1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 rc = SQLITE_OK; 69 }else{ 70 Vdbe *v = (Vdbe*)pStmt; 71 sqlite3 *db = v->db; 72 #if SQLITE_THREADSAFE 73 sqlite3_mutex *mutex; 74 #endif 75 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 76 #if SQLITE_THREADSAFE 77 mutex = v->db->mutex; 78 #endif 79 sqlite3_mutex_enter(mutex); 80 rc = sqlite3VdbeFinalize(v); 81 rc = sqlite3ApiExit(db, rc); 82 sqlite3_mutex_leave(mutex); 83 } 84 return rc; 85 } 86 87 /* 88 ** Terminate the current execution of an SQL statement and reset it 89 ** back to its starting state so that it can be reused. A success code from 90 ** the prior execution is returned. 91 ** 92 ** This routine sets the error code and string returned by 93 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 94 */ 95 int sqlite3_reset(sqlite3_stmt *pStmt){ 96 int rc; 97 if( pStmt==0 ){ 98 rc = SQLITE_OK; 99 }else{ 100 Vdbe *v = (Vdbe*)pStmt; 101 sqlite3_mutex_enter(v->db->mutex); 102 rc = sqlite3VdbeReset(v); 103 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0); 104 assert( (rc & (v->db->errMask))==rc ); 105 rc = sqlite3ApiExit(v->db, rc); 106 sqlite3_mutex_leave(v->db->mutex); 107 } 108 return rc; 109 } 110 111 /* 112 ** Set all the parameters in the compiled SQL statement to NULL. 113 */ 114 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 115 int i; 116 int rc = SQLITE_OK; 117 Vdbe *p = (Vdbe*)pStmt; 118 #if SQLITE_THREADSAFE 119 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 120 #endif 121 sqlite3_mutex_enter(mutex); 122 for(i=0; i<p->nVar; i++){ 123 sqlite3VdbeMemRelease(&p->aVar[i]); 124 p->aVar[i].flags = MEM_Null; 125 } 126 if( p->isPrepareV2 && p->expmask ){ 127 p->expired = 1; 128 } 129 sqlite3_mutex_leave(mutex); 130 return rc; 131 } 132 133 134 /**************************** sqlite3_value_ ******************************* 135 ** The following routines extract information from a Mem or sqlite3_value 136 ** structure. 137 */ 138 const void *sqlite3_value_blob(sqlite3_value *pVal){ 139 Mem *p = (Mem*)pVal; 140 if( p->flags & (MEM_Blob|MEM_Str) ){ 141 sqlite3VdbeMemExpandBlob(p); 142 p->flags &= ~MEM_Str; 143 p->flags |= MEM_Blob; 144 return p->z; 145 }else{ 146 return sqlite3_value_text(pVal); 147 } 148 } 149 int sqlite3_value_bytes(sqlite3_value *pVal){ 150 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 151 } 152 int sqlite3_value_bytes16(sqlite3_value *pVal){ 153 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 154 } 155 double sqlite3_value_double(sqlite3_value *pVal){ 156 return sqlite3VdbeRealValue((Mem*)pVal); 157 } 158 int sqlite3_value_int(sqlite3_value *pVal){ 159 return (int)sqlite3VdbeIntValue((Mem*)pVal); 160 } 161 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 162 return sqlite3VdbeIntValue((Mem*)pVal); 163 } 164 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 165 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 166 } 167 #ifndef SQLITE_OMIT_UTF16 168 const void *sqlite3_value_text16(sqlite3_value* pVal){ 169 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 170 } 171 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 172 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 173 } 174 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 175 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 176 } 177 #endif /* SQLITE_OMIT_UTF16 */ 178 int sqlite3_value_type(sqlite3_value* pVal){ 179 return pVal->type; 180 } 181 182 /**************************** sqlite3_result_ ******************************* 183 ** The following routines are used by user-defined functions to specify 184 ** the function result. 185 ** 186 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 187 ** result as a string or blob but if the string or blob is too large, it 188 ** then sets the error code to SQLITE_TOOBIG 189 */ 190 static void setResultStrOrError( 191 sqlite3_context *pCtx, /* Function context */ 192 const char *z, /* String pointer */ 193 int n, /* Bytes in string, or negative */ 194 u8 enc, /* Encoding of z. 0 for BLOBs */ 195 void (*xDel)(void*) /* Destructor function */ 196 ){ 197 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 198 sqlite3_result_error_toobig(pCtx); 199 } 200 } 201 void sqlite3_result_blob( 202 sqlite3_context *pCtx, 203 const void *z, 204 int n, 205 void (*xDel)(void *) 206 ){ 207 assert( n>=0 ); 208 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 209 setResultStrOrError(pCtx, z, n, 0, xDel); 210 } 211 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 212 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 