xref: /sqlite-3.40.0/src/vdbeapi.c (revision 119fc11e)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18 
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled.  A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates.  For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29   Vdbe *p = (Vdbe*)pStmt;
30   return p==0 || p->expired;
31 }
32 #endif
33 
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized.  Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid).  Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40   if( p->db==0 ){
41     sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42     return 1;
43   }else{
44     return 0;
45   }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48   if( p==0 ){
49     sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50     return 1;
51   }else{
52     return vdbeSafety(p);
53   }
54 }
55 
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback.  This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62   sqlite3_int64 iNow;
63   sqlite3_int64 iElapse;
64   assert( p->startTime>0 );
65   assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66   assert( db->init.busy==0 );
67   assert( p->zSql!=0 );
68   sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69   iElapse = (iNow - p->startTime)*1000000;
70   if( db->xProfile ){
71     db->xProfile(db->pProfileArg, p->zSql, iElapse);
72   }
73   if( db->mTrace & SQLITE_TRACE_PROFILE ){
74     db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
75   }
76   p->startTime = 0;
77 }
78 /*
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
81 */
82 # define checkProfileCallback(DB,P) \
83    if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P)  /*no-op*/
86 #endif
87 
88 /*
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
93 **
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
96 */
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98   int rc;
99   if( pStmt==0 ){
100     /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101     ** pointer is a harmless no-op. */
102     rc = SQLITE_OK;
103   }else{
104     Vdbe *v = (Vdbe*)pStmt;
105     sqlite3 *db = v->db;
106     if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107     sqlite3_mutex_enter(db->mutex);
108     checkProfileCallback(db, v);
109     rc = sqlite3VdbeFinalize(v);
110     rc = sqlite3ApiExit(db, rc);
111     sqlite3LeaveMutexAndCloseZombie(db);
112   }
113   return rc;
114 }
115 
116 /*
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
120 **
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
123 */
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125   int rc;
126   if( pStmt==0 ){
127     rc = SQLITE_OK;
128   }else{
129     Vdbe *v = (Vdbe*)pStmt;
130     sqlite3 *db = v->db;
131     sqlite3_mutex_enter(db->mutex);
132     checkProfileCallback(db, v);
133     rc = sqlite3VdbeReset(v);
134     sqlite3VdbeRewind(v);
135     assert( (rc & (db->errMask))==rc );
136     rc = sqlite3ApiExit(db, rc);
137     sqlite3_mutex_leave(db->mutex);
138   }
139   return rc;
140 }
141 
142 /*
143 ** Set all the parameters in the compiled SQL statement to NULL.
144 */
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146   int i;
147   int rc = SQLITE_OK;
148   Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152   sqlite3_mutex_enter(mutex);
153   for(i=0; i<p->nVar; i++){
154     sqlite3VdbeMemRelease(&p->aVar[i]);
155     p->aVar[i].flags = MEM_Null;
156   }
157   assert( p->isPrepareV2 || p->expmask==0 );
158   if( p->expmask ){
159     p->expired = 1;
160   }
161   sqlite3_mutex_leave(mutex);
162   return rc;
163 }
164 
165 
166 /**************************** sqlite3_value_  *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
168 ** structure.
169 */
170 const void *sqlite3_value_blob(sqlite3_value *pVal){
171   Mem *p = (Mem*)pVal;
172   if( p->flags & (MEM_Blob|MEM_Str) ){
173     if( ExpandBlob(p)!=SQLITE_OK ){
174       assert( p->flags==MEM_Null && p->z==0 );
175       return 0;
176     }
177     p->flags |= MEM_Blob;
178     return p->n ? p->z : 0;
179   }else{
180     return sqlite3_value_text(pVal);
181   }
182 }
183 int sqlite3_value_bytes(sqlite3_value *pVal){
184   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
185 }
186 int sqlite3_value_bytes16(sqlite3_value *pVal){
187   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
188 }
189 double sqlite3_value_double(sqlite3_value *pVal){
190   return sqlite3VdbeRealValue((Mem*)pVal);
191 }
192 int sqlite3_value_int(sqlite3_value *pVal){
193   return (int)sqlite3VdbeIntValue((Mem*)pVal);
194 }
195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
196   return sqlite3VdbeIntValue((Mem*)pVal);
197 }
198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
199   Mem *pMem = (Mem*)pVal;
200   return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
201 }
202 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
203   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
204 }
205 #ifndef SQLITE_OMIT_UTF16
206 const void *sqlite3_value_text16(sqlite3_value* pVal){
207   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
208 }
209 const void *sqlite3_value_text16be(sqlite3_value *pVal){
210   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
211 }
212 const void *sqlite3_value_text16le(sqlite3_value *pVal){
213   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
214 }
215 #endif /* SQLITE_OMIT_UTF16 */
216 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
217 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
218 ** point number string BLOB NULL
219 */
220 int sqlite3_value_type(sqlite3_value* pVal){
221   static const u8 aType[] = {
222      SQLITE_BLOB,     /* 0x00 */
223      SQLITE_NULL,     /* 0x01 */
224      SQLITE_TEXT,     /* 0x02 */
225      SQLITE_NULL,     /* 0x03 */
226      SQLITE_INTEGER,  /* 0x04 */
227      SQLITE_NULL,     /* 0x05 */
228      SQLITE_INTEGER,  /* 0x06 */
229      SQLITE_NULL,     /* 0x07 */
230      SQLITE_FLOAT,    /* 0x08 */
231      SQLITE_NULL,     /* 0x09 */
232      SQLITE_FLOAT,    /* 0x0a */
233      SQLITE_NULL,     /* 0x0b */
234      SQLITE_INTEGER,  /* 0x0c */
235      SQLITE_NULL,     /* 0x0d */
236      SQLITE_INTEGER,  /* 0x0e */
237      SQLITE_NULL,     /* 0x0f */
238      SQLITE_BLOB,     /* 0x10 */
239      SQLITE_NULL,     /* 0x11 */
240      SQLITE_TEXT,     /* 0x12 */
241      SQLITE_NULL,     /* 0x13 */
242      SQLITE_INTEGER,  /* 0x14 */
243      SQLITE_NULL,     /* 0x15 */
244      SQLITE_INTEGER,  /* 0x16 */
245      SQLITE_NULL,     /* 0x17 */
246      SQLITE_FLOAT,    /* 0x18 */
247      SQLITE_NULL,     /* 0x19 */
248      SQLITE_FLOAT,    /* 0x1a */
249      SQLITE_NULL,     /* 0x1b */
250      SQLITE_INTEGER,  /* 0x1c */
251      SQLITE_NULL,     /* 0x1d */
252      SQLITE_INTEGER,  /* 0x1e */
253      SQLITE_NULL,     /* 0x1f */
254   };
255   return aType[pVal->flags&MEM_AffMask];
256 }
257 
258 /* Make a copy of an sqlite3_value object
259 */
260 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
261   sqlite3_value *pNew;
262   if( pOrig==0 ) return 0;
263   pNew = sqlite3_malloc( sizeof(*pNew) );
264   if( pNew==0 ) return 0;
265   memset(pNew, 0, sizeof(*pNew));
266   memcpy(pNew, pOrig, MEMCELLSIZE);
267   pNew->flags &= ~MEM_Dyn;
268   pNew->db = 0;
269   if( pNew->flags&(MEM_Str|MEM_Blob) ){
270     pNew->flags &= ~(MEM_Static|MEM_Dyn);
271     pNew->flags |= MEM_Ephem;
272     if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
273       sqlite3ValueFree(pNew);
274       pNew = 0;
275     }
276   }
277   return pNew;
278 }
279 
280 /* Destroy an sqlite3_value object previously obtained from
281 ** sqlite3_value_dup().
