1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 #ifndef SQLITE_OMIT_DEPRECATED 71 if( db->xProfile ){ 72 db->xProfile(db->pProfileArg, p->zSql, iElapse); 73 } 74 #endif 75 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 77 } 78 p->startTime = 0; 79 } 80 /* 81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 82 ** is needed, and it invokes the callback if it is needed. 83 */ 84 # define checkProfileCallback(DB,P) \ 85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 86 #else 87 # define checkProfileCallback(DB,P) /*no-op*/ 88 #endif 89 90 /* 91 ** The following routine destroys a virtual machine that is created by 92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 93 ** success/failure code that describes the result of executing the virtual 94 ** machine. 95 ** 96 ** This routine sets the error code and string returned by 97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 98 */ 99 int sqlite3_finalize(sqlite3_stmt *pStmt){ 100 int rc; 101 if( pStmt==0 ){ 102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 103 ** pointer is a harmless no-op. */ 104 rc = SQLITE_OK; 105 }else{ 106 Vdbe *v = (Vdbe*)pStmt; 107 sqlite3 *db = v->db; 108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 109 sqlite3_mutex_enter(db->mutex); 110 checkProfileCallback(db, v); 111 rc = sqlite3VdbeFinalize(v); 112 rc = sqlite3ApiExit(db, rc); 113 sqlite3LeaveMutexAndCloseZombie(db); 114 } 115 return rc; 116 } 117 118 /* 119 ** Terminate the current execution of an SQL statement and reset it 120 ** back to its starting state so that it can be reused. A success code from 121 ** the prior execution is returned. 122 ** 123 ** This routine sets the error code and string returned by 124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 125 */ 126 int sqlite3_reset(sqlite3_stmt *pStmt){ 127 int rc; 128 if( pStmt==0 ){ 129 rc = SQLITE_OK; 130 }else{ 131 Vdbe *v = (Vdbe*)pStmt; 132 sqlite3 *db = v->db; 133 sqlite3_mutex_enter(db->mutex); 134 checkProfileCallback(db, v); 135 rc = sqlite3VdbeReset(v); 136 sqlite3VdbeRewind(v); 137 assert( (rc & (db->errMask))==rc ); 138 rc = sqlite3ApiExit(db, rc); 139 sqlite3_mutex_leave(db->mutex); 140 } 141 return rc; 142 } 143 144 /* 145 ** Set all the parameters in the compiled SQL statement to NULL. 146 */ 147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 148 int i; 149 int rc = SQLITE_OK; 150 Vdbe *p = (Vdbe*)pStmt; 151 #if SQLITE_THREADSAFE 152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 153 #endif 154 sqlite3_mutex_enter(mutex); 155 for(i=0; i<p->nVar; i++){ 156 sqlite3VdbeMemRelease(&p->aVar[i]); 157 p->aVar[i].flags = MEM_Null; 158 } 159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 160 if( p->expmask ){ 161 p->expired = 1; 162 } 163 sqlite3_mutex_leave(mutex); 164 return rc; 165 } 166 167 168 /**************************** sqlite3_value_ ******************************* 169 ** The following routines extract information from a Mem or sqlite3_value 170 ** structure. 171 */ 172 const void *sqlite3_value_blob(sqlite3_value *pVal){ 173 Mem *p = (Mem*)pVal; 174 if( p->flags & (MEM_Blob|MEM_Str) ){ 175 if( ExpandBlob(p)!=SQLITE_OK ){ 176 assert( p->flags==MEM_Null && p->z==0 ); 177 return 0; 178 } 179 p->flags |= MEM_Blob; 180 return p->n ? p->z : 0; 181 }else{ 182 return sqlite3_value_text(pVal); 183 } 184 } 185 int sqlite3_value_bytes(sqlite3_value *pVal){ 186 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 187 } 188 int sqlite3_value_bytes16(sqlite3_value *pVal){ 189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 190 } 191 double sqlite3_value_double(sqlite3_value *pVal){ 192 return sqlite3VdbeRealValue((Mem*)pVal); 193 } 194 int sqlite3_value_int(sqlite3_value *pVal){ 195 return (int)sqlite3VdbeIntValue((Mem*)pVal); 196 } 197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 198 return sqlite3VdbeIntValue((Mem*)pVal); 199 } 200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 201 Mem *pMem = (Mem*)pVal; 202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 203 } 204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){ 205 Mem *p = (Mem*)pVal; 206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) == 207 (MEM_Null|MEM_Term|MEM_Subtype) 208 && zPType!=0 209 && p->eSubtype=='p' 210 && strcmp(p->u.zPType, zPType)==0 211 ){ 212 return (void*)p->z; 213 }else{ 214 return 0; 215 } 216 } 217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 const void *sqlite3_value_text16(sqlite3_value* pVal){ 222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 223 } 224 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 225 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 226 } 227 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 228 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 229 } 230 #endif /* SQLITE_OMIT_UTF16 */ 231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 233 ** point number string BLOB NULL 234 */ 235 int sqlite3_value_type(sqlite3_value* pVal){ 236 static const u8 aType[] = { 237 SQLITE_BLOB, /* 0x00 (not possible) */ 238 SQLITE_NULL, /* 0x01 NULL */ 239 SQLITE_TEXT, /* 0x02 TEXT */ 240 SQLITE_NULL, /* 0x03 (not possible) */ 241 SQLITE_INTEGER, /* 0x04 INTEGER */ 242 SQLITE_NULL, /* 0x05 (not possible) */ 243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ 244 SQLITE_NULL, /* 0x07 (not possible) */ 245 SQLITE_FLOAT, /* 0x08 FLOAT */ 246 SQLITE_NULL, /* 0x09 (not possible) */ 247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ 248 SQLITE_NULL, /* 0x0b (not possible) */ 249 SQLITE_INTEGER, /* 0x0c (not possible) */ 250 SQLITE_NULL, /* 0x0d (not possible) */ 251 SQLITE_INTEGER, /* 0x0e (not possible) */ 252 SQLITE_NULL, /* 0x0f (not possible) */ 253 SQLITE_BLOB, /* 0x10 BLOB */ 254 SQLITE_NULL, /* 0x11 (not possible) */ 255 SQLITE_TEXT, /* 0x12 (not possible) */ 256 SQLITE_NULL, /* 0x13 (not possible) */ 257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ 258 SQLITE_NULL, /* 0x15 (not possible) */ 259 SQLITE_INTEGER, /* 0x16 (not possible) */ 260 SQLITE_NULL, /* 0x17 (not possible) */ 261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ 262 SQLITE_NULL, /* 0x19 (not possible) */ 263 SQLITE_FLOAT, /* 0x1a (not possible) */ 264 SQLITE_NULL, /* 0x1b (not possible) */ 265 SQLITE_INTEGER, /* 0x1c (not possible) */ 266 SQLITE_NULL, /* 0x1d (not possible) */ 267 SQLITE_INTEGER, /* 0x1e (not possible) */ 268 SQLITE_NULL, /* 0x1f (not possible) */ 269 SQLITE_FLOAT, /* 0x20 INTREAL */ 270 SQLITE_NULL, /* 0x21 (not possible) */ 271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ 272 SQLITE_NULL, /* 0x23 (not possible) */ 273 SQLITE_FLOAT, /* 0x24 (not possible) */ 274 SQLITE_NULL, /* 0x25 (not possible) */ 275 SQLITE_FLOAT, /* 0x26 (not possible) */ 276 SQLITE_NULL, /* 0x27 (not possible) */ 277 SQLITE_FLOAT, /* 0x28 (not possible) */ 278 SQLITE_NULL, /* 0x29 (not possible) */ 279 SQLITE_FLOAT, /* 0x2a (not possible) */ 280 SQLITE_NULL, /* 0x2b (not possible) */ 281 SQLITE_FLOAT, /* 0x2c (not possible) */ 282 SQLITE_NULL, /* 0x2d (not possible) */ 283 SQLITE_FLOAT, /* 0x2e (not possible) */ 284 SQLITE_NULL, /* 0x2f (not possible) */ 285 SQLITE_BLOB, /* 0x30 (not possible) */ 286 SQLITE_NULL, /* 0x31 (not possible) */ 287 SQLITE_TEXT, /* 0x32 (not possible) */ 288 SQLITE_NULL, /* 0x33 (not possible) */ 289 SQLITE_FLOAT, /* 0x34 (not possible) */ 290 SQLITE_NULL, /* 0x35 (not possible) */ 291 SQLITE_FLOAT, /* 0x36 (not possible) */ 292 SQLITE_NULL, /* 0x37 (not possible) */ 293 SQLITE_FLOAT, /* 0x38 (not possible) */ 294 SQLITE_NULL, /* 0x39 (not possible) */ 295 SQLITE_FLOAT, /* 0x3a (not possible) */ 296 SQLITE_NULL, /* 0x3b (not possible) */ 297 SQLITE_FLOAT, /* 0x3c (not possible) */ 298 SQLITE_NULL, /* 0x3d (not possible) */ 299 SQLITE_FLOAT, /* 0x3e (not possible) */ 300 SQLITE_NULL, /* 0x3f (not possible) */ 301 }; 302 #ifdef SQLITE_DEBUG 303 { 304 int eType = SQLITE_BLOB; 305 if( pVal->flags & MEM_Null ){ 306 eType = SQLITE_NULL; 307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ 308 eType = SQLITE_FLOAT; 309 }else if( pVal->flags & MEM_Int ){ 310 eType = SQLITE_INTEGER; 311 }else if( pVal->flags & MEM_Str ){ 312 eType = SQLITE_TEXT; 313 } 314 assert( eType == aType[pVal->flags&MEM_AffMask] ); 315 } 316 #endif 317 return aType[pVal->flags&MEM_AffMask]; 318 } 319 320 /* Return true if a parameter to xUpdate represents an unchanged column */ 321 int sqlite3_value_nochange(sqlite3_value *pVal){ 322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero); 323 } 324 325 /* Return true if a parameter value originated from an sqlite3_bind() */ 326 int sqlite3_value_frombind(sqlite3_value *pVal){ 327 return (pVal->flags&MEM_FromBind)!