1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 /* 20 ** Return TRUE (non-zero) of the statement supplied as an argument needs 21 ** to be recompiled. A statement needs to be recompiled whenever the 22 ** execution environment changes in a way that would alter the program 23 ** that sqlite3_prepare() generates. For example, if new functions or 24 ** collating sequences are registered or if an authorizer function is 25 ** added or changed. 26 */ 27 int sqlite3_expired(sqlite3_stmt *pStmt){ 28 Vdbe *p = (Vdbe*)pStmt; 29 return p==0 || p->expired; 30 } 31 32 /* 33 ** The following routine destroys a virtual machine that is created by 34 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 35 ** success/failure code that describes the result of executing the virtual 36 ** machine. 37 ** 38 ** This routine sets the error code and string returned by 39 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 40 */ 41 int sqlite3_finalize(sqlite3_stmt *pStmt){ 42 int rc; 43 if( pStmt==0 ){ 44 rc = SQLITE_OK; 45 }else{ 46 Vdbe *v = (Vdbe*)pStmt; 47 sqlite3_mutex *mutex = v->db->mutex; 48 sqlite3_mutex_enter(mutex); 49 rc = sqlite3VdbeFinalize(v); 50 sqlite3_mutex_leave(mutex); 51 } 52 return rc; 53 } 54 55 /* 56 ** Terminate the current execution of an SQL statement and reset it 57 ** back to its starting state so that it can be reused. A success code from 58 ** the prior execution is returned. 59 ** 60 ** This routine sets the error code and string returned by 61 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 62 */ 63 int sqlite3_reset(sqlite3_stmt *pStmt){ 64 int rc; 65 if( pStmt==0 ){ 66 rc = SQLITE_OK; 67 }else{ 68 Vdbe *v = (Vdbe*)pStmt; 69 sqlite3_mutex_enter(v->db->mutex); 70 rc = sqlite3VdbeReset(v); 71 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 72 assert( (rc & (v->db->errMask))==rc ); 73 sqlite3_mutex_leave(v->db->mutex); 74 } 75 return rc; 76 } 77 78 /* 79 ** Set all the parameters in the compiled SQL statement to NULL. 80 */ 81 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 82 int i; 83 int rc = SQLITE_OK; 84 Vdbe *v = (Vdbe*)pStmt; 85 sqlite3_mutex_enter(v->db->mutex); 86 for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){ 87 rc = sqlite3_bind_null(pStmt, i); 88 } 89 sqlite3_mutex_leave(v->db->mutex); 90 return rc; 91 } 92 93 94 /**************************** sqlite3_value_ ******************************* 95 ** The following routines extract information from a Mem or sqlite3_value 96 ** structure. 97 */ 98 const void *sqlite3_value_blob(sqlite3_value *pVal){ 99 Mem *p = (Mem*)pVal; 100 if( p->flags & (MEM_Blob|MEM_Str) ){ 101 sqlite3VdbeMemExpandBlob(p); 102 p->flags &= ~MEM_Str; 103 p->flags |= MEM_Blob; 104 return p->z; 105 }else{ 106 return sqlite3_value_text(pVal); 107 } 108 } 109 int sqlite3_value_bytes(sqlite3_value *pVal){ 110 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 111 } 112 int sqlite3_value_bytes16(sqlite3_value *pVal){ 113 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 114 } 115 double sqlite3_value_double(sqlite3_value *pVal){ 116 return sqlite3VdbeRealValue((Mem*)pVal); 117 } 118 int sqlite3_value_int(sqlite3_value *pVal){ 119 return sqlite3VdbeIntValue((Mem*)pVal); 120 } 121 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 122 return sqlite3VdbeIntValue((Mem*)pVal); 123 } 124 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 125 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 126 } 127 #ifndef SQLITE_OMIT_UTF16 128 const void *sqlite3_value_text16(sqlite3_value* pVal){ 129 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 130 } 131 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 132 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 133 } 134 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 135 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 136 } 137 #endif /* SQLITE_OMIT_UTF16 */ 138 int sqlite3_value_type(sqlite3_value* pVal){ 139 return pVal->type; 140 } 141 142 /**************************** sqlite3_result_ ******************************* 143 ** The following routines are used by user-defined functions to specify 144 ** the function result. 