282 */
283 void sqlite3_value_free(sqlite3_value *pOld){
284   sqlite3ValueFree(pOld);
285 }
286 
287 
288 /**************************** sqlite3_result_  *******************************
289 ** The following routines are used by user-defined functions to specify
290 ** the function result.
291 **
292 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
293 ** result as a string or blob but if the string or blob is too large, it
294 ** then sets the error code to SQLITE_TOOBIG
295 **
296 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
297 ** on value P is not going to be used and need to be destroyed.
298 */
299 static void setResultStrOrError(
300   sqlite3_context *pCtx,  /* Function context */
301   const char *z,          /* String pointer */
302   int n,                  /* Bytes in string, or negative */
303   u8 enc,                 /* Encoding of z.  0 for BLOBs */
304   void (*xDel)(void*)     /* Destructor function */
305 ){
306   if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
307     sqlite3_result_error_toobig(pCtx);
308   }
309 }
310 static int invokeValueDestructor(
311   const void *p,             /* Value to destroy */
312   void (*xDel)(void*),       /* The destructor */
313   sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
314 ){
315   assert( xDel!=SQLITE_DYNAMIC );
316   if( xDel==0 ){
317     /* noop */
318   }else if( xDel==SQLITE_TRANSIENT ){
319     /* noop */
320   }else{
321     xDel((void*)p);
322   }
323   if( pCtx ) sqlite3_result_error_toobig(pCtx);
324   return SQLITE_TOOBIG;
325 }
326 void sqlite3_result_blob(
327   sqlite3_context *pCtx,
328   const void *z,
329   int n,
330   void (*xDel)(void *)
331 ){
332   assert( n>=0 );
333   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
334   setResultStrOrError(pCtx, z, n, 0, xDel);
335 }
336 void sqlite3_result_blob64(
337   sqlite3_context *pCtx,
338   const void *z,
339   sqlite3_uint64 n,
340   void (*xDel)(void *)
341 ){
342   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
343   assert( xDel!=SQLITE_DYNAMIC );
344   if( n>0x7fffffff ){
345     (void)invokeValueDestructor(z, xDel, pCtx);
346   }else{
347     setResultStrOrError(pCtx, z, (int)n, 0, xDel);
348   }
349 }
350 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
351   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
352   sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
353 }
354 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
355   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
356   pCtx->isError = SQLITE_ERROR;
357   pCtx->fErrorOrAux = 1;
358   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
359 }
360 #ifndef SQLITE_OMIT_UTF16
361 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
362   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
363   pCtx->isError = SQLITE_ERROR;
364   pCtx->fErrorOrAux = 1;
365   sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
366 }
367 #endif
368 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
369   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
370   sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
371 }
372 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
373   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
374   sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
375 }
376 void sqlite3_result_null(sqlite3_context *pCtx){
377   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
378   sqlite3VdbeMemSetNull(pCtx->pOut);
379 }
380 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
381   Mem *pOut = pCtx->pOut;
382   assert( sqlite3_mutex_held(pOut->db->mutex) );
383   pOut->eSubtype = eSubtype & 0xff;
384   pOut->flags |= MEM_Subtype;
385 }
386 void sqlite3_result_text(
387   sqlite3_context *pCtx,
388   const char *z,
389   int n,
390   void (*xDel)(void *)
391 ){
392   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
393   setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
394 }
395 void sqlite3_result_text64(
396   sqlite3_context *pCtx,
397   const char *z,
398   sqlite3_uint64 n,
399   void (*xDel)(void *),
400   unsigned char enc
401 ){
402   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
403   assert( xDel!=SQLITE_DYNAMIC );
404   if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
405   if( n>0x7fffffff ){
406     (void)invokeValueDestructor(z, xDel, pCtx);
407   }else{
408     setResultStrOrError(pCtx, z, (int)n, enc, xDel);
409   }
410 }
411 #ifndef SQLITE_OMIT_UTF16
412 void sqlite3_result_text16(
413   sqlite3_context *pCtx,
414   const void *z,
415   int n,
416   void (*xDel)(void *)
417 ){
418   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
419   setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
420 }
421 void sqlite3_result_text16be(
422   sqlite3_context *pCtx,
423   const void *z,
424   int n,
425   void (*xDel)(void *)
426 ){
427   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428   setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
429 }
430 void sqlite3_result_text16le(
431   sqlite3_context *pCtx,
432   const void *z,
433   int n,
434   void (*xDel)(void *)
435 ){
436   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
437   setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
438 }
439 #endif /* SQLITE_OMIT_UTF16 */
440 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
441   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
442   sqlite3VdbeMemCopy(pCtx->pOut, pValue);
443 }
444 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
445   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
446   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
447 }
448 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
449   Mem *pOut = pCtx->pOut;
450   assert( sqlite3_mutex_held(pOut->db->mutex) );
451   if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
452     return SQLITE_TOOBIG;
453   }
454   sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
455   return SQLITE_OK;
456 }
457 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
458   pCtx->isError = errCode;
459   pCtx->fErrorOrAux = 1;
460 #ifdef SQLITE_DEBUG
461   if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
462 #endif
463   if( pCtx->pOut->flags & MEM_Null ){
464     sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
465                          SQLITE_UTF8, SQLITE_STATIC);
466   }
467 }
468 
469 /* Force an SQLITE_TOOBIG error. */
470 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
471   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
472   pCtx->isError = SQLITE_TOOBIG;
473   pCtx->fErrorOrAux = 1;
474   sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
475                        SQLITE_UTF8, SQLITE_STATIC);
476 }
477 
478 /* An SQLITE_NOMEM error. */
479 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
480   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
481   sqlite3VdbeMemSetNull(pCtx->pOut);
482   pCtx->isError = SQLITE_NOMEM_BKPT;
483   pCtx->fErrorOrAux = 1;
484   sqlite3OomFault(pCtx->pOut->db);
485 }
486 
487 /*
488 ** This function is called after a transaction has been committed. It
489 ** invokes callbacks registered with sqlite3_wal_hook() as required.
490 */
491 static int doWalCallbacks(sqlite3 *db){
492   int rc = SQLITE_OK;
493 #ifndef SQLITE_OMIT_WAL
494   int i;
495   for(i=0; i<db->nDb; i++){
496     Btree *pBt = db->aDb[i].pBt;
497     if( pBt ){
498       int nEntry;
499       sqlite3BtreeEnter(pBt);
500       nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
501       sqlite3BtreeLeave(pBt);
502       if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
503         rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
504       }
505     }
506   }
507 #endif
508   return rc;
509 }
510 
511 
512 /*
513 ** Execute the statement pStmt, either until a row of data is ready, the
514 ** statement is completely executed or an error occurs.
515 **
516 ** This routine implements the bulk of the logic behind the sqlite_step()
517 ** API.  The only thing omitted is the automatic recompile if a
518 ** schema change has occurred.  That detail is handled by the
519 ** outer sqlite3_step() wrapper procedure.
520 */
521 static int sqlite3Step(Vdbe *p){
522   sqlite3 *db;
523   int rc;
524 
525   assert(p);
526   if( p->magic!=VDBE_MAGIC_RUN ){
527     /* We used to require that sqlite3_reset() be called before retrying
528     ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning
529     ** with version 3.7.0, we changed this so that sqlite3_reset() would
530     ** be called automatically instead of throwing the SQLITE_MISUSE error.
