1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 #ifndef SQLITE_OMIT_TRACE 57 /* 58 ** Invoke the profile callback. This routine is only called if we already 59 ** know that the profile callback is defined and needs to be invoked. 60 */ 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ 62 sqlite3_int64 iNow; 63 sqlite3_int64 iElapse; 64 assert( p->startTime>0 ); 65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 ); 66 assert( db->init.busy==0 ); 67 assert( p->zSql!=0 ); 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 69 iElapse = (iNow - p->startTime)*1000000; 70 if( db->xProfile ){ 71 db->xProfile(db->pProfileArg, p->zSql, iElapse); 72 } 73 if( db->mTrace & SQLITE_TRACE_PROFILE ){ 74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); 75 } 76 p->startTime = 0; 77 } 78 /* 79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback 80 ** is needed, and it invokes the callback if it is needed. 81 */ 82 # define checkProfileCallback(DB,P) \ 83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } 84 #else 85 # define checkProfileCallback(DB,P) /*no-op*/ 86 #endif 87 88 /* 89 ** The following routine destroys a virtual machine that is created by 90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 91 ** success/failure code that describes the result of executing the virtual 92 ** machine. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_finalize(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 101 ** pointer is a harmless no-op. */ 102 rc = SQLITE_OK; 103 }else{ 104 Vdbe *v = (Vdbe*)pStmt; 105 sqlite3 *db = v->db; 106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 107 sqlite3_mutex_enter(db->mutex); 108 checkProfileCallback(db, v); 109 rc = sqlite3VdbeFinalize(v); 110 rc = sqlite3ApiExit(db, rc); 111 sqlite3LeaveMutexAndCloseZombie(db); 112 } 113 return rc; 114 } 115 116 /* 117 ** Terminate the current execution of an SQL statement and reset it 118 ** back to its starting state so that it can be reused. A success code from 119 ** the prior execution is returned. 120 ** 121 ** This routine sets the error code and string returned by 122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 123 */ 124 int sqlite3_reset(sqlite3_stmt *pStmt){ 125 int rc; 126 if( pStmt==0 ){ 127 rc = SQLITE_OK; 128 }else{ 129 Vdbe *v = (Vdbe*)pStmt; 130 sqlite3 *db = v->db; 131 sqlite3_mutex_enter(db->mutex); 132 checkProfileCallback(db, v); 133 rc = sqlite3VdbeReset(v); 134 sqlite3VdbeRewind(v); 135 assert( (rc & (db->errMask))==rc ); 136 rc = sqlite3ApiExit(db, rc); 137 sqlite3_mutex_leave(db->mutex); 138 } 139 return rc; 140 } 141 142 /* 143 ** Set all the parameters in the compiled SQL statement to NULL. 144 */ 145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 146 int i; 147 int rc = SQLITE_OK; 148 Vdbe *p = (Vdbe*)pStmt; 149 #if SQLITE_THREADSAFE 150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 151 #endif 152 sqlite3_mutex_enter(mutex); 153 for(i=0; i<p->nVar; i++){ 154 sqlite3VdbeMemRelease(&p->aVar[i]); 155 p->aVar[i].flags = MEM_Null; 156 } 157 assert( p->isPrepareV2 || p->expmask==0 ); 158 if( p->expmask ){ 159 p->expired = 1; 160 } 161 sqlite3_mutex_leave(mutex); 162 return rc; 163 } 164 165 166 /**************************** sqlite3_value_ ******************************* 167 ** The following routines extract information from a Mem or sqlite3_value 168 ** structure. 169 */ 170 const void *sqlite3_value_blob(sqlite3_value *pVal){ 171 Mem *p = (Mem*)pVal; 172 if( p->flags & (MEM_Blob|MEM_Str) ){ 173 if( ExpandBlob(p)!=SQLITE_OK ){ 174 assert( p->flags==MEM_Null && p->z==0 ); 175 return 0; 176 } 177 p->flags |= MEM_Blob; 178 return p->n ? p->z : 0; 179 }else{ 180 return sqlite3_value_text(pVal); 181 } 182 } 183 int sqlite3_value_bytes(sqlite3_value *pVal){ 184 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 185 } 186 int sqlite3_value_bytes16(sqlite3_value *pVal){ 187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 188 } 189 double sqlite3_value_double(sqlite3_value *pVal){ 190 return sqlite3VdbeRealValue((Mem*)pVal); 191 } 192 int sqlite3_value_int(sqlite3_value *pVal){ 193 return (int)sqlite3VdbeIntValue((Mem*)pVal); 194 } 195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 196 return sqlite3VdbeIntValue((Mem*)pVal); 197 } 198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ 199 Mem *pMem = (Mem*)pVal; 200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); 201 } 202 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 203 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 204 } 205 #ifndef SQLITE_OMIT_UTF16 206 const void *sqlite3_value_text16(sqlite3_value* pVal){ 207 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 208 } 209 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 210 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 211 } 212 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 213 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 214 } 215 #endif /* SQLITE_OMIT_UTF16 */ 216 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five 217 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating 218 ** point number string BLOB NULL 219 */ 220 int sqlite3_value_type(sqlite3_value* pVal){ 221 static const u8 aType[] = { 222 SQLITE_BLOB, /* 0x00 */ 223 SQLITE_NULL, /* 0x01 */ 224 SQLITE_TEXT, /* 0x02 */ 225 SQLITE_NULL, /* 0x03 */ 226 SQLITE_INTEGER, /* 0x04 */ 227 SQLITE_NULL, /* 0x05 */ 228 SQLITE_INTEGER, /* 0x06 */ 229 SQLITE_NULL, /* 0x07 */ 230 SQLITE_FLOAT, /* 0x08 */ 231 SQLITE_NULL, /* 0x09 */ 232 SQLITE_FLOAT, /* 0x0a */ 233 SQLITE_NULL, /* 0x0b */ 234 SQLITE_INTEGER, /* 0x0c */ 235 SQLITE_NULL, /* 0x0d */ 236 SQLITE_INTEGER, /* 0x0e */ 237 SQLITE_NULL, /* 0x0f */ 238 SQLITE_BLOB, /* 0x10 */ 239 SQLITE_NULL, /* 0x11 */ 240 SQLITE_TEXT, /* 0x12 */ 241 SQLITE_NULL, /* 0x13 */ 242 SQLITE_INTEGER, /* 0x14 */ 243 SQLITE_NULL, /* 0x15 */ 244 SQLITE_INTEGER, /* 0x16 */ 245 SQLITE_NULL, /* 0x17 */ 246 SQLITE_FLOAT, /* 0x18 */ 247 SQLITE_NULL, /* 0x19 */ 248 SQLITE_FLOAT, /* 0x1a */ 249 SQLITE_NULL, /* 0x1b */ 250 SQLITE_INTEGER, /* 0x1c */ 251 SQLITE_NULL, /* 0x1d */ 252 SQLITE_INTEGER, /* 0x1e */ 253 SQLITE_NULL, /* 0x1f */ 254 }; 255 return aType[pVal->flags&MEM_AffMask]; 256 } 257 258 /* Make a copy of an sqlite3_value object 259 */ 260 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ 261 sqlite3_value *pNew; 262 if( pOrig==0 ) return 0; 263 pNew = sqlite3_malloc( sizeof(*pNew) ); 264 if( pNew==0 ) return 0; 265 memset(pNew, 0, sizeof(*pNew)); 266 memcpy(pNew, pOrig, MEMCELLSIZE); 267 pNew->flags &= ~MEM_Dyn; 268 pNew->db = 0; 269 if( pNew->flags&(MEM_Str|MEM_Blob) ){ 270 pNew->flags &= ~(MEM_Static|MEM_Dyn); 271 pNew->flags |= MEM_Ephem; 272 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ 273 sqlite3ValueFree(pNew); 274 pNew = 0; 275 } 276 } 277 return pNew; 278 } 279 280 /* Destroy an sqlite3_value object previously obtained from 281 ** sqlite3_value_dup(). 282 */ 283 void sqlite3_value_free(sqlite3_value *pOld){ 284 sqlite3ValueFree(pOld); 285 } 286 287 288 /**************************** sqlite3_result_ ******************************* 289 ** The following routines are used by user-defined functions to specify 290 ** the function result. 