** as if there had been a schema change, on the first sqlite3_step() call
1464   ** following any change to the bindings of that parameter.
1465   */
1466   assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1467   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1468     p->expired = 1;
1469   }
1470   return SQLITE_OK;
1471 }
1472 
1473 /*
1474 ** Bind a text or BLOB value.
1475 */
1476 static int bindText(
1477   sqlite3_stmt *pStmt,   /* The statement to bind against */
1478   int i,                 /* Index of the parameter to bind */
1479   const void *zData,     /* Pointer to the data to be bound */
1480   i64 nData,             /* Number of bytes of data to be bound */
1481   void (*xDel)(void*),   /* Destructor for the data */
1482   u8 encoding            /* Encoding for the data */
1483 ){
1484   Vdbe *p = (Vdbe *)pStmt;
1485   Mem *pVar;
1486   int rc;
1487 
1488   rc = vdbeUnbind(p, i);
1489   if( rc==SQLITE_OK ){
1490     if( zData!=0 ){
1491       pVar = &p->aVar[i-1];
1492       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1493       if( rc==SQLITE_OK && encoding!=0 ){
1494         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1495       }
1496       if( rc ){
1497         sqlite3Error(p->db, rc);
1498         rc = sqlite3ApiExit(p->db, rc);
1499       }
1500     }
1501     sqlite3_mutex_leave(p->db->mutex);
1502   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1503     xDel((void*)zData);
1504   }
1505   return rc;
1506 }
1507 
1508 
1509 /*
1510 ** Bind a blob value to an SQL statement variable.
1511 */
1512 int sqlite3_bind_blob(
1513   sqlite3_stmt *pStmt,
1514   int i,
1515   const void *zData,
1516   int nData,
1517   void (*xDel)(void*)
1518 ){
1519 #ifdef SQLITE_ENABLE_API_ARMOR
1520   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1521 #endif
1522   return bindText(pStmt, i, zData, nData, xDel, 0);
1523 }
1524 int sqlite3_bind_blob64(
1525   sqlite3_stmt *pStmt,
1526   int i,
1527   const void *zData,
1528   sqlite3_uint64 nData,
1529   void (*xDel)(void*)
1530 ){
1531   assert( xDel!=SQLITE_DYNAMIC );
1532   return bindText(pStmt, i, zData, nData, xDel, 0);
1533 }
1534 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1535   int rc;
1536   Vdbe *p = (Vdbe *)pStmt;
1537   rc = vdbeUnbind(p, i);
1538   if( rc==SQLITE_OK ){
1539     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1540     sqlite3_mutex_leave(p->db->mutex);
1541   }
1542   return rc;
1543 }
1544 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1545   return sqlite3_bind_int64(p, i, (i64)iValue);
1546 }
1547 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1548   int rc;
1549   Vdbe *p = (Vdbe *)pStmt;
1550   rc = vdbeUnbind(p, i);
1551   if( rc==SQLITE_OK ){
1552     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1553     sqlite3_mutex_leave(p->db->mutex);
1554   }
1555   return rc;
1556 }
1557 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1558   int rc;
1559   Vdbe *p = (Vdbe*)pStmt;
1560   rc = vdbeUnbind(p, i);
1561   if( rc==SQLITE_OK ){
1562     sqlite3_mutex_leave(p->db->mutex);
1563   }
1564   return rc;
1565 }
1566 int sqlite3_bind_pointer(
1567   sqlite3_stmt *pStmt,
1568   int i,
1569   void *pPtr,
1570   const char *zPTtype,
1571   void (*xDestructor)(void*)
1572 ){
1573   int rc;
1574   Vdbe *p = (Vdbe*)pStmt;
1575   rc = vdbeUnbind(p, i);
1576   if( rc==SQLITE_OK ){
1577     sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1578     sqlite3_mutex_leave(p->db->mutex);
1579   }else if( xDestructor ){
1580     xDestructor(pPtr);
1581   }
1582   return rc;
1583 }
1584 int sqlite3_bind_text(
1585   sqlite3_stmt *pStmt,
1586   int i,
1587   const char *zData,
1588   int nData,
1589   void (*xDel)(void*)
1590 ){
1591   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1592 }
1593 int sqlite3_bind_text64(
1594   sqlite3_stmt *pStmt,
1595   int i,
1596   const char *zData,
1597   sqlite3_uint64 nData,
1598   void (*xDel)(void*),
1599   unsigned char enc
1600 ){
1601   assert( xDel!=SQLITE_DYNAMIC );
1602   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1603   return bindText(pStmt, i, zData, nData, xDel, enc);
1604 }
1605 #ifndef SQLITE_OMIT_UTF16
1606 int sqlite3_bind_text16(
1607   sqlite3_stmt *pStmt,
1608   int i,
1609   const void *zData,
1610   int nData,
