1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 }else if( pNew->flags & MEM_Null ){ 349 /* Do not duplicate pointer values */ 350 pNew->flags &= ~(MEM_Term|MEM_Subtype); 351 } 352 return pNew; 353 } 354 355 /* Destroy an sqlite3_value object previously obtained from 356 ** sqlite3_value_dup(). 357 */ 358 void sqlite3_value_free(sqlite3_value *pOld){ 359 sqlite3ValueFree(pOld); 360 } 361 362 363 /**************************** sqlite3_result_ ******************************* 364 ** The following routines are used by user-defined functions to specify 365 ** the function result. 366 ** 367 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 368 ** result as a string or blob. Appropriate errors are set if the string/blob 369 ** is too big or if an OOM occurs. 370 ** 371 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 372 ** on value P is not going to be used and need to be destroyed. 373 */ 374 static void setResultStrOrError( 375 sqlite3_context *pCtx, /* Function context */ 376 const char *z, /* String pointer */ 377 int n, /* Bytes in string, or negative */ 378 u8 enc, /* Encoding of z. 0 for BLOBs */ 379 void (*xDel)(void*) /* Destructor function */ 380 ){ 381 Mem *pOut = pCtx->pOut; 382 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel); 383 if( rc ){ 384 if( rc==SQLITE_TOOBIG ){ 385 sqlite3_result_error_toobig(pCtx); 386 }else{ 387 /* The only errors possible from sqlite3VdbeMemSetStr are 388 ** SQLITE_TOOBIG and SQLITE_NOMEM */ 389 assert( rc==SQLITE_NOMEM ); 390 sqlite3_result_error_nomem(pCtx); 391 } 392 return; 393 } 394 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 395 if( sqlite3VdbeMemTooBig(pOut) ){ 396 sqlite3_result_error_toobig(pCtx); 397 } 398 } 399 static int invokeValueDestructor( 400 const void *p, /* Value to destroy */ 401 void (*xDel)(void*), /* The destructor */ 402 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 403 ){ 404 assert( xDel!=SQLITE_DYNAMIC ); 405 if( xDel==0 ){ 406 /* noop */ 407 }else if( xDel==SQLITE_TRANSIENT ){ 408 /* noop */ 409 }else{ 410 xDel((void*)p); 411 } 412 sqlite3_result_error_toobig(pCtx); 413 return SQLITE_TOOBIG; 414 } 415 void sqlite3_result_blob( 416 sqlite3_context *pCtx, 417 const void *z, 418 int n, 419 void (*xDel)(void *) 420 ){ 421 assert( n>=0 ); 422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 423 setResultStrOrError(pCtx, z, n, 0, xDel); 424 } 425 void sqlite3_result_blob64( 426 sqlite3_context *pCtx, 427 const void *z, 428 sqlite3_uint64 n, 429 void (*xDel)(void *) 430 ){ 431 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 432 assert( xDel!=SQLITE_DYNAMIC ); 433 if( n>0x7fffffff ){ 434 (void)invokeValueDestructor(z, xDel, pCtx); 435 }else{ 436 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 437 } 438 } 439 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 441 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 442 } 443 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 445 pCtx->isError = SQLITE_ERROR; 446 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 447 } 448 #ifndef SQLITE_OMIT_UTF16 449 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 450 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 451 pCtx->isError = SQLITE_ERROR; 452 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 453 } 454 #endif 455 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 456 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 457 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 458 } 459 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 461 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 462 } 463 void sqlite3_result_null(sqlite3_context *pCtx){ 464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 465 sqlite3VdbeMemSetNull(pCtx->pOut); 466 } 467 void sqlite3_result_pointer( 468 sqlite3_context *pCtx, 469 void *pPtr, 470 const char *zPType, 471 void (*xDestructor)(void*) 472 ){ 473 Mem *pOut = pCtx->pOut; 474 assert( sqlite3_mutex_held(pOut->db->mutex) ); 475 sqlite3VdbeMemRelease(pOut); 476 pOut->flags = MEM_Null; 477 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 478 } 479 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 480 Mem *pOut = pCtx->pOut; 481 assert( sqlite3_mutex_held(pOut->db->mutex) ); 482 pOut->eSubtype = eSubtype & 0xff; 483 pOut->flags |= MEM_Subtype; 484 } 485 void sqlite3_result_text( 486 sqlite3_context *pCtx, 487 const char *z, 488 int n, 489 void (*xDel)(void *) 490 ){ 491 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 492 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 493 } 494 void sqlite3_result_text64( 495 sqlite3_context *pCtx, 496 const char *z, 497 sqlite3_uint64 n, 498 void (*xDel)(void *), 499 unsigned char enc 500 ){ 501 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 502 assert( xDel!=SQLITE_DYNAMIC ); 503 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 504 if( n>0x7fffffff ){ 505 (void)invokeValueDestructor(z, xDel, pCtx); 506 }else{ 507 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 508 } 509 } 510 #ifndef SQLITE_OMIT_UTF16 511 void sqlite3_result_text16( 512 sqlite3_context *pCtx, 513 const void *z, 514 int n, 515 void (*xDel)(void *) 516 ){ 517 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 518 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 519 } 520 void sqlite3_result_text16be( 521 sqlite3_context *pCtx, 522 const void *z, 523 int n, 524 void (*xDel)(void *) 525 ){ 526 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 527 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 528 } 529 void sqlite3_result_text16le( 530 sqlite3_context *pCtx, 531 const void *z, 532 int n, 533 void (*xDel)(void *) 534 ){ 535 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 536 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 537 } 538 #endif /* SQLITE_OMIT_UTF16 */ 539 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 540 Mem *pOut = pCtx->pOut; 541 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 542 sqlite3VdbeMemCopy(pOut, pValue); 543 sqlite3VdbeChangeEncoding(pOut, pCtx->enc); 544 if( sqlite3VdbeMemTooBig(pOut) ){ 545 sqlite3_result_error_toobig(pCtx); 546 } 547 } 548 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 549 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0); 550 } 551 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 552 Mem *pOut = pCtx->pOut; 553 assert( sqlite3_mutex_held(pOut->db->mutex) ); 554 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 555 sqlite3_result_error_toobig(pCtx); 556 return SQLITE_TOOBIG; 557 } 558 #ifndef SQLITE_OMIT_INCRBLOB 559 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 560 return SQLITE_OK; 561 #else 562 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 563 #endif 564 } 565 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 566 pCtx->isError = errCode ? errCode : -1; 567 #ifdef SQLITE_DEBUG 568 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 569 #endif 570 if( pCtx->pOut->flags & MEM_Null ){ 571 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, 572 SQLITE_STATIC); 573 } 574 } 575 576 /* Force an SQLITE_TOOBIG error. */ 577 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 578 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 579 pCtx->isError = SQLITE_TOOBIG; 580 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 581 SQLITE_UTF8, SQLITE_STATIC); 582 } 583 584 /* An SQLITE_NOMEM error. */ 585 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 586 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 587 sqlite3VdbeMemSetNull(pCtx->pOut); 588 pCtx->isError = SQLITE_NOMEM_BKPT; 589 sqlite3OomFault(pCtx->pOut->db); 590 } 591 592 #ifndef SQLITE_UNTESTABLE 593 /* Force the INT64 value currently stored as the result to be 594 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 595 ** test-control. 