291 ** 292 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the 293 ** result as a string or blob but if the string or blob is too large, it 294 ** then sets the error code to SQLITE_TOOBIG 295 ** 296 ** The invokeValueDestructor(P,X) routine invokes destructor function X() 297 ** on value P is not going to be used and need to be destroyed. 298 */ 299 static void setResultStrOrError( 300 sqlite3_context *pCtx, /* Function context */ 301 const char *z, /* String pointer */ 302 int n, /* Bytes in string, or negative */ 303 u8 enc, /* Encoding of z. 0 for BLOBs */ 304 void (*xDel)(void*) /* Destructor function */ 305 ){ 306 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ 307 sqlite3_result_error_toobig(pCtx); 308 } 309 } 310 static int invokeValueDestructor( 311 const void *p, /* Value to destroy */ 312 void (*xDel)(void*), /* The destructor */ 313 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ 314 ){ 315 assert( xDel!=SQLITE_DYNAMIC ); 316 if( xDel==0 ){ 317 /* noop */ 318 }else if( xDel==SQLITE_TRANSIENT ){ 319 /* noop */ 320 }else{ 321 xDel((void*)p); 322 } 323 if( pCtx ) sqlite3_result_error_toobig(pCtx); 324 return SQLITE_TOOBIG; 325 } 326 void sqlite3_result_blob( 327 sqlite3_context *pCtx, 328 const void *z, 329 int n, 330 void (*xDel)(void *) 331 ){ 332 assert( n>=0 ); 333 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 334 setResultStrOrError(pCtx, z, n, 0, xDel); 335 } 336 void sqlite3_result_blob64( 337 sqlite3_context *pCtx, 338 const void *z, 339 sqlite3_uint64 n, 340 void (*xDel)(void *) 341 ){ 342 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 343 assert( xDel!=SQLITE_DYNAMIC ); 344 if( n>0x7fffffff ){ 345 (void)invokeValueDestructor(z, xDel, pCtx); 346 }else{ 347 setResultStrOrError(pCtx, z, (int)n, 0, xDel); 348 } 349 } 350 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 351 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 352 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); 353 } 354 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 355 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 356 pCtx->isError = SQLITE_ERROR; 357 pCtx->fErrorOrAux = 1; 358 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 359 } 360 #ifndef SQLITE_OMIT_UTF16 361 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 362 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 363 pCtx->isError = SQLITE_ERROR; 364 pCtx->fErrorOrAux = 1; 365 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 366 } 367 #endif 368 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 369 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 370 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); 371 } 372 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 373 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 374 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); 375 } 376 void sqlite3_result_null(sqlite3_context *pCtx){ 377 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 378 sqlite3VdbeMemSetNull(pCtx->pOut); 379 } 380 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ 381 Mem *pOut = pCtx->pOut; 382 assert( sqlite3_mutex_held(pOut->db->mutex) ); 383 pOut->eSubtype = eSubtype & 0xff; 384 pOut->flags |= MEM_Subtype; 385 } 386 void sqlite3_result_text( 387 sqlite3_context *pCtx, 388 const char *z, 389 int n, 390 void (*xDel)(void *) 391 ){ 392 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 393 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 394 } 395 void sqlite3_result_text64( 396 sqlite3_context *pCtx, 397 const char *z, 398 sqlite3_uint64 n, 399 void (*xDel)(void *), 400 unsigned char enc 401 ){ 402 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 403 assert( xDel!=SQLITE_DYNAMIC ); 404 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 405 if( n>0x7fffffff ){ 406 (void)invokeValueDestructor(z, xDel, pCtx); 407 }else{ 408 setResultStrOrError(pCtx, z, (int)n, enc, xDel); 409 } 410 } 411 #ifndef SQLITE_OMIT_UTF16 412 void sqlite3_result_text16( 413 sqlite3_context *pCtx, 414 const void *z, 415 int n, 416 void (*xDel)(void *) 417 ){ 418 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 419 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 420 } 421 void sqlite3_result_text16be( 422 sqlite3_context *pCtx, 423 const void *z, 424 int n, 425 void (*xDel)(void *) 426 ){ 427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 428 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 429 } 430 void sqlite3_result_text16le( 431 sqlite3_context *pCtx, 432 const void *z, 433 int n, 434 void (*xDel)(void *) 435 ){ 436 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 437 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 438 } 439 #endif /* SQLITE_OMIT_UTF16 */ 440 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 441 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 442 sqlite3VdbeMemCopy(pCtx->pOut, pValue); 443 } 444 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 445 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 446 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); 447 } 448 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ 449 Mem *pOut = pCtx->pOut; 450 assert( sqlite3_mutex_held(pOut->db->mutex) ); 451 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 452 return SQLITE_TOOBIG; 453 } 454 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); 455 return SQLITE_OK; 456 } 457 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 458 pCtx->isError = errCode; 459 pCtx->fErrorOrAux = 1; 460 #ifdef SQLITE_DEBUG 461 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; 462 #endif 463 if( pCtx->pOut->flags & MEM_Null ){ 464 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 465 SQLITE_UTF8, SQLITE_STATIC); 466 } 467 } 468 469 /* Force an SQLITE_TOOBIG error. */ 470 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 471 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 472 pCtx->isError = SQLITE_TOOBIG; 473 pCtx->fErrorOrAux = 1; 474 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 475 SQLITE_UTF8, SQLITE_STATIC); 476 } 477 478 /* An SQLITE_NOMEM error. */ 479 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 480 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 481 sqlite3VdbeMemSetNull(pCtx->pOut); 482 pCtx->isError = SQLITE_NOMEM_BKPT; 483 pCtx->fErrorOrAux = 1; 484 sqlite3OomFault(pCtx->pOut->db); 485 } 486 487 /* 488 ** This function is called after a transaction has been committed. It 489 ** invokes callbacks registered with sqlite3_wal_hook() as required. 490 */ 491 static int doWalCallbacks(sqlite3 *db){ 492 int rc = SQLITE_OK; 493 #ifndef SQLITE_OMIT_WAL 494 int i; 495 for(i=0; i<db->nDb; i++){ 496 Btree *pBt = db->aDb[i].pBt; 497 if( pBt ){ 498 int nEntry; 499 sqlite3BtreeEnter(pBt); 500 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 501 sqlite3BtreeLeave(pBt); 502 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 503 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); 504 } 505 } 506 } 507 #endif 508 return rc; 509 } 510 511 512 /* 513 ** Execute the statement pStmt, either until a row of data is ready, the 514 ** statement is completely executed or an error occurs. 515 ** 516 ** This routine implements the bulk of the logic behind the sqlite_step() 517 ** API. The only thing omitted is the automatic recompile if a 518 ** schema change has occurred. That detail is handled by the 519 ** outer sqlite3_step() wrapper procedure. 