531     ** This "automatic-reset" change is not technically an incompatibility,
532     ** since any application that receives an SQLITE_MISUSE is broken by
533     ** definition.
534     **
535     ** Nevertheless, some published applications that were originally written
536     ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
537     ** returns, and those were broken by the automatic-reset change.  As a
538     ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
539     ** legacy behavior of returning SQLITE_MISUSE for cases where the
540     ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
541     ** or SQLITE_BUSY error.
542     */
543 #ifdef SQLITE_OMIT_AUTORESET
544     if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
545       sqlite3_reset((sqlite3_stmt*)p);
546     }else{
547       return SQLITE_MISUSE_BKPT;
548     }
549 #else
550     sqlite3_reset((sqlite3_stmt*)p);
551 #endif
552   }
553 
554   /* Check that malloc() has not failed. If it has, return early. */
555   db = p->db;
556   if( db->mallocFailed ){
557     p->rc = SQLITE_NOMEM;
558     return SQLITE_NOMEM_BKPT;
559   }
560 
561   if( p->pc<=0 && p->expired ){
562     p->rc = SQLITE_SCHEMA;
563     rc = SQLITE_ERROR;
564     goto end_of_step;
565   }
566   if( p->pc<0 ){
567     /* If there are no other statements currently running, then
568     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
569     ** from interrupting a statement that has not yet started.
570     */
571     if( db->nVdbeActive==0 ){
572       db->u1.isInterrupted = 0;
573     }
574 
575     assert( db->nVdbeWrite>0 || db->autoCommit==0
576         || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
577     );
578 
579 #ifndef SQLITE_OMIT_TRACE
580     if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
581         && !db->init.busy && p->zSql ){
582       sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
583     }else{
584       assert( p->startTime==0 );
585     }
586 #endif
587 
588     db->nVdbeActive++;
589     if( p->readOnly==0 ) db->nVdbeWrite++;
590     if( p->bIsReader ) db->nVdbeRead++;
591     p->pc = 0;
592   }
593 #ifdef SQLITE_DEBUG
594   p->rcApp = SQLITE_OK;
595 #endif
596 #ifndef SQLITE_OMIT_EXPLAIN
597   if( p->explain ){
598     rc = sqlite3VdbeList(p);
599   }else
600 #endif /* SQLITE_OMIT_EXPLAIN */
601   {
602     db->nVdbeExec++;
603     rc = sqlite3VdbeExec(p);
604     db->nVdbeExec--;
605   }
606 
607 #ifndef SQLITE_OMIT_TRACE
608   /* If the statement completed successfully, invoke the profile callback */
609   if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
610 #endif
611 
612   if( rc==SQLITE_DONE ){
613     assert( p->rc==SQLITE_OK );
614     p->rc = doWalCallbacks(db);
615     if( p->rc!=SQLITE_OK ){
616       rc = SQLITE_ERROR;
617     }
618   }
619 
620   db->errCode = rc;
621   if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
622     p->rc = SQLITE_NOMEM_BKPT;
623   }
624 end_of_step:
625   /* At this point local variable rc holds the value that should be
626   ** returned if this statement was compiled using the legacy
627   ** sqlite3_prepare() interface. According to the docs, this can only
628   ** be one of the values in the first assert() below. Variable p->rc
629   ** contains the value that would be returned if sqlite3_finalize()
630   ** were called on statement p.
631   */
632   assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR
633        || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
634   );
635   assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
636   if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
637     /* If this statement was prepared using sqlite3_prepare_v2(), and an
638     ** error has occurred, then return the error code in p->rc to the
639     ** caller. Set the error code in the database handle to the same value.
640     */
641     rc = sqlite3VdbeTransferError(p);
642   }
643   return (rc&db->errMask);
644 }
645 
646 /*
647 ** This is the top-level implementation of sqlite3_step().  Call
648 ** sqlite3Step() to do most of the work.  If a schema error occurs,
649 ** call sqlite3Reprepare() and try again.
650 */
651 int sqlite3_step(sqlite3_stmt *pStmt){
652   int rc = SQLITE_OK;      /* Result from sqlite3Step() */
653   int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
654   Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
655   int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
656   sqlite3 *db;             /* The database connection */
657 
658   if( vdbeSafetyNotNull(v) ){
659     return SQLITE_MISUSE_BKPT;
660   }
661   db = v->db;
662   sqlite3_mutex_enter(db->mutex);
663   v->doingRerun = 0;
664   while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
665          && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
666     int savedPc = v->pc;
667     rc2 = rc = sqlite3Reprepare(v);
668     if( rc!=SQLITE_OK) break;
669     sqlite3_reset(pStmt);
670     if( savedPc>=0 ) v->doingRerun = 1;
671     assert( v->expired==0 );
672   }
673   if( rc2!=SQLITE_OK ){
674     /* This case occurs after failing to recompile an sql statement.
675     ** The error message from the SQL compiler has already been loaded
676     ** into the database handle. This block copies the error message
677     ** from the database handle into the statement and sets the statement
678     ** program counter to 0 to ensure that when the statement is
679     ** finalized or reset the parser error message is available via
680     ** sqlite3_errmsg() and sqlite3_errcode().
681     */
682     const char *zErr = (const char *)sqlite3_value_text(db->pErr);
683     sqlite3DbFree(db, v->zErrMsg);
684     if( !db->mallocFailed ){
685       v->zErrMsg = sqlite3DbStrDup(db, zErr);
686       v->rc = rc2;
687     } else {
688       v->zErrMsg = 0;
689       v->rc = rc = SQLITE_NOMEM_BKPT;
690     }
691   }
692   rc = sqlite3ApiExit(db, rc);
693   sqlite3_mutex_leave(db->mutex);
694   return rc;
695 }
696 
697 
698 /*
699 ** Extract the user data from a sqlite3_context structure and return a
700 ** pointer to it.
701 */
702 void *sqlite3_user_data(sqlite3_context *p){
703   assert( p && p->pFunc );
704   return p->pFunc->pUserData;
705 }
706 
707 /*
708 ** Extract the user data from a sqlite3_context structure and return a
709 ** pointer to it.
710 **
711 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
712 ** returns a copy of the pointer to the database connection (the 1st
713 ** parameter) of the sqlite3_create_function() and
714 ** sqlite3_create_function16() routines that originally registered the
715 ** application defined function.
716 */
717 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
718   assert( p && p->pOut );
719   return p->pOut->db;
720 }
721 
722 /*
723 ** Return the current time for a statement.  If the current time
724 ** is requested more than once within the same run of a single prepared
725 ** statement, the exact same time is returned for each invocation regardless
726 ** of the amount of time that elapses between invocations.  In other words,
727 ** the time returned is always the time of the first call.
728 */
729 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
730   int rc;
731 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
732   sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
733   assert( p->pVdbe!=0 );
734 #else
735   sqlite3_int64 iTime = 0;
736   sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
737 #endif
738   if( *piTime==0 ){
739     rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
740     if( rc ) *piTime = 0;
741   }
742   return *piTime;
743 }
744 
745 /*
746 ** The following is the implementation of an SQL function that always
747 ** fails with an error message stating that the function is used in the
748 ** wrong context.  The sqlite3_overload_function() API might construct
749 ** SQL function that use this routine so that the functions will exist
750 ** for name resolution but are actually overloaded by the xFindFunction
751 ** method of virtual tables.