145 */ 146 void sqlite3_result_blob( 147 sqlite3_context *pCtx, 148 const void *z, 149 int n, 150 void (*xDel)(void *) 151 ){ 152 assert( n>=0 ); 153 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 154 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); 155 } 156 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 157 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 158 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 159 } 160 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 161 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 162 pCtx->isError = 1; 163 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 164 } 165 #ifndef SQLITE_OMIT_UTF16 166 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 167 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 168 pCtx->isError = 1; 169 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 170 } 171 #endif 172 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 173 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 174 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 175 } 176 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 177 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 178 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 179 } 180 void sqlite3_result_null(sqlite3_context *pCtx){ 181 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 182 sqlite3VdbeMemSetNull(&pCtx->s); 183 } 184 void sqlite3_result_text( 185 sqlite3_context *pCtx, 186 const char *z, 187 int n, 188 void (*xDel)(void *) 189 ){ 190 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 191 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); 192 } 193 #ifndef SQLITE_OMIT_UTF16 194 void sqlite3_result_text16( 195 sqlite3_context *pCtx, 196 const void *z, 197 int n, 198 void (*xDel)(void *) 199 ){ 200 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 201 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); 202 } 203 void sqlite3_result_text16be( 204 sqlite3_context *pCtx, 205 const void *z, 206 int n, 207 void (*xDel)(void *) 208 ){ 209 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 210 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); 211 } 212 void sqlite3_result_text16le( 213 sqlite3_context *pCtx, 214 const void *z, 215 int n, 216 void (*xDel)(void *) 217 ){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); 220 } 221 #endif /* SQLITE_OMIT_UTF16 */ 222 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 223 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 224 sqlite3VdbeMemCopy(&pCtx->s, pValue); 225 } 226 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 227 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 228 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 229 } 230 231 /* Force an SQLITE_TOOBIG error. */ 232 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 233 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 234 sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1); 235 } 236 237 238 /* 239 ** Execute the statement pStmt, either until a row of data is ready, the 240 ** statement is completely executed or an error occurs. 241 ** 242 ** This routine implements the bulk of the logic behind the sqlite_step() 243 ** API. The only thing omitted is the automatic recompile if a 244 ** schema change has occurred. That detail is handled by the 245 ** outer sqlite3_step() wrapper procedure. 246 */ 247 static int sqlite3Step(Vdbe *p){ 248 sqlite3 *db; 249 int rc; 250 251 /* Assert that malloc() has not failed */ 252 db = p->db; 253 assert( !db->mallocFailed ); 254 255 if( p==0 || p->magic!=VDBE_MAGIC_RUN ){ 256 return SQLITE_MISUSE; 257 } 258 if( p->aborted ){ 259 return SQLITE_ABORT; 260 } 261 if( p->pc<=0 && p->expired ){ 262 if( p->rc==SQLITE_OK ){ 263 p->rc = SQLITE_SCHEMA; 264 } 265 rc = SQLITE_ERROR; 266 goto end_of_step; 267 } 268 if( sqlite3SafetyOn(db) ){ 269 p->rc = SQLITE_MISUSE; 270 return SQLITE_MISUSE; 271 } 272 if( p->pc<0 ){ 273 /* If there are no other statements currently running, then 274 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 275 ** from interrupting a statement that has not yet started. 