1611   void (*xDel)(void*)
1612 ){
1613   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1614 }
1615 #endif /* SQLITE_OMIT_UTF16 */
1616 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1617   int rc;
1618   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1619     case SQLITE_INTEGER: {
1620       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1621       break;
1622     }
1623     case SQLITE_FLOAT: {
1624       assert( pValue->flags & (MEM_Real|MEM_IntReal) );
1625       rc = sqlite3_bind_double(pStmt, i,
1626           (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
1627       );
1628       break;
1629     }
1630     case SQLITE_BLOB: {
1631       if( pValue->flags & MEM_Zero ){
1632         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1633       }else{
1634         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1635       }
1636       break;
1637     }
1638     case SQLITE_TEXT: {
1639       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1640                               pValue->enc);
1641       break;
1642     }
1643     default: {
1644       rc = sqlite3_bind_null(pStmt, i);
1645       break;
1646     }
1647   }
1648   return rc;
1649 }
1650 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1651   int rc;
1652   Vdbe *p = (Vdbe *)pStmt;
1653   rc = vdbeUnbind(p, i);
1654   if( rc==SQLITE_OK ){
1655 #ifndef SQLITE_OMIT_INCRBLOB
1656     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1657 #else
1658     rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1659 #endif
1660     sqlite3_mutex_leave(p->db->mutex);
1661   }
1662   return rc;
1663 }
1664 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1665   int rc;
1666   Vdbe *p = (Vdbe *)pStmt;
1667   sqlite3_mutex_enter(p->db->mutex);
1668   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1669     rc = SQLITE_TOOBIG;
1670   }else{
1671     assert( (n & 0x7FFFFFFF)==n );
1672     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1673   }
1674   rc = sqlite3ApiExit(p->db, rc);
1675   sqlite3_mutex_leave(p->db->mutex);
1676   return rc;
1677 }
1678 
1679 /*
1680 ** Return the number of wildcards that can be potentially bound to.
1681 ** This routine is added to support DBD::SQLite.
1682 */
1683 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1684   Vdbe *p = (Vdbe*)pStmt;
1685   return p ? p->nVar : 0;
1686 }
1687 
1688 /*
1689 ** Return the name of a wildcard parameter.  Return NULL if the index
1690 ** is out of range or if the wildcard is unnamed.
1691 **
1692 ** The result is always UTF-8.
1693 */
1694 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1695   Vdbe *p = (Vdbe*)pStmt;
1696   if( p==0 ) return 0;
1697   return sqlite3VListNumToName(p->pVList, i);
1698 }
1699 
1700 /*
1701 ** Given a wildcard parameter name, return the index of the variable
1702 ** with that name.  If there is no variable with the given name,
1703 ** return 0.
1704 */
1705 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1706   if( p==0 || zName==0 ) return 0;
1707   return sqlite3VListNameToNum(p->pVList, zName, nName);
1708 }
1709 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1710   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1711 }
1712 
1713 /*
1714 ** Transfer all bindings from the first statement over to the second.
1715 */
1716 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1717   Vdbe *pFrom = (Vdbe*)pFromStmt;
1718   Vdbe *pTo = (Vdbe*)pToStmt;
1719   int i;
1720   assert( pTo->db==pFrom->db );
1721   assert( pTo->nVar==pFrom->nVar );
1722   sqlite3_mutex_enter(pTo->db->mutex);
1723   for(i=0; i<pFrom->nVar; i++){
1724     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1725   }
1726   sqlite3_mutex_leave(pTo->db->mutex);
1727   return SQLITE_OK;
1728 }
1729 
1730 #ifndef SQLITE_OMIT_DEPRECATED
1731 /*
1732 ** Deprecated external interface.  Internal/core SQLite code
1733 ** should call sqlite3TransferBindings.
1734 **
1735 ** It is misuse to call this routine with statements from different
1736 ** database connections.  But as this is a deprecated interface, we
1737 ** will not bother to check for that condition.
1738 **
1739 ** If the two statements contain a different number of bindings, then
1740 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1741 ** SQLITE_OK is returned.