752 */
753 void sqlite3InvalidFunction(
754   sqlite3_context *context,  /* The function calling context */
755   int NotUsed,               /* Number of arguments to the function */
756   sqlite3_value **NotUsed2   /* Value of each argument */
757 ){
758   const char *zName = context->pFunc->zName;
759   char *zErr;
760   UNUSED_PARAMETER2(NotUsed, NotUsed2);
761   zErr = sqlite3_mprintf(
762       "unable to use function %s in the requested context", zName);
763   sqlite3_result_error(context, zErr, -1);
764   sqlite3_free(zErr);
765 }
766 
767 /*
768 ** Create a new aggregate context for p and return a pointer to
769 ** its pMem->z element.
770 */
771 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
772   Mem *pMem = p->pMem;
773   assert( (pMem->flags & MEM_Agg)==0 );
774   if( nByte<=0 ){
775     sqlite3VdbeMemSetNull(pMem);
776     pMem->z = 0;
777   }else{
778     sqlite3VdbeMemClearAndResize(pMem, nByte);
779     pMem->flags = MEM_Agg;
780     pMem->u.pDef = p->pFunc;
781     if( pMem->z ){
782       memset(pMem->z, 0, nByte);
783     }
784   }
785   return (void*)pMem->z;
786 }
787 
788 /*
789 ** Allocate or return the aggregate context for a user function.  A new
790 ** context is allocated on the first call.  Subsequent calls return the
791 ** same context that was returned on prior calls.
792 */
793 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
794   assert( p && p->pFunc && p->pFunc->xFinalize );
795   assert( sqlite3_mutex_held(p->pOut->db->mutex) );
796   testcase( nByte<0 );
797   if( (p->pMem->flags & MEM_Agg)==0 ){
798     return createAggContext(p, nByte);
799   }else{
800     return (void*)p->pMem->z;
801   }
802 }
803 
804 /*
805 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
806 ** the user-function defined by pCtx.
807 */
808 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
809   AuxData *pAuxData;
810 
811   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
812 #if SQLITE_ENABLE_STAT3_OR_STAT4
813   if( pCtx->pVdbe==0 ) return 0;
814 #else
815   assert( pCtx->pVdbe!=0 );
816 #endif
817   for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
818     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
819   }
820 
821   return (pAuxData ? pAuxData->pAux : 0);
822 }
823 
824 /*
825 ** Set the auxiliary data pointer and delete function, for the iArg'th
826 ** argument to the user-function defined by pCtx. Any previous value is
827 ** deleted by calling the delete function specified when it was set.
828 */
829 void sqlite3_set_auxdata(
830   sqlite3_context *pCtx,
831   int iArg,
832   void *pAux,
833   void (*xDelete)(void*)
834 ){
835   AuxData *pAuxData;
836   Vdbe *pVdbe = pCtx->pVdbe;
837 
838   assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
839   if( iArg<0 ) goto failed;
840 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
841   if( pVdbe==0 ) goto failed;
842 #else
843   assert( pVdbe!=0 );
844 #endif
845 
846   for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
847     if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
848   }
849   if( pAuxData==0 ){
850     pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
851     if( !pAuxData ) goto failed;
852     pAuxData->iOp = pCtx->iOp;
853     pAuxData->iArg = iArg;
854     pAuxData->pNext = pVdbe->pAuxData;
855     pVdbe->pAuxData = pAuxData;
856     if( pCtx->fErrorOrAux==0 ){
857       pCtx->isError = 0;
858       pCtx->fErrorOrAux = 1;
859     }
860   }else if( pAuxData->xDelete ){
861     pAuxData->xDelete(pAuxData->pAux);
862   }
863 
864   pAuxData->pAux = pAux;
865   pAuxData->xDelete = xDelete;
866   return;
867 
868 failed:
869   if( xDelete ){
870     xDelete(pAux);
871   }
872 }
873 
874 #ifndef SQLITE_OMIT_DEPRECATED
875 /*
876 ** Return the number of times the Step function of an aggregate has been
877 ** called.
878 **
879 ** This function is deprecated.  Do not use it for new code.  It is
880 ** provide only to avoid breaking legacy code.  New aggregate function
881 ** implementations should keep their own counts within their aggregate
882 ** context.
883 */
884 int sqlite3_aggregate_count(sqlite3_context *p){
885   assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
886   return p->pMem->n;
887 }
888 #endif
889 
890 /*
891 ** Return the number of columns in the result set for the statement pStmt.
892 */
893 int sqlite3_column_count(sqlite3_stmt *pStmt){
894   Vdbe *pVm = (Vdbe *)pStmt;
895   return pVm ? pVm->nResColumn : 0;
896 }
897 
898 /*
899 ** Return the number of values available from the current row of the
900 ** currently executing statement pStmt.
901 */
902 int sqlite3_data_count(sqlite3_stmt *pStmt){
903   Vdbe *pVm = (Vdbe *)pStmt;
904   if( pVm==0 || pVm->pResultSet==0 ) return 0;
905   return pVm->nResColumn;
906 }
907 
908 /*
909 ** Return a pointer to static memory containing an SQL NULL value.
910 */
911 static const Mem *columnNullValue(void){
912   /* Even though the Mem structure contains an element
913   ** of type i64, on certain architectures (x86) with certain compiler
914   ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
915   ** instead of an 8-byte one. This all works fine, except that when
916   ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
917   ** that a Mem structure is located on an 8-byte boundary. To prevent
918   ** these assert()s from failing, when building with SQLITE_DEBUG defined
919   ** using gcc, we force nullMem to be 8-byte aligned using the magical
920   ** __attribute__((aligned(8))) macro.  */
921   static const Mem nullMem
922 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
923     __attribute__((aligned(8)))
924 #endif
925     = {
926         /* .u          = */ {0},
927         /* .flags      = */ (u16)MEM_Null,
928         /* .enc        = */ (u8)0,
929         /* .eSubtype   = */ (u8)0,
930         /* .n          = */ (int)0,
931         /* .z          = */ (char*)0,
932         /* .zMalloc    = */ (char*)0,
933         /* .szMalloc   = */ (int)0,
934         /* .uTemp      = */ (u32)0,
935         /* .db         = */ (sqlite3*)0,
936         /* .xDel       = */ (void(*)(void*))0,
937 #ifdef SQLITE_DEBUG
938         /* .pScopyFrom = */ (Mem*)0,
939         /* .pFiller    = */ (void*)0,
940 #endif
941       };
942   return &nullMem;
943 }
944 
945 /*
946 ** Check to see if column iCol of the given statement is valid.  If
947 ** it is, return a pointer to the Mem for the value of that column.
948 ** If iCol is not valid, return a pointer to a Mem which has a value
949 ** of NULL.
950 */
951 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
952   Vdbe *pVm;
953   Mem *pOut;
954 
955   pVm = (Vdbe *)pStmt;
956   if( pVm==0 ) return (Mem*)columnNullValue();
957   assert( pVm->db );
958   sqlite3_mutex_enter(pVm->db->mutex);
959   if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
960     pOut = &pVm->pResultSet[i];
961   }else{
962     sqlite3Error(pVm->db, SQLITE_RANGE);
963     pOut = (Mem*)columnNullValue();
964   }
965   return pOut;
966 }
967 
968 /*
969 ** This function is called after invoking an sqlite3_value_XXX function on a
970 ** column value (i.e. a value returned by evaluating an SQL expression in the
971 ** select list of a SELECT statement) that may cause a malloc() failure. If
972 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
973 ** code of statement pStmt set to SQLITE_NOMEM.