276 */ 277 if( db->activeVdbeCnt==0 ){ 278 db->u1.isInterrupted = 0; 279 } 280 281 #ifndef SQLITE_OMIT_TRACE 282 /* Invoke the trace callback if there is one 283 */ 284 if( db->xTrace && !db->init.busy ){ 285 assert( p->nOp>0 ); 286 assert( p->aOp[p->nOp-1].opcode==OP_Noop ); 287 assert( p->aOp[p->nOp-1].p3!=0 ); 288 assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); 289 sqlite3SafetyOff(db); 290 db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3); 291 if( sqlite3SafetyOn(db) ){ 292 p->rc = SQLITE_MISUSE; 293 return SQLITE_MISUSE; 294 } 295 } 296 if( db->xProfile && !db->init.busy ){ 297 double rNow; 298 sqlite3OsCurrentTime(db->pVfs, &rNow); 299 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; 300 } 301 #endif 302 303 /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned 304 ** on in debugging mode. 305 */ 306 #ifdef SQLITE_DEBUG 307 if( (db->flags & SQLITE_SqlTrace)!=0 ){ 308 sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3); 309 } 310 #endif /* SQLITE_DEBUG */ 311 312 db->activeVdbeCnt++; 313 p->pc = 0; 314 } 315 #ifndef SQLITE_OMIT_EXPLAIN 316 if( p->explain ){ 317 rc = sqlite3VdbeList(p); 318 }else 319 #endif /* SQLITE_OMIT_EXPLAIN */ 320 { 321 rc = sqlite3VdbeExec(p); 322 } 323 324 if( sqlite3SafetyOff(db) ){ 325 rc = SQLITE_MISUSE; 326 } 327 328 #ifndef SQLITE_OMIT_TRACE 329 /* Invoke the profile callback if there is one 330 */ 331 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){ 332 double rNow; 333 u64 elapseTime; 334 335 sqlite3OsCurrentTime(db->pVfs, &rNow); 336 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; 337 assert( p->nOp>0 ); 338 assert( p->aOp[p->nOp-1].opcode==OP_Noop ); 339 assert( p->aOp[p->nOp-1].p3!=0 ); 340 assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); 341 db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime); 342 } 343 #endif 344 345 sqlite3Error(p->db, rc, 0); 346 p->rc = sqlite3ApiExit(p->db, p->rc); 347 end_of_step: 348 assert( (rc&0xff)==rc ); 349 if( p->zSql && (rc&0xff)<SQLITE_ROW ){ 350 /* This behavior occurs if sqlite3_prepare_v2() was used to build 351 ** the prepared statement. Return error codes directly */ 352 sqlite3Error(p->db, p->rc, 0); 353 return p->rc; 354 }else{ 355 /* This is for legacy sqlite3_prepare() builds and when the code 356 ** is SQLITE_ROW or SQLITE_DONE */ 357 return rc; 358 } 359 } 360 361 /* 362 ** This is the top-level implementation of sqlite3_step(). Call 363 ** sqlite3Step() to do most of the work. If a schema error occurs, 364 ** call sqlite3Reprepare() and try again. 365 */ 366 #ifdef SQLITE_OMIT_PARSER 367 int sqlite3_step(sqlite3_stmt *pStmt){ 368 int rc; 369 Vdbe *v; 370 v = (Vdbe*)pStmt; 371 sqlite3_mutex_enter(v->db->mutex); 372 rc = sqlite3Step(v); 373 sqlite3_mutex_leave(v->db->mutex); 374 return rc; 375 } 376 #else 377 int sqlite3_step(sqlite3_stmt *pStmt){ 378 int cnt = 0; 379 int rc; 380 Vdbe *v = (Vdbe*)pStmt; 381 sqlite3_mutex_enter(v->db->mutex); 382 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 383 && cnt++ < 5 384 && sqlite3Reprepare(v) ){ 385 sqlite3_reset(pStmt); 386 v->expired = 0; 387 } 388 sqlite3_mutex_leave(v->db->mutex); 389 return rc; 390 } 391 #endif 392 393 /* 394 ** Extract the user data from a sqlite3_context structure and return a 395 ** pointer to it. 396 */ 397 void *sqlite3_user_data(sqlite3_context *p){ 398 assert( p && p->pFunc ); 399 return p->pFunc->pUserData; 400 } 401 402 /* 403 ** The following is the implementation of an SQL function that always 404 ** fails with an error message stating that the function is used in the 405 ** wrong context. The sqlite3_overload_function() API might construct 406 ** SQL function that use this routine so that the functions will exist 407 ** for name resolution but are actually overloaded by the xFindFunction 408 ** method of virtual tables. 