1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 ** 16 ** $Id: vdbeapi.c,v 1.141 2008/09/04 12:03:43 shane Exp $ 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) 22 /* 23 ** The following structure contains pointers to the end points of a 24 ** doubly-linked list of all compiled SQL statements that may be holding 25 ** buffers eligible for release when the sqlite3_release_memory() interface is 26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 27 ** mutex. 28 ** 29 ** Statements are added to the end of this list when sqlite3_reset() is 30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize() 31 ** is called. When statements are added to this list, the associated 32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that 33 ** can be freed using sqlite3VdbeReleaseMemory(). 34 ** 35 ** When statements are added or removed from this list, the mutex 36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is 37 ** already held. The LRU2 mutex is then obtained, blocking if necessary, 38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished. 39 */ 40 struct StatementLruList { 41 Vdbe *pFirst; 42 Vdbe *pLast; 43 }; 44 static struct StatementLruList sqlite3LruStatements; 45 46 /* 47 ** Check that the list looks to be internally consistent. This is used 48 ** as part of an assert() statement as follows: 49 ** 50 ** assert( stmtLruCheck() ); 51 */ 52 #ifndef NDEBUG 53 static int stmtLruCheck(){ 54 Vdbe *p; 55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ 56 assert(p->pLruNext || p==sqlite3LruStatements.pLast); 57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p); 58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); 59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); 60 } 61 return 1; 62 } 63 #endif 64 65 /* 66 ** Add vdbe p to the end of the statement lru list. It is assumed that 67 ** p is not already part of the list when this is called. The lru list 68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. 69 */ 70 static void stmtLruAdd(Vdbe *p){ 71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 72 73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ 74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 75 return; 76 } 77 78 assert( stmtLruCheck() ); 79 80 if( !sqlite3LruStatements.pFirst ){ 81 assert( !sqlite3LruStatements.pLast ); 82 sqlite3LruStatements.pFirst = p; 83 sqlite3LruStatements.pLast = p; 84 }else{ 85 assert( !sqlite3LruStatements.pLast->pLruNext ); 86 p->pLruPrev = sqlite3LruStatements.pLast; 87 sqlite3LruStatements.pLast->pLruNext = p; 88 sqlite3LruStatements.pLast = p; 89 } 90 91 assert( stmtLruCheck() ); 92 93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 94 } 95 96 /* 97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove 98 ** statement p from the least-recently-used statement list. If the 99 ** statement is not currently part of the list, this call is a no-op. 100 */ 101 static void stmtLruRemoveNomutex(Vdbe *p){ 102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ 103 assert( stmtLruCheck() ); 104 if( p->pLruNext ){ 105 p->pLruNext->pLruPrev = p->pLruPrev; 106 }else{ 107 sqlite3LruStatements.pLast = p->pLruPrev; 108 } 109 if( p->pLruPrev ){ 110 p->pLruPrev->pLruNext = p->pLruNext; 111 }else{ 112 sqlite3LruStatements.pFirst = p->pLruNext; 113 } 114 p->pLruNext = 0; 115 p->pLruPrev = 0; 116 assert( stmtLruCheck() ); 117 } 118 } 119 120 /* 121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove 122 ** statement p from the least-recently-used statement list. If the 123 ** statement is not currently part of the list, this call is a no-op. 124 */ 125 static void stmtLruRemove(Vdbe *p){ 126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 127 stmtLruRemoveNomutex(p); 128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 129 } 130 131 /* 132 ** Try to release n bytes of memory by freeing buffers associated 133 ** with the memory registers of currently unused vdbes. 134 */ 135 int sqlite3VdbeReleaseMemory(int n){ 136 Vdbe *p; 137 Vdbe *pNext; 138 int nFree = 0; 139 140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){ 142 pNext = p->pLruNext; 143 144 /* For each statement handle in the lru list, attempt to obtain the 145 ** associated database mutex. If it cannot be obtained, continue 146 ** to the next statement handle. It is not possible to block on 147 ** the database mutex - that could cause deadlock. 148 */ 149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ 150 nFree += sqlite3VdbeReleaseBuffers(p); 151 stmtLruRemoveNomutex(p); 152 sqlite3_mutex_leave(p->db->mutex); 153 } 154 } 155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); 156 157 return nFree; 158 } 159 160 /* 161 ** Call sqlite3Reprepare() on the statement. Remove it from the 162 ** lru list before doing so, as Reprepare() will free all the 163 ** memory register buffers anyway. 