974 **
975 ** Specifically, this is called from within:
976 **
977 **     sqlite3_column_int()
978 **     sqlite3_column_int64()
979 **     sqlite3_column_text()
980 **     sqlite3_column_text16()
981 **     sqlite3_column_real()
982 **     sqlite3_column_bytes()
983 **     sqlite3_column_bytes16()
984 **     sqiite3_column_blob()
985 */
986 static void columnMallocFailure(sqlite3_stmt *pStmt)
987 {
988   /* If malloc() failed during an encoding conversion within an
989   ** sqlite3_column_XXX API, then set the return code of the statement to
990   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
991   ** and _finalize() will return NOMEM.
992   */
993   Vdbe *p = (Vdbe *)pStmt;
994   if( p ){
995     assert( p->db!=0 );
996     assert( sqlite3_mutex_held(p->db->mutex) );
997     p->rc = sqlite3ApiExit(p->db, p->rc);
998     sqlite3_mutex_leave(p->db->mutex);
999   }
1000 }
1001 
1002 /**************************** sqlite3_column_  *******************************
1003 ** The following routines are used to access elements of the current row
1004 ** in the result set.
1005 */
1006 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1007   const void *val;
1008   val = sqlite3_value_blob( columnMem(pStmt,i) );
1009   /* Even though there is no encoding conversion, value_blob() might
1010   ** need to call malloc() to expand the result of a zeroblob()
1011   ** expression.
1012   */
1013   columnMallocFailure(pStmt);
1014   return val;
1015 }
1016 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1017   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1018   columnMallocFailure(pStmt);
1019   return val;
1020 }
1021 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1022   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1023   columnMallocFailure(pStmt);
1024   return val;
1025 }
1026 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1027   double val = sqlite3_value_double( columnMem(pStmt,i) );
1028   columnMallocFailure(pStmt);
1029   return val;
1030 }
1031 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1032   int val = sqlite3_value_int( columnMem(pStmt,i) );
1033   columnMallocFailure(pStmt);
1034   return val;
1035 }
1036 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1037   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1038   columnMallocFailure(pStmt);
1039   return val;
1040 }
1041 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1042   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1043   columnMallocFailure(pStmt);
1044   return val;
1045 }
1046 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1047   Mem *pOut = columnMem(pStmt, i);
1048   if( pOut->flags&MEM_Static ){
1049     pOut->flags &= ~MEM_Static;
1050     pOut->flags |= MEM_Ephem;
1051   }
1052   columnMallocFailure(pStmt);
1053   return (sqlite3_value *)pOut;
1054 }
1055 #ifndef SQLITE_OMIT_UTF16
1056 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1057   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1058   columnMallocFailure(pStmt);
1059   return val;
1060 }
1061 #endif /* SQLITE_OMIT_UTF16 */
1062 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1063   int iType = sqlite3_value_type( columnMem(pStmt,i) );
1064   columnMallocFailure(pStmt);
1065   return iType;
1066 }
1067 
1068 /*
1069 ** Convert the N-th element of pStmt->pColName[] into a string using
1070 ** xFunc() then return that string.  If N is out of range, return 0.
1071 **
1072 ** There are up to 5 names for each column.  useType determines which
1073 ** name is returned.  Here are the names:
1074 **
1075 **    0      The column name as it should be displayed for output
1076 **    1      The datatype name for the column
1077 **    2      The name of the database that the column derives from
1078 **    3      The name of the table that the column derives from
1079 **    4      The name of the table column that the result column derives from
1080 **
1081 ** If the result is not a simple column reference (if it is an expression
1082 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1083 */
1084 static const void *columnName(
1085   sqlite3_stmt *pStmt,
1086   int N,
1087   const void *(*xFunc)(Mem*),
1088   int useType
1089 ){
1090   const void *ret;
1091   Vdbe *p;
1092   int n;
1093   sqlite3 *db;
1094 #ifdef SQLITE_ENABLE_API_ARMOR
1095   if( pStmt==0 ){
1096     (void)SQLITE_MISUSE_BKPT;
1097     return 0;
1098   }
1099 #endif
1100   ret = 0;
1101   p = (Vdbe *)pStmt;
1102   db = p->db;
1103   assert( db!=0 );
1104   n = sqlite3_column_count(pStmt);
1105   if( N<n && N>=0 ){
1106     N += useType*n;
1107     sqlite3_mutex_enter(db->mutex);
1108     assert( db->mallocFailed==0 );
1109     ret = xFunc(&p->aColName[N]);
1110      /* A malloc may have failed inside of the xFunc() call. If this
1111     ** is the case, clear the mallocFailed flag and return NULL.
1112     */
1113     if( db->mallocFailed ){
1114       sqlite3OomClear(db);
1115       ret = 0;
1116     }
1117     sqlite3_mutex_leave(db->mutex);
1118   }
1119   return ret;
1120 }
1121 
1122 /*
1123 ** Return the name of the Nth column of the result set returned by SQL
1124 ** statement pStmt.
1125 */
1126 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1127   return columnName(
1128       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1129 }
1130 #ifndef SQLITE_OMIT_UTF16
1131 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1132   return columnName(
1133       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1134 }
1135 #endif
1136 
1137 /*
1138 ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
1139 ** not define OMIT_DECLTYPE.
1140 */
1141 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1142 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1143          and SQLITE_ENABLE_COLUMN_METADATA"
1144 #endif
1145 
1146 #ifndef SQLITE_OMIT_DECLTYPE
1147 /*
1148 ** Return the column declaration type (if applicable) of the 'i'th column
1149 ** of the result set of SQL statement pStmt.
1150 */
1151 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1152   return columnName(
1153       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1154 }
1155 #ifndef SQLITE_OMIT_UTF16
1156 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1157   return columnName(
1158       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1159 }
1160 #endif /* SQLITE_OMIT_UTF16 */
1161 #endif /* SQLITE_OMIT_DECLTYPE */
1162 
1163 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1164 /*
1165 ** Return the name of the database from which a result column derives.
1166 ** NULL is returned if the result column is an expression or constant or
1167 ** anything else which is not an unambiguous reference to a database column.
1168 */
1169 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1170   return columnName(
1171       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1172 }
1173 #ifndef SQLITE_OMIT_UTF16
1174 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1175   return columnName(
1176       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1177 }
1178 #endif /* SQLITE_OMIT_UTF16 */
1179 
1180 /*
1181 ** Return the name of the table from which a result column derives.
1182 ** NULL is returned if the result column is an expression or constant or
1183 ** anything else which is not an unambiguous reference to a database column.
1184 */
1185 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1186   return columnName(
1187       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1188 }
1189 #ifndef SQLITE_OMIT_UTF16
1190 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1191   return columnName(
1192       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1193 }
1194 #endif /* SQLITE_OMIT_UTF16 */
1195 
1196 /*
1197 ** Return the name of the table column from which a result column derives.
1198 ** NULL is returned if the result column is an expression or constant or
1199 ** anything else which is not an unambiguous reference to a database column.
1200 */
1201 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1202   return columnName(
1203       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1204 }
1205 #ifndef SQLITE_OMIT_UTF16
1206 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1207   return columnName(
1208       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1209 }
1210 #endif /* SQLITE_OMIT_UTF16 */
1211 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1212 
1213 
1214 /******************************* sqlite3_bind_  ***************************
1215 **
1216 ** Routines used to attach values to wildcards in a compiled SQL statement.