409 */ 410 void sqlite3InvalidFunction( 411 sqlite3_context *context, /* The function calling context */ 412 int argc, /* Number of arguments to the function */ 413 sqlite3_value **argv /* Value of each argument */ 414 ){ 415 const char *zName = context->pFunc->zName; 416 char *zErr; 417 zErr = sqlite3MPrintf(0, 418 "unable to use function %s in the requested context", zName); 419 sqlite3_result_error(context, zErr, -1); 420 sqlite3_free(zErr); 421 } 422 423 /* 424 ** Allocate or return the aggregate context for a user function. A new 425 ** context is allocated on the first call. Subsequent calls return the 426 ** same context that was returned on prior calls. 427 */ 428 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 429 Mem *pMem; 430 assert( p && p->pFunc && p->pFunc->xStep ); 431 assert( sqlite3_mutex_held(p->s.db->mutex) ); 432 pMem = p->pMem; 433 if( (pMem->flags & MEM_Agg)==0 ){ 434 if( nByte==0 ){ 435 assert( pMem->flags==MEM_Null ); 436 pMem->z = 0; 437 }else{ 438 pMem->flags = MEM_Agg; 439 pMem->xDel = sqlite3_free; 440 pMem->u.pDef = p->pFunc; 441 if( nByte<=NBFS ){ 442 pMem->z = pMem->zShort; 443 memset(pMem->z, 0, nByte); 444 }else{ 445 pMem->z = sqlite3DbMallocZero(p->s.db, nByte); 446 } 447 } 448 } 449 return (void*)pMem->z; 450 } 451 452 /* 453 ** Return the auxilary data pointer, if any, for the iArg'th argument to 454 ** the user-function defined by pCtx. 455 */ 456 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 457 VdbeFunc *pVdbeFunc; 458 459 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 460 pVdbeFunc = pCtx->pVdbeFunc; 461 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 462 return 0; 463 } 464 return pVdbeFunc->apAux[iArg].pAux; 465 } 466 467 /* 468 ** Set the auxilary data pointer and delete function, for the iArg'th 469 ** argument to the user-function defined by pCtx. Any previous value is 470 ** deleted by calling the delete function specified when it was set. 471 */ 472 void sqlite3_set_auxdata( 473 sqlite3_context *pCtx, 474 int iArg, 475 void *pAux, 476 void (*xDelete)(void*) 477 ){ 478 struct AuxData *pAuxData; 479 VdbeFunc *pVdbeFunc; 480 if( iArg<0 ) goto failed; 481 482 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 483 pVdbeFunc = pCtx->pVdbeFunc; 484 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 485 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 486 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 487 pVdbeFunc = sqlite3_realloc(pVdbeFunc, nMalloc); 488 if( !pVdbeFunc ){ 489 pCtx->s.db->mallocFailed = 1; 490 goto failed; 491 } 492 pCtx->pVdbeFunc = pVdbeFunc; 493 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 494 pVdbeFunc->nAux = iArg+1; 495 pVdbeFunc->pFunc = pCtx->pFunc; 496 } 497 498 pAuxData = &pVdbeFunc->apAux[iArg]; 499 if( pAuxData->pAux && pAuxData->xDelete ){ 500 pAuxData->xDelete(pAuxData->pAux); 501 } 502 pAuxData->pAux = pAux; 503 pAuxData->xDelete = xDelete; 504 return; 505 506 failed: 507 if( xDelete ){ 508 xDelete(pAux); 509 } 510 } 511 512 /* 513 ** Return the number of times the Step function of a aggregate has been 514 ** called. 515 ** 516 ** This function is deprecated. Do not use it for new code. It is 517 ** provide only to avoid breaking legacy code. New aggregate function 518 ** implementations should keep their own counts within their aggregate 519 ** context. 520 */ 521 int sqlite3_aggregate_count(sqlite3_context *p){ 522 assert( p && p->pFunc && p->pFunc->xStep ); 523 return p->pMem->n; 524 } 525 526 /* 527 ** Return the number of columns in the result set for the statement pStmt. 528 */ 529 int sqlite3_column_count(sqlite3_stmt *pStmt){ 530 Vdbe *pVm = (Vdbe *)pStmt; 531 return pVm ? pVm->nResColumn : 0; 532 } 533 534 /* 535 ** Return the number of values available from the current row of the 536 ** currently executing statement pStmt. 