164 */ 165 int vdbeReprepare(Vdbe *p){ 166 stmtLruRemove(p); 167 return sqlite3Reprepare(p); 168 } 169 170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ 171 #define stmtLruRemove(x) 172 #define stmtLruAdd(x) 173 #define vdbeReprepare(x) sqlite3Reprepare(x) 174 #endif 175 176 177 /* 178 ** Return TRUE (non-zero) of the statement supplied as an argument needs 179 ** to be recompiled. A statement needs to be recompiled whenever the 180 ** execution environment changes in a way that would alter the program 181 ** that sqlite3_prepare() generates. For example, if new functions or 182 ** collating sequences are registered or if an authorizer function is 183 ** added or changed. 184 */ 185 int sqlite3_expired(sqlite3_stmt *pStmt){ 186 Vdbe *p = (Vdbe*)pStmt; 187 return p==0 || p->expired; 188 } 189 190 /* 191 ** The following routine destroys a virtual machine that is created by 192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 193 ** success/failure code that describes the result of executing the virtual 194 ** machine. 195 ** 196 ** This routine sets the error code and string returned by 197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 198 */ 199 int sqlite3_finalize(sqlite3_stmt *pStmt){ 200 int rc; 201 if( pStmt==0 ){ 202 rc = SQLITE_OK; 203 }else{ 204 Vdbe *v = (Vdbe*)pStmt; 205 #ifndef SQLITE_MUTEX_NOOP 206 sqlite3_mutex *mutex = v->db->mutex; 207 #endif 208 sqlite3_mutex_enter(mutex); 209 stmtLruRemove(v); 210 rc = sqlite3VdbeFinalize(v); 211 sqlite3_mutex_leave(mutex); 212 } 213 return rc; 214 } 215 216 /* 217 ** Terminate the current execution of an SQL statement and reset it 218 ** back to its starting state so that it can be reused. A success code from 219 ** the prior execution is returned. 220 ** 221 ** This routine sets the error code and string returned by 222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 223 */ 224 int sqlite3_reset(sqlite3_stmt *pStmt){ 225 int rc; 226 if( pStmt==0 ){ 227 rc = SQLITE_OK; 228 }else{ 229 Vdbe *v = (Vdbe*)pStmt; 230 sqlite3_mutex_enter(v->db->mutex); 231 rc = sqlite3VdbeReset(v); 232 stmtLruAdd(v); 233 sqlite3VdbeMakeReady(v, -1, 0, 0, 0); 234 assert( (rc & (v->db->errMask))==rc ); 235 sqlite3_mutex_leave(v->db->mutex); 236 } 237 return rc; 238 } 239 240 /* 241 ** Set all the parameters in the compiled SQL statement to NULL. 242 */ 243 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 244 int i; 245 int rc = SQLITE_OK; 246 Vdbe *p = (Vdbe*)pStmt; 247 #ifndef SQLITE_MUTEX_NOOP 248 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 249 #endif 250 sqlite3_mutex_enter(mutex); 251 for(i=0; i<p->nVar; i++){ 252 sqlite3VdbeMemRelease(&p->aVar[i]); 253 p->aVar[i].flags = MEM_Null; 254 } 255 sqlite3_mutex_leave(mutex); 256 return rc; 257 } 258 259 260 /**************************** sqlite3_value_ ******************************* 261 ** The following routines extract information from a Mem or sqlite3_value 262 ** structure. 263 */ 264 const void *sqlite3_value_blob(sqlite3_value *pVal){ 265 Mem *p = (Mem*)pVal; 266 if( p->flags & (MEM_Blob|MEM_Str) ){ 267 sqlite3VdbeMemExpandBlob(p); 268 p->flags &= ~MEM_Str; 269 p->flags |= MEM_Blob; 270 return p->z; 271 }else{ 272 return sqlite3_value_text(pVal); 273 } 274 } 275 int sqlite3_value_bytes(sqlite3_value *pVal){ 276 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 277 } 278 int sqlite3_value_bytes16(sqlite3_value *pVal){ 279 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 280 } 281 double sqlite3_value_double(sqlite3_value *pVal){ 282 return sqlite3VdbeRealValue((Mem*)pVal); 283 } 284 int sqlite3_value_int(sqlite3_value *pVal){ 285 return sqlite3VdbeIntValue((Mem*)pVal); 286 } 287 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 288 return sqlite3VdbeIntValue((Mem*)pVal); 289 } 290 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 291 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 292 } 293 #ifndef SQLITE_OMIT_UTF16 294 const void *sqlite3_value_text16(sqlite3_value* pVal){ 295 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 296 } 297 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 298 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 299 } 300 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 301 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 302 } 303 #endif /* SQLITE_OMIT_UTF16 */ 304 int sqlite3_value_type(sqlite3_value* pVal){ 305 return pVal->type; 306 } 307 308 /**************************** sqlite3_result_ ******************************* 309 ** The following routines are used by user-defined functions to specify 310 ** the function result. 