213 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 214 } 215 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 216 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 217 pCtx->isError = SQLITE_ERROR; 218 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 219 } 220 #ifndef SQLITE_OMIT_UTF16 221 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 222 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 223 pCtx->isError = SQLITE_ERROR; 224 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 225 } 226 #endif 227 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 228 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 229 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 230 } 231 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 232 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 233 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 234 } 235 void sqlite3_result_null(sqlite3_context *pCtx){ 236 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 237 sqlite3VdbeMemSetNull(&pCtx->s); 238 } 239 void sqlite3_result_text( 240 sqlite3_context *pCtx, 241 const char *z, 242 int n, 243 void (*xDel)(void *) 244 ){ 245 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 246 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 247 } 248 #ifndef SQLITE_OMIT_UTF16 249 void sqlite3_result_text16( 250 sqlite3_context *pCtx, 251 const void *z, 252 int n, 253 void (*xDel)(void *) 254 ){ 255 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 256 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 257 } 258 void sqlite3_result_text16be( 259 sqlite3_context *pCtx, 260 const void *z, 261 int n, 262 void (*xDel)(void *) 263 ){ 264 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 265 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 266 } 267 void sqlite3_result_text16le( 268 sqlite3_context *pCtx, 269 const void *z, 270 int n, 271 void (*xDel)(void *) 272 ){ 273 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 274 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 275 } 276 #endif /* SQLITE_OMIT_UTF16 */ 277 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 278 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 279 sqlite3VdbeMemCopy(&pCtx->s, pValue); 280 } 281 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 282 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 283 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 284 } 285 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 286 pCtx->isError = errCode; 287 if( pCtx->s.flags & MEM_Null ){ 288 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 289 SQLITE_UTF8, SQLITE_STATIC); 290 } 291 } 292 293 /* Force an SQLITE_TOOBIG error. */ 294 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 295 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 296 pCtx->isError = SQLITE_TOOBIG; 297 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 298 SQLITE_UTF8, SQLITE_STATIC); 299 } 300 301 /* An SQLITE_NOMEM error. */ 302 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 303 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 304 sqlite3VdbeMemSetNull(&pCtx->s); 305 pCtx->isError = SQLITE_NOMEM; 306 pCtx->s.db->mallocFailed = 1; 307 } 308 309 /* 310 ** This function is called after a transaction has been committed. It 311 ** invokes callbacks registered with sqlite3_wal_hook() as required. 312 */ 313 static int doWalCallbacks(sqlite3 *db){ 314 int rc = SQLITE_OK; 315 #ifndef SQLITE_OMIT_WAL 316 int i; 317 for(i=0; i<db->nDb; i++){ 318 Btree *pBt = db->aDb[i].pBt; 319 if( pBt ){ 320 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 321 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 322 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 323 } 324 } 325 } 326 #endif 327 return rc; 328 } 329 330 /* 331 ** Execute the statement pStmt, either until a row of data is ready, the 332 ** statement is completely executed or an error occurs. 333 ** 334 ** This routine implements the bulk of the logic behind the sqlite_step() 335 ** API. The only thing omitted is the automatic recompile if a 336 ** schema change has occurred. That detail is handled by the 337 ** outer sqlite3_step() wrapper procedure. 338 */ 339 static int sqlite3Step(Vdbe *p){ 340 sqlite3 *db; 341 int rc; 342 343 assert(p); 344 if( p->magic!=VDBE_MAGIC_RUN ){ 345 /* We used to require that sqlite3_reset() be called before retrying 346 ** sqlite3_step() after any error. But after 3.6.23, we changed this 347 ** so that sqlite3_reset() would be called automatically instead of 348 ** throwing the error. 