1742 */
1743 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1744   Vdbe *pFrom = (Vdbe*)pFromStmt;
1745   Vdbe *pTo = (Vdbe*)pToStmt;
1746   if( pFrom->nVar!=pTo->nVar ){
1747     return SQLITE_ERROR;
1748   }
1749   assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1750   if( pTo->expmask ){
1751     pTo->expired = 1;
1752   }
1753   assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1754   if( pFrom->expmask ){
1755     pFrom->expired = 1;
1756   }
1757   return sqlite3TransferBindings(pFromStmt, pToStmt);
1758 }
1759 #endif
1760 
1761 /*
1762 ** Return the sqlite3* database handle to which the prepared statement given
1763 ** in the argument belongs.  This is the same database handle that was
1764 ** the first argument to the sqlite3_prepare() that was used to create
1765 ** the statement in the first place.
1766 */
1767 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1768   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1769 }
1770 
1771 /*
1772 ** Return true if the prepared statement is guaranteed to not modify the
1773 ** database.
1774 */
1775 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1776   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1777 }
1778 
1779 /*
1780 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1781 ** statement is an EXPLAIN QUERY PLAN
1782 */
1783 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1784   return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1785 }
1786 
1787 /*
1788 ** Return true if the prepared statement is in need of being reset.
1789 */
1790 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1791   Vdbe *v = (Vdbe*)pStmt;
1792   return v!=0 && v->eVdbeState==VDBE_RUN_STATE;
1793 }
1794 
1795 /*
1796 ** Return a pointer to the next prepared statement after pStmt associated
1797 ** with database connection pDb.  If pStmt is NULL, return the first
1798 ** prepared statement for the database connection.  Return NULL if there
1799 ** are no more.
1800 */
1801 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1802   sqlite3_stmt *pNext;
1803 #ifdef SQLITE_ENABLE_API_ARMOR
1804   if( !sqlite3SafetyCheckOk(pDb) ){
1805     (void)SQLITE_MISUSE_BKPT;
1806     return 0;
1807   }
1808 #endif
1809   sqlite3_mutex_enter(pDb->mutex);
1810   if( pStmt==0 ){
1811     pNext = (sqlite3_stmt*)pDb->pVdbe;
1812   }else{
1813     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1814   }
1815   sqlite3_mutex_leave(pDb->mutex);
1816   return pNext;
1817 }
1818 
1819 /*
1820 ** Return the value of a status counter for a prepared statement
1821 */
1822 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1823   Vdbe *pVdbe = (Vdbe*)pStmt;
1824   u32 v;
1825 #ifdef SQLITE_ENABLE_API_ARMOR
1826   if( !pStmt
1827    || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1828   ){
1829     (void)SQLITE_MISUSE_BKPT;
1830     return 0;
1831   }
1832 #endif
1833   if( op==SQLITE_STMTSTATUS_MEMUSED ){
1834     sqlite3 *db = pVdbe->db;
1835     sqlite3_mutex_enter(db->mutex);
1836     v = 0;
1837     db->pnBytesFreed = (int*)&v;
1838     sqlite3VdbeDelete(pVdbe);
1839     db->pnBytesFreed = 0;
1840     sqlite3_mutex_leave(db->mutex);
1841   }else{
1842     v = pVdbe->aCounter[op];
1843     if( resetFlag ) pVdbe->aCounter[op] = 0;
1844   }
1845   return (int)v;
1846 }
1847 
1848 /*
1849 ** Return the SQL associated with a prepared statement
1850 */
1851 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1852   Vdbe *p = (Vdbe *)pStmt;
1853   return p ? p->zSql : 0;
1854 }
1855 
1856 /*
1857 ** Return the SQL associated with a prepared statement with
1858 ** bound parameters expanded.  Space to hold the returned string is
1859 ** obtained from sqlite3_malloc().  The caller is responsible for
1860 ** freeing the returned string by passing it to sqlite3_free().
1861 **
1862 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1863 ** expanded bound parameters.
1864 */
1865 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1866 #ifdef SQLITE_OMIT_TRACE
1867   return 0;
1868 #else
1869   char *z = 0;
1870   const char *zSql = sqlite3_sql(pStmt);
1871   if( zSql ){
1872     Vdbe *p = (Vdbe *)pStmt;
1873     sqlite3_mutex_enter(p->db->mutex);
1874     z = sqlite3VdbeExpandSql(p, zSql);
1875     sqlite3_mutex_leave(p->db->mutex);
1876   }
1877   return z;
1878 #endif
1879 }
1880 
1881 #ifdef SQLITE_ENABLE_NORMALIZE
1882 /*
1883 ** Return the normalized SQL associated with a prepared statement.