311 */ 312 void sqlite3_result_blob( 313 sqlite3_context *pCtx, 314 const void *z, 315 int n, 316 void (*xDel)(void *) 317 ){ 318 assert( n>=0 ); 319 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 320 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); 321 } 322 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 323 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 324 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 325 } 326 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 327 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 328 pCtx->isError = SQLITE_ERROR; 329 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 330 } 331 #ifndef SQLITE_OMIT_UTF16 332 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 333 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 334 pCtx->isError = SQLITE_ERROR; 335 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 336 } 337 #endif 338 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 339 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 340 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 341 } 342 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 343 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 344 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 345 } 346 void sqlite3_result_null(sqlite3_context *pCtx){ 347 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 348 sqlite3VdbeMemSetNull(&pCtx->s); 349 } 350 void sqlite3_result_text( 351 sqlite3_context *pCtx, 352 const char *z, 353 int n, 354 void (*xDel)(void *) 355 ){ 356 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 357 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); 358 } 359 #ifndef SQLITE_OMIT_UTF16 360 void sqlite3_result_text16( 361 sqlite3_context *pCtx, 362 const void *z, 363 int n, 364 void (*xDel)(void *) 365 ){ 366 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 367 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); 368 } 369 void sqlite3_result_text16be( 370 sqlite3_context *pCtx, 371 const void *z, 372 int n, 373 void (*xDel)(void *) 374 ){ 375 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 376 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); 377 } 378 void sqlite3_result_text16le( 379 sqlite3_context *pCtx, 380 const void *z, 381 int n, 382 void (*xDel)(void *) 383 ){ 384 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 385 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); 386 } 387 #endif /* SQLITE_OMIT_UTF16 */ 388 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 389 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 390 sqlite3VdbeMemCopy(&pCtx->s, pValue); 391 } 392 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 393 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 394 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 395 } 396 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 397 pCtx->isError = errCode; 398 } 399 400 /* Force an SQLITE_TOOBIG error. */ 401 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 402 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 403 pCtx->isError = SQLITE_TOOBIG; 404 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 405 SQLITE_UTF8, SQLITE_STATIC); 406 } 407 408 /* An SQLITE_NOMEM error. */ 409 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 410 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 411 sqlite3VdbeMemSetNull(&pCtx->s); 412 pCtx->isError = SQLITE_NOMEM; 413 pCtx->s.db->mallocFailed = 1; 414 } 415 416 /* 417 ** Execute the statement pStmt, either until a row of data is ready, the 418 ** statement is completely executed or an error occurs. 419 ** 420 ** This routine implements the bulk of the logic behind the sqlite_step() 421 ** API. The only thing omitted is the automatic recompile if a 422 ** schema change has occurred. That detail is handled by the 423 ** outer sqlite3_step() wrapper procedure. 424 */ 425 static int sqlite3Step(Vdbe *p){ 426 sqlite3 *db; 427 int rc; 428 429 assert(p); 430 if( p->magic!=VDBE_MAGIC_RUN ){ 431 return SQLITE_MISUSE; 432 } 433 434 /* Assert that malloc() has not failed */ 435 db = p->db; 436 if( db->mallocFailed ){ 437 return SQLITE_NOMEM; 438 } 439 440 if( p->pc<=0 && p->expired ){ 441 if( p->rc==SQLITE_OK ){ 442 p->rc = SQLITE_SCHEMA; 443 } 444 rc = SQLITE_ERROR; 445 goto end_of_step; 446 } 447 if( sqlite3SafetyOn(db) ){ 448 p->rc = SQLITE_MISUSE; 449 return SQLITE_MISUSE; 450 } 451 if( p->pc<0 ){ 452 /* If there are no other statements currently running, then 453 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 454 ** from interrupting a statement that has not yet started. 455 */ 456 if( db->activeVdbeCnt==0 ){ 457 db->u1.isInterrupted = 0; 458 } 459 460 #ifndef SQLITE_OMIT_TRACE 461 if( db->xProfile && !db->init.busy ){ 462 double rNow; 463 sqlite3OsCurrentTime(db->pVfs, &rNow); 464 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; 465 } 466 #endif 467 468 db->activeVdbeCnt++; 469 p->pc = 0; 470 stmtLruRemove(p); 471 } 472 #ifndef SQLITE_OMIT_EXPLAIN 473 if( p->explain ){ 474 rc = sqlite3VdbeList(p); 475 }else 476 #endif /* SQLITE_OMIT_EXPLAIN */ 477 { 478 rc = sqlite3VdbeExec(p); 479 } 480 481 if( sqlite3SafetyOff(db) ){ 482 rc = SQLITE_MISUSE; 483 } 484 485 #ifndef SQLITE_OMIT_TRACE 486 /* Invoke the profile callback if there is one 487 */ 488 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 489 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ 490 double rNow; 491 u64 elapseTime; 492 493 sqlite3OsCurrentTime(db->pVfs, &rNow); 494 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; 495 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); 496 } 497 #endif 498 499 db->errCode = rc; 500 /*sqlite3Error(p->db, rc, 0);*/ 501 p->rc = sqlite3ApiExit(p->db, p->rc); 502 end_of_step: 503 assert( (rc&0xff)==rc ); 504 if( p->zSql && (rc&0xff)<SQLITE_ROW ){ 505 /* This behavior occurs if sqlite3_prepare_v2() was used to build 506 ** the prepared statement. Return error codes directly */ 507 p->db->errCode = p->rc; 508 /* sqlite3Error(p->db, p->rc, 0); */ 509 return p->rc; 510 }else{ 511 /* This is for legacy sqlite3_prepare() builds and when the code 512 ** is SQLITE_ROW or SQLITE_DONE */ 513 return rc; 514 } 515 } 516 517 /* 518 ** This is the top-level implementation of sqlite3_step(). Call 519 ** sqlite3Step() to do most of the work. If a schema error occurs, 520 ** call sqlite3Reprepare() and try again. 521 */ 522 #ifdef SQLITE_OMIT_PARSER 523 int sqlite3_step(sqlite3_stmt *pStmt){ 524 int rc = SQLITE_MISUSE; 525 if( pStmt ){ 526 Vdbe *v; 527 v = (Vdbe*)pStmt; 528 sqlite3_mutex_enter(v->db->mutex); 529 rc = sqlite3Step(v); 530 sqlite3_mutex_leave(v->db->mutex); 531 } 532 return rc; 533 } 534 #else 535 int sqlite3_step(sqlite3_stmt *pStmt){ 536 int rc = SQLITE_MISUSE; 537 if( pStmt ){ 538 int cnt = 0; 539 Vdbe *v = (Vdbe*)pStmt; 540 sqlite3 *db = v->db; 541 sqlite3_mutex_enter(db->mutex); 542 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 543 && cnt++ < 5 544 && vdbeReprepare(v) ){ 545 sqlite3_reset(pStmt); 546 v->expired = 0; 547 } 548 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ 549 /* This case occurs after failing to recompile an sql statement. 550 ** The error message from the SQL compiler has already been loaded 551 ** into the database handle. This block copies the error message 552 ** from the database handle into the statement and sets the statement 553 ** program counter to 0 to ensure that when the statement is 554 ** finalized or reset the parser error message is available via 555 ** sqlite3_errmsg() and sqlite3_errcode(). 556 */ 557 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 558 sqlite3DbFree(db, v->zErrMsg); 559 if( !db->mallocFailed ){ 560 v->zErrMsg = sqlite3DbStrDup(db, zErr); 561 } else { 562 v->zErrMsg = 0; 563 v->rc = SQLITE_NOMEM; 564 } 565 } 566 rc = sqlite3ApiExit(db, rc); 567 sqlite3_mutex_leave(db->mutex); 568 } 569 return rc; 570 } 571 #endif 572 573 /* 574 ** Extract the user data from a sqlite3_context structure and return a 575 ** pointer to it. 576 */ 577 void *sqlite3_user_data(sqlite3_context *p){ 578 assert( p && p->pFunc ); 579 return p->pFunc->pUserData; 580 } 581 582 /* 583 ** Extract the user data from a sqlite3_context structure and return a 584 ** pointer to it. 585 */ 586 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 587 assert( p && p->pFunc ); 588 return p->s.db; 589 } 590 591 /* 592 ** The following is the implementation of an SQL function that always 593 ** fails with an error message stating that the function is used in the 594 ** wrong context. The sqlite3_overload_function() API might construct 595 ** SQL function that use this routine so that the functions will exist 596 ** for name resolution but are actually overloaded by the xFindFunction 597 ** method of virtual tables. 598 */ 599 void sqlite3InvalidFunction( 600 sqlite3_context *context, /* The function calling context */ 601 int argc, /* Number of arguments to the function */ 602 sqlite3_value **argv /* Value of each argument */ 603 ){ 604 const char *zName = context->pFunc->zName; 605 char *zErr; 606 zErr = sqlite3MPrintf(0, 607 "unable to use function %s in the requested context", zName); 608 sqlite3_result_error(context, zErr, -1); 609 sqlite3_free(zErr); 610 } 611 612 /* 613 ** Allocate or return the aggregate context for a user function. A new 614 ** context is allocated on the first call. Subsequent calls return the 615 ** same context that was returned on prior calls. 616 */ 617 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 618 Mem *pMem; 619 assert( p && p->pFunc && p->pFunc->xStep ); 620 assert( sqlite3_mutex_held(p->s.db->mutex) ); 621 pMem = p->pMem; 622 if( (pMem->flags & MEM_Agg)==0 ){ 623 if( nByte==0 ){ 624 sqlite3VdbeMemReleaseExternal(pMem); 625 pMem->flags = MEM_Null; 626 pMem->z = 0; 627 }else{ 628 sqlite3VdbeMemGrow(pMem, nByte, 0); 629 pMem->flags = MEM_Agg; 630 pMem->u.pDef = p->pFunc; 631 if( pMem->z ){ 632 memset(pMem->z, 0, nByte); 633 } 634 } 635 } 636 return (void*)pMem->z; 637 } 638 639 /* 640 ** Return the auxilary data pointer, if any, for the iArg'th argument to 641 ** the user-function defined by pCtx. 642 */ 643 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 644 VdbeFunc *pVdbeFunc; 645 646 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 647 pVdbeFunc = pCtx->pVdbeFunc; 648 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 