520 */ 521 static int sqlite3Step(Vdbe *p){ 522 sqlite3 *db; 523 int rc; 524 525 assert(p); 526 if( p->magic!=VDBE_MAGIC_RUN ){ 527 /* We used to require that sqlite3_reset() be called before retrying 528 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 529 ** with version 3.7.0, we changed this so that sqlite3_reset() would 530 ** be called automatically instead of throwing the SQLITE_MISUSE error. 531 ** This "automatic-reset" change is not technically an incompatibility, 532 ** since any application that receives an SQLITE_MISUSE is broken by 533 ** definition. 534 ** 535 ** Nevertheless, some published applications that were originally written 536 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 537 ** returns, and those were broken by the automatic-reset change. As a 538 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 539 ** legacy behavior of returning SQLITE_MISUSE for cases where the 540 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 541 ** or SQLITE_BUSY error. 542 */ 543 #ifdef SQLITE_OMIT_AUTORESET 544 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ 545 sqlite3_reset((sqlite3_stmt*)p); 546 }else{ 547 return SQLITE_MISUSE_BKPT; 548 } 549 #else 550 sqlite3_reset((sqlite3_stmt*)p); 551 #endif 552 } 553 554 /* Check that malloc() has not failed. If it has, return early. */ 555 db = p->db; 556 if( db->mallocFailed ){ 557 p->rc = SQLITE_NOMEM; 558 return SQLITE_NOMEM_BKPT; 559 } 560 561 if( p->pc<=0 && p->expired ){ 562 p->rc = SQLITE_SCHEMA; 563 rc = SQLITE_ERROR; 564 goto end_of_step; 565 } 566 if( p->pc<0 ){ 567 /* If there are no other statements currently running, then 568 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 569 ** from interrupting a statement that has not yet started. 570 */ 571 if( db->nVdbeActive==0 ){ 572 db->u1.isInterrupted = 0; 573 } 574 575 assert( db->nVdbeWrite>0 || db->autoCommit==0 576 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) 577 ); 578 579 #ifndef SQLITE_OMIT_TRACE 580 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0) 581 && !db->init.busy && p->zSql ){ 582 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 583 }else{ 584 assert( p->startTime==0 ); 585 } 586 #endif 587 588 db->nVdbeActive++; 589 if( p->readOnly==0 ) db->nVdbeWrite++; 590 if( p->bIsReader ) db->nVdbeRead++; 591 p->pc = 0; 592 } 593 #ifdef SQLITE_DEBUG 594 p->rcApp = SQLITE_OK; 595 #endif 596 #ifndef SQLITE_OMIT_EXPLAIN 597 if( p->explain ){ 598 rc = sqlite3VdbeList(p); 599 }else 600 #endif /* SQLITE_OMIT_EXPLAIN */ 601 { 602 db->nVdbeExec++; 603 rc = sqlite3VdbeExec(p); 604 db->nVdbeExec--; 605 } 606 607 #ifndef SQLITE_OMIT_TRACE 608 /* If the statement completed successfully, invoke the profile callback */ 609 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); 610 #endif 611 612 if( rc==SQLITE_DONE ){ 613 assert( p->rc==SQLITE_OK ); 614 p->rc = doWalCallbacks(db); 615 if( p->rc!=SQLITE_OK ){ 616 rc = SQLITE_ERROR; 617 } 618 } 619 620 db->errCode = rc; 621 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 622 p->rc = SQLITE_NOMEM_BKPT; 623 } 624 end_of_step: 625 /* At this point local variable rc holds the value that should be 626 ** returned if this statement was compiled using the legacy 627 ** sqlite3_prepare() interface. According to the docs, this can only 628 ** be one of the values in the first assert() below. Variable p->rc 629 ** contains the value that would be returned if sqlite3_finalize() 630 ** were called on statement p. 631 */ 632 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 633 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE 634 ); 635 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); 636 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 637 /* If this statement was prepared using sqlite3_prepare_v2(), and an 638 ** error has occurred, then return the error code in p->rc to the 639 ** caller. Set the error code in the database handle to the same value. 640 */ 641 rc = sqlite3VdbeTransferError(p); 642 } 643 return (rc&db->errMask); 644 } 645 646 /* 647 ** This is the top-level implementation of sqlite3_step(). Call 648 ** sqlite3Step() to do most of the work. If a schema error occurs, 649 ** call sqlite3Reprepare() and try again. 650 */ 651 int sqlite3_step(sqlite3_stmt *pStmt){ 652 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 653 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 654 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 655 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 656 sqlite3 *db; /* The database connection */ 657 658 if( vdbeSafetyNotNull(v) ){ 659 return SQLITE_MISUSE_BKPT; 660 } 661 db = v->db; 662 sqlite3_mutex_enter(db->mutex); 663 v->doingRerun = 0; 664 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 665 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ 666 int savedPc = v->pc; 667 rc2 = rc = sqlite3Reprepare(v); 668 if( rc!=SQLITE_OK) break; 669 sqlite3_reset(pStmt); 670 if( savedPc>=0 ) v->doingRerun = 1; 671 assert( v->expired==0 ); 672 } 673 if( rc2!=SQLITE_OK ){ 674 /* This case occurs after failing to recompile an sql statement. 675 ** The error message from the SQL compiler has already been loaded 676 ** into the database handle. This block copies the error message 677 ** from the database handle into the statement and sets the statement 678 ** program counter to 0 to ensure that when the statement is 679 ** finalized or reset the parser error message is available via 680 ** sqlite3_errmsg() and sqlite3_errcode(). 681 */ 682 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 683 sqlite3DbFree(db, v->zErrMsg); 684 if( !db->mallocFailed ){ 685 v->zErrMsg = sqlite3DbStrDup(db, zErr); 686 v->rc = rc2; 687 } else { 688 v->zErrMsg = 0; 689 v->rc = rc = SQLITE_NOMEM_BKPT; 690 } 691 } 692 rc = sqlite3ApiExit(db, rc); 693 sqlite3_mutex_leave(db->mutex); 694 return rc; 695 } 696 697 698 /* 699 ** Extract the user data from a sqlite3_context structure and return a 700 ** pointer to it. 701 */ 702 void *sqlite3_user_data(sqlite3_context *p){ 703 assert( p && p->pFunc ); 704 return p->pFunc->pUserData; 705 } 706 707 /* 708 ** Extract the user data from a sqlite3_context structure and return a 709 ** pointer to it. 710 ** 711 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 712 ** returns a copy of the pointer to the database connection (the 1st 713 ** parameter) of the sqlite3_create_function() and 714 ** sqlite3_create_function16() routines that originally registered the 715 ** application defined function. 716 */ 717 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 718 assert( p && p->pOut ); 719 return p->pOut->db; 720 } 721 722 /* 723 ** Return the current time for a statement. If the current time 724 ** is requested more than once within the same run of a single prepared 725 ** statement, the exact same time is returned for each invocation regardless 726 ** of the amount of time that elapses between invocations. In other words, 727 ** the time returned is always the time of the first call. 728 */ 729 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ 730 int rc; 731 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 732 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; 733 assert( p->pVdbe!