1884 */
1885 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1886   Vdbe *p = (Vdbe *)pStmt;
1887   if( p==0 ) return 0;
1888   if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1889     sqlite3_mutex_enter(p->db->mutex);
1890     p->zNormSql = sqlite3Normalize(p, p->zSql);
1891     sqlite3_mutex_leave(p->db->mutex);
1892   }
1893   return p->zNormSql;
1894 }
1895 #endif /* SQLITE_ENABLE_NORMALIZE */
1896 
1897 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1898 /*
1899 ** Allocate and populate an UnpackedRecord structure based on the serialized
1900 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1901 ** if successful, or a NULL pointer if an OOM error is encountered.
1902 */
1903 static UnpackedRecord *vdbeUnpackRecord(
1904   KeyInfo *pKeyInfo,
1905   int nKey,
1906   const void *pKey
1907 ){
1908   UnpackedRecord *pRet;           /* Return value */
1909 
1910   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1911   if( pRet ){
1912     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1913     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1914   }
1915   return pRet;
1916 }
1917 
1918 /*
1919 ** This function is called from within a pre-update callback to retrieve
1920 ** a field of the row currently being updated or deleted.
1921 */
1922 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1923   PreUpdate *p = db->pPreUpdate;
1924   Mem *pMem;
1925   int rc = SQLITE_OK;
1926 
1927   /* Test that this call is being made from within an SQLITE_DELETE or
1928   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1929   if( !p || p->op==SQLITE_INSERT ){
1930     rc = SQLITE_MISUSE_BKPT;
1931     goto preupdate_old_out;
1932   }
1933   if( p->pPk ){
1934     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1935   }
1936   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1937     rc = SQLITE_RANGE;
1938     goto preupdate_old_out;
1939   }
1940 
1941   /* If the old.* record has not yet been loaded into memory, do so now. */
1942   if( p->pUnpacked==0 ){
1943     u32 nRec;
1944     u8 *aRec;
1945 
1946     assert( p->pCsr->eCurType==CURTYPE_BTREE );
1947     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1948     aRec = sqlite3DbMallocRaw(db, nRec);
1949     if( !aRec ) goto preupdate_old_out;
1950     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1951     if( rc==SQLITE_OK ){
1952       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1953       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1954     }
1955     if( rc!=SQLITE_OK ){
1956       sqlite3DbFree(db, aRec);
1957       goto preupdate_old_out;
1958     }
1959     p->aRecord = aRec;
1960   }
1961 
1962   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1963   if( iIdx==p->pTab->iPKey ){
1964     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1965   }else if( iIdx>=p->pUnpacked->nField ){
1966     *ppValue = (sqlite3_value *)columnNullValue();
1967   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1968     if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1969       testcase( pMem->flags & MEM_Int );
1970       testcase( pMem->flags & MEM_IntReal );
1971       sqlite3VdbeMemRealify(pMem);
1972     }
1973   }
1974 
1975  preupdate_old_out:
1976   sqlite3Error(db, rc);
1977   return sqlite3ApiExit(db, rc);
1978 }
1979 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1980 
1981 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1982 /*
1983 ** This function is called from within a pre-update callback to retrieve
1984 ** the number of columns in the row being updated, deleted or inserted.
1985 */
1986 int sqlite3_preupdate_count(sqlite3 *db){
1987   PreUpdate *p = db->pPreUpdate;
1988   return (p ? p->keyinfo.nKeyField : 0);
1989 }
1990 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1991 
1992 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1993 /*
1994 ** This function is designed to be called from within a pre-update callback
1995 ** only. It returns zero if the change that caused the callback was made
1996 ** immediately by a user SQL statement. Or, if the change was made by a
1997 ** trigger program, it returns the number of trigger programs currently
1998 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1999 ** top-level trigger etc.).
2000 **
2001 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
2002 ** or SET DEFAULT action is considered a trigger.
2003 */
2004 int sqlite3_preupdate_depth(sqlite3 *db){
2005   PreUpdate *p = db->pPreUpdate;
2006   return (p ? p->v->nFrame : 0);
2007 }
2008 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2009 
2010 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2011 /*
2012 ** This function is designed to be called from within a pre-update callback
2013 ** only.
2014 */
2015 int sqlite3_preupdate_blobwrite(sqlite3 *db){
2016   PreUpdate *p = db->pPreUpdate;
2017   return (p ? p->iBlobWrite : -1);
2018 }
2019 #endif
2020 
2021 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2022 /*
2023 ** This function is called from within a pre-update callback to retrieve
2024 ** a field of the row currently being updated or inserted.