=0; 328 } 329 330 /* Make a copy of an sqlite3_value object 331 */ 332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 333 sqlite3_value *pNew; 334 if( pOrig==0 ) return 0; 335 pNew = sqlite3_malloc( sizeof(*pNew) ); 336 if( pNew==0 ) return 0; 337 memset(pNew, 0, sizeof(*pNew)); 338 memcpy(pNew, pOrig, MEMCELLSIZE); 339 pNew->flags &= ~MEM_Dyn; 340 pNew->db = 0; 341 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 342 pNew->flags &= ~(MEM_Static|MEM_Dyn); 343 pNew->flags |= MEM_Ephem; 344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 345 sqlite3ValueFree(pNew); 346 pNew = 0; 347 } 348 } 349 return pNew; 350 } 351 352 /* Destroy an sqlite3_value object previously obtained from 353 ** sqlite3_value_dup(). 354 */ 355 void sqlite3_value_free(sqlite3_value *pOld){ 356 sqlite3ValueFree(pOld); 357 } 358 359 360 /**************************** sqlite3_result_ ******************************* 361 ** The following routines are used by user-defined functions to specify 362 ** the function result. 363 ** 364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 365 ** result as a string or blob but if the string or blob is too large, it 366 ** then sets the error code to SQLITE_TOOBIG 367 ** 368 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 369 ** on value P is not going to be used and need to be destroyed. 370 */ 371 static void setResultStrOrError( 372 sqlite3_context *pCtx, /* Function context */ 373 const char *z, /* String pointer */ 374 int n, /* Bytes in string, or negative */ 375 u8 enc, /* Encoding of z. 0 for BLOBs */ 376 void (*xDel)(void*) /* Destructor function */ 377 ){ 378 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 379 sqlite3_result_error_toobig(pCtx); 380 } 381 } 382 static int invokeValueDestructor( 383 const void *p, /* Value to destroy */ 384 void (*xDel)(void*), /* The destructor */ 385 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 386 ){ 387 assert( xDel!=SQLITE_DYNAMIC ); 388 if( xDel==0 ){ 389 /* noop */ 390 }else if( xDel==SQLITE_TRANSIENT ){ 391 /* noop */ 392 }else{ 393 xDel((void*)p); 394 } 395 sqlite3_result_error_toobig(pCtx); 396 return SQLITE_TOOBIG; 397 } 398 void sqlite3_result_blob( 399 sqlite3_context *pCtx, 400 const void *z, 401 int n, 402 void (*xDel)(void *) 403 ){ 404 assert( n>=0 ); 405 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 406 setResultStrOrError(pCtx, z, n, 0, xDel); 407 } 408 void sqlite3_result_blob64( 409 sqlite3_context *pCtx, 410 const void *z, 411 sqlite3_uint64 n, 412 void (*xDel)(void *) 413 ){ 414 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 415 assert( xDel!=SQLITE_DYNAMIC ); 416 if( n>0x7fffffff ){ 417 (void)invokeValueDestructor(z, xDel, pCtx); 418 }else{ 419 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 420 } 421 } 422 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 423 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 424 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 425 } 426 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 428 pCtx->isError = SQLITE_ERROR; 429 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 430 } 431 #ifndef SQLITE_OMIT_UTF16 432 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 433 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 434 pCtx->isError = SQLITE_ERROR; 435 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 436 } 437 #endif 438 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 439 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 440 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 441 } 442 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 443 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 444 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 445 } 446 void sqlite3_result_null(sqlite3_context *pCtx){ 447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 448 sqlite3VdbeMemSetNull(pCtx->pOut); 449 } 450 void sqlite3_result_pointer( 451 sqlite3_context *pCtx, 452 void *pPtr, 453 const char *zPType, 454 void (*xDestructor)(void*) 455 ){ 456 Mem *pOut = pCtx->pOut; 457 assert( sqlite3_mutex_held(pOut->db->mutex) ); 458 sqlite3VdbeMemRelease(pOut); 459 pOut->flags = MEM_Null; 460 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor); 461 } 462 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 463 Mem *pOut = pCtx->pOut; 464 assert( sqlite3_mutex_held(pOut->db->mutex) ); 465 pOut->eSubtype = eSubtype & 0xff; 466 pOut->flags |= MEM_Subtype; 467 } 468 void sqlite3_result_text( 469 sqlite3_context *pCtx, 470 const char *z, 471 int n, 472 void (*xDel)(void *) 473 ){ 474 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 475 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 476 } 477 void sqlite3_result_text64( 478 sqlite3_context *pCtx, 479 const char *z, 480 sqlite3_uint64 n, 481 void (*xDel)(void *), 482 unsigned char enc 483 ){ 484 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 485 assert( xDel!=SQLITE_DYNAMIC ); 486 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 487 if( n>0x7fffffff ){ 488 (void)invokeValueDestructor(z, xDel, pCtx); 489 }else{ 490 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 491 } 492 } 493 #ifndef SQLITE_OMIT_UTF16 494 void sqlite3_result_text16( 495 sqlite3_context *pCtx, 496 const void *z, 497 int n, 498 void (*xDel)(void *) 499 ){ 500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 501 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 502 } 503 void sqlite3_result_text16be( 504 sqlite3_context *pCtx, 505 const void *z, 506 int n, 507 void (*xDel)(void *) 508 ){ 509 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 510 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 511 } 512 void sqlite3_result_text16le( 513 sqlite3_context *pCtx, 514 const void *z, 515 int n, 516 void (*xDel)(void *) 517 ){ 518 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 519 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 520 } 521 #endif /* SQLITE_OMIT_UTF16 */ 522 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 523 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 524 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 525 } 526 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 527 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 528 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 529 } 530 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 531 Mem *pOut = pCtx->pOut; 532 assert( sqlite3_mutex_held(pOut->db->mutex) ); 533 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 534 return SQLITE_TOOBIG; 535 } 536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 537 return SQLITE_OK; 538 } 539 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 540 pCtx->isError = errCode ? errCode : -1; 541 #ifdef SQLITE_DEBUG 542 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 543 #endif 544 if( pCtx->pOut->flags & MEM_Null ){ 545 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 546 SQLITE_UTF8, SQLITE_STATIC); 547 } 548 } 549 550 /* Force an SQLITE_TOOBIG error. */ 551 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 552 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 553 pCtx->isError = SQLITE_TOOBIG; 554 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 555 SQLITE_UTF8, SQLITE_STATIC); 556 } 557 558 /* An SQLITE_NOMEM error. */ 559 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 560 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 561 sqlite3VdbeMemSetNull(pCtx->pOut); 562 pCtx->isError = SQLITE_NOMEM_BKPT; 563 sqlite3OomFault(pCtx->pOut->db); 564 } 565 566 #ifndef SQLITE_UNTESTABLE 567 /* Force the INT64 value currently stored as the result to be 568 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL 569 ** test-control. 