649 return 0; 650 } 651 return pVdbeFunc->apAux[iArg].pAux; 652 } 653 654 /* 655 ** Set the auxilary data pointer and delete function, for the iArg'th 656 ** argument to the user-function defined by pCtx. Any previous value is 657 ** deleted by calling the delete function specified when it was set. 658 */ 659 void sqlite3_set_auxdata( 660 sqlite3_context *pCtx, 661 int iArg, 662 void *pAux, 663 void (*xDelete)(void*) 664 ){ 665 struct AuxData *pAuxData; 666 VdbeFunc *pVdbeFunc; 667 if( iArg<0 ) goto failed; 668 669 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 670 pVdbeFunc = pCtx->pVdbeFunc; 671 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 672 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 673 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 674 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 675 if( !pVdbeFunc ){ 676 goto failed; 677 } 678 pCtx->pVdbeFunc = pVdbeFunc; 679 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 680 pVdbeFunc->nAux = iArg+1; 681 pVdbeFunc->pFunc = pCtx->pFunc; 682 } 683 684 pAuxData = &pVdbeFunc->apAux[iArg]; 685 if( pAuxData->pAux && pAuxData->xDelete ){ 686 pAuxData->xDelete(pAuxData->pAux); 687 } 688 pAuxData->pAux = pAux; 689 pAuxData->xDelete = xDelete; 690 return; 691 692 failed: 693 if( xDelete ){ 694 xDelete(pAux); 695 } 696 } 697 698 /* 699 ** Return the number of times the Step function of a aggregate has been 700 ** called. 701 ** 702 ** This function is deprecated. Do not use it for new code. It is 703 ** provide only to avoid breaking legacy code. New aggregate function 704 ** implementations should keep their own counts within their aggregate 705 ** context. 706 */ 707 int sqlite3_aggregate_count(sqlite3_context *p){ 708 assert( p && p->pFunc && p->pFunc->xStep ); 709 return p->pMem->n; 710 } 711 712 /* 713 ** Return the number of columns in the result set for the statement pStmt. 714 */ 715 int sqlite3_column_count(sqlite3_stmt *pStmt){ 716 Vdbe *pVm = (Vdbe *)pStmt; 717 return pVm ? pVm->nResColumn : 0; 718 } 719 720 /* 721 ** Return the number of values available from the current row of the 722 ** currently executing statement pStmt. 723 */ 724 int sqlite3_data_count(sqlite3_stmt *pStmt){ 725 Vdbe *pVm = (Vdbe *)pStmt; 726 if( pVm==0 || pVm->pResultSet==0 ) return 0; 727 return pVm->nResColumn; 728 } 729 730 731 /* 732 ** Check to see if column iCol of the given statement is valid. If 733 ** it is, return a pointer to the Mem for the value of that column. 734 ** If iCol is not valid, return a pointer to a Mem which has a value 735 ** of NULL. 736 */ 737 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 738 Vdbe *pVm; 739 int vals; 740 Mem *pOut; 741 742 pVm = (Vdbe *)pStmt; 743 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 744 sqlite3_mutex_enter(pVm->db->mutex); 745 vals = sqlite3_data_count(pStmt); 746 pOut = &pVm->pResultSet[i]; 747 }else{ 748 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 749 if( pVm->db ){ 750 sqlite3_mutex_enter(pVm->db->mutex); 751 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 752 } 753 pOut = (Mem*)&nullMem; 754 } 755 return pOut; 756 } 757 758 /* 759 ** This function is called after invoking an sqlite3_value_XXX function on a 760 ** column value (i.e. a value returned by evaluating an SQL expression in the 761 ** select list of a SELECT statement) that may cause a malloc() failure. If 762 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 763 ** code of statement pStmt set to SQLITE_NOMEM. 764 ** 765 ** Specifically, this is called from within: 766 ** 767 ** sqlite3_column_int() 768 ** sqlite3_column_int64() 769 ** sqlite3_column_text() 770 ** sqlite3_column_text16() 771 ** sqlite3_column_real() 772 ** sqlite3_column_bytes() 773 ** sqlite3_column_bytes16() 774 ** 775 ** But not for sqlite3_column_blob(), which never calls malloc(). 776 */ 777 static void columnMallocFailure(sqlite3_stmt *pStmt) 778 { 779 /* If malloc() failed during an encoding conversion within an 780 ** sqlite3_column_XXX API, then set the return code of the statement to 781 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 782 ** and _finalize() will return NOMEM. 783 */ 784 Vdbe *p = (Vdbe *)pStmt; 785 if( p ){ 786 p->rc = sqlite3ApiExit(p->db, p->rc); 787 sqlite3_mutex_leave(p->db->mutex); 788 } 789 } 790 791 /**************************** sqlite3_column_ ******************************* 792 ** The following routines are used to access elements of the current row 793 ** in the result set. 794 */ 795 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 796 const void *val; 797 val = sqlite3_value_blob( columnMem(pStmt,i) ); 798 /* Even though there is no encoding conversion, value_blob() might 799 ** need to call malloc() to expand the result of a zeroblob() 800 ** expression. 