596 */ 597 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 598 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 599 if( pCtx->pOut->flags & MEM_Int ){ 600 pCtx->pOut->flags &= ~MEM_Int; 601 pCtx->pOut->flags |= MEM_IntReal; 602 } 603 } 604 #endif 605 606 607 /* 608 ** This function is called after a transaction has been committed. It 609 ** invokes callbacks registered with sqlite3_wal_hook() as required. 610 */ 611 static int doWalCallbacks(sqlite3 *db){ 612 int rc = SQLITE_OK; 613 #ifndef SQLITE_OMIT_WAL 614 int i; 615 for(i=0; i<db->nDb; i++){ 616 Btree *pBt = db->aDb[i].pBt; 617 if( pBt ){ 618 int nEntry; 619 sqlite3BtreeEnter(pBt); 620 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 621 sqlite3BtreeLeave(pBt); 622 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 623 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 624 } 625 } 626 } 627 #endif 628 return rc; 629 } 630 631 632 /* 633 ** Execute the statement pStmt, either until a row of data is ready, the 634 ** statement is completely executed or an error occurs. 635 ** 636 ** This routine implements the bulk of the logic behind the sqlite_step() 637 ** API. The only thing omitted is the automatic recompile if a 638 ** schema change has occurred. That detail is handled by the 639 ** outer sqlite3_step() wrapper procedure. 640 */ 641 static int sqlite3Step(Vdbe *p){ 642 sqlite3 *db; 643 int rc; 644 645 assert(p); 646 db = p->db; 647 if( p->eVdbeState!=VDBE_RUN_STATE ){ 648 restart_step: 649 if( p->eVdbeState==VDBE_READY_STATE ){ 650 if( p->expired ){ 651 p->rc = SQLITE_SCHEMA; 652 rc = SQLITE_ERROR; 653 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 654 /* If this statement was prepared using saved SQL and an 655 ** error has occurred, then return the error code in p->rc to the 656 ** caller. Set the error code in the database handle to the same 657 ** value. 658 */ 659 rc = sqlite3VdbeTransferError(p); 660 } 661 goto end_of_step; 662 } 663 664 /* If there are no other statements currently running, then 665 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 666 ** from interrupting a statement that has not yet started. 667 */ 668 if( db->nVdbeActive==0 ){ 669 AtomicStore(&db->u1.isInterrupted, 0); 670 } 671 672 assert( db->nVdbeWrite>0 || db->autoCommit==0 673 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 674 ); 675 676 #ifndef SQLITE_OMIT_TRACE 677 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 678 && !db->init.busy && p->zSql ){ 679 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 680 }else{ 681 assert( p->startTime==0 ); 682 } 683 #endif 684 685 db->nVdbeActive++; 686 if( p->readOnly==0 ) db->nVdbeWrite++; 687 if( p->bIsReader ) db->nVdbeRead++; 688 p->pc = 0; 689 p->eVdbeState = VDBE_RUN_STATE; 690 }else 691 692 if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){ 693 /* We used to require that sqlite3_reset() be called before retrying 694 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 695 ** with version 3.7.0, we changed this so that sqlite3_reset() would 696 ** be called automatically instead of throwing the SQLITE_MISUSE error. 697 ** This "automatic-reset" change is not technically an incompatibility, 698 ** since any application that receives an SQLITE_MISUSE is broken by 699 ** definition. 700 ** 701 ** Nevertheless, some published applications that were originally written 702 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 703 ** returns, and those were broken by the automatic-reset change. As a 704 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 705 ** legacy behavior of returning SQLITE_MISUSE for cases where the 706 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 707 ** or SQLITE_BUSY error. 708 */ 709 #ifdef SQLITE_OMIT_AUTORESET 710 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 711 sqlite3_reset((sqlite3_stmt*)p); 712 }else{ 713 return SQLITE_MISUSE_BKPT; 714 } 715 #else 716 sqlite3_reset((sqlite3_stmt*)p); 717 #endif 718 assert( p->eVdbeState==VDBE_READY_STATE ); 719 goto restart_step; 720 } 721 } 722 723 #ifdef SQLITE_DEBUG 724 p->rcApp = SQLITE_OK; 725 #endif 726 #ifndef SQLITE_OMIT_EXPLAIN 727 if( p->explain ){ 728 rc = sqlite3VdbeList(p); 729 }else 730 #endif /* SQLITE_OMIT_EXPLAIN */ 731 { 732 db->nVdbeExec++; 733 rc = sqlite3VdbeExec(p); 734 db->nVdbeExec--; 735 } 736 737 if( rc==SQLITE_ROW ){ 738 assert( p->rc==SQLITE_OK ); 739 assert( db->mallocFailed==0 ); 740 db->errCode = SQLITE_ROW; 741 return SQLITE_ROW; 742 }else{ 743 #ifndef SQLITE_OMIT_TRACE 744 /* If the statement completed successfully, invoke the profile callback */ 745 checkProfileCallback(db, p); 746 #endif 747 748 if( rc==SQLITE_DONE && db->autoCommit ){ 749 assert( p->rc==SQLITE_OK ); 750 p->rc = doWalCallbacks(db); 751 if( p->rc!=SQLITE_OK ){ 752 rc = SQLITE_ERROR; 753 } 754 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 755 /* If this statement was prepared using saved SQL and an 756 ** error has occurred, then return the error code in p->rc to the 757 ** caller. Set the error code in the database handle to the same value. 758 */ 759 rc = sqlite3VdbeTransferError(p); 760 } 761 } 762 763 db->errCode = rc; 764 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 765 p->rc = SQLITE_NOMEM_BKPT; 766 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 767 } 768 end_of_step: 769 /* There are only a limited number of result codes allowed from the 770 ** statements prepared using the legacy sqlite3_prepare() interface */ 771 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 772 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 773 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 774 ); 775 return (rc&db->errMask); 776 } 777 778 /* 779 ** This is the top-level implementation of sqlite3_step(). Call 780 ** sqlite3Step() to do most of the work. If a schema error occurs, 781 ** call sqlite3Reprepare() and try again. 782 */ 783 int sqlite3_step(sqlite3_stmt *pStmt){ 784 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 785 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 786 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 787 sqlite3 *db; /* The database connection */ 788 789 if( vdbeSafetyNotNull(v) ){ 790 return SQLITE_MISUSE_BKPT; 791 } 792 db = v->db; 793 sqlite3_mutex_enter(db->mutex); 794 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 795 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 796 int savedPc = v->pc; 797 rc = sqlite3Reprepare(v); 798 if( rc!=SQLITE_OK ){ 799 /* This case occurs after failing to recompile an sql statement. 