570 */ 571 void sqlite3ResultIntReal(sqlite3_context *pCtx){ 572 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 573 if( pCtx->pOut->flags & MEM_Int ){ 574 pCtx->pOut->flags &= ~MEM_Int; 575 pCtx->pOut->flags |= MEM_IntReal; 576 } 577 } 578 #endif 579 580 581 /* 582 ** This function is called after a transaction has been committed. It 583 ** invokes callbacks registered with sqlite3_wal_hook() as required. 584 */ 585 static int doWalCallbacks(sqlite3 *db){ 586 int rc = SQLITE_OK; 587 #ifndef SQLITE_OMIT_WAL 588 int i; 589 for(i=0; i<db->nDb; i++){ 590 Btree *pBt = db->aDb[i].pBt; 591 if( pBt ){ 592 int nEntry; 593 sqlite3BtreeEnter(pBt); 594 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 595 sqlite3BtreeLeave(pBt); 596 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){ 597 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 598 } 599 } 600 } 601 #endif 602 return rc; 603 } 604 605 606 /* 607 ** Execute the statement pStmt, either until a row of data is ready, the 608 ** statement is completely executed or an error occurs. 609 ** 610 ** This routine implements the bulk of the logic behind the sqlite_step() 611 ** API. The only thing omitted is the automatic recompile if a 612 ** schema change has occurred. That detail is handled by the 613 ** outer sqlite3_step() wrapper procedure. 614 */ 615 static int sqlite3Step(Vdbe *p){ 616 sqlite3 *db; 617 int rc; 618 619 assert(p); 620 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 621 /* We used to require that sqlite3_reset() be called before retrying 622 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 623 ** with version 3.7.0, we changed this so that sqlite3_reset() would 624 ** be called automatically instead of throwing the SQLITE_MISUSE error. 625 ** This "automatic-reset" change is not technically an incompatibility, 626 ** since any application that receives an SQLITE_MISUSE is broken by 627 ** definition. 628 ** 629 ** Nevertheless, some published applications that were originally written 630 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 631 ** returns, and those were broken by the automatic-reset change. As a 632 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 633 ** legacy behavior of returning SQLITE_MISUSE for cases where the 634 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 635 ** or SQLITE_BUSY error. 636 */ 637 #ifdef SQLITE_OMIT_AUTORESET 638 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 639 sqlite3_reset((sqlite3_stmt*)p); 640 }else{ 641 return SQLITE_MISUSE_BKPT; 642 } 643 #else 644 sqlite3_reset((sqlite3_stmt*)p); 645 #endif 646 } 647 648 /* Check that malloc() has not failed. If it has, return early. */ 649 db = p->db; 650 if( db->mallocFailed ){ 651 p->rc = SQLITE_NOMEM; 652 return SQLITE_NOMEM_BKPT; 653 } 654 655 if( p->pc<0 && p->expired ){ 656 p->rc = SQLITE_SCHEMA; 657 rc = SQLITE_ERROR; 658 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 659 /* If this statement was prepared using saved SQL and an 660 ** error has occurred, then return the error code in p->rc to the 661 ** caller. Set the error code in the database handle to the same value. 662 */ 663 rc = sqlite3VdbeTransferError(p); 664 } 665 goto end_of_step; 666 } 667 if( p->pc<0 ){ 668 /* If there are no other statements currently running, then 669 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 670 ** from interrupting a statement that has not yet started. 671 */ 672 if( db->nVdbeActive==0 ){ 673 AtomicStore(&db->u1.isInterrupted, 0); 674 } 675 676 assert( db->nVdbeWrite>0 || db->autoCommit==0 677 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 678 ); 679 680 #ifndef SQLITE_OMIT_TRACE 681 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 682 && !db->init.busy && p->zSql ){ 683 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 684 }else{ 685 assert( p->startTime==0 ); 686 } 687 #endif 688 689 db->nVdbeActive++; 690 if( p->readOnly==0 ) db->nVdbeWrite++; 691 if( p->bIsReader ) db->nVdbeRead++; 692 p->pc = 0; 693 } 694 #ifdef SQLITE_DEBUG 695 p->rcApp = SQLITE_OK; 696 #endif 697 #ifndef SQLITE_OMIT_EXPLAIN 698 if( p->explain ){ 699 rc = sqlite3VdbeList(p); 700 }else 701 #endif /* SQLITE_OMIT_EXPLAIN */ 702 { 703 db->nVdbeExec++; 704 rc = sqlite3VdbeExec(p); 705 db->nVdbeExec--; 706 } 707 708 if( rc!=SQLITE_ROW ){ 709 #ifndef SQLITE_OMIT_TRACE 710 /* If the statement completed successfully, invoke the profile callback */ 711 checkProfileCallback(db, p); 712 #endif 713 714 if( rc==SQLITE_DONE && db->autoCommit ){ 715 assert( p->rc==SQLITE_OK ); 716 p->rc = doWalCallbacks(db); 717 if( p->rc!=SQLITE_OK ){ 718 rc = SQLITE_ERROR; 719 } 720 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){ 721 /* If this statement was prepared using saved SQL and an 722 ** error has occurred, then return the error code in p->rc to the 723 ** caller. Set the error code in the database handle to the same value. 724 */ 725 rc = sqlite3VdbeTransferError(p); 726 } 727 } 728 729 db->errCode = rc; 730 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 731 p->rc = SQLITE_NOMEM_BKPT; 732 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc; 733 } 734 end_of_step: 735 /* There are only a limited number of result codes allowed from the 736 ** statements prepared using the legacy sqlite3_prepare() interface */ 737 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 738 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 739 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 740 ); 741 return (rc&db->errMask); 742 } 743 744 /* 745 ** This is the top-level implementation of sqlite3_step(). Call 746 ** sqlite3Step() to do most of the work. If a schema error occurs, 747 ** call sqlite3Reprepare() and try again. 748 */ 749 int sqlite3_step(sqlite3_stmt *pStmt){ 750 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 751 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 752 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 753 sqlite3 *db; /* The database connection */ 754 755 if( vdbeSafetyNotNull(v) ){ 756 return SQLITE_MISUSE_BKPT; 757 } 758 db = v->db; 759 sqlite3_mutex_enter(db->mutex); 760 v->doingRerun = 0; 761 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 762 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 763 int savedPc = v->pc; 764 rc = sqlite3Reprepare(v); 765 if( rc!=SQLITE_OK ){ 766 /* This case occurs after failing to recompile an sql statement. 767 ** The error message from the SQL compiler has already been loaded 768 ** into the database handle. This block copies the error message 769 ** from the database handle into the statement and sets the statement 770 ** program counter to 0 to ensure that when the statement is 771 ** finalized or reset the parser error message is available via 772 ** sqlite3_errmsg() and sqlite3_errcode(). 773 */ 774 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 775 sqlite3DbFree(db, v->zErrMsg); 776 if( !db->mallocFailed ){ 777 v->zErrMsg = sqlite3DbStrDup(db, zErr); 778 v->rc = rc = sqlite3ApiExit(db, rc); 779 } else { 780 v->zErrMsg = 0; 781 v->rc = rc = SQLITE_NOMEM_BKPT; 782 } 783 break; 784 } 785 sqlite3_reset(pStmt); 786 if( savedPc>=0 ) v->doingRerun = 1; 787 assert( v->expired==0 ); 788 } 789 sqlite3_mutex_leave(db->mutex); 790 return rc; 791 } 792 793 794 /* 795 ** Extract the user data from a sqlite3_context structure and return a 796 ** pointer to it. 797 */ 798 void *sqlite3_user_data(sqlite3_context *p){ 799 assert( p && p->pFunc ); 800 return p->pFunc->pUserData; 801 } 802 803 /* 804 ** Extract the user data from a sqlite3_context structure and return a 805 ** pointer to it. 806 ** 807 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 808 ** returns a copy of the pointer to the database connection (the 1st 809 ** parameter) of the sqlite3_create_function() and 810 ** sqlite3_create_function16() routines that originally registered the 811 ** application defined function. 