1217 */
1218 /*
1219 ** Unbind the value bound to variable i in virtual machine p. This is the
1220 ** the same as binding a NULL value to the column. If the "i" parameter is
1221 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1222 **
1223 ** A successful evaluation of this routine acquires the mutex on p.
1224 ** the mutex is released if any kind of error occurs.
1225 **
1226 ** The error code stored in database p->db is overwritten with the return
1227 ** value in any case.
1228 */
1229 static int vdbeUnbind(Vdbe *p, int i){
1230   Mem *pVar;
1231   if( vdbeSafetyNotNull(p) ){
1232     return SQLITE_MISUSE_BKPT;
1233   }
1234   sqlite3_mutex_enter(p->db->mutex);
1235   if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1236     sqlite3Error(p->db, SQLITE_MISUSE);
1237     sqlite3_mutex_leave(p->db->mutex);
1238     sqlite3_log(SQLITE_MISUSE,
1239         "bind on a busy prepared statement: [%s]", p->zSql);
1240     return SQLITE_MISUSE_BKPT;
1241   }
1242   if( i<1 || i>p->nVar ){
1243     sqlite3Error(p->db, SQLITE_RANGE);
1244     sqlite3_mutex_leave(p->db->mutex);
1245     return SQLITE_RANGE;
1246   }
1247   i--;
1248   pVar = &p->aVar[i];
1249   sqlite3VdbeMemRelease(pVar);
1250   pVar->flags = MEM_Null;
1251   sqlite3Error(p->db, SQLITE_OK);
1252 
1253   /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1254   ** binding a new value to this variable invalidates the current query plan.
1255   **
1256   ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1257   ** parameter in the WHERE clause might influence the choice of query plan
1258   ** for a statement, then the statement will be automatically recompiled,
1259   ** as if there had been a schema change, on the first sqlite3_step() call
1260   ** following any change to the bindings of that parameter.
1261   */
1262   assert( p->isPrepareV2 || p->expmask==0 );
1263   if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1264     p->expired = 1;
1265   }
1266   return SQLITE_OK;
1267 }
1268 
1269 /*
1270 ** Bind a text or BLOB value.
1271 */
1272 static int bindText(
1273   sqlite3_stmt *pStmt,   /* The statement to bind against */
1274   int i,                 /* Index of the parameter to bind */
1275   const void *zData,     /* Pointer to the data to be bound */
1276   int nData,             /* Number of bytes of data to be bound */
1277   void (*xDel)(void*),   /* Destructor for the data */
1278   u8 encoding            /* Encoding for the data */
1279 ){
1280   Vdbe *p = (Vdbe *)pStmt;
1281   Mem *pVar;
1282   int rc;
1283 
1284   rc = vdbeUnbind(p, i);
1285   if( rc==SQLITE_OK ){
1286     if( zData!=0 ){
1287       pVar = &p->aVar[i-1];
1288       rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1289       if( rc==SQLITE_OK && encoding!=0 ){
1290         rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1291       }
1292       sqlite3Error(p->db, rc);
1293       rc = sqlite3ApiExit(p->db, rc);
1294     }
1295     sqlite3_mutex_leave(p->db->mutex);
1296   }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1297     xDel((void*)zData);
1298   }
1299   return rc;
1300 }
1301 
1302 
1303 /*
1304 ** Bind a blob value to an SQL statement variable.
1305 */
1306 int sqlite3_bind_blob(
1307   sqlite3_stmt *pStmt,
1308   int i,
1309   const void *zData,
1310   int nData,
1311   void (*xDel)(void*)
1312 ){
1313 #ifdef SQLITE_ENABLE_API_ARMOR
1314   if( nData<0 ) return SQLITE_MISUSE_BKPT;
1315 #endif
1316   return bindText(pStmt, i, zData, nData, xDel, 0);
1317 }
1318 int sqlite3_bind_blob64(
1319   sqlite3_stmt *pStmt,
1320   int i,
1321   const void *zData,
1322   sqlite3_uint64 nData,
1323   void (*xDel)(void*)
1324 ){
1325   assert( xDel!=SQLITE_DYNAMIC );
1326   if( nData>0x7fffffff ){
1327     return invokeValueDestructor(zData, xDel, 0);
1328   }else{
1329     return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1330   }
1331 }
1332 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1333   int rc;
1334   Vdbe *p = (Vdbe *)pStmt;
1335   rc = vdbeUnbind(p, i);
1336   if( rc==SQLITE_OK ){
1337     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1338     sqlite3_mutex_leave(p->db->mutex);
1339   }
1340   return rc;
1341 }
1342 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1343   return sqlite3_bind_int64(p, i, (i64)iValue);
1344 }
1345 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1346   int rc;
1347   Vdbe *p = (Vdbe *)pStmt;
1348   rc = vdbeUnbind(p, i);
1349   if( rc==SQLITE_OK ){
1350     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1351     sqlite3_mutex_leave(p->db->mutex);
1352   }
1353   return rc;
1354 }
1355 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1356   int rc;
1357   Vdbe *p = (Vdbe*)pStmt;
1358   rc = vdbeUnbind(p, i);
1359   if( rc==SQLITE_OK ){
1360     sqlite3_mutex_leave(p->db->mutex);
1361   }
1362   return rc;
1363 }
1364 int sqlite3_bind_text(
1365   sqlite3_stmt *pStmt,
1366   int i,
1367   const char *zData,
1368   int nData,
1369   void (*xDel)(void*)
1370 ){
1371   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1372 }
1373 int sqlite3_bind_text64(
1374   sqlite3_stmt *pStmt,
1375   int i,
1376   const char *zData,
1377   sqlite3_uint64 nData,
1378   void (*xDel)(void*),
1379   unsigned char enc
1380 ){
1381   assert( xDel!=SQLITE_DYNAMIC );
1382   if( nData>0x7fffffff ){
1383     return invokeValueDestructor(zData, xDel, 0);
1384   }else{
1385     if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1386     return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1387   }
1388 }
1389 #ifndef SQLITE_OMIT_UTF16
1390 int sqlite3_bind_text16(
1391   sqlite3_stmt *pStmt,
1392   int i,
1393   const void *zData,
1394   int nData,
1395   void (*xDel)(void*)
1396 ){
1397   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1398 }
1399 #endif /* SQLITE_OMIT_UTF16 */
1400 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1401   int rc;
1402   switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1403     case SQLITE_INTEGER: {
1404       rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1405       break;
1406     }
1407     case SQLITE_FLOAT: {
1408       rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1409       break;
1410     }
1411     case SQLITE_BLOB: {
1412       if( pValue->flags & MEM_Zero ){
1413         rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1414       }else{
1415         rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1416       }
1417       break;
1418     }
1419     case SQLITE_TEXT: {
1420       rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT,
1421                               pValue->enc);
1422       break;
1423     }
1424     default: {
1425       rc = sqlite3_bind_null(pStmt, i);
1426       break;
1427     }
1428   }
1429   return rc;
1430 }
1431 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1432   int rc;
1433   Vdbe *p = (Vdbe *)pStmt;
1434   rc = vdbeUnbind(p, i);
1435   if( rc==SQLITE_OK ){
1436     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1437     sqlite3_mutex_leave(p->db->mutex);
1438   }
1439   return rc;
1440 }
1441 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1442   int rc;
1443   Vdbe *p = (Vdbe *)pStmt;
1444   sqlite3_mutex_enter(p->db->mutex);
1445   if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1446     rc = SQLITE_TOOBIG;
1447   }else{
1448     assert( (n & 0x7FFFFFFF)==n );
1449     rc = sqlite3_bind_zeroblob(pStmt, i, n);
1450   }
1451   rc = sqlite3ApiExit(p->db, rc);
1452   sqlite3_mutex_leave(p->db->mutex);
1453   return rc;
1454 }
1455 
1456 /*
1457 ** Return the number of wildcards that can be potentially bound to.