537 */ 538 int sqlite3_data_count(sqlite3_stmt *pStmt){ 539 Vdbe *pVm = (Vdbe *)pStmt; 540 if( pVm==0 || !pVm->resOnStack ) return 0; 541 return pVm->nResColumn; 542 } 543 544 545 /* 546 ** Check to see if column iCol of the given statement is valid. If 547 ** it is, return a pointer to the Mem for the value of that column. 548 ** If iCol is not valid, return a pointer to a Mem which has a value 549 ** of NULL. 550 */ 551 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 552 Vdbe *pVm; 553 int vals; 554 Mem *pOut; 555 556 pVm = (Vdbe *)pStmt; 557 if( pVm && pVm->resOnStack && i<pVm->nResColumn && i>=0 ){ 558 sqlite3_mutex_enter(pVm->db->mutex); 559 vals = sqlite3_data_count(pStmt); 560 pOut = &pVm->pTos[(1-vals)+i]; 561 }else{ 562 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL }; 563 if( pVm->db ){ 564 sqlite3_mutex_enter(pVm->db->mutex); 565 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 566 } 567 pOut = (Mem*)&nullMem; 568 } 569 return pOut; 570 } 571 572 /* 573 ** This function is called after invoking an sqlite3_value_XXX function on a 574 ** column value (i.e. a value returned by evaluating an SQL expression in the 575 ** select list of a SELECT statement) that may cause a malloc() failure. If 576 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 577 ** code of statement pStmt set to SQLITE_NOMEM. 578 ** 579 ** Specifically, this is called from within: 580 ** 581 ** sqlite3_column_int() 582 ** sqlite3_column_int64() 583 ** sqlite3_column_text() 584 ** sqlite3_column_text16() 585 ** sqlite3_column_real() 586 ** sqlite3_column_bytes() 587 ** sqlite3_column_bytes16() 588 ** 589 ** But not for sqlite3_column_blob(), which never calls malloc(). 590 */ 591 static void columnMallocFailure(sqlite3_stmt *pStmt) 592 { 593 /* If malloc() failed during an encoding conversion within an 594 ** sqlite3_column_XXX API, then set the return code of the statement to 595 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 596 ** and _finalize() will return NOMEM. 597 */ 598 Vdbe *p = (Vdbe *)pStmt; 599 if( p ){ 600 p->rc = sqlite3ApiExit(p->db, p->rc); 601 sqlite3_mutex_leave(p->db->mutex); 602 } 603 } 604 605 /**************************** sqlite3_column_ ******************************* 606 ** The following routines are used to access elements of the current row 607 ** in the result set. 608 */ 609 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 610 const void *val; 611 val = sqlite3_value_blob( columnMem(pStmt,i) ); 612 /* Even though there is no encoding conversion, value_blob() might 613 ** need to call malloc() to expand the result of a zeroblob() 614 ** expression. 615 */ 616 columnMallocFailure(pStmt); 617 return val; 618 } 619 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 620 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 621 columnMallocFailure(pStmt); 622 return val; 623 } 624 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 625 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 626 columnMallocFailure(pStmt); 627 return val; 628 } 629 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 630 double val = sqlite3_value_double( columnMem(pStmt,i) ); 631 columnMallocFailure(pStmt); 632 return val; 633 } 634 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 635 int val = sqlite3_value_int( columnMem(pStmt,i) ); 636 columnMallocFailure(pStmt); 637 return val; 638 } 639 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 640 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 641 columnMallocFailure(pStmt); 642 return val; 643 } 644 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 645 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 646 columnMallocFailure(pStmt); 647 return val; 648 } 649 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 650 sqlite3_value *pOut = columnMem(pStmt, i); 651 columnMallocFailure(pStmt); 652 return pOut; 653 } 654 #ifndef SQLITE_OMIT_UTF16 655 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 656 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 657 columnMallocFailure(pStmt); 658 return val; 659 } 660 #endif /* SQLITE_OMIT_UTF16 */ 661 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 662 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 663 columnMallocFailure(pStmt); 664 return iType; 665 } 666 667 /* The following function is experimental and subject to change or 668 ** removal */ 669 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 670 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 671 **} 672 */ 673 674 /* 675 ** Convert the N-th element of pStmt->pColName[] into a string using 676 ** xFunc() then return that string. If N is out of range, return 0. 