812 */ 813 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 814 assert( p && p->pOut ); 815 return p->pOut->db; 816 } 817 818 /* 819 ** If this routine is invoked from within an xColumn method of a virtual 820 ** table, then it returns true if and only if the the call is during an 821 ** UPDATE operation and the value of the column will not be modified 822 ** by the UPDATE. 823 ** 824 ** If this routine is called from any context other than within the 825 ** xColumn method of a virtual table, then the return value is meaningless 826 ** and arbitrary. 827 ** 828 ** Virtual table implements might use this routine to optimize their 829 ** performance by substituting a NULL result, or some other light-weight 830 ** value, as a signal to the xUpdate routine that the column is unchanged. 831 */ 832 int sqlite3_vtab_nochange(sqlite3_context *p){ 833 assert( p ); 834 return sqlite3_value_nochange(p->pOut); 835 } 836 837 /* 838 ** Return the current time for a statement. If the current time 839 ** is requested more than once within the same run of a single prepared 840 ** statement, the exact same time is returned for each invocation regardless 841 ** of the amount of time that elapses between invocations. In other words, 842 ** the time returned is always the time of the first call. 843 */ 844 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 845 int rc; 846 #ifndef SQLITE_ENABLE_STAT4 847 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 848 assert( p->pVdbe!=0 ); 849 #else 850 sqlite3_int64 iTime = 0; 851 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 852 #endif 853 if( *piTime==0 ){ 854 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 855 if( rc ) *piTime = 0; 856 } 857 return *piTime; 858 } 859 860 /* 861 ** Create a new aggregate context for p and return a pointer to 862 ** its pMem->z element. 863 */ 864 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 865 Mem *pMem = p->pMem; 866 assert( (pMem->flags & MEM_Agg)==0 ); 867 if( nByte<=0 ){ 868 sqlite3VdbeMemSetNull(pMem); 869 pMem->z = 0; 870 }else{ 871 sqlite3VdbeMemClearAndResize(pMem, nByte); 872 pMem->flags = MEM_Agg; 873 pMem->u.pDef = p->pFunc; 874 if( pMem->z ){ 875 memset(pMem->z, 0, nByte); 876 } 877 } 878 return (void*)pMem->z; 879 } 880 881 /* 882 ** Allocate or return the aggregate context for a user function. A new 883 ** context is allocated on the first call. Subsequent calls return the 884 ** same context that was returned on prior calls. 885 */ 886 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 887 assert( p && p->pFunc && p->pFunc->xFinalize ); 888 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 889 testcase( nByte<0 ); 890 if( (p->pMem->flags & MEM_Agg)==0 ){ 891 return createAggContext(p, nByte); 892 }else{ 893 return (void*)p->pMem->z; 894 } 895 } 896 897 /* 898 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 899 ** the user-function defined by pCtx. 900 ** 901 ** The left-most argument is 0. 902 ** 903 ** Undocumented behavior: If iArg is negative then access a cache of 904 ** auxiliary data pointers that is available to all functions within a 905 ** single prepared statement. The iArg values must match. 906 */ 907 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 908 AuxData *pAuxData; 909 910 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 911 #if SQLITE_ENABLE_STAT4 912 if( pCtx->pVdbe==0 ) return 0; 913 #else 914 assert( pCtx->pVdbe!=0 ); 915 #endif 916 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 917 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 918 return pAuxData->pAux; 919 } 920 } 921 return 0; 922 } 923 924 /* 925 ** Set the auxiliary data pointer and delete function, for the iArg'th 926 ** argument to the user-function defined by pCtx. Any previous value is 927 ** deleted by calling the delete function specified when it was set. 928 ** 929 ** The left-most argument is 0. 930 ** 931 ** Undocumented behavior: If iArg is negative then make the data available 932 ** to all functions within the current prepared statement using iArg as an 933 ** access code. 934 */ 935 void sqlite3_set_auxdata( 936 sqlite3_context *pCtx, 937 int iArg, 938 void *pAux, 939 void (*xDelete)(void*) 940 ){ 941 AuxData *pAuxData; 942 Vdbe *pVdbe = pCtx->pVdbe; 943 944 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 945 #ifdef SQLITE_ENABLE_STAT4 946 if( pVdbe==0 ) goto failed; 947 #else 948 assert( pVdbe!=0 ); 949 #endif 950 951 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){ 952 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){ 953 break; 954 } 955 } 956 if( pAuxData==0 ){ 957 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 958 if( !pAuxData ) goto failed; 959 pAuxData->iAuxOp = pCtx->iOp; 960 pAuxData->iAuxArg = iArg; 961 pAuxData->pNextAux = pVdbe->pAuxData; 962 pVdbe->pAuxData = pAuxData; 963 if( pCtx->isError==0 ) pCtx->isError = -1; 964 }else if( pAuxData->xDeleteAux ){ 965 pAuxData->xDeleteAux(pAuxData->pAux); 966 } 967 968 pAuxData->pAux = pAux; 969 pAuxData->xDeleteAux = xDelete; 970 return; 971 972 failed: 973 if( xDelete ){ 974 xDelete(pAux); 975 } 976 } 977 978 #ifndef SQLITE_OMIT_DEPRECATED 979 /* 980 ** Return the number of times the Step function of an aggregate has been 981 ** called. 982 ** 983 ** This function is deprecated. Do not use it for new code. It is 984 ** provide only to avoid breaking legacy code. New aggregate function 985 ** implementations should keep their own counts within their aggregate 986 ** context. 987 */ 988 int sqlite3_aggregate_count(sqlite3_context *p){ 989 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 990 return p->pMem->n; 991 } 992 #endif 993 994 /* 995 ** Return the number of columns in the result set for the statement pStmt. 996 */ 997 int sqlite3_column_count(sqlite3_stmt *pStmt){ 998 Vdbe *pVm = (Vdbe *)pStmt; 999 return pVm ? pVm->nResColumn : 0; 1000 } 1001 1002 /* 1003 ** Return the number of values available from the current row of the 1004 ** currently executing statement pStmt. 1005 */ 1006 int sqlite3_data_count(sqlite3_stmt *pStmt){ 1007 Vdbe *pVm = (Vdbe *)pStmt; 1008 if( pVm==0 || pVm->pResultSet==0 ) return 0; 1009 return pVm->nResColumn; 1010 } 1011 1012 /* 1013 ** Return a pointer to static memory containing an SQL NULL value. 1014 */ 1015 static const Mem *columnNullValue(void){ 1016 /* Even though the Mem structure contains an element 1017 ** of type i64, on certain architectures (x86) with certain compiler 1018 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 1019 ** instead of an 8-byte one. This all works fine, except that when 1020 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 1021 ** that a Mem structure is located on an 8-byte boundary. To prevent 1022 ** these assert()s from failing, when building with SQLITE_DEBUG defined 1023 ** using gcc, we force nullMem to be 8-byte aligned using the magical 1024 ** __attribute__((aligned(8))) macro. */ 1025 static const Mem nullMem 1026 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 1027 __attribute__((aligned(8))) 1028 #endif 1029 = { 1030 /* .u = */ {0}, 1031 /* .flags = */ (u16)MEM_Null, 1032 /* .enc = */ (u8)0, 1033 /* .eSubtype = */ (u8)0, 1034 /* .n = */ (int)0, 1035 /* .z = */ (char*)0, 1036 /* .zMalloc = */ (char*)0, 1037 /* .szMalloc = */ (int)0, 1038 /* .uTemp = */ (u32)0, 1039 /* .db = */ (sqlite3*)0, 1040 /* .xDel = */ (void(*)(void*))0, 1041 #ifdef SQLITE_DEBUG 1042 /* .pScopyFrom = */ (Mem*)0, 1043 /* .mScopyFlags= */ 0, 1044 #endif 1045 }; 1046 return &nullMem; 1047 } 1048 1049 /* 1050 ** Check to see if column iCol of the given statement is valid. If 1051 ** it is, return a pointer to the Mem for the value of that column. 