=0 ); 734 #else 735 sqlite3_int64 iTime = 0; 736 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; 737 #endif 738 if( *piTime==0 ){ 739 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); 740 if( rc ) *piTime = 0; 741 } 742 return *piTime; 743 } 744 745 /* 746 ** The following is the implementation of an SQL function that always 747 ** fails with an error message stating that the function is used in the 748 ** wrong context. The sqlite3_overload_function() API might construct 749 ** SQL function that use this routine so that the functions will exist 750 ** for name resolution but are actually overloaded by the xFindFunction 751 ** method of virtual tables. 752 */ 753 void sqlite3InvalidFunction( 754 sqlite3_context *context, /* The function calling context */ 755 int NotUsed, /* Number of arguments to the function */ 756 sqlite3_value **NotUsed2 /* Value of each argument */ 757 ){ 758 const char *zName = context->pFunc->zName; 759 char *zErr; 760 UNUSED_PARAMETER2(NotUsed, NotUsed2); 761 zErr = sqlite3_mprintf( 762 "unable to use function %s in the requested context", zName); 763 sqlite3_result_error(context, zErr, -1); 764 sqlite3_free(zErr); 765 } 766 767 /* 768 ** Create a new aggregate context for p and return a pointer to 769 ** its pMem->z element. 770 */ 771 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ 772 Mem *pMem = p->pMem; 773 assert( (pMem->flags & MEM_Agg)==0 ); 774 if( nByte<=0 ){ 775 sqlite3VdbeMemSetNull(pMem); 776 pMem->z = 0; 777 }else{ 778 sqlite3VdbeMemClearAndResize(pMem, nByte); 779 pMem->flags = MEM_Agg; 780 pMem->u.pDef = p->pFunc; 781 if( pMem->z ){ 782 memset(pMem->z, 0, nByte); 783 } 784 } 785 return (void*)pMem->z; 786 } 787 788 /* 789 ** Allocate or return the aggregate context for a user function. A new 790 ** context is allocated on the first call. Subsequent calls return the 791 ** same context that was returned on prior calls. 792 */ 793 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 794 assert( p && p->pFunc && p->pFunc->xFinalize ); 795 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); 796 testcase( nByte<0 ); 797 if( (p->pMem->flags & MEM_Agg)==0 ){ 798 return createAggContext(p, nByte); 799 }else{ 800 return (void*)p->pMem->z; 801 } 802 } 803 804 /* 805 ** Return the auxiliary data pointer, if any, for the iArg'th argument to 806 ** the user-function defined by pCtx. 807 */ 808 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 809 AuxData *pAuxData; 810 811 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 812 #if SQLITE_ENABLE_STAT3_OR_STAT4 813 if( pCtx->pVdbe==0 ) return 0; 814 #else 815 assert( pCtx->pVdbe!=0 ); 816 #endif 817 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 818 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 819 } 820 821 return (pAuxData ? pAuxData->pAux : 0); 822 } 823 824 /* 825 ** Set the auxiliary data pointer and delete function, for the iArg'th 826 ** argument to the user-function defined by pCtx. Any previous value is 827 ** deleted by calling the delete function specified when it was set. 828 */ 829 void sqlite3_set_auxdata( 830 sqlite3_context *pCtx, 831 int iArg, 832 void *pAux, 833 void (*xDelete)(void*) 834 ){ 835 AuxData *pAuxData; 836 Vdbe *pVdbe = pCtx->pVdbe; 837 838 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); 839 if( iArg<0 ) goto failed; 840 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 841 if( pVdbe==0 ) goto failed; 842 #else 843 assert( pVdbe!=0 ); 844 #endif 845 846 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ 847 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; 848 } 849 if( pAuxData==0 ){ 850 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); 851 if( !pAuxData ) goto failed; 852 pAuxData->iOp = pCtx->iOp; 853 pAuxData->iArg = iArg; 854 pAuxData->pNext = pVdbe->pAuxData; 855 pVdbe->pAuxData = pAuxData; 856 if( pCtx->fErrorOrAux==0 ){ 857 pCtx->isError = 0; 858 pCtx->fErrorOrAux = 1; 859 } 860 }else if( pAuxData->xDelete ){ 861 pAuxData->xDelete(pAuxData->pAux); 862 } 863 864 pAuxData->pAux = pAux; 865 pAuxData->xDelete = xDelete; 866 return; 867 868 failed: 869 if( xDelete ){ 870 xDelete(pAux); 871 } 872 } 873 874 #ifndef SQLITE_OMIT_DEPRECATED 875 /* 876 ** Return the number of times the Step function of an aggregate has been 877 ** called. 878 ** 879 ** This function is deprecated. Do not use it for new code. It is 880 ** provide only to avoid breaking legacy code. New aggregate function 881 ** implementations should keep their own counts within their aggregate 882 ** context. 883 */ 884 int sqlite3_aggregate_count(sqlite3_context *p){ 885 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); 886 return p->pMem->n; 887 } 888 #endif 889 890 /* 891 ** Return the number of columns in the result set for the statement pStmt. 892 */ 893 int sqlite3_column_count(sqlite3_stmt *pStmt){ 894 Vdbe *pVm = (Vdbe *)pStmt; 895 return pVm ? pVm->nResColumn : 0; 896 } 897 898 /* 899 ** Return the number of values available from the current row of the 900 ** currently executing statement pStmt. 901 */ 902 int sqlite3_data_count(sqlite3_stmt *pStmt){ 903 Vdbe *pVm = (Vdbe *)pStmt; 904 if( pVm==0 || pVm->pResultSet==0 ) return 0; 905 return pVm->nResColumn; 906 } 907 908 /* 909 ** Return a pointer to static memory containing an SQL NULL value. 910 */ 911 static const Mem *columnNullValue(void){ 912 /* Even though the Mem structure contains an element 913 ** of type i64, on certain architectures (x86) with certain compiler 914 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 915 ** instead of an 8-byte one. This all works fine, except that when 916 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 917 ** that a Mem structure is located on an 8-byte boundary. To prevent 918 ** these assert()s from failing, when building with SQLITE_DEBUG defined 919 ** using gcc, we force nullMem to be 8-byte aligned using the magical 920 ** __attribute__((aligned(8))) macro. */ 921 static const Mem nullMem 922 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 923 __attribute__((aligned(8))) 924 #endif 925 = { 926 /* .u = */ {0}, 927 /* .flags = */ (u16)MEM_Null, 928 /* .enc = */ (u8)0, 929 /* .eSubtype = */ (u8)0, 930 /* .n = */ (int)0, 931 /* .z = */ (char*)0, 932 /* .zMalloc = */ (char*)0, 933 /* .szMalloc = */ (int)0, 934 /* .uTemp = */ (u32)0, 935 /* .db = */ (sqlite3*)0, 936 /* .xDel = */ (void(*)(void*))0, 937 #ifdef SQLITE_DEBUG 938 /* .pScopyFrom = */ (Mem*)0, 939 /* .pFiller = */ (void*)0, 940 #endif 941 }; 942 return &nullMem; 943 } 944 945 /* 946 ** Check to see if column iCol of the given statement is valid. If 947 ** it is, return a pointer to the Mem for the value of that column. 948 ** If iCol is not valid, return a pointer to a Mem which has a value 949 ** of NULL. 950 */ 951 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 952 Vdbe *pVm; 953 Mem *pOut; 954 955 pVm = (Vdbe *)pStmt; 956 if( pVm==0 ) return (Mem*)columnNullValue(); 957 assert( pVm->db ); 958 sqlite3_mutex_enter(pVm->db->mutex); 959 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 960 pOut = &pVm->pResultSet[i]; 961 }else{ 962 sqlite3Error(pVm->db, SQLITE_RANGE); 963 pOut = (Mem*)columnNullValue(); 964 } 965 return pOut; 966 } 967 968 /* 969 ** This function is called after invoking an sqlite3_value_XXX function on a 970 ** column value (i.e. a value returned by evaluating an SQL expression in the 971 ** select list of a SELECT statement) that may cause a malloc() failure. If 972 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 973 ** code of statement pStmt set to SQLITE_NOMEM. 