800 ** The error message from the SQL compiler has already been loaded 801 ** into the database handle. This block copies the error message 802 ** from the database handle into the statement and sets the statement 803 ** program counter to 0 to ensure that when the statement is 804 ** finalized or reset the parser error message is available via 805 ** sqlite3_errmsg() and sqlite3_errcode(). 806 */ 807 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 808 sqlite3DbFree(db, v->zErrMsg); 809 if( !db->mallocFailed ){ 810 v->zErrMsg = sqlite3DbStrDup(db, zErr); 811 v->rc = rc = sqlite3ApiExit(db, rc); 812 } else { 813 v->zErrMsg = 0; 814 v->rc = rc = SQLITE_NOMEM_BKPT; 815 } 816 break; 817 } 818 sqlite3_reset(pStmt); 819 if( savedPc>=0 ){ 820 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and 821 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has 822 ** already been done once on a prior invocation that failed due to 823 ** SQLITE_SCHEMA. tag-20220401a */ 824 v->minWriteFileFormat = 254; 825 } 826 assert( v->expired==0 ); 827 } 828 sqlite3_mutex_leave(db->mutex); 829 return rc; 830 } 831 832 833 /* 834 ** Extract the user data from a sqlite3_context structure and return a 835 ** pointer to it. 836 */ 837 void *sqlite3_user_data(sqlite3_context *p){ 838 assert( p && p->pFunc ); 839 return p->pFunc->pUserData; 840 } 841 842 /* 843 ** Extract the user data from a sqlite3_context structure and return a 844 ** pointer to it. 845 ** 846 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 847 ** returns a copy of the pointer to the database connection (the 1st 848 ** parameter) of the sqlite3_create_function() and 849 ** sqlite3_create_function16() routines that originally registered the 850 ** application defined function. 851 */ 852 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 853 assert( p && p->pOut ); 854 return p->pOut->db; 855 } 856 857 /* 858 ** If this routine is invoked from within an xColumn method of a virtual 859 ** table, then it returns true if and only if the the call is during an 860 ** UPDATE operation and the value of the column will not be modified 861 ** by the UPDATE. 862 ** 863 ** If this routine is called from any context other than within the 864 ** xColumn method of a virtual table, then the return value is meaningless 865 ** and arbitrary. 866 ** 867 ** Virtual table implements might use this routine to optimize their 868 ** performance by substituting a NULL result, or some other light-weight 869 ** value, as a signal to the xUpdate routine that the column is unchanged. 870 */ 871 int sqlite3_vtab_nochange(sqlite3_context *p){ 872 assert( p ); 873 return sqlite3_value_nochange(p->pOut); 874 } 875 876 /* 877 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and 878 ** sqlite3_vtab_in_next() (if bNext!=0). 879 */ 880 static int valueFromValueList( 881 sqlite3_value *pVal, /* Pointer to the ValueList object */ 882 sqlite3_value **ppOut, /* Store the next value from the list here */ 883 int bNext /* 1 for _next(). 0 for _first() */ 884 ){ 885 int rc; 886 ValueList *pRhs; 887 888 *ppOut = 0; 889 if( pVal==0 ) return SQLITE_MISUSE; 890 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList"); 891 if( pRhs==0 ) return SQLITE_MISUSE; 892 if( bNext ){ 893 rc = sqlite3BtreeNext(pRhs->pCsr, 0); 894 }else{ 895 int dummy = 0; 896 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy); 897 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) ); 898 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE; 899 } 900 if( rc==SQLITE_OK ){ 901 u32 sz; /* Size of current row in bytes */ 902 Mem sMem; /* Raw content of current row */ 903 memset(&sMem, 0, sizeof(sMem)); 904 sz = sqlite3BtreePayloadSize(pRhs->pCsr); 905 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem); 906 if( rc==SQLITE_OK ){ 907 u8 *zBuf = (u8*)sMem.z; 908 u32 iSerial; 909 sqlite3_value *pOut = pRhs->pOut; 910 int iOff = 1 + getVarint32(&zBuf[1], iSerial); 911 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut); 912 pOut->enc = ENC(pOut->db); 913 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){ 914 rc = SQLITE_NOMEM; 915 }else{ 916 *ppOut = pOut; 917 } 918 } 919 sqlite3VdbeMemRelease(&sMem); 920 } 921 return rc; 922 } 923 924 /* 925 ** Set the iterator value pVal to point to the first value in the set. 926 ** Set (*ppOut) to point to this value before returning. 927 */ 928 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){ 929 return valueFromValueList(pVal, ppOut, 0); 930 } 931 932 /* 933 ** Set the iterator value pVal to point to the next value in the set. 934 ** Set (*ppOut) to point to this value before returning. 935 */ 936 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){ 937 return valueFromValueList(pVal, ppOut, 1); 938 } 939 940 /* 941 ** Return the current time for a statement. If the current time 942 ** is requested more than once within the same run of a single prepared 943 ** statement, the exact same time is returned for each invocation regardless 944 ** of the amount of time that elapses between invocations. In other words, 945 ** the time returned is always the time of the first call. 946 */ 947 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 948 int rc; 949 #ifndef SQLITE_ENABLE_STAT4 950 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 951 assert( p->pVdbe!=0 ); 952 #else 953 sqlite3_int64 iTime = 0; 954 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 955 #endif 956 if( *piTime==0 ){ 957 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 958 if( rc ) *piTime = 0; 959 } 960 return *piTime; 961 } 962 963 /* 964 ** Create a new aggregate context for p and return a pointer to 965 ** its pMem->z element. 966 */ 967 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 968 Mem *pMem = p->pMem; 969 assert( (pMem->flags & MEM_Agg)==0 ); 970 if( nByte<=0 ){ 971 sqlite3VdbeMemSetNull(pMem); 972 pMem->z = 0; 973 }else{ 974 sqlite3VdbeMemClearAndResize(pMem, nByte); 975 pMem->flags = MEM_Agg; 976 pMem->u.pDef = p->pFunc; 977 if( pMem->z ){ 978 memset(pMem->z, 0, nByte); 979 } 980 } 981 return (void*)pMem->z; 982 } 983 984 /* 985 ** Allocate or return the aggregate context for a user function. A new 986 ** context is allocated on the first call. Subsequent calls return the 987 ** same context that was returned on prior calls. 988 */ 989 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 990 assert( p && p->pFunc && p->pFunc->xFinalize ); 991 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 992 testcase( nByte<0 ); 993 if( (p->pMem->flags & MEM_Agg)==0 ){ 994 return createAggContext(p, nByte); 995 }else{ 996 return (void*)p->pMem->z; 997 } 998 } 999 1000 /* 1001 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 1002 ** the user-function defined by pCtx. 1003 ** 1004 ** The left-most argument is 0. 1005 ** 1006 ** Undocumented behavior: If iArg is negative then access a cache of 1007 ** auxiliary data pointers that is available to all functions within a 1008 ** single prepared statement. The iArg values must match. 1009 */ 1010 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 1011 AuxData *pAuxData; 1012 1013 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1014 #if SQLITE_ENABLE_STAT4 1015 if( pCtx->pVdbe==0 ) return 0; 1016 #else 1017 assert( pCtx->pVdbe!