1052 ** If iCol is not valid, return a pointer to a Mem which has a value 1053 ** of NULL. 1054 */ 1055 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 1056 Vdbe *pVm; 1057 Mem *pOut; 1058 1059 pVm = (Vdbe *)pStmt; 1060 if( pVm==0 ) return (Mem*)columnNullValue(); 1061 assert( pVm->db ); 1062 sqlite3_mutex_enter(pVm->db->mutex); 1063 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 1064 pOut = &pVm->pResultSet[i]; 1065 }else{ 1066 sqlite3Error(pVm->db, SQLITE_RANGE); 1067 pOut = (Mem*)columnNullValue(); 1068 } 1069 return pOut; 1070 } 1071 1072 /* 1073 ** This function is called after invoking an sqlite3_value_XXX function on a 1074 ** column value (i.e. a value returned by evaluating an SQL expression in the 1075 ** select list of a SELECT statement) that may cause a malloc() failure. If 1076 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 1077 ** code of statement pStmt set to SQLITE_NOMEM. 1078 ** 1079 ** Specifically, this is called from within: 1080 ** 1081 ** sqlite3_column_int() 1082 ** sqlite3_column_int64() 1083 ** sqlite3_column_text() 1084 ** sqlite3_column_text16() 1085 ** sqlite3_column_real() 1086 ** sqlite3_column_bytes() 1087 ** sqlite3_column_bytes16() 1088 ** sqiite3_column_blob() 1089 */ 1090 static void columnMallocFailure(sqlite3_stmt *pStmt) 1091 { 1092 /* If malloc() failed during an encoding conversion within an 1093 ** sqlite3_column_XXX API, then set the return code of the statement to 1094 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 1095 ** and _finalize() will return NOMEM. 1096 */ 1097 Vdbe *p = (Vdbe *)pStmt; 1098 if( p ){ 1099 assert( p->db!=0 ); 1100 assert( sqlite3_mutex_held(p->db->mutex) ); 1101 p->rc = sqlite3ApiExit(p->db, p->rc); 1102 sqlite3_mutex_leave(p->db->mutex); 1103 } 1104 } 1105 1106 /**************************** sqlite3_column_ ******************************* 1107 ** The following routines are used to access elements of the current row 1108 ** in the result set. 1109 */ 1110 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1111 const void *val; 1112 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1113 /* Even though there is no encoding conversion, value_blob() might 1114 ** need to call malloc() to expand the result of a zeroblob() 1115 ** expression. 1116 */ 1117 columnMallocFailure(pStmt); 1118 return val; 1119 } 1120 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1121 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1122 columnMallocFailure(pStmt); 1123 return val; 1124 } 1125 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1126 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1127 columnMallocFailure(pStmt); 1128 return val; 1129 } 1130 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1131 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1132 columnMallocFailure(pStmt); 1133 return val; 1134 } 1135 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1136 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1137 columnMallocFailure(pStmt); 1138 return val; 1139 } 1140 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1141 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1142 columnMallocFailure(pStmt); 1143 return val; 1144 } 1145 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1146 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1147 columnMallocFailure(pStmt); 1148 return val; 1149 } 1150 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1151 Mem *pOut = columnMem(pStmt, i); 1152 if( pOut->flags&MEM_Static ){ 1153 pOut->flags &= ~MEM_Static; 1154 pOut->flags |= MEM_Ephem; 1155 } 1156 columnMallocFailure(pStmt); 1157 return (sqlite3_value *)pOut; 1158 } 1159 #ifndef SQLITE_OMIT_UTF16 1160 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1161 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1162 columnMallocFailure(pStmt); 1163 return val; 1164 } 1165 #endif /* SQLITE_OMIT_UTF16 */ 1166 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1167 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1168 columnMallocFailure(pStmt); 1169 return iType; 1170 } 1171 1172 /* 1173 ** Convert the N-th element of pStmt->pColName[] into a string using 1174 ** xFunc() then return that string. If N is out of range, return 0. 1175 ** 1176 ** There are up to 5 names for each column. useType determines which 1177 ** name is returned. Here are the names: 1178 ** 1179 ** 0 The column name as it should be displayed for output 1180 ** 1 The datatype name for the column 1181 ** 2 The name of the database that the column derives from 1182 ** 3 The name of the table that the column derives from 1183 ** 4 The name of the table column that the result column derives from 1184 ** 1185 ** If the result is not a simple column reference (if it is an expression 1186 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1187 */ 1188 static const void *columnName( 1189 sqlite3_stmt *pStmt, /* The statement */ 1190 int N, /* Which column to get the name for */ 1191 int useUtf16, /* True to return the name as UTF16 */ 1192 int useType /* What type of name */ 1193 ){ 1194 const void *ret; 1195 Vdbe *p; 1196 int n; 1197 sqlite3 *db; 1198 #ifdef SQLITE_ENABLE_API_ARMOR 1199 if( pStmt==0 ){ 1200 (void)SQLITE_MISUSE_BKPT; 1201 return 0; 1202 } 1203 #endif 1204 ret = 0; 1205 p = (Vdbe *)pStmt; 1206 db = p->db; 1207 assert( db!=0 ); 1208 n = sqlite3_column_count(pStmt); 1209 if( N<n && N>=0 ){ 1210 N += useType*n; 1211 sqlite3_mutex_enter(db->mutex); 1212 assert( db->mallocFailed==0 ); 1213 #ifndef SQLITE_OMIT_UTF16 1214 if( useUtf16 ){ 1215 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); 1216 }else 1217 #endif 1218 { 1219 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); 1220 } 1221 /* A malloc may have failed inside of the _text() call. If this 1222 ** is the case, clear the mallocFailed flag and return NULL. 1223 */ 1224 if( db->mallocFailed ){ 1225 sqlite3OomClear(db); 1226 ret = 0; 1227 } 1228 sqlite3_mutex_leave(db->mutex); 1229 } 1230 return ret; 1231 } 1232 1233 /* 1234 ** Return the name of the Nth column of the result set returned by SQL 1235 ** statement pStmt. 1236 */ 1237 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1238 return columnName(pStmt, N, 0, COLNAME_NAME); 1239 } 1240 #ifndef SQLITE_OMIT_UTF16 1241 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1242 return columnName(pStmt, N, 1, COLNAME_NAME); 1243 } 1244 #endif 1245 1246 /* 1247 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1248 ** not define OMIT_DECLTYPE. 1249 */ 1250 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1251 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1252 and SQLITE_ENABLE_COLUMN_METADATA" 1253 #endif 1254 1255 #ifndef SQLITE_OMIT_DECLTYPE 1256 /* 1257 ** Return the column declaration type (if applicable) of the 'i'th column 1258 ** of the result set of SQL statement pStmt. 1259 */ 1260 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1261 return columnName(pStmt, N, 0, COLNAME_DECLTYPE); 1262 } 1263 #ifndef SQLITE_OMIT_UTF16 1264 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1265 return columnName(pStmt, N, 1, COLNAME_DECLTYPE); 1266 } 1267 #endif /* SQLITE_OMIT_UTF16 */ 1268 #endif /* SQLITE_OMIT_DECLTYPE */ 1269 1270 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1271 /* 1272 ** Return the name of the database from which a result column derives. 1273 ** NULL is returned if the result column is an expression or constant or 1274 ** anything else which is not an unambiguous reference to a database column. 1275 */ 1276 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1277 return columnName(pStmt, N, 0, COLNAME_DATABASE); 1278 } 1279 #ifndef SQLITE_OMIT_UTF16 1280 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1281 return columnName(pStmt, N, 1, COLNAME_DATABASE); 1282 } 1283 #endif /* SQLITE_OMIT_UTF16 */ 1284 1285 /* 1286 ** Return the name of the table from which a result column derives. 