677 ** 678 ** There are up to 5 names for each column. useType determines which 679 ** name is returned. Here are the names: 680 ** 681 ** 0 The column name as it should be displayed for output 682 ** 1 The datatype name for the column 683 ** 2 The name of the database that the column derives from 684 ** 3 The name of the table that the column derives from 685 ** 4 The name of the table column that the result column derives from 686 ** 687 ** If the result is not a simple column reference (if it is an expression 688 ** or a constant) then useTypes 2, 3, and 4 return NULL. 689 */ 690 static const void *columnName( 691 sqlite3_stmt *pStmt, 692 int N, 693 const void *(*xFunc)(Mem*), 694 int useType 695 ){ 696 const void *ret = 0; 697 Vdbe *p = (Vdbe *)pStmt; 698 int n; 699 700 701 if( p!=0 ){ 702 n = sqlite3_column_count(pStmt); 703 if( N<n && N>=0 ){ 704 N += useType*n; 705 sqlite3_mutex_enter(p->db->mutex); 706 ret = xFunc(&p->aColName[N]); 707 708 /* A malloc may have failed inside of the xFunc() call. If this 709 ** is the case, clear the mallocFailed flag and return NULL. 710 */ 711 if( p->db && p->db->mallocFailed ){ 712 p->db->mallocFailed = 0; 713 ret = 0; 714 } 715 sqlite3_mutex_leave(p->db->mutex); 716 } 717 } 718 return ret; 719 } 720 721 /* 722 ** Return the name of the Nth column of the result set returned by SQL 723 ** statement pStmt. 724 */ 725 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 726 return columnName( 727 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 728 } 729 #ifndef SQLITE_OMIT_UTF16 730 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 731 return columnName( 732 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 733 } 734 #endif 735 736 /* 737 ** Return the column declaration type (if applicable) of the 'i'th column 738 ** of the result set of SQL statement pStmt. 739 */ 740 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 741 return columnName( 742 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 743 } 744 #ifndef SQLITE_OMIT_UTF16 745 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 746 return columnName( 747 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 748 } 749 #endif /* SQLITE_OMIT_UTF16 */ 750 751 #ifdef SQLITE_ENABLE_COLUMN_METADATA 752 /* 753 ** Return the name of the database from which a result column derives. 754 ** NULL is returned if the result column is an expression or constant or 755 ** anything else which is not an unabiguous reference to a database column. 756 */ 757 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 758 return columnName( 759 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 760 } 761 #ifndef SQLITE_OMIT_UTF16 762 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 763 return columnName( 764 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 765 } 766 #endif /* SQLITE_OMIT_UTF16 */ 767 768 /* 769 ** Return the name of the table from which a result column derives. 770 ** NULL is returned if the result column is an expression or constant or 771 ** anything else which is not an unabiguous reference to a database column. 772 */ 773 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 774 return columnName( 775 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 776 } 777 #ifndef SQLITE_OMIT_UTF16 778 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 779 return columnName( 780 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 781 } 782 #endif /* SQLITE_OMIT_UTF16 */ 783 784 /* 785 ** Return the name of the table column from which a result column derives. 