=0 ); 1018 #endif 1019 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1020 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1021 return pAuxData->pAux; 1022 } 1023 } 1024 return 0; 1025 } 1026 1027 /* 1028 ** Set the auxiliary data pointer and delete function, for the iArg'th 1029 ** argument to the user-function defined by pCtx. Any previous value is 1030 ** deleted by calling the delete function specified when it was set. 1031 ** 1032 ** The left-most argument is 0. 1033 ** 1034 ** Undocumented behavior: If iArg is negative then make the data available 1035 ** to all functions within the current prepared statement using iArg as an 1036 ** access code. 1037 */ 1038 void sqlite3_set_auxdata( 1039 sqlite3_context *pCtx, 1040 int iArg, 1041 void *pAux, 1042 void (*xDelete)(void*) 1043 ){ 1044 AuxData *pAuxData; 1045 Vdbe *pVdbe = pCtx->pVdbe; 1046 1047 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 1048 #ifdef SQLITE_ENABLE_STAT4 1049 if( pVdbe==0 ) goto failed; 1050 #else 1051 assert( pVdbe!=0 ); 1052 #endif 1053 1054 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 1055 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 1056 break; 1057 } 1058 } 1059 if( pAuxData==0 ){ 1060 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 1061 if( !pAuxData ) goto failed; 1062 pAuxData->iAuxOp = pCtx->iOp; 1063 pAuxData->iAuxArg = iArg; 1064 pAuxData->pNextAux = pVdbe->pAuxData; 1065 pVdbe->pAuxData = pAuxData; 1066 if( pCtx->isError==0 ) pCtx->isError = -1; 1067 }else if( pAuxData->xDeleteAux ){ 1068 pAuxData->xDeleteAux(pAuxData->pAux); 1069 } 1070 1071 pAuxData->pAux = pAux; 1072 pAuxData->xDeleteAux = xDelete; 1073 return; 1074 1075 failed: 1076 if( xDelete ){ 1077 xDelete(pAux); 1078 } 1079 } 1080 1081 #ifndef SQLITE_OMIT_DEPRECATED 1082 /* 1083 ** Return the number of times the Step function of an aggregate has been 1084 ** called. 1085 ** 1086 ** This function is deprecated. Do not use it for new code. It is 1087 ** provide only to avoid breaking legacy code. New aggregate function 1088 ** implementations should keep their own counts within their aggregate 1089 ** context. 1090 */ 1091 int sqlite3_aggregate_count(sqlite3_context *p){ 1092 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 1093 return p->pMem->n; 1094 } 1095 #endif 1096 1097 /* 1098 ** Return the number of columns in the result set for the statement pStmt. 1099 */ 1100 int sqlite3_column_count(sqlite3_stmt *pStmt){ 1101 Vdbe *pVm = (Vdbe *)pStmt; 1102 return pVm ? pVm->nResColumn : 0; 1103 } 1104 1105 /* 1106 ** Return the number of values available from the current row of the 1107 ** currently executing statement pStmt. 1108 */ 1109 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1110 Vdbe *pVm = (Vdbe *)pStmt; 1111 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1112 return pVm->nResColumn; 1113 } 1114 1115 /* 1116 ** Return a pointer to static memory containing an SQL NULL value. 1117 */ 1118 static const Mem *columnNullValue(void){ 1119 /* Even though the Mem structure contains an element 1120 ** of type i64, on certain architectures (x86) with certain compiler 1121 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1122 ** instead of an 8-byte one. This all works fine, except that when 1123 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1124 ** that a Mem structure is located on an 8-byte boundary. To prevent 1125 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1126 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1127 ** __attribute__((aligned(8))) macro. */ 1128 static const Mem nullMem 1129 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1130 __attribute__((aligned(8))) 1131 #endif 1132 = { 1133 /* .u = */ {0}, 1134 /* .z = */ (char*)0, 1135 /* .n = */ (int)0, 1136 /* .flags = */ (u16)MEM_Null, 1137 /* .enc = */ (u8)0, 1138 /* .eSubtype = */ (u8)0, 1139 /* .db = */ (sqlite3*)0, 1140 /* .szMalloc = */ (int)0, 1141 /* .uTemp = */ (u32)0, 1142 /* .zMalloc = */ (char*)0, 1143 /* .xDel = */ (void(*)(void*))0, 1144 #ifdef SQLITE_DEBUG 1145 /* .pScopyFrom = */ (Mem*)0, 1146 /* .mScopyFlags= */ 0, 1147 #endif 1148 }; 1149 return &nullMem; 1150 } 1151 1152 /* 1153 ** Check to see if column iCol of the given statement is valid. If 1154 ** it is, return a pointer to the Mem for the value of that column. 1155 ** If iCol is not valid, return a pointer to a Mem which has a value 1156 ** of NULL. 1157 */ 1158 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1159 Vdbe *pVm; 1160 Mem *pOut; 1161 1162 pVm = (Vdbe *)pStmt; 1163 if( pVm==0 ) return (Mem*)columnNullValue(); 1164 assert( pVm->db ); 1165 sqlite3_mutex_enter(pVm->db->mutex); 1166 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1167 pOut = &pVm->pResultSet[i]; 1168 }else{ 1169 sqlite3Error(pVm->db, SQLITE_RANGE); 1170 pOut = (Mem*)columnNullValue(); 1171 } 1172 return pOut; 1173 } 1174 1175 /* 1176 ** This function is called after invoking an sqlite3_value_XXX function on a 1177 ** column value (i.e. a value returned by evaluating an SQL expression in the 1178 ** select list of a SELECT statement) that may cause a malloc() failure. If 1179 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1180 ** code of statement pStmt set to SQLITE_NOMEM. 1181 ** 1182 ** Specifically, this is called from within: 1183 ** 1184 ** sqlite3_column_int() 1185 ** sqlite3_column_int64() 1186 ** sqlite3_column_text() 1187 ** sqlite3_column_text16() 1188 ** sqlite3_column_real() 1189 ** sqlite3_column_bytes() 1190 ** sqlite3_column_bytes16() 1191 ** sqiite3_column_blob() 1192 */ 1193 static void columnMallocFailure(sqlite3_stmt *pStmt) 1194 { 1195 /* If malloc() failed during an encoding conversion within an 1196 ** sqlite3_column_XXX API, then set the return code of the statement to 1197 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1198 ** and _finalize() will return NOMEM. 1199 */ 1200 Vdbe *p = (Vdbe *)pStmt; 1201 if( p ){ 1202 assert( p->db!=0 ); 1203 assert( sqlite3_mutex_held(p->db->mutex) ); 1204 p->rc = sqlite3ApiExit(p->db, p->rc); 1205 sqlite3_mutex_leave(p->db->mutex); 1206 } 1207 } 1208 1209 /**************************** sqlite3_column_ ******************************* 1210 ** The following routines are used to access elements of the current row 1211 ** in the result set. 1212 */ 1213 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1214 const void *val; 1215 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1216 /* Even though there is no encoding conversion, value_blob() might 1217 ** need to call malloc() to expand the result of a zeroblob() 1218 ** expression. 