1287 ** NULL is returned if the result column is an expression or constant or 1288 ** anything else which is not an unambiguous reference to a database column. 1289 */ 1290 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1291 return columnName(pStmt, N, 0, COLNAME_TABLE); 1292 } 1293 #ifndef SQLITE_OMIT_UTF16 1294 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1295 return columnName(pStmt, N, 1, COLNAME_TABLE); 1296 } 1297 #endif /* SQLITE_OMIT_UTF16 */ 1298 1299 /* 1300 ** Return the name of the table column from which a result column derives. 1301 ** NULL is returned if the result column is an expression or constant or 1302 ** anything else which is not an unambiguous reference to a database column. 1303 */ 1304 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1305 return columnName(pStmt, N, 0, COLNAME_COLUMN); 1306 } 1307 #ifndef SQLITE_OMIT_UTF16 1308 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1309 return columnName(pStmt, N, 1, COLNAME_COLUMN); 1310 } 1311 #endif /* SQLITE_OMIT_UTF16 */ 1312 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1313 1314 1315 /******************************* sqlite3_bind_ *************************** 1316 ** 1317 ** Routines used to attach values to wildcards in a compiled SQL statement. 1318 */ 1319 /* 1320 ** Unbind the value bound to variable i in virtual machine p. This is the 1321 ** the same as binding a NULL value to the column. If the "i" parameter is 1322 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1323 ** 1324 ** A successful evaluation of this routine acquires the mutex on p. 1325 ** the mutex is released if any kind of error occurs. 1326 ** 1327 ** The error code stored in database p->db is overwritten with the return 1328 ** value in any case. 1329 */ 1330 static int vdbeUnbind(Vdbe *p, int i){ 1331 Mem *pVar; 1332 if( vdbeSafetyNotNull(p) ){ 1333 return SQLITE_MISUSE_BKPT; 1334 } 1335 sqlite3_mutex_enter(p->db->mutex); 1336 if( p->iVdbeMagic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1337 sqlite3Error(p->db, SQLITE_MISUSE); 1338 sqlite3_mutex_leave(p->db->mutex); 1339 sqlite3_log(SQLITE_MISUSE, 1340 "bind on a busy prepared statement: [%s]", p->zSql); 1341 return SQLITE_MISUSE_BKPT; 1342 } 1343 if( i<1 || i>p->nVar ){ 1344 sqlite3Error(p->db, SQLITE_RANGE); 1345 sqlite3_mutex_leave(p->db->mutex); 1346 return SQLITE_RANGE; 1347 } 1348 i--; 1349 pVar = &p->aVar[i]; 1350 sqlite3VdbeMemRelease(pVar); 1351 pVar->flags = MEM_Null; 1352 p->db->errCode = SQLITE_OK; 1353 1354 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1355 ** binding a new value to this variable invalidates the current query plan. 1356 ** 1357 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host 1358 ** parameter in the WHERE clause might influence the choice of query plan 1359 ** for a statement, then the statement will be automatically recompiled, 1360 ** as if there had been a schema change, on the first sqlite3_step() call 1361 ** following any change to the bindings of that parameter. 1362 */ 1363 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 ); 1364 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1365 p->expired = 1; 1366 } 1367 return SQLITE_OK; 1368 } 1369 1370 /* 1371 ** Bind a text or BLOB value. 1372 */ 1373 static int bindText( 1374 sqlite3_stmt *pStmt, /* The statement to bind against */ 1375 int i, /* Index of the parameter to bind */ 1376 const void *zData, /* Pointer to the data to be bound */ 1377 i64 nData, /* Number of bytes of data to be bound */ 1378 void (*xDel)(void*), /* Destructor for the data */ 1379 u8 encoding /* Encoding for the data */ 1380 ){ 1381 Vdbe *p = (Vdbe *)pStmt; 1382 Mem *pVar; 1383 int rc; 1384 1385 rc = vdbeUnbind(p, i); 1386 if( rc==SQLITE_OK ){ 1387 if( zData!=0 ){ 1388 pVar = &p->aVar[i-1]; 1389 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1390 if( rc==SQLITE_OK && encoding!=0 ){ 1391 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1392 } 1393 if( rc ){ 1394 sqlite3Error(p->db, rc); 1395 rc = sqlite3ApiExit(p->db, rc); 1396 } 1397 } 1398 sqlite3_mutex_leave(p->db->mutex); 1399 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1400 xDel((void*)zData); 1401 } 1402 return rc; 1403 } 1404 1405 1406 /* 1407 ** Bind a blob value to an SQL statement variable. 1408 */ 1409 int sqlite3_bind_blob( 1410 sqlite3_stmt *pStmt, 1411 int i, 1412 const void *zData, 1413 int nData, 1414 void (*xDel)(void*) 1415 ){ 1416 #ifdef SQLITE_ENABLE_API_ARMOR 1417 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1418 #endif 1419 return bindText(pStmt, i, zData, nData, xDel, 0); 1420 } 1421 int sqlite3_bind_blob64( 1422 sqlite3_stmt *pStmt, 1423 int i, 1424 const void *zData, 1425 sqlite3_uint64 nData, 1426 void (*xDel)(void*) 1427 ){ 1428 assert( xDel!=SQLITE_DYNAMIC ); 1429 return bindText(pStmt, i, zData, nData, xDel, 0); 1430 } 1431 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1432 int rc; 1433 Vdbe *p = (Vdbe *)pStmt; 1434 rc = vdbeUnbind(p, i); 1435 if( rc==SQLITE_OK ){ 1436 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1437 sqlite3_mutex_leave(p->db->mutex); 1438 } 1439 return rc; 1440 } 1441 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1442 return sqlite3_bind_int64(p, i, (i64)iValue); 1443 } 1444 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1445 int rc; 1446 Vdbe *p = (Vdbe *)pStmt; 1447 rc = vdbeUnbind(p, i); 1448 if( rc==SQLITE_OK ){ 1449 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1450 sqlite3_mutex_leave(p->db->mutex); 1451 } 1452 return rc; 1453 } 1454 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1455 int rc; 1456 Vdbe *p = (Vdbe*)pStmt; 1457 rc = vdbeUnbind(p, i); 1458 if( rc==SQLITE_OK ){ 1459 sqlite3_mutex_leave(p->db->mutex); 1460 } 1461 return rc; 1462 } 1463 int sqlite3_bind_pointer( 1464 sqlite3_stmt *pStmt, 1465 int i, 1466 void *pPtr, 1467 const char *zPTtype, 1468 void (*xDestructor)(void*) 1469 ){ 1470 int rc; 1471 Vdbe *p = (Vdbe*)pStmt; 1472 rc = vdbeUnbind(p, i); 1473 if( rc==SQLITE_OK ){ 1474 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); 1475 sqlite3_mutex_leave(p->db->mutex); 1476 }else if( xDestructor ){ 1477 xDestructor(pPtr); 1478 } 1479 return rc; 1480 } 1481 int sqlite3_bind_text( 1482 sqlite3_stmt *pStmt, 1483 int i, 1484 const char *zData, 1485 int nData, 1486 void (*xDel)(void*) 1487 ){ 1488 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1489 } 1490 int sqlite3_bind_text64( 1491 sqlite3_stmt *pStmt, 1492 int i, 1493 const char *zData, 1494 sqlite3_uint64 nData, 1495 void (*xDel)(void*), 1496 unsigned char enc 1497 ){ 1498 assert( xDel!=SQLITE_DYNAMIC ); 1499 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1500 return bindText(pStmt, i, zData, nData, xDel, enc); 1501 } 1502 #ifndef SQLITE_OMIT_UTF16 1503 int sqlite3_bind_text16( 1504 sqlite3_stmt *pStmt, 1505 int i, 1506 const void *zData, 1507 int nData, 1508 void (*xDel)(void*) 1509 ){ 1510 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1511 } 1512 #endif /* SQLITE_OMIT_UTF16 */ 1513 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1514 int rc; 1515 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1516 case SQLITE_INTEGER: { 1517 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1518 break; 1519 } 1520 case SQLITE_FLOAT: { 1521 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1522 break; 1523 } 1524 case SQLITE_BLOB: { 1525 if( pValue->flags & MEM_Zero ){ 1526 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1527 }else{ 1528 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1529 } 1530 break; 1531 } 1532 case SQLITE_TEXT: { 1533 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1534 pValue->enc); 1535 break; 1536 } 1537 default: { 1538 rc = sqlite3_bind_null(pStmt, i); 1539 break; 1540 } 1541 } 1542 return rc; 1543 } 1544 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1545 int rc; 1546 Vdbe *p = (Vdbe *)pStmt; 1547 rc = vdbeUnbind(p, i); 1548 if( rc==SQLITE_OK ){ 1549 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1550 sqlite3_mutex_leave(p->db->mutex); 1551 } 1552 return rc; 1553 } 1554 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1555 int rc; 1556 Vdbe *p = (Vdbe *)pStmt; 1557 sqlite3_mutex_enter(p->db->mutex); 1558 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1559 rc = SQLITE_TOOBIG; 1560 }else{ 1561 assert( (n & 0x7FFFFFFF)==n ); 1562 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1563 } 1564 rc = sqlite3ApiExit(p->db, rc); 1565 sqlite3_mutex_leave(p->db->mutex); 1566 return rc; 1567 } 1568 1569 /* 1570 ** Return the number of wildcards that can be potentially bound to. 1571 ** This routine is added to support DBD::SQLite. 