786 ** NULL is returned if the result column is an expression or constant or 787 ** anything else which is not an unabiguous reference to a database column. 788 */ 789 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 790 return columnName( 791 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 792 } 793 #ifndef SQLITE_OMIT_UTF16 794 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 795 return columnName( 796 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 797 } 798 #endif /* SQLITE_OMIT_UTF16 */ 799 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 800 801 802 /******************************* sqlite3_bind_ *************************** 803 ** 804 ** Routines used to attach values to wildcards in a compiled SQL statement. 805 */ 806 /* 807 ** Unbind the value bound to variable i in virtual machine p. This is the 808 ** the same as binding a NULL value to the column. If the "i" parameter is 809 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 810 ** 811 ** The error code stored in database p->db is overwritten with the return 812 ** value in any case. 813 */ 814 static int vdbeUnbind(Vdbe *p, int i){ 815 Mem *pVar; 816 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 817 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); 818 return SQLITE_MISUSE; 819 } 820 if( i<1 || i>p->nVar ){ 821 sqlite3Error(p->db, SQLITE_RANGE, 0); 822 return SQLITE_RANGE; 823 } 824 i--; 825 pVar = &p->aVar[i]; 826 sqlite3VdbeMemRelease(pVar); 827 pVar->flags = MEM_Null; 828 sqlite3Error(p->db, SQLITE_OK, 0); 829 return SQLITE_OK; 830 } 831 832 /* 833 ** Bind a text or BLOB value. 834 */ 835 static int bindText( 836 sqlite3_stmt *pStmt, /* The statement to bind against */ 837 int i, /* Index of the parameter to bind */ 838 const void *zData, /* Pointer to the data to be bound */ 839 int nData, /* Number of bytes of data to be bound */ 840 void (*xDel)(void*), /* Destructor for the data */ 841 int encoding /* Encoding for the data */ 842 ){ 843 Vdbe *p = (Vdbe *)pStmt; 844 Mem *pVar; 845 int rc; 846 847 if( p==0 ){ 848 return SQLITE_MISUSE; 849 } 850 sqlite3_mutex_enter(p->db->mutex); 851 rc = vdbeUnbind(p, i); 852 if( rc==SQLITE_OK && zData!=0 ){ 853 pVar = &p->aVar[i-1]; 854 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 855 if( rc==SQLITE_OK && encoding!=0 ){ 856 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 857 } 858 sqlite3Error(p->db, rc, 0); 859 rc = sqlite3ApiExit(p->db, rc); 860 } 861 sqlite3_mutex_leave(p->db->mutex); 862 return rc; 863 } 864 865 866 /* 867 ** Bind a blob value to an SQL statement variable. 868 */ 869 int sqlite3_bind_blob( 870 sqlite3_stmt *pStmt, 871 int i, 872 const void *zData, 873 int nData, 874 void (*xDel)(void*) 875 ){ 876 return bindText(pStmt, i, zData, nData, xDel, 0); 877 } 878 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 879 int rc; 880 Vdbe *p = (Vdbe *)pStmt; 881 sqlite3_mutex_enter(p->db->mutex); 882 rc = vdbeUnbind(p, i); 883 if( rc==SQLITE_OK ){ 884 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 885 } 886 sqlite3_mutex_leave(p->db->mutex); 887 return rc; 888 } 889 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 890 return sqlite3_bind_int64(p, i, (i64)iValue); 891 } 892 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 893 int rc; 894 Vdbe *p = (Vdbe *)pStmt; 895 sqlite3_mutex_enter(p->db->mutex); 896 rc = vdbeUnbind(p, i); 897 if( rc==SQLITE_OK ){ 898 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 899 } 900 sqlite3_mutex_leave(p->db->mutex); 901 return rc; 902 } 903 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 904 int rc; 905 Vdbe *p = (Vdbe*)pStmt; 906 sqlite3_mutex_enter(p->db->mutex); 907 rc = vdbeUnbind(p, i); 908 sqlite3_mutex_leave(p->db->mutex); 909 return rc; 910 } 911 int sqlite3_bind_text( 912 sqlite3_stmt *pStmt, 913 int i, 914 const char *zData, 915 int nData, 916 void (*xDel)(void*) 917 ){ 918 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 919 } 920 #ifndef