801 */ 802 columnMallocFailure(pStmt); 803 return val; 804 } 805 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 806 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 807 columnMallocFailure(pStmt); 808 return val; 809 } 810 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 811 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 812 columnMallocFailure(pStmt); 813 return val; 814 } 815 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 816 double val = sqlite3_value_double( columnMem(pStmt,i) ); 817 columnMallocFailure(pStmt); 818 return val; 819 } 820 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 821 int val = sqlite3_value_int( columnMem(pStmt,i) ); 822 columnMallocFailure(pStmt); 823 return val; 824 } 825 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 826 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 827 columnMallocFailure(pStmt); 828 return val; 829 } 830 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 831 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 832 columnMallocFailure(pStmt); 833 return val; 834 } 835 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 836 sqlite3_value *pOut = columnMem(pStmt, i); 837 columnMallocFailure(pStmt); 838 return pOut; 839 } 840 #ifndef SQLITE_OMIT_UTF16 841 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 842 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 843 columnMallocFailure(pStmt); 844 return val; 845 } 846 #endif /* SQLITE_OMIT_UTF16 */ 847 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 848 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 849 columnMallocFailure(pStmt); 850 return iType; 851 } 852 853 /* The following function is experimental and subject to change or 854 ** removal */ 855 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 856 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 857 **} 858 */ 859 860 /* 861 ** Convert the N-th element of pStmt->pColName[] into a string using 862 ** xFunc() then return that string. If N is out of range, return 0. 863 ** 864 ** There are up to 5 names for each column. useType determines which 865 ** name is returned. Here are the names: 866 ** 867 ** 0 The column name as it should be displayed for output 868 ** 1 The datatype name for the column 869 ** 2 The name of the database that the column derives from 870 ** 3 The name of the table that the column derives from 871 ** 4 The name of the table column that the result column derives from 872 ** 873 ** If the result is not a simple column reference (if it is an expression 874 ** or a constant) then useTypes 2, 3, and 4 return NULL. 875 */ 876 static const void *columnName( 877 sqlite3_stmt *pStmt, 878 int N, 879 const void *(*xFunc)(Mem*), 880 int useType 881 ){ 882 const void *ret = 0; 883 Vdbe *p = (Vdbe *)pStmt; 884 int n; 885 886 887 if( p!=0 ){ 888 n = sqlite3_column_count(pStmt); 889 if( N<n && N>=0 ){ 890 N += useType*n; 891 sqlite3_mutex_enter(p->db->mutex); 892 ret = xFunc(&p->aColName[N]); 893 894 /* A malloc may have failed inside of the xFunc() call. If this 895 ** is the case, clear the mallocFailed flag and return NULL. 896 */ 897 if( p->db && p->db->mallocFailed ){ 898 p->db->mallocFailed = 0; 899 ret = 0; 900 } 901 sqlite3_mutex_leave(p->db->mutex); 902 } 903 } 904 return ret; 905 } 906 907 /* 908 ** Return the name of the Nth column of the result set returned by SQL 909 ** statement pStmt. 910 */ 911 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 912 return columnName( 913 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 914 } 915 #ifndef SQLITE_OMIT_UTF16 916 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 917 return columnName( 918 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 919 } 920 #endif 921 922 /* 923 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 924 ** not define OMIT_DECLTYPE. 925 */ 926 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 927 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 928 and SQLITE_ENABLE_COLUMN_METADATA" 929 #endif 930 931 #ifndef SQLITE_OMIT_DECLTYPE 932 /* 933 ** Return the column declaration type (if applicable) of the 'i'th column 934 ** of the result set of SQL statement pStmt. 935 */ 936 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 937 return columnName( 938 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 939 } 940 #ifndef SQLITE_OMIT_UTF16 941 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 942 return columnName( 943 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 944 } 945 #endif /* SQLITE_OMIT_UTF16 */ 946 #endif /* SQLITE_OMIT_DECLTYPE */ 947 948 #ifdef SQLITE_ENABLE_COLUMN_METADATA 949 /* 950 ** Return the name of the database from which a result column derives. 951 ** NULL is returned if the result column is an expression or constant or 952 ** anything else which is not an unabiguous reference to a database column. 953 */ 954 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 955 return columnName( 956 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 957 } 958 #ifndef SQLITE_OMIT_UTF16 959 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 960 return columnName( 961 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 962 } 963 #endif /* SQLITE_OMIT_UTF16 */ 964 965 /* 966 ** Return the name of the table from which a result column derives. 