1572 */ 1573 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1574 Vdbe *p = (Vdbe*)pStmt; 1575 return p ? p->nVar : 0; 1576 } 1577 1578 /* 1579 ** Return the name of a wildcard parameter. Return NULL if the index 1580 ** is out of range or if the wildcard is unnamed. 1581 ** 1582 ** The result is always UTF-8. 1583 */ 1584 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1585 Vdbe *p = (Vdbe*)pStmt; 1586 if( p==0 ) return 0; 1587 return sqlite3VListNumToName(p->pVList, i); 1588 } 1589 1590 /* 1591 ** Given a wildcard parameter name, return the index of the variable 1592 ** with that name. If there is no variable with the given name, 1593 ** return 0. 1594 */ 1595 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1596 if( p==0 || zName==0 ) return 0; 1597 return sqlite3VListNameToNum(p->pVList, zName, nName); 1598 } 1599 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1600 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1601 } 1602 1603 /* 1604 ** Transfer all bindings from the first statement over to the second. 1605 */ 1606 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1607 Vdbe *pFrom = (Vdbe*)pFromStmt; 1608 Vdbe *pTo = (Vdbe*)pToStmt; 1609 int i; 1610 assert( pTo->db==pFrom->db ); 1611 assert( pTo->nVar==pFrom->nVar ); 1612 sqlite3_mutex_enter(pTo->db->mutex); 1613 for(i=0; i<pFrom->nVar; i++){ 1614 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1615 } 1616 sqlite3_mutex_leave(pTo->db->mutex); 1617 return SQLITE_OK; 1618 } 1619 1620 #ifndef SQLITE_OMIT_DEPRECATED 1621 /* 1622 ** Deprecated external interface. Internal/core SQLite code 1623 ** should call sqlite3TransferBindings. 1624 ** 1625 ** It is misuse to call this routine with statements from different 1626 ** database connections. But as this is a deprecated interface, we 1627 ** will not bother to check for that condition. 1628 ** 1629 ** If the two statements contain a different number of bindings, then 1630 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1631 ** SQLITE_OK is returned. 1632 */ 1633 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1634 Vdbe *pFrom = (Vdbe*)pFromStmt; 1635 Vdbe *pTo = (Vdbe*)pToStmt; 1636 if( pFrom->nVar!=pTo->nVar ){ 1637 return SQLITE_ERROR; 1638 } 1639 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 ); 1640 if( pTo->expmask ){ 1641 pTo->expired = 1; 1642 } 1643 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 ); 1644 if( pFrom->expmask ){ 1645 pFrom->expired = 1; 1646 } 1647 return sqlite3TransferBindings(pFromStmt, pToStmt); 1648 } 1649 #endif 1650 1651 /* 1652 ** Return the sqlite3* database handle to which the prepared statement given 1653 ** in the argument belongs. This is the same database handle that was 1654 ** the first argument to the sqlite3_prepare() that was used to create 1655 ** the statement in the first place. 1656 */ 1657 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1658 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1659 } 1660 1661 /* 1662 ** Return true if the prepared statement is guaranteed to not modify the 1663 ** database. 1664 */ 1665 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1666 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1667 } 1668 1669 /* 1670 ** Return 1 if the statement is an EXPLAIN and return 2 if the 1671 ** statement is an EXPLAIN QUERY PLAN 1672 */ 1673 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ 1674 return pStmt ? ((Vdbe*)pStmt)->explain : 0; 1675 } 1676 1677 /* 1678 ** Return true if the prepared statement is in need of being reset. 1679 */ 1680 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1681 Vdbe *v = (Vdbe*)pStmt; 1682 return v!=0 && v->iVdbeMagic==VDBE_MAGIC_RUN && v->pc>=0; 1683 } 1684 1685 /* 1686 ** Return a pointer to the next prepared statement after pStmt associated 1687 ** with database connection pDb. If pStmt is NULL, return the first 1688 ** prepared statement for the database connection. Return NULL if there 1689 ** are no more. 1690 */ 1691 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1692 sqlite3_stmt *pNext; 1693 #ifdef SQLITE_ENABLE_API_ARMOR 1694 if( !sqlite3SafetyCheckOk(pDb) ){ 1695 (void)SQLITE_MISUSE_BKPT; 1696 return 0; 1697 } 1698 #endif 1699 sqlite3_mutex_enter(pDb->mutex); 1700 if( pStmt==0 ){ 1701 pNext = (sqlite3_stmt*)pDb->pVdbe; 1702 }else{ 1703 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1704 } 1705 sqlite3_mutex_leave(pDb->mutex); 1706 return pNext; 1707 } 1708 1709 /* 1710 ** Return the value of a status counter for a prepared statement 1711 */ 1712 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1713 Vdbe *pVdbe = (Vdbe*)pStmt; 1714 u32 v; 1715 #ifdef SQLITE_ENABLE_API_ARMOR 1716 if( !pStmt 1717 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter))) 1718 ){ 1719 (void)SQLITE_MISUSE_BKPT; 1720 return 0; 1721 } 1722 #endif 1723 if( op==SQLITE_STMTSTATUS_MEMUSED ){ 1724 sqlite3 *db = pVdbe->db; 1725 sqlite3_mutex_enter(db->mutex); 1726 v = 0; 1727 db->pnBytesFreed = (int*)&v; 1728 sqlite3VdbeClearObject(db, pVdbe); 1729 sqlite3DbFree(db, pVdbe); 1730 db->pnBytesFreed = 0; 1731 sqlite3_mutex_leave(db->mutex); 1732 }else{ 1733 v = pVdbe->aCounter[op]; 1734 if( resetFlag ) pVdbe->aCounter[op] = 0; 1735 } 1736 return (int)v; 1737 } 1738 1739 /* 1740 ** Return the SQL associated with a prepared statement 1741 */ 1742 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1743 Vdbe *p = (Vdbe *)pStmt; 1744 return p ? p->zSql : 0; 1745 } 1746 1747 /* 1748 ** Return the SQL associated with a prepared statement with 1749 ** bound parameters expanded. Space to hold the returned string is 1750 ** obtained from sqlite3_malloc(). The caller is responsible for 1751 ** freeing the returned string by passing it to sqlite3_free(). 1752 ** 1753 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1754 ** expanded bound parameters. 1755 */ 1756 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1757 #ifdef SQLITE_OMIT_TRACE 1758 return 0; 1759 #else 1760 char *z = 0; 1761 const char *zSql = sqlite3_sql(pStmt); 1762 if( zSql ){ 1763 Vdbe *p = (Vdbe *)pStmt; 1764 sqlite3_mutex_enter(p->db->mutex); 1765 z = sqlite3VdbeExpandSql(p, zSql); 1766 sqlite3_mutex_leave(p->db->mutex); 1767 } 1768 return z; 1769 #endif 1770 } 1771 1772 #ifdef SQLITE_ENABLE_NORMALIZE 1773 /* 1774 ** Return the normalized SQL associated with a prepared statement. 1775 */ 1776 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ 1777 Vdbe *p = (Vdbe *)pStmt; 1778 if( p==0 ) return 0; 1779 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){ 1780 sqlite3_mutex_enter(p->db->mutex); 1781 p->zNormSql = sqlite3Normalize(p, p->zSql); 1782 sqlite3_mutex_leave(p->db->mutex); 1783 } 1784 return p->zNormSql; 1785 } 1786 #endif /* SQLITE_ENABLE_NORMALIZE */ 1787 1788 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1789 /* 1790 ** Allocate and populate an UnpackedRecord structure based on the serialized 1791 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1792 ** if successful, or a NULL pointer if an OOM error is encountered. 1793 */ 1794 static UnpackedRecord *vdbeUnpackRecord( 1795 KeyInfo *pKeyInfo, 1796 int nKey, 1797 const void *pKey 1798 ){ 1799 UnpackedRecord *pRet; /* Return value */ 1800 1801 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1802 if( pRet ){ 1803 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1)); 1804 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1805 } 1806 return pRet; 1807 } 1808 1809 /* 1810 ** This function is called from within a pre-update callback to retrieve 1811 ** a field of the row currently being updated or deleted. 