349 */ 350 sqlite3_reset((sqlite3_stmt*)p); 351 } 352 353 /* Check that malloc() has not failed. If it has, return early. */ 354 db = p->db; 355 if( db->mallocFailed ){ 356 p->rc = SQLITE_NOMEM; 357 return SQLITE_NOMEM; 358 } 359 360 if( p->pc<=0 && p->expired ){ 361 p->rc = SQLITE_SCHEMA; 362 rc = SQLITE_ERROR; 363 goto end_of_step; 364 } 365 if( p->pc<0 ){ 366 /* If there are no other statements currently running, then 367 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 368 ** from interrupting a statement that has not yet started. 369 */ 370 if( db->activeVdbeCnt==0 ){ 371 db->u1.isInterrupted = 0; 372 } 373 374 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); 375 376 #ifndef SQLITE_OMIT_TRACE 377 if( db->xProfile && !db->init.busy ){ 378 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 379 } 380 #endif 381 382 db->activeVdbeCnt++; 383 if( p->readOnly==0 ) db->writeVdbeCnt++; 384 p->pc = 0; 385 } 386 #ifndef SQLITE_OMIT_EXPLAIN 387 if( p->explain ){ 388 rc = sqlite3VdbeList(p); 389 }else 390 #endif /* SQLITE_OMIT_EXPLAIN */ 391 { 392 rc = sqlite3VdbeExec(p); 393 } 394 395 #ifndef SQLITE_OMIT_TRACE 396 /* Invoke the profile callback if there is one 397 */ 398 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 399 sqlite3_int64 iNow; 400 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 401 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 402 } 403 #endif 404 405 if( rc==SQLITE_DONE ){ 406 assert( p->rc==SQLITE_OK ); 407 p->rc = doWalCallbacks(db); 408 if( p->rc!=SQLITE_OK ){ 409 rc = SQLITE_ERROR; 410 } 411 } 412 413 db->errCode = rc; 414 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 415 p->rc = SQLITE_NOMEM; 416 } 417 end_of_step: 418 /* At this point local variable rc holds the value that should be 419 ** returned if this statement was compiled using the legacy 420 ** sqlite3_prepare() interface. According to the docs, this can only 421 ** be one of the values in the first assert() below. Variable p->rc 422 ** contains the value that would be returned if sqlite3_finalize() 423 ** were called on statement p. 424 */ 425 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 426 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 427 ); 428 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 429 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 430 /* If this statement was prepared using sqlite3_prepare_v2(), and an 431 ** error has occured, then return the error code in p->rc to the 432 ** caller. Set the error code in the database handle to the same value. 433 */ 434 rc = db->errCode = p->rc; 435 } 436 return (rc&db->errMask); 437 } 438 439 /* 440 ** This is the top-level implementation of sqlite3_step(). Call 441 ** sqlite3Step() to do most of the work. If a schema error occurs, 442 ** call sqlite3Reprepare() and try again. 443 */ 444 int sqlite3_step(sqlite3_stmt *pStmt){ 445 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 446 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 447 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 448 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 449 sqlite3 *db; /* The database connection */ 450 451 if( vdbeSafetyNotNull(v) ){ 452 return SQLITE_MISUSE_BKPT; 453 } 454 db = v->db; 455 sqlite3_mutex_enter(db->mutex); 456 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 457 && cnt++ < 5 458 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 459 sqlite3_reset(pStmt); 460 v->expired = 0; 461 } 462 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 463 /* This case occurs after failing to recompile an sql statement. 464 ** The error message from the SQL compiler has already been loaded 465 ** into the database handle. This block copies the error message 466 ** from the database handle into the statement and sets the statement 467 ** program counter to 0 to ensure that when the statement is 468 ** finalized or reset the parser error message is available via 469 ** sqlite3_errmsg() and sqlite3_errcode(). 470 */ 471 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 472 sqlite3DbFree(db, v->zErrMsg); 473 if( !db->mallocFailed ){ 474 v->zErrMsg = sqlite3DbStrDup(db, zErr); 475 v->rc = rc2; 476 } else { 477 v->zErrMsg = 0; 478 v->rc = rc = SQLITE_NOMEM; 479 } 480 } 481 rc = sqlite3ApiExit(db, rc); 482 sqlite3_mutex_leave(db->mutex); 483 return rc; 484 } 485 486 /* 487 ** Extract the user data from a sqlite3_context structure and return a 488 ** pointer to it. 489 */ 490 void *sqlite3_user_data(sqlite3_context *p){ 491 assert( p && p->pFunc ); 492 return p->pFunc->pUserData; 493 } 494 495 /* 496 ** Extract the user data from a sqlite3_context structure and return a 497 ** pointer to it. 498 ** 499 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 500 ** returns a copy of the pointer to the database connection (the 1st 501 ** parameter) of the sqlite3_create_function() and 502 ** sqlite3_create_function16() routines that originally registered the 503 ** application defined function. 