1219 */ 1220 columnMallocFailure(pStmt); 1221 return val; 1222 } 1223 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1224 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1225 columnMallocFailure(pStmt); 1226 return val; 1227 } 1228 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1229 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1230 columnMallocFailure(pStmt); 1231 return val; 1232 } 1233 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1234 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1235 columnMallocFailure(pStmt); 1236 return val; 1237 } 1238 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1239 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1240 columnMallocFailure(pStmt); 1241 return val; 1242 } 1243 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1244 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1245 columnMallocFailure(pStmt); 1246 return val; 1247 } 1248 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1249 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1250 columnMallocFailure(pStmt); 1251 return val; 1252 } 1253 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1254 Mem *pOut = columnMem(pStmt, i); 1255 if( pOut->flags&MEM_Static ){ 1256 pOut->flags &= ~MEM_Static; 1257 pOut->flags |= MEM_Ephem; 1258 } 1259 columnMallocFailure(pStmt); 1260 return (sqlite3_value *)pOut; 1261 } 1262 #ifndef SQLITE_OMIT_UTF16 1263 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1264 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1265 columnMallocFailure(pStmt); 1266 return val; 1267 } 1268 #endif /* SQLITE_OMIT_UTF16 */ 1269 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1270 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1271 columnMallocFailure(pStmt); 1272 return iType; 1273 } 1274 1275 /* 1276 ** Convert the N-th element of pStmt->pColName[] into a string using 1277 ** xFunc() then return that string. If N is out of range, return 0. 1278 ** 1279 ** There are up to 5 names for each column. useType determines which 1280 ** name is returned. Here are the names: 1281 ** 1282 ** 0 The column name as it should be displayed for output 1283 ** 1 The datatype name for the column 1284 ** 2 The name of the database that the column derives from 1285 ** 3 The name of the table that the column derives from 1286 ** 4 The name of the table column that the result column derives from 1287 ** 1288 ** If the result is not a simple column reference (if it is an expression 1289 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1290 */ 1291 static const void *columnName( 1292 sqlite3_stmt *pStmt, /* The statement */ 1293 int N, /* Which column to get the name for */ 1294 int useUtf16, /* True to return the name as UTF16 */ 1295 int useType /* What type of name */ 1296 ){ 1297 const void *ret; 1298 Vdbe *p; 1299 int n; 1300 sqlite3 *db; 1301 #ifdef SQLITE_ENABLE_API_ARMOR 1302 if( pStmt==0 ){ 1303 (void)SQLITE_MISUSE_BKPT; 1304 return 0; 1305 } 1306 #endif 1307 ret = 0; 1308 p = (Vdbe *)pStmt; 1309 db = p->db; 1310 assert( db!=0 ); 1311 n = sqlite3_column_count(pStmt); 1312 if( N<n && N>=0 ){ 1313 N += useType*n; 1314 sqlite3_mutex_enter(db->mutex); 1315 assert( db->mallocFailed==0 ); 1316 #ifndef SQLITE_OMIT_UTF16 1317 if( useUtf16 ){ 1318 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1319 }else 1320 #endif 1321 { 1322 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1323 } 1324 /* A malloc may have failed inside of the _text() call. If this 1325 ** is the case, clear the mallocFailed flag and return NULL. 1326 */ 1327 if( db->mallocFailed ){ 1328 sqlite3OomClear(db); 1329 ret = 0; 1330 } 1331 sqlite3_mutex_leave(db->mutex); 1332 } 1333 return ret; 1334 } 1335 1336 /* 1337 ** Return the name of the Nth column of the result set returned by SQL 1338 ** statement pStmt. 1339 */ 1340 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1341 return columnName(pStmt, N, 0, COLNAME_NAME); 1342 } 1343 #ifndef SQLITE_OMIT_UTF16 1344 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1345 return columnName(pStmt, N, 1, COLNAME_NAME); 1346 } 1347 #endif 1348 1349 /* 1350 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1351 ** not define OMIT_DECLTYPE. 1352 */ 1353 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1354 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1355 and SQLITE_ENABLE_COLUMN_METADATA" 1356 #endif 1357 1358 #ifndef SQLITE_OMIT_DECLTYPE 1359 /* 1360 ** Return the column declaration type (if applicable) of the 'i'th column 1361 ** of the result set of SQL statement pStmt. 1362 */ 1363 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1364 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1365 } 1366 #ifndef SQLITE_OMIT_UTF16 1367 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1368 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1369 } 1370 #endif /* SQLITE_OMIT_UTF16 */ 1371 #endif /* SQLITE_OMIT_DECLTYPE */ 1372 1373 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1374 /* 1375 ** Return the name of the database from which a result column derives. 1376 ** NULL is returned if the result column is an expression or constant or 1377 ** anything else which is not an unambiguous reference to a database column. 1378 */ 1379 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1380 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1381 } 1382 #ifndef SQLITE_OMIT_UTF16 1383 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1384 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1385 } 1386 #endif /* SQLITE_OMIT_UTF16 */ 1387 1388 /* 1389 ** Return the name of the table from which a result column derives. 1390 ** NULL is returned if the result column is an expression or constant or 1391 ** anything else which is not an unambiguous reference to a database column. 1392 */ 1393 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1394 return columnName(pStmt, N, 0, COLNAME_TABLE); 1395 } 1396 #ifndef SQLITE_OMIT_UTF16 1397 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1398 return columnName(pStmt, N, 1, COLNAME_TABLE); 1399 } 1400 #endif /* SQLITE_OMIT_UTF16 */ 1401 1402 /* 1403 ** Return the name of the table column from which a result column derives. 1404 ** NULL is returned if the result column is an expression or constant or 1405 ** anything else which is not an unambiguous reference to a database column. 1406 */ 1407 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1408 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1409 } 1410 #ifndef SQLITE_OMIT_UTF16 1411 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1412 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1413 } 1414 #endif /* SQLITE_OMIT_UTF16 */ 1415 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1416 1417 1418 /******************************* sqlite3_bind_ *************************** 1419 ** 1420 ** Routines used to attach values to wildcards in a compiled SQL statement. 1421 */ 1422 /* 1423 ** Unbind the value bound to variable i in virtual machine p. This is the 1424 ** the same as binding a NULL value to the column. If the "i" parameter is 1425 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1426 ** 1427 ** A successful evaluation of this routine acquires the mutex on p. 1428 ** the mutex is released if any kind of error occurs. 1429 ** 1430 ** The error code stored in database p->db is overwritten with the return 1431 ** value in any case. 1432 */ 1433 static int vdbeUnbind(Vdbe *p, int i){ 1434 Mem *pVar; 1435 if( vdbeSafetyNotNull(p) ){ 1436 return SQLITE_MISUSE_BKPT; 1437 } 1438 sqlite3_mutex_enter(p->db->mutex); 1439 if( p->eVdbeState!