974 ** 975 ** Specifically, this is called from within: 976 ** 977 ** sqlite3_column_int() 978 ** sqlite3_column_int64() 979 ** sqlite3_column_text() 980 ** sqlite3_column_text16() 981 ** sqlite3_column_real() 982 ** sqlite3_column_bytes() 983 ** sqlite3_column_bytes16() 984 ** sqiite3_column_blob() 985 */ 986 static void columnMallocFailure(sqlite3_stmt *pStmt) 987 { 988 /* If malloc() failed during an encoding conversion within an 989 ** sqlite3_column_XXX API, then set the return code of the statement to 990 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 991 ** and _finalize() will return NOMEM. 992 */ 993 Vdbe *p = (Vdbe *)pStmt; 994 if( p ){ 995 assert( p->db!=0 ); 996 assert( sqlite3_mutex_held(p->db->mutex) ); 997 p->rc = sqlite3ApiExit(p->db, p->rc); 998 sqlite3_mutex_leave(p->db->mutex); 999 } 1000 } 1001 1002 /**************************** sqlite3_column_ ******************************* 1003 ** The following routines are used to access elements of the current row 1004 ** in the result set. 1005 */ 1006 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 1007 const void *val; 1008 val = sqlite3_value_blob( columnMem(pStmt,i) ); 1009 /* Even though there is no encoding conversion, value_blob() might 1010 ** need to call malloc() to expand the result of a zeroblob() 1011 ** expression. 1012 */ 1013 columnMallocFailure(pStmt); 1014 return val; 1015 } 1016 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 1017 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 1018 columnMallocFailure(pStmt); 1019 return val; 1020 } 1021 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 1022 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 1023 columnMallocFailure(pStmt); 1024 return val; 1025 } 1026 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 1027 double val = sqlite3_value_double( columnMem(pStmt,i) ); 1028 columnMallocFailure(pStmt); 1029 return val; 1030 } 1031 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 1032 int val = sqlite3_value_int( columnMem(pStmt,i) ); 1033 columnMallocFailure(pStmt); 1034 return val; 1035 } 1036 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 1037 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 1038 columnMallocFailure(pStmt); 1039 return val; 1040 } 1041 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 1042 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 1043 columnMallocFailure(pStmt); 1044 return val; 1045 } 1046 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 1047 Mem *pOut = columnMem(pStmt, i); 1048 if( pOut->flags&MEM_Static ){ 1049 pOut->flags &= ~MEM_Static; 1050 pOut->flags |= MEM_Ephem; 1051 } 1052 columnMallocFailure(pStmt); 1053 return (sqlite3_value *)pOut; 1054 } 1055 #ifndef SQLITE_OMIT_UTF16 1056 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 1057 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 1058 columnMallocFailure(pStmt); 1059 return val; 1060 } 1061 #endif /* SQLITE_OMIT_UTF16 */ 1062 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 1063 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 1064 columnMallocFailure(pStmt); 1065 return iType; 1066 } 1067 1068 /* 1069 ** Convert the N-th element of pStmt->pColName[] into a string using 1070 ** xFunc() then return that string. If N is out of range, return 0. 1071 ** 1072 ** There are up to 5 names for each column. useType determines which 1073 ** name is returned. Here are the names: 1074 ** 1075 ** 0 The column name as it should be displayed for output 1076 ** 1 The datatype name for the column 1077 ** 2 The name of the database that the column derives from 1078 ** 3 The name of the table that the column derives from 1079 ** 4 The name of the table column that the result column derives from 1080 ** 1081 ** If the result is not a simple column reference (if it is an expression 1082 ** or a constant) then useTypes 2, 3, and 4 return NULL. 1083 */ 1084 static const void *columnName( 1085 sqlite3_stmt *pStmt, 1086 int N, 1087 const void *(*xFunc)(Mem*), 1088 int useType 1089 ){ 1090 const void *ret; 1091 Vdbe *p; 1092 int n; 1093 sqlite3 *db; 1094 #ifdef SQLITE_ENABLE_API_ARMOR 1095 if( pStmt==0 ){ 1096 (void)SQLITE_MISUSE_BKPT; 1097 return 0; 1098 } 1099 #endif 1100 ret = 0; 1101 p = (Vdbe *)pStmt; 1102 db = p->db; 1103 assert( db!=0 ); 1104 n = sqlite3_column_count(pStmt); 1105 if( N<n && N>=0 ){ 1106 N += useType*n; 1107 sqlite3_mutex_enter(db->mutex); 1108 assert( db->mallocFailed==0 ); 1109 ret = xFunc(&p->aColName[N]); 1110 /* A malloc may have failed inside of the xFunc() call. If this 1111 ** is the case, clear the mallocFailed flag and return NULL. 1112 */ 1113 if( db->mallocFailed ){ 1114 sqlite3OomClear(db); 1115 ret = 0; 1116 } 1117 sqlite3_mutex_leave(db->mutex); 1118 } 1119 return ret; 1120 } 1121 1122 /* 1123 ** Return the name of the Nth column of the result set returned by SQL 1124 ** statement pStmt. 1125 */ 1126 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 1127 return columnName( 1128 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 1129 } 1130 #ifndef SQLITE_OMIT_UTF16 1131 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 1132 return columnName( 1133 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 1134 } 1135 #endif 1136 1137 /* 1138 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 1139 ** not define OMIT_DECLTYPE. 1140 */ 1141 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 1142 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 1143 and SQLITE_ENABLE_COLUMN_METADATA" 1144 #endif 1145 1146 #ifndef SQLITE_OMIT_DECLTYPE 1147 /* 1148 ** Return the column declaration type (if applicable) of the 'i'th column 1149 ** of the result set of SQL statement pStmt. 1150 */ 1151 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 1152 return columnName( 1153 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 1154 } 1155 #ifndef SQLITE_OMIT_UTF16 1156 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 1157 return columnName( 1158 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 1159 } 1160 #endif /* SQLITE_OMIT_UTF16 */ 1161 #endif /* SQLITE_OMIT_DECLTYPE */ 1162 1163 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1164 /* 1165 ** Return the name of the database from which a result column derives. 1166 ** NULL is returned if the result column is an expression or constant or 1167 ** anything else which is not an unambiguous reference to a database column. 1168 */ 1169 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 1170 return columnName( 1171 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 1172 } 1173 #ifndef SQLITE_OMIT_UTF16 1174 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 1175 return columnName( 1176 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 1177 } 1178 #endif /* SQLITE_OMIT_UTF16 */ 1179 1180 /* 1181 ** Return the name of the table from which a result column derives. 1182 ** NULL is returned if the result column is an expression or constant or 1183 ** anything else which is not an unambiguous reference to a database column. 