1458 ** This routine is added to support DBD::SQLite.
1459 */
1460 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1461   Vdbe *p = (Vdbe*)pStmt;
1462   return p ? p->nVar : 0;
1463 }
1464 
1465 /*
1466 ** Return the name of a wildcard parameter.  Return NULL if the index
1467 ** is out of range or if the wildcard is unnamed.
1468 **
1469 ** The result is always UTF-8.
1470 */
1471 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1472   Vdbe *p = (Vdbe*)pStmt;
1473   if( p==0 ) return 0;
1474   return sqlite3VListNumToName(p->pVList, i);
1475 }
1476 
1477 /*
1478 ** Given a wildcard parameter name, return the index of the variable
1479 ** with that name.  If there is no variable with the given name,
1480 ** return 0.
1481 */
1482 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1483   if( p==0 || zName==0 ) return 0;
1484   return sqlite3VListNameToNum(p->pVList, zName, nName);
1485 }
1486 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1487   return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1488 }
1489 
1490 /*
1491 ** Transfer all bindings from the first statement over to the second.
1492 */
1493 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1494   Vdbe *pFrom = (Vdbe*)pFromStmt;
1495   Vdbe *pTo = (Vdbe*)pToStmt;
1496   int i;
1497   assert( pTo->db==pFrom->db );
1498   assert( pTo->nVar==pFrom->nVar );
1499   sqlite3_mutex_enter(pTo->db->mutex);
1500   for(i=0; i<pFrom->nVar; i++){
1501     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1502   }
1503   sqlite3_mutex_leave(pTo->db->mutex);
1504   return SQLITE_OK;
1505 }
1506 
1507 #ifndef SQLITE_OMIT_DEPRECATED
1508 /*
1509 ** Deprecated external interface.  Internal/core SQLite code
1510 ** should call sqlite3TransferBindings.
1511 **
1512 ** It is misuse to call this routine with statements from different
1513 ** database connections.  But as this is a deprecated interface, we
1514 ** will not bother to check for that condition.
1515 **
1516 ** If the two statements contain a different number of bindings, then
1517 ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
1518 ** SQLITE_OK is returned.
1519 */
1520 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1521   Vdbe *pFrom = (Vdbe*)pFromStmt;
1522   Vdbe *pTo = (Vdbe*)pToStmt;
1523   if( pFrom->nVar!=pTo->nVar ){
1524     return SQLITE_ERROR;
1525   }
1526   assert( pTo->isPrepareV2 || pTo->expmask==0 );
1527   if( pTo->expmask ){
1528     pTo->expired = 1;
1529   }
1530   assert( pFrom->isPrepareV2 || pFrom->expmask==0 );
1531   if( pFrom->expmask ){
1532     pFrom->expired = 1;
1533   }
1534   return sqlite3TransferBindings(pFromStmt, pToStmt);
1535 }
1536 #endif
1537 
1538 /*
1539 ** Return the sqlite3* database handle to which the prepared statement given
1540 ** in the argument belongs.  This is the same database handle that was
1541 ** the first argument to the sqlite3_prepare() that was used to create
1542 ** the statement in the first place.
1543 */
1544 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1545   return pStmt ? ((Vdbe*)pStmt)->db : 0;
1546 }
1547 
1548 /*
1549 ** Return true if the prepared statement is guaranteed to not modify the
1550 ** database.
1551 */
1552 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1553   return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1554 }
1555 
1556 /*
1557 ** Return true if the prepared statement is in need of being reset.
1558 */
1559 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1560   Vdbe *v = (Vdbe*)pStmt;
1561   return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1562 }
1563 
1564 /*
1565 ** Return a pointer to the next prepared statement after pStmt associated
1566 ** with database connection pDb.  If pStmt is NULL, return the first
1567 ** prepared statement for the database connection.  Return NULL if there
1568 ** are no more.
1569 */
1570 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1571   sqlite3_stmt *pNext;
1572 #ifdef SQLITE_ENABLE_API_ARMOR
1573   if( !sqlite3SafetyCheckOk(pDb) ){
1574     (void)SQLITE_MISUSE_BKPT;
1575     return 0;
1576   }
1577 #endif
1578   sqlite3_mutex_enter(pDb->mutex);
1579   if( pStmt==0 ){
1580     pNext = (sqlite3_stmt*)pDb->pVdbe;
1581   }else{
1582     pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1583   }
1584   sqlite3_mutex_leave(pDb->mutex);
1585   return pNext;
1586 }
1587 
1588 /*
1589 ** Return the value of a status counter for a prepared statement
1590 */
1591 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1592   Vdbe *pVdbe = (Vdbe*)pStmt;
1593   u32 v;
1594 #ifdef SQLITE_ENABLE_API_ARMOR
1595   if( !pStmt ){
1596     (void)SQLITE_MISUSE_BKPT;
1597     return 0;
1598   }
1599 #endif
1600   v = pVdbe->aCounter[op];
1601   if( resetFlag ) pVdbe->aCounter[op] = 0;
1602   return (int)v;
1603 }
1604 
1605 /*
1606 ** Return the SQL associated with a prepared statement
1607 */
1608 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1609   Vdbe *p = (Vdbe *)pStmt;
1610   return p ? p->zSql : 0;
1611 }
1612 
1613 /*
1614 ** Return the SQL associated with a prepared statement with
1615 ** bound parameters expanded.  Space to hold the returned string is
1616 ** obtained from sqlite3_malloc().  The caller is responsible for
1617 ** freeing the returned string by passing it to sqlite3_free().
1618 **
1619 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1620 ** expanded bound parameters.
1621 */
1622 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1623 #ifdef SQLITE_OMIT_TRACE
1624   return 0;
1625 #else
1626   char *z = 0;
1627   const char *zSql = sqlite3_sql(pStmt);
1628   if( zSql ){
1629     Vdbe *p = (Vdbe *)pStmt;
1630     sqlite3_mutex_enter(p->db->mutex);
1631     z = sqlite3VdbeExpandSql(p, zSql);
1632     sqlite3_mutex_leave(p->db->mutex);
1633   }
1634   return z;
1635 #endif
1636 }
1637 
1638 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1639 /*
1640 ** Allocate and populate an UnpackedRecord structure based on the serialized
1641 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1642 ** if successful, or a NULL pointer if an OOM error is encountered.
1643 */
1644 static UnpackedRecord *vdbeUnpackRecord(
1645   KeyInfo *pKeyInfo,
1646   int nKey,
1647   const void *pKey
1648 ){
1649   UnpackedRecord *pRet;           /* Return value */
1650 
1651   pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1652   if( pRet ){
1653     memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nField+1));
1654     sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1655   }
1656   return pRet;
1657 }
1658 
1659 /*
1660 ** This function is called from within a pre-update callback to retrieve
1661 ** a field of the row currently being updated or deleted.