2025 */
2026 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
2027   PreUpdate *p = db->pPreUpdate;
2028   int rc = SQLITE_OK;
2029   Mem *pMem;
2030 
2031   if( !p || p->op==SQLITE_DELETE ){
2032     rc = SQLITE_MISUSE_BKPT;
2033     goto preupdate_new_out;
2034   }
2035   if( p->pPk && p->op!=SQLITE_UPDATE ){
2036     iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2037   }
2038   if( iIdx>=p->pCsr->nField || iIdx<0 ){
2039     rc = SQLITE_RANGE;
2040     goto preupdate_new_out;
2041   }
2042 
2043   if( p->op==SQLITE_INSERT ){
2044     /* For an INSERT, memory cell p->iNewReg contains the serialized record
2045     ** that is being inserted. Deserialize it. */
2046     UnpackedRecord *pUnpack = p->pNewUnpacked;
2047     if( !pUnpack ){
2048       Mem *pData = &p->v->aMem[p->iNewReg];
2049       rc = ExpandBlob(pData);
2050       if( rc!=SQLITE_OK ) goto preupdate_new_out;
2051       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2052       if( !pUnpack ){
2053         rc = SQLITE_NOMEM;
2054         goto preupdate_new_out;
2055       }
2056       p->pNewUnpacked = pUnpack;
2057     }
2058     pMem = &pUnpack->aMem[iIdx];
2059     if( iIdx==p->pTab->iPKey ){
2060       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2061     }else if( iIdx>=pUnpack->nField ){
2062       pMem = (sqlite3_value *)columnNullValue();
2063     }
2064   }else{
2065     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2066     ** value. Make a copy of the cell contents and return a pointer to it.
2067     ** It is not safe to return a pointer to the memory cell itself as the
2068     ** caller may modify the value text encoding.
2069     */
2070     assert( p->op==SQLITE_UPDATE );
2071     if( !p->aNew ){
2072       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2073       if( !p->aNew ){
2074         rc = SQLITE_NOMEM;
2075         goto preupdate_new_out;
2076       }
2077     }
2078     assert( iIdx>=0 && iIdx<p->pCsr->nField );
2079     pMem = &p->aNew[iIdx];
2080     if( pMem->flags==0 ){
2081       if( iIdx==p->pTab->iPKey ){
2082         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2083       }else{
2084         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2085         if( rc!=SQLITE_OK ) goto preupdate_new_out;
2086       }
2087     }
2088   }
2089   *ppValue = pMem;
2090 
2091  preupdate_new_out:
2092   sqlite3Error(db, rc);
2093   return sqlite3ApiExit(db, rc);
2094 }
2095 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2096 
2097 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2098 /*
2099 ** Return status data for a single loop within query pStmt.
2100 */
2101 int sqlite3_stmt_scanstatus(
2102   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
2103   int idx,                        /* Index of loop to report on */
2104   int iScanStatusOp,              /* Which metric to return */
2105   void *pOut                      /* OUT: Write the answer here */
2106 ){
2107   Vdbe *p = (Vdbe*)pStmt;
2108   ScanStatus *pScan;
2109   if( idx<0 || idx>=p->nScan ) return 1;
2110   pScan = &p->aScan[idx];
2111   switch( iScanStatusOp ){
2112     case SQLITE_SCANSTAT_NLOOP: {
2113       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2114       break;
2115     }
2116     case SQLITE_SCANSTAT_NVISIT: {
2117       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2118       break;
2119     }
2120     case SQLITE_SCANSTAT_EST: {
2121       double r = 1.0;
2122       LogEst x = pScan->nEst;
2123       while( x<100 ){
2124         x += 10;
2125         r *= 0.5;
2126       }
2127       *(double*)pOut = r*sqlite3LogEstToInt(x);
2128       break;
2129     }
2130     case SQLITE_SCANSTAT_NAME: {
2131       *(const char**)pOut = pScan->zName;
2132       break;
2133     }
2134     case SQLITE_SCANSTAT_EXPLAIN: {
2135       if( pScan->addrExplain ){
2136         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2137       }else{
2138         *(const char**)pOut = 0;
2139       }
2140       break;
2141     }
2142     case SQLITE_SCANSTAT_SELECTID: {
2143       if( pScan->addrExplain ){
2144         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2145       }else{
2146         *(int*)pOut = -1;
2147       }
2148       break;
2149     }
2150     default: {
2151       return 1;
2152     }
2153   }
2154   return 0;
2155 }
2156 
2157 /*
2158 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2159 */
2160 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2161   Vdbe *p = (Vdbe*)pStmt;
2162   memset(p->anExec, 0, p->nOp * sizeof(i64));
2163 }
2164 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
2165