SQLITE_OMIT_UTF16 921 int sqlite3_bind_text16( 922 sqlite3_stmt *pStmt, 923 int i, 924 const void *zData, 925 int nData, 926 void (*xDel)(void*) 927 ){ 928 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 929 } 930 #endif /* SQLITE_OMIT_UTF16 */ 931 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 932 int rc; 933 Vdbe *p = (Vdbe *)pStmt; 934 sqlite3_mutex_enter(p->db->mutex); 935 rc = vdbeUnbind(p, i); 936 if( rc==SQLITE_OK ){ 937 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); 938 } 939 sqlite3_mutex_leave(p->db->mutex); 940 return rc; 941 } 942 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 943 int rc; 944 Vdbe *p = (Vdbe *)pStmt; 945 sqlite3_mutex_enter(p->db->mutex); 946 rc = vdbeUnbind(p, i); 947 if( rc==SQLITE_OK ){ 948 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 949 } 950 sqlite3_mutex_leave(p->db->mutex); 951 return rc; 952 } 953 954 /* 955 ** Return the number of wildcards that can be potentially bound to. 956 ** This routine is added to support DBD::SQLite. 957 */ 958 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 959 Vdbe *p = (Vdbe*)pStmt; 960 return p ? p->nVar : 0; 961 } 962 963 /* 964 ** Create a mapping from variable numbers to variable names 965 ** in the Vdbe.azVar[] array, if such a mapping does not already 966 ** exist. 967 */ 968 static void createVarMap(Vdbe *p){ 969 if( !p->okVar ){ 970 sqlite3_mutex_enter(p->db->mutex); 971 if( !p->okVar ){ 972 int j; 973 Op *pOp; 974 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 975 if( pOp->opcode==OP_Variable ){ 976 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 977 p->azVar[pOp->p1-1] = pOp->p3; 978 } 979 } 980 p->okVar = 1; 981 } 982 sqlite3_mutex_leave(p->db->mutex); 983 } 984 } 985 986 /* 987 ** Return the name of a wildcard parameter. Return NULL if the index 988 ** is out of range or if the wildcard is unnamed. 989 ** 990 ** The result is always UTF-8. 991 */ 992 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 993 Vdbe *p = (Vdbe*)pStmt; 994 if( p==0 || i<1 || i>p->nVar ){ 995 return 0; 996 } 997 createVarMap(p); 998 return p->azVar[i-1]; 999 } 1000 1001 /* 1002 ** Given a wildcard parameter name, return the index of the variable 1003 ** with that name. If there is no variable with the given name, 1004 ** return 0. 1005 */ 1006 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1007 Vdbe *p = (Vdbe*)pStmt; 1008 int i; 1009 if( p==0 ){ 1010 return 0; 1011 } 1012 createVarMap(p); 1013 if( zName ){ 1014 for(i=0; i<p->nVar; i++){ 1015 const char *z = p->azVar[i]; 1016 if( z && strcmp(z,zName)==0 ){ 1017 return i+1; 1018 } 1019 } 1020 } 1021 return 0; 1022 } 1023 1024 /* 1025 ** Transfer all bindings from the first statement over to the second. 1026 ** If the two statements contain a different number of bindings, then 1027 ** an SQLITE_ERROR is returned. 1028 */ 1029 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1030 Vdbe *pFrom = (Vdbe*)pFromStmt; 1031 Vdbe *pTo = (Vdbe*)pToStmt; 1032 int i, rc = SQLITE_OK; 1033 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) 1034 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) 1035 || pTo->db!=pFrom->db ){ 1036 return SQLITE_MISUSE; 1037 } 1038 if( pFrom->nVar!=pTo->nVar ){ 1039 return SQLITE_ERROR; 1040 } 1041 sqlite3_mutex_enter(pTo->db->mutex); 1042 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ 1043 sqlite3MallocDisallow(); 1044 rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1045 sqlite3MallocAllow(); 1046 } 1047 sqlite3_mutex_leave(pTo->db->mutex); 1048 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1049 return rc; 1050 } 1051 1052 /* 1053 ** Return the sqlite3* database handle to which the prepared statement given 1054 ** in the argument belongs. This is the same database handle that was 1055 ** the first argument to the sqlite3_prepare() that was used to create 1056 ** the statement in the first place. 1057 */ 1058 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1059 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1060 } 1061