1184 */ 1185 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 1186 return columnName( 1187 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 1188 } 1189 #ifndef SQLITE_OMIT_UTF16 1190 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 1191 return columnName( 1192 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 1193 } 1194 #endif /* SQLITE_OMIT_UTF16 */ 1195 1196 /* 1197 ** Return the name of the table column from which a result column derives. 1198 ** NULL is returned if the result column is an expression or constant or 1199 ** anything else which is not an unambiguous reference to a database column. 1200 */ 1201 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 1202 return columnName( 1203 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 1204 } 1205 #ifndef SQLITE_OMIT_UTF16 1206 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 1207 return columnName( 1208 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 1209 } 1210 #endif /* SQLITE_OMIT_UTF16 */ 1211 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 1212 1213 1214 /******************************* sqlite3_bind_ *************************** 1215 ** 1216 ** Routines used to attach values to wildcards in a compiled SQL statement. 1217 */ 1218 /* 1219 ** Unbind the value bound to variable i in virtual machine p. This is the 1220 ** the same as binding a NULL value to the column. If the "i" parameter is 1221 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 1222 ** 1223 ** A successful evaluation of this routine acquires the mutex on p. 1224 ** the mutex is released if any kind of error occurs. 1225 ** 1226 ** The error code stored in database p->db is overwritten with the return 1227 ** value in any case. 1228 */ 1229 static int vdbeUnbind(Vdbe *p, int i){ 1230 Mem *pVar; 1231 if( vdbeSafetyNotNull(p) ){ 1232 return SQLITE_MISUSE_BKPT; 1233 } 1234 sqlite3_mutex_enter(p->db->mutex); 1235 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 1236 sqlite3Error(p->db, SQLITE_MISUSE); 1237 sqlite3_mutex_leave(p->db->mutex); 1238 sqlite3_log(SQLITE_MISUSE, 1239 "bind on a busy prepared statement: [%s]", p->zSql); 1240 return SQLITE_MISUSE_BKPT; 1241 } 1242 if( i<1 || i>p->nVar ){ 1243 sqlite3Error(p->db, SQLITE_RANGE); 1244 sqlite3_mutex_leave(p->db->mutex); 1245 return SQLITE_RANGE; 1246 } 1247 i--; 1248 pVar = &p->aVar[i]; 1249 sqlite3VdbeMemRelease(pVar); 1250 pVar->flags = MEM_Null; 1251 sqlite3Error(p->db, SQLITE_OK); 1252 1253 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1254 ** binding a new value to this variable invalidates the current query plan. 1255 ** 1256 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1257 ** parameter in the WHERE clause might influence the choice of query plan 1258 ** for a statement, then the statement will be automatically recompiled, 1259 ** as if there had been a schema change, on the first sqlite3_step() call 1260 ** following any change to the bindings of that parameter. 1261 */ 1262 assert( p->isPrepareV2 || p->expmask==0 ); 1263 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){ 1264 p->expired = 1; 1265 } 1266 return SQLITE_OK; 1267 } 1268 1269 /* 1270 ** Bind a text or BLOB value. 1271 */ 1272 static int bindText( 1273 sqlite3_stmt *pStmt, /* The statement to bind against */ 1274 int i, /* Index of the parameter to bind */ 1275 const void *zData, /* Pointer to the data to be bound */ 1276 int nData, /* Number of bytes of data to be bound */ 1277 void (*xDel)(void*), /* Destructor for the data */ 1278 u8 encoding /* Encoding for the data */ 1279 ){ 1280 Vdbe *p = (Vdbe *)pStmt; 1281 Mem *pVar; 1282 int rc; 1283 1284 rc = vdbeUnbind(p, i); 1285 if( rc==SQLITE_OK ){ 1286 if( zData!=0 ){ 1287 pVar = &p->aVar[i-1]; 1288 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1289 if( rc==SQLITE_OK && encoding!=0 ){ 1290 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1291 } 1292 sqlite3Error(p->db, rc); 1293 rc = sqlite3ApiExit(p->db, rc); 1294 } 1295 sqlite3_mutex_leave(p->db->mutex); 1296 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1297 xDel((void*)zData); 1298 } 1299 return rc; 1300 } 1301 1302 1303 /* 1304 ** Bind a blob value to an SQL statement variable. 1305 */ 1306 int sqlite3_bind_blob( 1307 sqlite3_stmt *pStmt, 1308 int i, 1309 const void *zData, 1310 int nData, 1311 void (*xDel)(void*) 1312 ){ 1313 #ifdef SQLITE_ENABLE_API_ARMOR 1314 if( nData<0 ) return SQLITE_MISUSE_BKPT; 1315 #endif 1316 return bindText(pStmt, i, zData, nData, xDel, 0); 1317 } 1318 int sqlite3_bind_blob64( 1319 sqlite3_stmt *pStmt, 1320 int i, 1321 const void *zData, 1322 sqlite3_uint64 nData, 1323 void (*xDel)(void*) 1324 ){ 1325 assert( xDel!=SQLITE_DYNAMIC ); 1326 if( nData>0x7fffffff ){ 1327 return invokeValueDestructor(zData, xDel, 0); 1328 }else{ 1329 return bindText(pStmt, i, zData, (int)nData, xDel, 0); 1330 } 1331 } 1332 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1333 int rc; 1334 Vdbe *p = (Vdbe *)pStmt; 1335 rc = vdbeUnbind(p, i); 1336 if( rc==SQLITE_OK ){ 1337 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1338 sqlite3_mutex_leave(p->db->mutex); 1339 } 1340 return rc; 1341 } 1342 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1343 return sqlite3_bind_int64(p, i, (i64)iValue); 1344 } 1345 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1346 int rc; 1347 Vdbe *p = (Vdbe *)pStmt; 1348 rc = vdbeUnbind(p, i); 1349 if( rc==SQLITE_OK ){ 1350 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1351 sqlite3_mutex_leave(p->db->mutex); 1352 } 1353 return rc; 1354 } 1355 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1356 int rc; 1357 Vdbe *p = (Vdbe*)pStmt; 1358 rc = vdbeUnbind(p, i); 1359 if( rc==SQLITE_OK ){ 1360 sqlite3_mutex_leave(p->db->mutex); 1361 } 1362 return rc; 1363 } 1364 int sqlite3_bind_text( 1365 sqlite3_stmt *pStmt, 1366 int i, 1367 const char *zData, 1368 int nData, 1369 void (*xDel)(void*) 1370 ){ 1371 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1372 } 1373 int sqlite3_bind_text64( 1374 sqlite3_stmt *pStmt, 1375 int i, 1376 const char *zData, 1377 sqlite3_uint64 nData, 1378 void (*xDel)(void*), 1379 unsigned char enc 1380 ){ 1381 assert( xDel!=SQLITE_DYNAMIC ); 1382 if( nData>0x7fffffff ){ 1383 return invokeValueDestructor(zData, xDel, 0); 1384 }else{ 1385 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; 1386 return bindText(pStmt, i, zData, (int)nData, xDel, enc); 1387 } 1388 } 1389 #ifndef SQLITE_OMIT_UTF16 1390 int sqlite3_bind_text16( 1391 sqlite3_stmt *pStmt, 1392 int i, 1393 const void *zData, 1394 int nData, 1395 void (*xDel)(void*) 1396 ){ 1397 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1398 } 1399 #endif /* SQLITE_OMIT_UTF16 */ 1400 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1401 int rc; 1402 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ 1403 case SQLITE_INTEGER: { 1404 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1405 break; 1406 } 1407 case SQLITE_FLOAT: { 1408 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); 1409 break; 1410 } 1411 case SQLITE_BLOB: { 1412 if( pValue->flags & MEM_Zero ){ 1413 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1414 }else{ 1415 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1416 } 1417 break; 1418 } 1419 case SQLITE_TEXT: { 1420 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1421 pValue->enc); 1422 break; 1423 } 1424 default: { 1425 rc = sqlite3_bind_null(pStmt, i); 1426 break; 1427 } 1428 } 1429 return rc; 1430 } 1431 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1432 int rc; 1433 Vdbe *p = (Vdbe *)pStmt; 1434 rc = vdbeUnbind(p, i); 1435 if( rc==SQLITE_OK ){ 1436 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1437 sqlite3_mutex_leave(p->db->mutex); 1438 } 1439 return rc; 1440 } 1441 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ 1442 int rc; 1443 Vdbe *p = (Vdbe *)pStmt; 1444 sqlite3_mutex_enter(p->db->mutex); 1445 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1446 rc = SQLITE_TOOBIG; 1447 }else{ 1448 assert( (n & 0x7FFFFFFF)==n ); 1449 rc = sqlite3_bind_zeroblob(pStmt, i, n); 1450 } 1451 rc = sqlite3ApiExit(p->db, rc); 1452 sqlite3_mutex_leave(p->db->mutex); 1453 return rc; 1454 } 1455 1456 /* 1457 ** Return the number of wildcards that can be potentially bound to. 1458 ** This routine is added to support DBD::SQLite. 