1812 */ 1813 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1814 PreUpdate *p = db->pPreUpdate; 1815 Mem *pMem; 1816 int rc = SQLITE_OK; 1817 1818 /* Test that this call is being made from within an SQLITE_DELETE or 1819 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1820 if( !p || p->op==SQLITE_INSERT ){ 1821 rc = SQLITE_MISUSE_BKPT; 1822 goto preupdate_old_out; 1823 } 1824 if( p->pPk ){ 1825 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1826 } 1827 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1828 rc = SQLITE_RANGE; 1829 goto preupdate_old_out; 1830 } 1831 1832 /* If the old.* record has not yet been loaded into memory, do so now. */ 1833 if( p->pUnpacked==0 ){ 1834 u32 nRec; 1835 u8 *aRec; 1836 1837 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1838 aRec = sqlite3DbMallocRaw(db, nRec); 1839 if( !aRec ) goto preupdate_old_out; 1840 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1841 if( rc==SQLITE_OK ){ 1842 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1843 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1844 } 1845 if( rc!=SQLITE_OK ){ 1846 sqlite3DbFree(db, aRec); 1847 goto preupdate_old_out; 1848 } 1849 p->aRecord = aRec; 1850 } 1851 1852 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1853 if( iIdx==p->pTab->iPKey ){ 1854 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1855 }else if( iIdx>=p->pUnpacked->nField ){ 1856 *ppValue = (sqlite3_value *)columnNullValue(); 1857 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1858 if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1859 testcase( pMem->flags & MEM_Int ); 1860 testcase( pMem->flags & MEM_IntReal ); 1861 sqlite3VdbeMemRealify(pMem); 1862 } 1863 } 1864 1865 preupdate_old_out: 1866 sqlite3Error(db, rc); 1867 return sqlite3ApiExit(db, rc); 1868 } 1869 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1870 1871 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1872 /* 1873 ** This function is called from within a pre-update callback to retrieve 1874 ** the number of columns in the row being updated, deleted or inserted. 1875 */ 1876 int sqlite3_preupdate_count(sqlite3 *db){ 1877 PreUpdate *p = db->pPreUpdate; 1878 return (p ? p->keyinfo.nKeyField : 0); 1879 } 1880 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1881 1882 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1883 /* 1884 ** This function is designed to be called from within a pre-update callback 1885 ** only. It returns zero if the change that caused the callback was made 1886 ** immediately by a user SQL statement. Or, if the change was made by a 1887 ** trigger program, it returns the number of trigger programs currently 1888 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1889 ** top-level trigger etc.). 1890 ** 1891 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1892 ** or SET DEFAULT action is considered a trigger. 1893 */ 1894 int sqlite3_preupdate_depth(sqlite3 *db){ 1895 PreUpdate *p = db->pPreUpdate; 1896 return (p ? p->v->nFrame : 0); 1897 } 1898 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1899 1900 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1901 /* 1902 ** This function is designed to be called from within a pre-update callback 1903 ** only. 1904 */ 1905 int sqlite3_preupdate_blobwrite(sqlite3 *db){ 1906 PreUpdate *p = db->pPreUpdate; 1907 return (p ? p->iBlobWrite : -1); 1908 } 1909 #endif 1910 1911 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1912 /* 1913 ** This function is called from within a pre-update callback to retrieve 1914 ** a field of the row currently being updated or inserted. 1915 */ 1916 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1917 PreUpdate *p = db->pPreUpdate; 1918 int rc = SQLITE_OK; 1919 Mem *pMem; 1920 1921 if( !p || p->op==SQLITE_DELETE ){ 1922 rc = SQLITE_MISUSE_BKPT; 1923 goto preupdate_new_out; 1924 } 1925 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1926 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx); 1927 } 1928 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1929 rc = SQLITE_RANGE; 1930 goto preupdate_new_out; 1931 } 1932 1933 if( p->op==SQLITE_INSERT ){ 1934 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1935 ** that is being inserted. Deserialize it. */ 1936 UnpackedRecord *pUnpack = p->pNewUnpacked; 1937 if( !pUnpack ){ 1938 Mem *pData = &p->v->aMem[p->iNewReg]; 1939 rc = ExpandBlob(pData); 1940 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1941 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1942 if( !pUnpack ){ 1943 rc = SQLITE_NOMEM; 1944 goto preupdate_new_out; 1945 } 1946 p->pNewUnpacked = pUnpack; 1947 } 1948 pMem = &pUnpack->aMem[iIdx]; 1949 if( iIdx==p->pTab->iPKey ){ 1950 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1951 }else if( iIdx>=pUnpack->nField ){ 1952 pMem = (sqlite3_value *)columnNullValue(); 1953 } 1954 }else{ 1955 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1956 ** value. Make a copy of the cell contents and return a pointer to it. 1957 ** It is not safe to return a pointer to the memory cell itself as the 1958 ** caller may modify the value text encoding. 1959 */ 1960 assert( p->op==SQLITE_UPDATE ); 1961 if( !p->aNew ){ 1962 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1963 if( !p->aNew ){ 1964 rc = SQLITE_NOMEM; 1965 goto preupdate_new_out; 1966 } 1967 } 1968 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1969 pMem = &p->aNew[iIdx]; 1970 if( pMem->flags==0 ){ 1971 if( iIdx==p->pTab->iPKey ){ 1972 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1973 }else{ 1974 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1975 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1976 } 1977 } 1978 } 1979 *ppValue = pMem; 1980 1981 preupdate_new_out: 1982 sqlite3Error(db, rc); 1983 return sqlite3ApiExit(db, rc); 1984 } 1985 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1986 1987 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1988 /* 1989 ** Return status data for a single loop within query pStmt. 1990 */ 1991 int sqlite3_stmt_scanstatus( 1992 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1993 int idx, /* Index of loop to report on */ 1994 int iScanStatusOp, /* Which metric to return */ 1995 void *pOut /* OUT: Write the answer here */ 1996 ){ 1997 Vdbe *p = (Vdbe*)pStmt; 1998 ScanStatus *pScan; 1999 if( idx<0 || idx>=p->nScan ) return 1; 2000 pScan = &p->aScan[idx]; 2001 switch( iScanStatusOp ){ 2002 case SQLITE_SCANSTAT_NLOOP: { 2003 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 2004 break; 2005 } 2006 case SQLITE_SCANSTAT_NVISIT: { 2007 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 2008 break; 2009 } 2010 case SQLITE_SCANSTAT_EST: { 2011 double r = 1.0; 2012 LogEst x = pScan->nEst; 2013 while( x<100 ){ 2014 x += 10; 2015 r *= 0.5; 2016 } 2017 *(double*)pOut = r*sqlite3LogEstToInt(x); 2018 break; 2019 } 2020 case SQLITE_SCANSTAT_NAME: { 2021 *(const char**)pOut = pScan->zName; 2022 break; 2023 } 2024 case SQLITE_SCANSTAT_EXPLAIN: { 2025 if( pScan->addrExplain ){ 2026 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 2027 }else{ 2028 *(const char**)pOut = 0; 2029 } 2030 break; 2031 } 2032 case SQLITE_SCANSTAT_SELECTID: { 2033 if( pScan->addrExplain ){ 2034 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 2035 }else{ 2036 *(int*)pOut = -1; 2037 } 2038 break; 2039 } 2040 default: { 2041 return 1; 2042 } 2043 } 2044 return 0; 2045 } 2046 2047 /* 2048 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 2049 */ 2050 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 2051 Vdbe *p = (Vdbe*)pStmt; 2052 memset(p->anExec, 0, p->nOp * sizeof(i64)); 2053 } 2054 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 2055