=VDBE_READY_STATE ){ 1440 sqlite3Error(p->db, SQLITE_MISUSE); 1441 sqlite3_mutex_leave(p->db->mutex); 1442 sqlite3_log(SQLITE_MISUSE, 1443 "bind on a busy prepared statement: [%s]", p->zSql); 1444 return SQLITE_MISUSE_BKPT; 1445 } 1446 if( i<1 || i>p->nVar ){ 1447 sqlite3Error(p->db, SQLITE_RANGE); 1448 sqlite3_mutex_leave(p->db->mutex); 1449 return SQLITE_RANGE; 1450 } 1451 i--; 1452 pVar = &p->aVar[i]; 1453 sqlite3VdbeMemRelease(pVar); 1454 pVar->flags = MEM_Null; 1455 p->db->errCode = SQLITE_OK; 1456 1457 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1458 ** binding a new value to this variable invalidates the current query plan. 1459 ** 1460 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1461 ** parameter in the WHERE clause might influence the choice of query plan 1462 ** for a statement, then the statement will be automatically recompiled, 1463 ** as if there had been a schema change, on the first sqlite3_step() call 1464 ** following any change to the bindings of that parameter. 1465 */ 1466 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1467 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1468 p->expired = 1; 1469 } 1470 return SQLITE_OK; 1471 } 1472 1473 /* 1474 ** Bind a text or BLOB value. 1475 */ 1476 static int bindText( 1477 sqlite3_stmt *pStmt, /* The statement to bind against */ 1478 int i, /* Index of the parameter to bind */ 1479 const void *zData, /* Pointer to the data to be bound */ 1480 i64 nData, /* Number of bytes of data to be bound */ 1481 void (*xDel)(void*), /* Destructor for the data */ 1482 u8 encoding /* Encoding for the data */ 1483 ){ 1484 Vdbe *p = (Vdbe *)pStmt; 1485 Mem *pVar; 1486 int rc; 1487 1488 rc = vdbeUnbind(p, i); 1489 if( rc==SQLITE_OK ){ 1490 if( zData!=0 ){ 1491 pVar = &p->aVar[i-1]; 1492 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1493 if( rc==SQLITE_OK && encoding!=0 ){ 1494 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1495 } 1496 if( rc ){ 1497 sqlite3Error(p->db, rc); 1498 rc = sqlite3ApiExit(p->db, rc); 1499 } 1500 } 1501 sqlite3_mutex_leave(p->db->mutex); 1502 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1503 xDel((void*)zData); 1504 } 1505 return rc; 1506 } 1507 1508 1509 /* 1510 ** Bind a blob value to an SQL statement variable. 1511 */ 1512 int sqlite3_bind_blob( 1513 sqlite3_stmt *pStmt, 1514 int i, 1515 const void *zData, 1516 int nData, 1517 void (*xDel)(void*) 1518 ){ 1519 #ifdef SQLITE_ENABLE_API_ARMOR 1520 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1521 #endif 1522 return bindText(pStmt, i, zData, nData, xDel, 0); 1523 } 1524 int sqlite3_bind_blob64( 1525 sqlite3_stmt *pStmt, 1526 int i, 1527 const void *zData, 1528 sqlite3_uint64 nData, 1529 void (*xDel)(void*) 1530 ){ 1531 assert( xDel!=SQLITE_DYNAMIC ); 1532 return bindText(pStmt, i, zData, nData, xDel, 0); 1533 } 1534 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1535 int rc; 1536 Vdbe *p = (Vdbe *)pStmt; 1537 rc = vdbeUnbind(p, i); 1538 if( rc==SQLITE_OK ){ 1539 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1540 sqlite3_mutex_leave(p->db->mutex); 1541 } 1542 return rc; 1543 } 1544 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1545 return sqlite3_bind_int64(p, i, (i64)iValue); 1546 } 1547 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1548 int rc; 1549 Vdbe *p = (Vdbe *)pStmt; 1550 rc = vdbeUnbind(p, i); 1551 if( rc==SQLITE_OK ){ 1552 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1553 sqlite3_mutex_leave(p->db->mutex); 1554 } 1555 return rc; 1556 } 1557 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1558 int rc; 1559 Vdbe *p = (Vdbe*)pStmt; 1560 rc = vdbeUnbind(p, i); 1561 if( rc==SQLITE_OK ){ 1562 sqlite3_mutex_leave(p->db->mutex); 1563 } 1564 return rc; 1565 } 1566 int sqlite3_bind_pointer( 1567 sqlite3_stmt *pStmt, 1568 int i, 1569 void *pPtr, 1570 const char *zPTtype, 1571 void (*xDestructor)(void*) 1572 ){ 1573 int rc; 1574 Vdbe *p = (Vdbe*)pStmt; 1575 rc = vdbeUnbind(p, i); 1576 if( rc==SQLITE_OK ){ 1577 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1578 sqlite3_mutex_leave(p->db->mutex); 1579 }else if( xDestructor ){ 1580 xDestructor(pPtr); 1581 } 1582 return rc; 1583 } 1584 int sqlite3_bind_text( 1585 sqlite3_stmt *pStmt, 1586 int i, 1587 const char *zData, 1588 int nData, 1589 void (*xDel)(void*) 1590 ){ 1591 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1592 } 1593 int sqlite3_bind_text64( 1594 sqlite3_stmt *pStmt, 1595 int i, 1596 const char *zData, 1597 sqlite3_uint64 nData, 1598 void (*xDel)(void*), 1599 unsigned char enc 1600 ){ 1601 assert( xDel!=SQLITE_DYNAMIC ); 1602 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1603 return bindText(pStmt, i, zData, nData, xDel, enc); 1604 } 1605 #ifndef SQLITE_OMIT_UTF16 1606 int sqlite3_bind_text16( 1607 sqlite3_stmt *pStmt, 1608 int i, 1609 const void *zData, 1610 int nData, 1611 void (*xDel)(void*) 1612 ){ 1613 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1614 } 1615 #endif /* SQLITE_OMIT_UTF16 */ 1616 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1617 int rc; 1618 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1619 case SQLITE_INTEGER: { 1620 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1621 break; 1622 } 1623 case SQLITE_FLOAT: { 1624 assert( pValue->flags & (MEM_Real|MEM_IntReal) ); 1625 rc = sqlite3_bind_double(pStmt, i, 1626 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i 1627 ); 1628 break; 1629 } 1630 case SQLITE_BLOB: { 1631 if( pValue->flags & MEM_Zero ){ 1632 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1633 }else{ 1634 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1635 } 1636 break; 1637 } 1638 case SQLITE_TEXT: { 1639 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1640 pValue->enc); 1641 break; 1642 } 1643 default: { 1644 rc = sqlite3_bind_null(pStmt, i); 1645 break; 1646 } 1647 } 1648 return rc; 1649 } 1650 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1651 int rc; 1652 Vdbe *p = (Vdbe *)pStmt; 1653 rc = vdbeUnbind(p, i); 1654 if( rc==SQLITE_OK ){ 1655 #ifndef SQLITE_OMIT_INCRBLOB 1656 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1657 #else 1658 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1659 #endif 1660 sqlite3_mutex_leave(p->db->mutex); 1661 } 1662 return rc; 1663 } 1664 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1665 int rc; 1666 Vdbe *p = (Vdbe *)pStmt; 1667 sqlite3_mutex_enter(p->db->mutex); 1668 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1669 rc = SQLITE_TOOBIG; 1670 }else{ 1671 assert( (n & 0x7FFFFFFF)==n ); 1672 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1673 } 1674 rc = sqlite3ApiExit(p->db, rc); 1675 sqlite3_mutex_leave(p->db->mutex); 1676 return rc; 1677 } 1678 1679 /* 1680 ** Return the number of wildcards that can be potentially bound to. 1681 ** This routine is added to support DBD::SQLite. 1682 */ 1683 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1684 Vdbe *p = (Vdbe*)pStmt; 1685 return p ? p->nVar : 0; 1686 } 1687 1688 /* 1689 ** Return the name of a wildcard parameter. Return NULL if the index 1690 ** is out of range or if the wildcard is unnamed. 1691 ** 1692 ** The result is always UTF-8. 1693 */ 1694 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1695 Vdbe *p = (Vdbe*)pStmt; 1696 if( p==0 ) return 0; 1697 return sqlite3VListNumToName(p->pVList, i); 1698 } 1699 1700 /* 1701 ** Given a wildcard parameter name, return the index of the variable 1702 ** with that name. If there is no variable with the given name, 1703 ** return 0. 