504 */ 505 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 506 assert( p && p->pFunc ); 507 return p->s.db; 508 } 509 510 /* 511 ** The following is the implementation of an SQL function that always 512 ** fails with an error message stating that the function is used in the 513 ** wrong context. The sqlite3_overload_function() API might construct 514 ** SQL function that use this routine so that the functions will exist 515 ** for name resolution but are actually overloaded by the xFindFunction 516 ** method of virtual tables. 517 */ 518 void sqlite3InvalidFunction( 519 sqlite3_context *context, /* The function calling context */ 520 int NotUsed, /* Number of arguments to the function */ 521 sqlite3_value **NotUsed2 /* Value of each argument */ 522 ){ 523 const char *zName = context->pFunc->zName; 524 char *zErr; 525 UNUSED_PARAMETER2(NotUsed, NotUsed2); 526 zErr = sqlite3_mprintf( 527 "unable to use function %s in the requested context", zName); 528 sqlite3_result_error(context, zErr, -1); 529 sqlite3_free(zErr); 530 } 531 532 /* 533 ** Allocate or return the aggregate context for a user function. A new 534 ** context is allocated on the first call. Subsequent calls return the 535 ** same context that was returned on prior calls. 536 */ 537 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 538 Mem *pMem; 539 assert( p && p->pFunc && p->pFunc->xStep ); 540 assert( sqlite3_mutex_held(p->s.db->mutex) ); 541 pMem = p->pMem; 542 testcase( nByte<0 ); 543 if( (pMem->flags & MEM_Agg)==0 ){ 544 if( nByte<=0 ){ 545 sqlite3VdbeMemReleaseExternal(pMem); 546 pMem->flags = MEM_Null; 547 pMem->z = 0; 548 }else{ 549 sqlite3VdbeMemGrow(pMem, nByte, 0); 550 pMem->flags = MEM_Agg; 551 pMem->u.pDef = p->pFunc; 552 if( pMem->z ){ 553 memset(pMem->z, 0, nByte); 554 } 555 } 556 } 557 return (void*)pMem->z; 558 } 559 560 /* 561 ** Return the auxilary data pointer, if any, for the iArg'th argument to 562 ** the user-function defined by pCtx. 563 */ 564 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 565 VdbeFunc *pVdbeFunc; 566 567 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 568 pVdbeFunc = pCtx->pVdbeFunc; 569 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 570 return 0; 571 } 572 return pVdbeFunc->apAux[iArg].pAux; 573 } 574 575 /* 576 ** Set the auxilary data pointer and delete function, for the iArg'th 577 ** argument to the user-function defined by pCtx. Any previous value is 578 ** deleted by calling the delete function specified when it was set. 579 */ 580 void sqlite3_set_auxdata( 581 sqlite3_context *pCtx, 582 int iArg, 583 void *pAux, 584 void (*xDelete)(void*) 585 ){ 586 struct AuxData *pAuxData; 587 VdbeFunc *pVdbeFunc; 588 if( iArg<0 ) goto failed; 589 590 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 591 pVdbeFunc = pCtx->pVdbeFunc; 592 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 593 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 594 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 595 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 596 if( !pVdbeFunc ){ 597 goto failed; 598 } 599 pCtx->pVdbeFunc = pVdbeFunc; 600 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 601 pVdbeFunc->nAux = iArg+1; 602 pVdbeFunc->pFunc = pCtx->pFunc; 603 } 604 605 pAuxData = &pVdbeFunc->apAux[iArg]; 606 if( pAuxData->pAux && pAuxData->xDelete ){ 607 pAuxData->xDelete(pAuxData->pAux); 608 } 609 pAuxData->pAux = pAux; 610 pAuxData->xDelete = xDelete; 611 return; 612 613 failed: 614 if( xDelete ){ 615 xDelete(pAux); 616 } 617 } 618 619 #ifndef SQLITE_OMIT_DEPRECATED 620 /* 621 ** Return the number of times the Step function of a aggregate has been 622 ** called. 623 ** 624 ** This function is deprecated. Do not use it for new code. It is 625 ** provide only to avoid breaking legacy code. New aggregate function 626 ** implementations should keep their own counts within their aggregate 627 ** context. 628 */ 629 int sqlite3_aggregate_count(sqlite3_context *p){ 630 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 631 return p->pMem->n; 632 } 633 #endif 634 635 /* 636 ** Return the number of columns in the result set for the statement pStmt. 