967 ** NULL is returned if the result column is an expression or constant or 968 ** anything else which is not an unabiguous reference to a database column. 969 */ 970 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 971 return columnName( 972 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 973 } 974 #ifndef SQLITE_OMIT_UTF16 975 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 976 return columnName( 977 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 978 } 979 #endif /* SQLITE_OMIT_UTF16 */ 980 981 /* 982 ** Return the name of the table column from which a result column derives. 983 ** NULL is returned if the result column is an expression or constant or 984 ** anything else which is not an unabiguous reference to a database column. 985 */ 986 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 987 return columnName( 988 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 989 } 990 #ifndef SQLITE_OMIT_UTF16 991 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 992 return columnName( 993 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 994 } 995 #endif /* SQLITE_OMIT_UTF16 */ 996 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 997 998 999 /******************************* sqlite3_bind_ *************************** 1000 ** 1001 ** Routines used to attach values to wildcards in a compiled SQL statement. 1002 */ 1003 /* 1004 ** Unbind the value bound to variable i in virtual machine p. This is the 1005 ** the same as binding a NULL value to the column. If the "i" parameter is 1006 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1007 ** 1008 ** The error code stored in database p->db is overwritten with the return 1009 ** value in any case. 1010 */ 1011 static int vdbeUnbind(Vdbe *p, int i){ 1012 Mem *pVar; 1013 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1014 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); 1015 return SQLITE_MISUSE; 1016 } 1017 if( i<1 || i>p->nVar ){ 1018 sqlite3Error(p->db, SQLITE_RANGE, 0); 1019 return SQLITE_RANGE; 1020 } 1021 i--; 1022 pVar = &p->aVar[i]; 1023 sqlite3VdbeMemRelease(pVar); 1024 pVar->flags = MEM_Null; 1025 sqlite3Error(p->db, SQLITE_OK, 0); 1026 return SQLITE_OK; 1027 } 1028 1029 /* 1030 ** Bind a text or BLOB value. 1031 */ 1032 static int bindText( 1033 sqlite3_stmt *pStmt, /* The statement to bind against */ 1034 int i, /* Index of the parameter to bind */ 1035 const void *zData, /* Pointer to the data to be bound */ 1036 int nData, /* Number of bytes of data to be bound */ 1037 void (*xDel)(void*), /* Destructor for the data */ 1038 int encoding /* Encoding for the data */ 1039 ){ 1040 Vdbe *p = (Vdbe *)pStmt; 1041 Mem *pVar; 1042 int rc; 1043 1044 if( p==0 ){ 1045 return SQLITE_MISUSE; 1046 } 1047 sqlite3_mutex_enter(p->db->mutex); 1048 rc = vdbeUnbind(p, i); 1049 if( rc==SQLITE_OK && zData!=0 ){ 1050 pVar = &p->aVar[i-1]; 1051 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1052 if( rc==SQLITE_OK && encoding!=0 ){ 1053 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1054 } 1055 sqlite3Error(p->db, rc, 0); 1056 rc = sqlite3ApiExit(p->db, rc); 1057 } 1058 sqlite3_mutex_leave(p->db->mutex); 1059 return rc; 1060 } 1061 1062 1063 /* 1064 ** Bind a blob value to an SQL statement variable. 1065 */ 1066 int sqlite3_bind_blob( 1067 sqlite3_stmt *pStmt, 1068 int i, 1069 const void *zData, 1070 int nData, 1071 void (*xDel)(void*) 1072 ){ 1073 return bindText(pStmt, i, zData, nData, xDel, 0); 1074 } 1075 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1076 int rc; 1077 Vdbe *p = (Vdbe *)pStmt; 1078 sqlite3_mutex_enter(p->db->mutex); 1079 rc = vdbeUnbind(p, i); 1080 if( rc==SQLITE_OK ){ 1081 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1082 } 1083 sqlite3_mutex_leave(p->db->mutex); 1084 return rc; 1085 } 1086 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1087 return sqlite3_bind_int64(p, i, (i64)iValue); 1088 } 1089 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1090 int rc; 1091 Vdbe *p = (Vdbe *)pStmt; 1092 sqlite3_mutex_enter(p->db->mutex); 1093 rc = vdbeUnbind(p, i); 1094 if( rc==SQLITE_OK ){ 1095 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1096 } 1097 sqlite3_mutex_leave(p->db->mutex); 1098 return rc; 1099 } 1100 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1101 int rc; 1102 Vdbe *p = (Vdbe*)pStmt; 1103 sqlite3_mutex_enter(p->db->mutex); 1104 rc = vdbeUnbind(p, i); 1105 sqlite3_mutex_leave(p->db->mutex); 1106 return rc; 1107 } 1108 int sqlite3_bind_text( 1109 sqlite3_stmt *pStmt, 1110 int i, 1111 const char *zData, 1112 int nData, 1113 void (*xDel)(void*) 1114 ){ 1115 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1116 } 1117 #ifndef SQLITE_OMIT_UTF16 1118 int sqlite3_bind_text16( 1119 sqlite3_stmt *pStmt, 1120 int i, 1121 const void *zData, 1122 int nData, 1123 void (*xDel)(void*) 1124 ){ 1125 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1126 } 1127 #endif /* SQLITE_OMIT_UTF16 */ 1128 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1129 int rc; 1130 Vdbe *p = (Vdbe *)pStmt; 1131 sqlite3_mutex_enter(p->db->mutex); 1132 rc = vdbeUnbind(p, i); 1133 if( rc==SQLITE_OK ){ 1134 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); 1135 if( rc==SQLITE_OK ){ 1136 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db)); 1137 } 1138 } 1139 rc = sqlite3ApiExit(p->db, rc); 1140 sqlite3_mutex_leave(p->db->mutex); 1141 return rc; 1142 } 1143 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1144 int rc; 1145 Vdbe *p = (Vdbe *)pStmt; 1146 sqlite3_mutex_enter(p->db->mutex); 1147 rc = vdbeUnbind(p, i); 1148 if( rc==SQLITE_OK ){ 1149 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1150 } 1151 sqlite3_mutex_leave(p->db->mutex); 1152 return rc; 1153 } 1154 1155 /* 1156 ** Return the number of wildcards that can be potentially bound to. 1157 ** This routine is added to support DBD::SQLite. 1158 */ 1159 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1160 Vdbe *p = (Vdbe*)pStmt; 1161 return p ? p->nVar : 0; 1162 } 1163 1164 /* 1165 ** Create a mapping from variable numbers to variable names 1166 ** in the Vdbe.azVar[] array, if such a mapping does not already 1167 ** exist. 1168 */ 1169 static void createVarMap(Vdbe *p){ 1170 if( !p->okVar ){ 1171 sqlite3_mutex_enter(p->db->mutex); 1172 if( !p->okVar ){ 1173 int j; 1174 Op *pOp; 1175 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1176 if( pOp->opcode==OP_Variable ){ 1177 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1178 p->azVar[pOp->p1-1] = pOp->p4.z; 1179 } 1180 } 1181 p->okVar = 1; 1182 } 1183 sqlite3_mutex_leave(p->db->mutex); 1184 } 1185 } 1186 1187 /* 1188 ** Return the name of a wildcard parameter. Return NULL if the index 1189 ** is out of range or if the wildcard is unnamed. 1190 ** 1191 ** The result is always UTF-8. 1192 */ 1193 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1194 Vdbe *p = (Vdbe*)pStmt; 1195 if( p==0 || i<1 || i>p->nVar ){ 1196 return 0; 1197 } 1198 createVarMap(p); 1199 return p->azVar[i-1]; 1200 } 1201 1202 /* 1203 ** Given a wildcard parameter name, return the index of the variable 1204 ** with that name. If there is no variable with the given name, 1205 ** return 0. 1206 */ 1207 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1208 Vdbe *p = (Vdbe*)pStmt; 1209 int i; 1210 if( p==0 ){ 1211 return 0; 1212 } 1213 createVarMap(p); 1214 if( zName ){ 1215 for(i=0; i<p->nVar; i++){ 1216 const char *z = p->azVar[i]; 1217 if( z && strcmp(z,zName)==0 ){ 1218 return i+1; 1219 } 1220 } 1221 } 1222 return 0; 1223 } 1224 1225 /* 1226 ** Transfer all bindings from the first statement over to the second. 1227 ** If the two statements contain a different number of bindings, then 1228 ** an SQLITE_ERROR is returned. 1229 */ 1230 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1231 Vdbe *pFrom = (Vdbe*)pFromStmt; 1232 Vdbe *pTo = (Vdbe*)pToStmt; 1233 int i, rc = SQLITE_OK; 1234 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) 1235 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) 1236 || pTo->db!=pFrom->db ){ 1237 return SQLITE_MISUSE; 1238 } 1239 if( pFrom->nVar!=pTo->nVar ){ 1240 return SQLITE_ERROR; 1241 } 1242 sqlite3_mutex_enter(pTo->db->mutex); 1243 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ 1244 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1245 } 1246 sqlite3_mutex_leave(pTo->db->mutex); 1247 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1248 return rc; 1249 } 1250 1251 /* 1252 ** Deprecated external interface. Internal/core SQLite code 1253 ** should call sqlite3TransferBindings. 1254 */ 1255 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1256 return sqlite3TransferBindings(pFromStmt, pToStmt); 1257 } 1258 1259 /* 1260 ** Return the sqlite3* database handle to which the prepared statement given 1261 ** in the argument belongs. This is the same database handle that was 1262 ** the first argument to the sqlite3_prepare() that was used to create 1263 ** the statement in the first place. 1264 */ 1265 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1266 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1267 } 1268 1269 /* 1270 ** Return a pointer to the next prepared statement after pStmt associated 1271 ** with database connection pDb. If pStmt is NULL, return the first 1272 ** prepared statement for the database connection. Return NULL if there 1273 ** are no more. 1274 */ 1275 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1276 sqlite3_stmt *pNext; 1277 sqlite3_mutex_enter(pDb->mutex); 1278 if( pStmt==0 ){ 1279 pNext = (sqlite3_stmt*)pDb->pVdbe; 1280 }else{ 1281 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1282 } 1283 sqlite3_mutex_leave(pDb->mutex); 1284 return pNext; 1285 } 1286