1662 */
1663 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1664   PreUpdate *p = db->pPreUpdate;
1665   Mem *pMem;
1666   int rc = SQLITE_OK;
1667 
1668   /* Test that this call is being made from within an SQLITE_DELETE or
1669   ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1670   if( !p || p->op==SQLITE_INSERT ){
1671     rc = SQLITE_MISUSE_BKPT;
1672     goto preupdate_old_out;
1673   }
1674   if( p->pPk ){
1675     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1676   }
1677   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1678     rc = SQLITE_RANGE;
1679     goto preupdate_old_out;
1680   }
1681 
1682   /* If the old.* record has not yet been loaded into memory, do so now. */
1683   if( p->pUnpacked==0 ){
1684     u32 nRec;
1685     u8 *aRec;
1686 
1687     nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1688     aRec = sqlite3DbMallocRaw(db, nRec);
1689     if( !aRec ) goto preupdate_old_out;
1690     rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1691     if( rc==SQLITE_OK ){
1692       p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1693       if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1694     }
1695     if( rc!=SQLITE_OK ){
1696       sqlite3DbFree(db, aRec);
1697       goto preupdate_old_out;
1698     }
1699     p->aRecord = aRec;
1700   }
1701 
1702   pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1703   if( iIdx==p->pTab->iPKey ){
1704     sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1705   }else if( iIdx>=p->pUnpacked->nField ){
1706     *ppValue = (sqlite3_value *)columnNullValue();
1707   }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1708     if( pMem->flags & MEM_Int ){
1709       sqlite3VdbeMemRealify(pMem);
1710     }
1711   }
1712 
1713  preupdate_old_out:
1714   sqlite3Error(db, rc);
1715   return sqlite3ApiExit(db, rc);
1716 }
1717 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1718 
1719 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1720 /*
1721 ** This function is called from within a pre-update callback to retrieve
1722 ** the number of columns in the row being updated, deleted or inserted.
1723 */
1724 int sqlite3_preupdate_count(sqlite3 *db){
1725   PreUpdate *p = db->pPreUpdate;
1726   return (p ? p->keyinfo.nField : 0);
1727 }
1728 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1729 
1730 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1731 /*
1732 ** This function is designed to be called from within a pre-update callback
1733 ** only. It returns zero if the change that caused the callback was made
1734 ** immediately by a user SQL statement. Or, if the change was made by a
1735 ** trigger program, it returns the number of trigger programs currently
1736 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1737 ** top-level trigger etc.).
1738 **
1739 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1740 ** or SET DEFAULT action is considered a trigger.
1741 */
1742 int sqlite3_preupdate_depth(sqlite3 *db){
1743   PreUpdate *p = db->pPreUpdate;
1744   return (p ? p->v->nFrame : 0);
1745 }
1746 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1747 
1748 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1749 /*
1750 ** This function is called from within a pre-update callback to retrieve
1751 ** a field of the row currently being updated or inserted.
1752 */
1753 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1754   PreUpdate *p = db->pPreUpdate;
1755   int rc = SQLITE_OK;
1756   Mem *pMem;
1757 
1758   if( !p || p->op==SQLITE_DELETE ){
1759     rc = SQLITE_MISUSE_BKPT;
1760     goto preupdate_new_out;
1761   }
1762   if( p->pPk && p->op!=SQLITE_UPDATE ){
1763     iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1764   }
1765   if( iIdx>=p->pCsr->nField || iIdx<0 ){
1766     rc = SQLITE_RANGE;
1767     goto preupdate_new_out;
1768   }
1769 
1770   if( p->op==SQLITE_INSERT ){
1771     /* For an INSERT, memory cell p->iNewReg contains the serialized record
1772     ** that is being inserted. Deserialize it. */
1773     UnpackedRecord *pUnpack = p->pNewUnpacked;
1774     if( !pUnpack ){
1775       Mem *pData = &p->v->aMem[p->iNewReg];
1776       rc = ExpandBlob(pData);
1777       if( rc!=SQLITE_OK ) goto preupdate_new_out;
1778       pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1779       if( !pUnpack ){
1780         rc = SQLITE_NOMEM;
1781         goto preupdate_new_out;
1782       }
1783       p->pNewUnpacked = pUnpack;
1784     }
1785     pMem = &pUnpack->aMem[iIdx];
1786     if( iIdx==p->pTab->iPKey ){
1787       sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1788     }else if( iIdx>=pUnpack->nField ){
1789       pMem = (sqlite3_value *)columnNullValue();
1790     }
1791   }else{
1792     /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1793     ** value. Make a copy of the cell contents and return a pointer to it.
1794     ** It is not safe to return a pointer to the memory cell itself as the
1795     ** caller may modify the value text encoding.
1796     */
1797     assert( p->op==SQLITE_UPDATE );
1798     if( !p->aNew ){
1799       p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1800       if( !p->aNew ){
1801         rc = SQLITE_NOMEM;
1802         goto preupdate_new_out;
1803       }
1804     }
1805     assert( iIdx>=0 && iIdx<p->pCsr->nField );
1806     pMem = &p->aNew[iIdx];
1807     if( pMem->flags==0 ){
1808       if( iIdx==p->pTab->iPKey ){
1809         sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1810       }else{
1811         rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1812         if( rc!=SQLITE_OK ) goto preupdate_new_out;
1813       }
1814     }
1815   }
1816   *ppValue = pMem;
1817 
1818  preupdate_new_out:
1819   sqlite3Error(db, rc);
1820   return sqlite3ApiExit(db, rc);
1821 }
1822 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1823 
1824 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1825 /*
1826 ** Return status data for a single loop within query pStmt.
1827 */
1828 int sqlite3_stmt_scanstatus(
1829   sqlite3_stmt *pStmt,            /* Prepared statement being queried */
1830   int idx,                        /* Index of loop to report on */
1831   int iScanStatusOp,              /* Which metric to return */
1832   void *pOut                      /* OUT: Write the answer here */
1833 ){
1834   Vdbe *p = (Vdbe*)pStmt;
1835   ScanStatus *pScan;
1836   if( idx<0 || idx>=p->nScan ) return 1;
1837   pScan = &p->aScan[idx];
1838   switch( iScanStatusOp ){
1839     case SQLITE_SCANSTAT_NLOOP: {
1840       *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1841       break;
1842     }
1843     case SQLITE_SCANSTAT_NVISIT: {
1844       *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1845       break;
1846     }
1847     case SQLITE_SCANSTAT_EST: {
1848       double r = 1.0;
1849       LogEst x = pScan->nEst;
1850       while( x<100 ){
1851         x += 10;
1852         r *= 0.5;
1853       }
1854       *(double*)pOut = r*sqlite3LogEstToInt(x);
1855       break;
1856     }
1857     case SQLITE_SCANSTAT_NAME: {
1858       *(const char**)pOut = pScan->zName;
1859       break;
1860     }
1861     case SQLITE_SCANSTAT_EXPLAIN: {
1862       if( pScan->addrExplain ){
1863         *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1864       }else{
1865         *(const char**)pOut = 0;
1866       }
1867       break;
1868     }
1869     case SQLITE_SCANSTAT_SELECTID: {
1870       if( pScan->addrExplain ){
1871         *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1872       }else{
1873         *(int*)pOut = -1;
1874       }
1875       break;
1876     }
1877     default: {
1878       return 1;
1879     }
1880   }
1881   return 0;
1882 }
1883 
1884 /*
1885 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1886 */
1887 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1888   Vdbe *p = (Vdbe*)pStmt;
1889   memset(p->anExec, 0, p->nOp * sizeof(i64));
1890 }
1891 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
1892