1704 */ 1705 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1706 if( p==0 || zName==0 ) return 0; 1707 return sqlite3VListNameToNum(p->pVList, zName, nName); 1708 } 1709 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1710 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1711 } 1712 1713 /* 1714 ** Transfer all bindings from the first statement over to the second. 1715 */ 1716 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1717 Vdbe *pFrom = (Vdbe*)pFromStmt; 1718 Vdbe *pTo = (Vdbe*)pToStmt; 1719 int i; 1720 assert( pTo->db==pFrom->db ); 1721 assert( pTo->nVar==pFrom->nVar ); 1722 sqlite3_mutex_enter(pTo->db->mutex); 1723 for(i=0; i<pFrom->nVar; i++){ 1724 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1725 } 1726 sqlite3_mutex_leave(pTo->db->mutex); 1727 return SQLITE_OK; 1728 } 1729 1730 #ifndef SQLITE_OMIT_DEPRECATED 1731 /* 1732 ** Deprecated external interface. Internal/core SQLite code 1733 ** should call sqlite3TransferBindings. 1734 ** 1735 ** It is misuse to call this routine with statements from different 1736 ** database connections. But as this is a deprecated interface, we 1737 ** will not bother to check for that condition. 1738 ** 1739 ** If the two statements contain a different number of bindings, then 1740 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1741 ** SQLITE_OK is returned. 1742 */ 1743 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1744 Vdbe *pFrom = (Vdbe*)pFromStmt; 1745 Vdbe *pTo = (Vdbe*)pToStmt; 1746 if( pFrom->nVar!=pTo->nVar ){ 1747 return SQLITE_ERROR; 1748 } 1749 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1750 if( pTo->expmask ){ 1751 pTo->expired = 1; 1752 } 1753 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1754 if( pFrom->expmask ){ 1755 pFrom->expired = 1; 1756 } 1757 return sqlite3TransferBindings(pFromStmt, pToStmt); 1758 } 1759 #endif 1760 1761 /* 1762 ** Return the sqlite3* database handle to which the prepared statement given 1763 ** in the argument belongs. This is the same database handle that was 1764 ** the first argument to the sqlite3_prepare() that was used to create 1765 ** the statement in the first place. 1766 */ 1767 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1768 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1769 } 1770 1771 /* 1772 ** Return true if the prepared statement is guaranteed to not modify the 1773 ** database. 1774 */ 1775 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1776 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1777 } 1778 1779 /* 1780 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1781 ** statement is an EXPLAIN QUERY PLAN 1782 */ 1783 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1784 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1785 } 1786 1787 /* 1788 ** Return true if the prepared statement is in need of being reset. 1789 */ 1790 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1791 Vdbe *v = (Vdbe*)pStmt; 1792 return v!=0 && v->eVdbeState==VDBE_RUN_STATE; 1793 } 1794 1795 /* 1796 ** Return a pointer to the next prepared statement after pStmt associated 1797 ** with database connection pDb. If pStmt is NULL, return the first 1798 ** prepared statement for the database connection. Return NULL if there 1799 ** are no more. 1800 */ 1801 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1802 sqlite3_stmt *pNext; 1803 #ifdef SQLITE_ENABLE_API_ARMOR 1804 if( !sqlite3SafetyCheckOk(pDb) ){ 1805 (void)SQLITE_MISUSE_BKPT; 1806 return 0; 1807 } 1808 #endif 1809 sqlite3_mutex_enter(pDb->mutex); 1810 if( pStmt==0 ){ 1811 pNext = (sqlite3_stmt*)pDb->pVdbe; 1812 }else{ 1813 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1814 } 1815 sqlite3_mutex_leave(pDb->mutex); 1816 return pNext; 1817 } 1818 1819 /* 1820 ** Return the value of a status counter for a prepared statement 1821 */ 1822 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1823 Vdbe *pVdbe = (Vdbe*)pStmt; 1824 u32 v; 1825 #ifdef SQLITE_ENABLE_API_ARMOR 1826 if( !pStmt 1827 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1828 ){ 1829 (void)SQLITE_MISUSE_BKPT; 1830 return 0; 1831 } 1832 #endif 1833 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1834 sqlite3 *db = pVdbe->db; 1835 sqlite3_mutex_enter(db->mutex); 1836 v = 0; 1837 db->pnBytesFreed = (int*)&v; 1838 sqlite3VdbeDelete(pVdbe); 1839 db->pnBytesFreed = 0; 1840 sqlite3_mutex_leave(db->mutex); 1841 }else{ 1842 v = pVdbe->aCounter[op]; 1843 if( resetFlag ) pVdbe->aCounter[op] = 0; 1844 } 1845 return (int)v; 1846 } 1847 1848 /* 1849 ** Return the SQL associated with a prepared statement 1850 */ 1851 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1852 Vdbe *p = (Vdbe *)pStmt; 1853 return p ? p->zSql : 0; 1854 } 1855 1856 /* 1857 ** Return the SQL associated with a prepared statement with 1858 ** bound parameters expanded. Space to hold the returned string is 1859 ** obtained from sqlite3_malloc(). The caller is responsible for 1860 ** freeing the returned string by passing it to sqlite3_free(). 1861 ** 1862 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1863 ** expanded bound parameters. 1864 */ 1865 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1866 #ifdef SQLITE_OMIT_TRACE 1867 return 0; 1868 #else 1869 char *z = 0; 1870 const char *zSql = sqlite3_sql(pStmt); 1871 if( zSql ){ 1872 Vdbe *p = (Vdbe *)pStmt; 1873 sqlite3_mutex_enter(p->db->mutex); 1874 z = sqlite3VdbeExpandSql(p, zSql); 1875 sqlite3_mutex_leave(p->db->mutex); 1876 } 1877 return z; 1878 #endif 1879 } 1880 1881 #ifdef SQLITE_ENABLE_NORMALIZE 1882 /* 1883 ** Return the normalized SQL associated with a prepared statement. 1884 */ 1885 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1886 Vdbe *p = (Vdbe *)pStmt; 1887 if( p==0 ) return 0; 1888 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1889 sqlite3_mutex_enter(p->db->mutex); 1890 p->zNormSql = sqlite3Normalize(p, p->zSql); 1891 sqlite3_mutex_leave(p->db->mutex); 1892 } 1893 return p->zNormSql; 1894 } 1895 #endif /* SQLITE_ENABLE_NORMALIZE */ 1896 1897 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1898 /* 1899 ** Allocate and populate an UnpackedRecord structure based on the serialized 1900 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1901 ** if successful, or a NULL pointer if an OOM error is encountered. 1902 */ 1903 static UnpackedRecord *vdbeUnpackRecord( 1904 KeyInfo *pKeyInfo, 1905 int nKey, 1906 const void *pKey 1907 ){ 1908 UnpackedRecord *pRet; /* Return value */ 1909 1910 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1911 if( pRet ){ 1912 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1913 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1914 } 1915 return pRet; 1916 } 1917 1918 /* 1919 ** This function is called from within a pre-update callback to retrieve 1920 ** a field of the row currently being updated or deleted. 1921 */ 1922 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1923 PreUpdate *p = db->pPreUpdate; 1924 Mem *pMem; 1925 int rc = SQLITE_OK; 1926 1927 /* Test that this call is being made from within an SQLITE_DELETE or 1928 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1929 if( !p || p->op==SQLITE_INSERT ){ 1930 rc = SQLITE_MISUSE_BKPT; 1931 goto preupdate_old_out; 1932 } 1933 if( p->pPk ){ 1934 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1935 } 1936 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1937 rc = SQLITE_RANGE; 1938 goto preupdate_old_out; 1939 } 1940 1941 /* If the old.