1459 */ 1460 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1461 Vdbe *p = (Vdbe*)pStmt; 1462 return p ? p->nVar : 0; 1463 } 1464 1465 /* 1466 ** Return the name of a wildcard parameter. Return NULL if the index 1467 ** is out of range or if the wildcard is unnamed. 1468 ** 1469 ** The result is always UTF-8. 1470 */ 1471 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1472 Vdbe *p = (Vdbe*)pStmt; 1473 if( p==0 ) return 0; 1474 return sqlite3VListNumToName(p->pVList, i); 1475 } 1476 1477 /* 1478 ** Given a wildcard parameter name, return the index of the variable 1479 ** with that name. If there is no variable with the given name, 1480 ** return 0. 1481 */ 1482 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1483 if( p==0 || zName==0 ) return 0; 1484 return sqlite3VListNameToNum(p->pVList, zName, nName); 1485 } 1486 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1487 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1488 } 1489 1490 /* 1491 ** Transfer all bindings from the first statement over to the second. 1492 */ 1493 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1494 Vdbe *pFrom = (Vdbe*)pFromStmt; 1495 Vdbe *pTo = (Vdbe*)pToStmt; 1496 int i; 1497 assert( pTo->db==pFrom->db ); 1498 assert( pTo->nVar==pFrom->nVar ); 1499 sqlite3_mutex_enter(pTo->db->mutex); 1500 for(i=0; i<pFrom->nVar; i++){ 1501 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1502 } 1503 sqlite3_mutex_leave(pTo->db->mutex); 1504 return SQLITE_OK; 1505 } 1506 1507 #ifndef SQLITE_OMIT_DEPRECATED 1508 /* 1509 ** Deprecated external interface. Internal/core SQLite code 1510 ** should call sqlite3TransferBindings. 1511 ** 1512 ** It is misuse to call this routine with statements from different 1513 ** database connections. But as this is a deprecated interface, we 1514 ** will not bother to check for that condition. 1515 ** 1516 ** If the two statements contain a different number of bindings, then 1517 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1518 ** SQLITE_OK is returned. 1519 */ 1520 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1521 Vdbe *pFrom = (Vdbe*)pFromStmt; 1522 Vdbe *pTo = (Vdbe*)pToStmt; 1523 if( pFrom->nVar!=pTo->nVar ){ 1524 return SQLITE_ERROR; 1525 } 1526 assert( pTo->isPrepareV2 || pTo->expmask==0 ); 1527 if( pTo->expmask ){ 1528 pTo->expired = 1; 1529 } 1530 assert( pFrom->isPrepareV2 || pFrom->expmask==0 ); 1531 if( pFrom->expmask ){ 1532 pFrom->expired = 1; 1533 } 1534 return sqlite3TransferBindings(pFromStmt, pToStmt); 1535 } 1536 #endif 1537 1538 /* 1539 ** Return the sqlite3* database handle to which the prepared statement given 1540 ** in the argument belongs. This is the same database handle that was 1541 ** the first argument to the sqlite3_prepare() that was used to create 1542 ** the statement in the first place. 1543 */ 1544 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1545 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1546 } 1547 1548 /* 1549 ** Return true if the prepared statement is guaranteed to not modify the 1550 ** database. 1551 */ 1552 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1553 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1554 } 1555 1556 /* 1557 ** Return true if the prepared statement is in need of being reset. 1558 */ 1559 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1560 Vdbe *v = (Vdbe*)pStmt; 1561 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; 1562 } 1563 1564 /* 1565 ** Return a pointer to the next prepared statement after pStmt associated 1566 ** with database connection pDb. If pStmt is NULL, return the first 1567 ** prepared statement for the database connection. Return NULL if there 1568 ** are no more. 1569 */ 1570 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1571 sqlite3_stmt *pNext; 1572 #ifdef SQLITE_ENABLE_API_ARMOR 1573 if( !sqlite3SafetyCheckOk(pDb) ){ 1574 (void)SQLITE_MISUSE_BKPT; 1575 return 0; 1576 } 1577 #endif 1578 sqlite3_mutex_enter(pDb->mutex); 1579 if( pStmt==0 ){ 1580 pNext = (sqlite3_stmt*)pDb->pVdbe; 1581 }else{ 1582 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1583 } 1584 sqlite3_mutex_leave(pDb->mutex); 1585 return pNext; 1586 } 1587 1588 /* 1589 ** Return the value of a status counter for a prepared statement 1590 */ 1591 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1592 Vdbe *pVdbe = (Vdbe*)pStmt; 1593 u32 v; 1594 #ifdef SQLITE_ENABLE_API_ARMOR 1595 if( !pStmt ){ 1596 (void)SQLITE_MISUSE_BKPT; 1597 return 0; 1598 } 1599 #endif 1600 v = pVdbe->aCounter[op]; 1601 if( resetFlag ) pVdbe->aCounter[op] = 0; 1602 return (int)v; 1603 } 1604 1605 /* 1606 ** Return the SQL associated with a prepared statement 1607 */ 1608 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 1609 Vdbe *p = (Vdbe *)pStmt; 1610 return p ? p->zSql : 0; 1611 } 1612 1613 /* 1614 ** Return the SQL associated with a prepared statement with 1615 ** bound parameters expanded. Space to hold the returned string is 1616 ** obtained from sqlite3_malloc(). The caller is responsible for 1617 ** freeing the returned string by passing it to sqlite3_free(). 1618 ** 1619 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of 1620 ** expanded bound parameters. 1621 */ 1622 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ 1623 #ifdef SQLITE_OMIT_TRACE 1624 return 0; 1625 #else 1626 char *z = 0; 1627 const char *zSql = sqlite3_sql(pStmt); 1628 if( zSql ){ 1629 Vdbe *p = (Vdbe *)pStmt; 1630 sqlite3_mutex_enter(p->db->mutex); 1631 z = sqlite3VdbeExpandSql(p, zSql); 1632 sqlite3_mutex_leave(p->db->mutex); 1633 } 1634 return z; 1635 #endif 1636 } 1637 1638 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1639 /* 1640 ** Allocate and populate an UnpackedRecord structure based on the serialized 1641 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure 1642 ** if successful, or a NULL pointer if an OOM error is encountered. 1643 */ 1644 static UnpackedRecord *vdbeUnpackRecord( 1645 KeyInfo *pKeyInfo, 1646 int nKey, 1647 const void *pKey 1648 ){ 1649 UnpackedRecord *pRet; /* Return value */ 1650 1651 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 1652 if( pRet ){ 1653 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nField+1)); 1654 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); 1655 } 1656 return pRet; 1657 } 1658 1659 /* 1660 ** This function is called from within a pre-update callback to retrieve 1661 ** a field of the row currently being updated or deleted. 1662 */ 1663 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1664 PreUpdate *p = db->pPreUpdate; 1665 Mem *pMem; 1666 int rc = SQLITE_OK; 1667 1668 /* Test that this call is being made from within an SQLITE_DELETE or 1669 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ 1670 if( !p || p->op==SQLITE_INSERT ){ 1671 rc = SQLITE_MISUSE_BKPT; 1672 goto preupdate_old_out; 1673 } 1674 if( p->pPk ){ 1675 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1676 } 1677 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1678 rc = SQLITE_RANGE; 1679 goto preupdate_old_out; 1680 } 1681 1682 /* If the old.* record has not yet been loaded into memory, do so now. */ 1683 if( p->pUnpacked==0 ){ 1684 u32 nRec; 1685 u8 *aRec; 1686 1687 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); 1688 aRec = sqlite3DbMallocRaw(db, nRec); 1689 if( !aRec ) goto preupdate_old_out; 1690 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); 1691 if( rc==SQLITE_OK ){ 1692 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); 1693 if( !p->pUnpacked ) rc = SQLITE_NOMEM; 1694 } 1695 if( rc!=SQLITE_OK ){ 1696 sqlite3DbFree(db, aRec); 1697 goto preupdate_old_out; 1698 } 1699 p->aRecord = aRec; 1700 } 1701 1702 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; 1703 if( iIdx==p->pTab->iPKey ){ 1704 sqlite3VdbeMemSetInt64(pMem, p->iKey1); 1705 }else if( iIdx>=p->pUnpacked->nField ){ 1706 *ppValue = (sqlite3_value *)columnNullValue(); 1707 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ 1708 if( pMem->flags & MEM_Int ){ 1709 sqlite3VdbeMemRealify(pMem); 1710 } 1711 } 1712 1713 preupdate_old_out: 1714 sqlite3Error(db, rc); 1715 return sqlite3ApiExit(db, rc); 1716 } 1717 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1718 1719 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1720 /* 1721 ** This function is called from within a pre-update callback to retrieve 1722 ** the number of columns in the row being updated, deleted or inserted. 1723 */ 1724 int sqlite3_preupdate_count(sqlite3 *db){ 1725 PreUpdate *p = db->pPreUpdate; 1726 return (p ? p->keyinfo.nField : 0); 1727 } 1728 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1729 1730 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1731 /* 1732 ** This function is designed to be called from within a pre-update callback 1733 ** only. It returns zero if the change that caused the callback was made 1734 ** immediately by a user SQL statement. Or, if the change was made by a 1735 ** trigger program, it returns the number of trigger programs currently 1736 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a 1737 ** top-level trigger etc.). 1738 ** 1739 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL 1740 ** or SET DEFAULT action is considered a trigger. 1741 */ 1742 int sqlite3_preupdate_depth(sqlite3 *db){ 1743 PreUpdate *p = db->pPreUpdate; 1744 return (p ? p->v->nFrame : 0); 1745 } 1746 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1747 1748 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1749 /* 1750 ** This function is called from within a pre-update callback to retrieve 1751 ** a field of the row currently being updated or inserted. 1752 */ 1753 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ 1754 PreUpdate *p = db->pPreUpdate; 1755 int rc = SQLITE_OK; 1756 Mem *pMem; 1757 1758 if( !p || p->op==SQLITE_DELETE ){ 1759 rc = SQLITE_MISUSE_BKPT; 1760 goto preupdate_new_out; 1761 } 1762 if( p->pPk && p->op!=SQLITE_UPDATE ){ 1763 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); 1764 } 1765 if( iIdx>=p->pCsr->nField || iIdx<0 ){ 1766 rc = SQLITE_RANGE; 1767 goto preupdate_new_out; 1768 } 1769 1770 if( p->op==SQLITE_INSERT ){ 1771 /* For an INSERT, memory cell p->iNewReg contains the serialized record 1772 ** that is being inserted. Deserialize it. */ 1773 UnpackedRecord *pUnpack = p->pNewUnpacked; 1774 if( !pUnpack ){ 1775 Mem *pData = &p->v->aMem[p->iNewReg]; 1776 rc = ExpandBlob(pData); 1777 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1778 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); 1779 if( !pUnpack ){ 1780 rc = SQLITE_NOMEM; 1781 goto preupdate_new_out; 1782 } 1783 p->pNewUnpacked = pUnpack; 1784 } 1785 pMem = &pUnpack->aMem[iIdx]; 1786 if( iIdx==p->pTab->iPKey ){ 1787 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1788 }else if( iIdx>=pUnpack->nField ){ 1789 pMem = (sqlite3_value *)columnNullValue(); 1790 } 1791 }else{ 1792 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required 1793 ** value. Make a copy of the cell contents and return a pointer to it. 1794 ** It is not safe to return a pointer to the memory cell itself as the 1795 ** caller may modify the value text encoding. 1796 */ 1797 assert( p->op==SQLITE_UPDATE ); 1798 if( !p->aNew ){ 1799 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); 1800 if( !p->aNew ){ 1801 rc = SQLITE_NOMEM; 1802 goto preupdate_new_out; 1803 } 1804 } 1805 assert( iIdx>=0 && iIdx<p->pCsr->nField ); 1806 pMem = &p->aNew[iIdx]; 1807 if( pMem->flags==0 ){ 1808 if( iIdx==p->pTab->iPKey ){ 1809 sqlite3VdbeMemSetInt64(pMem, p->iKey2); 1810 }else{ 1811 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); 1812 if( rc!=SQLITE_OK ) goto preupdate_new_out; 1813 } 1814 } 1815 } 1816 *ppValue = pMem; 1817 1818 preupdate_new_out: 1819 sqlite3Error(db, rc); 1820 return sqlite3ApiExit(db, rc); 1821 } 1822 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 1823 1824 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1825 /* 1826 ** Return status data for a single loop within query pStmt. 1827 */ 1828 int sqlite3_stmt_scanstatus( 1829 sqlite3_stmt *pStmt, /* Prepared statement being queried */ 1830 int idx, /* Index of loop to report on */ 1831 int iScanStatusOp, /* Which metric to return */ 1832 void *pOut /* OUT: Write the answer here */ 1833 ){ 1834 Vdbe *p = (Vdbe*)pStmt; 1835 ScanStatus *pScan; 1836 if( idx<0 || idx>=p->nScan ) return 1; 1837 pScan = &p->aScan[idx]; 1838 switch( iScanStatusOp ){ 1839 case SQLITE_SCANSTAT_NLOOP: { 1840 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; 1841 break; 1842 } 1843 case SQLITE_SCANSTAT_NVISIT: { 1844 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; 1845 break; 1846 } 1847 case SQLITE_SCANSTAT_EST: { 1848 double r = 1.0; 1849 LogEst x = pScan->nEst; 1850 while( x<100 ){ 1851 x += 10; 1852 r *= 0.5; 1853 } 1854 *(double*)pOut = r*sqlite3LogEstToInt(x); 1855 break; 1856 } 1857 case SQLITE_SCANSTAT_NAME: { 1858 *(const char**)pOut = pScan->zName; 1859 break; 1860 } 1861 case SQLITE_SCANSTAT_EXPLAIN: { 1862 if( pScan->addrExplain ){ 1863 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; 1864 }else{ 1865 *(const char**)pOut = 0; 1866 } 1867 break; 1868 } 1869 case SQLITE_SCANSTAT_SELECTID: { 1870 if( pScan->addrExplain ){ 1871 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; 1872 }else{ 1873 *(int*)pOut = -1; 1874 } 1875 break; 1876 } 1877 default: { 1878 return 1; 1879 } 1880 } 1881 return 0; 1882 } 1883 1884 /* 1885 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. 1886 */ 1887 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ 1888 Vdbe *p = (Vdbe*)pStmt; 1889 memset(p->anExec, 0, p->nOp * sizeof(i64)); 1890 } 1891 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ 1892