* record has not yet been loaded into memory, do so now. */ 1942 if( p->pUnpacked==0 ){ 1943 u32 nRec; 1944 u8 *aRec; 1945 1946 assert( p->pCsr->eCurType==CURTYPE_BTREE ); 1947 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1948 aRec = sqlite3DbMallocRaw(db, nRec); 1949 if( !aRec ) goto preupdate_old_out; 1950 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1951 if( rc==SQLITE_OK ){ 1952 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1953 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1954 } 1955 if( rc!=SQLITE_OK ){ 1956 sqlite3DbFree(db, aRec); 1957 goto preupdate_old_out; 1958 } 1959 p->aRecord = aRec; 1960 } 1961 1962 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1963 if( iIdx==p->pTab->iPKey ){ 1964 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1965 }else if( iIdx>=p->pUnpacked->nField ){ 1966 *ppValue = (sqlite3_value *)columnNullValue(); 1967 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1968 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1969 testcase( pMem->flags & MEM_Int ); 1970 testcase( pMem->flags & MEM_IntReal ); 1971 sqlite3VdbeMemRealify(pMem); 1972 } 1973 } 1974 1975 preupdate_old_out: 1976 sqlite3Error(db, rc); 1977 return sqlite3ApiExit(db, rc); 1978 } 1979 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1980 1981 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1982 /* 1983 ** This function is called from within a pre-update callback to retrieve 1984 ** the number of columns in the row being updated, deleted or inserted. 1985 */ 1986 int sqlite3_preupdate_count(sqlite3 *db){ 1987 PreUpdate *p = db->pPreUpdate; 1988 return (p ? p->keyinfo.nKeyField : 0); 1989 } 1990 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1991 1992 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1993 /* 1994 ** This function is designed to be called from within a pre-update callback 1995 ** only. It returns zero if the change that caused the callback was made 1996 ** immediately by a user SQL statement. Or, if the change was made by a 1997 ** trigger program, it returns the number of trigger programs currently 1998 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1999 ** top-level trigger etc.). 2000 ** 2001 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 2002 ** or SET DEFAULT action is considered a trigger. 2003 */ 2004 int sqlite3_preupdate_depth(sqlite3 *db){ 2005 PreUpdate *p = db->pPreUpdate; 2006 return (p ? p->v->nFrame : 0); 2007 } 2008 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2009 2010 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2011 /* 2012 ** This function is designed to be called from within a pre-update callback 2013 ** only. 2014 */ 2015 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 2016 PreUpdate *p = db->pPreUpdate; 2017 return (p ? p->iBlobWrite : -1); 2018 } 2019 #endif 2020 2021 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2022 /* 2023 ** This function is called from within a pre-update callback to retrieve 2024 ** a field of the row currently being updated or inserted. 2025 */ 2026 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 2027 PreUpdate *p = db->pPreUpdate; 2028 int rc = SQLITE_OK; 2029 Mem *pMem; 2030 2031 if( !p || p->op==SQLITE_DELETE ){ 2032 rc = SQLITE_MISUSE_BKPT; 2033 goto preupdate_new_out; 2034 } 2035 if( p->pPk && p->op!=SQLITE_UPDATE ){ 2036 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 2037 } 2038 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 2039 rc = SQLITE_RANGE; 2040 goto preupdate_new_out; 2041 } 2042 2043 if( p->op==SQLITE_INSERT ){ 2044 /* For an INSERT, memory cell p->iNewReg contains the serialized record 2045 ** that is being inserted. Deserialize it. */ 2046 UnpackedRecord *pUnpack = p->pNewUnpacked; 2047 if( !pUnpack ){ 2048 Mem *pData = &p->v->aMem[p->iNewReg]; 2049 rc = ExpandBlob(pData); 2050 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2051 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 2052 if( !pUnpack ){ 2053 rc = SQLITE_NOMEM; 2054 goto preupdate_new_out; 2055 } 2056 p->pNewUnpacked = pUnpack; 2057 } 2058 pMem = &pUnpack->aMem[iIdx]; 2059 if( iIdx==p->pTab->iPKey ){ 2060 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2061 }else if( iIdx>=pUnpack->nField ){ 2062 pMem = (sqlite3_value *)columnNullValue(); 2063 } 2064 }else{ 2065 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 2066 ** value. Make a copy of the cell contents and return a pointer to it. 2067 ** It is not safe to return a pointer to the memory cell itself as the 2068 ** caller may modify the value text encoding. 2069 */ 2070 assert( p->op==SQLITE_UPDATE ); 2071 if( !p->aNew ){ 2072 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 2073 if( !p->aNew ){ 2074 rc = SQLITE_NOMEM; 2075 goto preupdate_new_out; 2076 } 2077 } 2078 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 2079 pMem = &p->aNew[iIdx]; 2080 if( pMem->flags==0 ){ 2081 if( iIdx==p->pTab->iPKey ){ 2082 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 2083 }else{ 2084 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 2085 if( rc!=SQLITE_OK ) goto preupdate_new_out; 2086 } 2087 } 2088 } 2089 *ppValue = pMem; 2090 2091 preupdate_new_out: 2092 sqlite3Error(db, rc); 2093 return sqlite3ApiExit(db, rc); 2094 } 2095 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2096 2097 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2098 /* 2099 ** Return status data for a single loop within query pStmt. 2100 */ 2101 int sqlite3_stmt_scanstatus( 2102 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 2103 int idx, /* Index of loop to report on */ 2104 int iScanStatusOp, /* Which metric to return */ 2105 void *pOut /* OUT: Write the answer here */ 2106 ){ 2107 Vdbe *p = (Vdbe*)pStmt; 2108 ScanStatus *pScan; 2109 if( idx<0 || idx>=p->nScan ) return 1; 2110 pScan = &p->aScan[idx]; 2111 switch( iScanStatusOp ){ 2112 case SQLITE_SCANSTAT_NLOOP: { 2113 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2114 break; 2115 } 2116 case SQLITE_SCANSTAT_NVISIT: { 2117 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2118 break; 2119 } 2120 case SQLITE_SCANSTAT_EST: { 2121 double r = 1.0; 2122 LogEst x = pScan->nEst; 2123 while( x<100 ){ 2124 x += 10; 2125 r *= 0.5; 2126 } 2127 *(double*)pOut = r*sqlite3LogEstToInt(x); 2128 break; 2129 } 2130 case SQLITE_SCANSTAT_NAME: { 2131 *(const char**)pOut = pScan->zName; 2132 break; 2133 } 2134 case SQLITE_SCANSTAT_EXPLAIN: { 2135 if( pScan->addrExplain ){ 2136 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2137 }else{ 2138 *(const char**)pOut = 0; 2139 } 2140 break; 2141 } 2142 case SQLITE_SCANSTAT_SELECTID: { 2143 if( pScan->addrExplain ){ 2144 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2145 }else{ 2146 *(int*)pOut = -1; 2147 } 2148 break; 2149 } 2150 default: { 2151 return 1; 2152 } 2153 } 2154 return 0; 2155 } 2156 2157 /* 2158 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2159 */ 2160 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2161 Vdbe *p = (Vdbe*)pStmt; 2162 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2163 } 2164 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2165