637 */ 638 int sqlite3_column_count(sqlite3_stmt *pStmt){ 639 Vdbe *pVm = (Vdbe *)pStmt; 640 return pVm ? pVm->nResColumn : 0; 641 } 642 643 /* 644 ** Return the number of values available from the current row of the 645 ** currently executing statement pStmt. 646 */ 647 int sqlite3_data_count(sqlite3_stmt *pStmt){ 648 Vdbe *pVm = (Vdbe *)pStmt; 649 if( pVm==0 || pVm->pResultSet==0 ) return 0; 650 return pVm->nResColumn; 651 } 652 653 654 /* 655 ** Check to see if column iCol of the given statement is valid. If 656 ** it is, return a pointer to the Mem for the value of that column. 657 ** If iCol is not valid, return a pointer to a Mem which has a value 658 ** of NULL. 659 */ 660 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 661 Vdbe *pVm; 662 int vals; 663 Mem *pOut; 664 665 pVm = (Vdbe *)pStmt; 666 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 667 sqlite3_mutex_enter(pVm->db->mutex); 668 vals = sqlite3_data_count(pStmt); 669 pOut = &pVm->pResultSet[i]; 670 }else{ 671 /* If the value passed as the second argument is out of range, return 672 ** a pointer to the following static Mem object which contains the 673 ** value SQL NULL. Even though the Mem structure contains an element 674 ** of type i64, on certain architecture (x86) with certain compiler 675 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 676 ** instead of an 8-byte one. This all works fine, except that when 677 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 678 ** that a Mem structure is located on an 8-byte boundary. To prevent 679 ** this assert() from failing, when building with SQLITE_DEBUG defined 680 ** using gcc, force nullMem to be 8-byte aligned using the magical 681 ** __attribute__((aligned(8))) macro. */ 682 static const Mem nullMem 683 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 684 __attribute__((aligned(8))) 685 #endif 686 = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; 687 688 if( pVm && ALWAYS(pVm->db) ){ 689 sqlite3_mutex_enter(pVm->db->mutex); 690 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 691 } 692 pOut = (Mem*)&nullMem; 693 } 694 return pOut; 695 } 696 697 /* 698 ** This function is called after invoking an sqlite3_value_XXX function on a 699 ** column value (i.e. a value returned by evaluating an SQL expression in the 700 ** select list of a SELECT statement) that may cause a malloc() failure. If 701 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 702 ** code of statement pStmt set to SQLITE_NOMEM. 703 ** 704 ** Specifically, this is called from within: 705 ** 706 ** sqlite3_column_int() 707 ** sqlite3_column_int64() 708 ** sqlite3_column_text() 709 ** sqlite3_column_text16() 710 ** sqlite3_column_real() 711 ** sqlite3_column_bytes() 712 ** sqlite3_column_bytes16() 713 ** 714 ** But not for sqlite3_column_blob(), which never calls malloc(). 715 */ 716 static void columnMallocFailure(sqlite3_stmt *pStmt) 717 { 718 /* If malloc() failed during an encoding conversion within an 719 ** sqlite3_column_XXX API, then set the return code of the statement to 720 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 721 ** and _finalize() will return NOMEM. 722 */ 723 Vdbe *p = (Vdbe *)pStmt; 724 if( p ){ 725 p->rc = sqlite3ApiExit(p->db, p->rc); 726 sqlite3_mutex_leave(p->db->mutex); 727 } 728 } 729 730 /**************************** sqlite3_column_ ******************************* 731 ** The following routines are used to access elements of the current row 732 ** in the result set. 733 */ 734 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 735 const void *val; 736 val = sqlite3_value_blob( columnMem(pStmt,i) ); 737 /* Even though there is no encoding conversion, value_blob() might 738 ** need to call malloc() to expand the result of a zeroblob() 739 ** expression. 740 */ 741 columnMallocFailure(pStmt); 742 return val; 743 } 744 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 745 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 746 columnMallocFailure(pStmt); 747 return val; 748 } 749 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 750 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 751 columnMallocFailure(pStmt); 752 return val; 753 } 754 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 755 double val = sqlite3_value_double( columnMem(pStmt,i) ); 756 columnMallocFailure(pStmt); 757 return val; 758 } 759 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 760 int val = sqlite3_value_int( columnMem(pStmt,i) ); 761 columnMallocFailure(pStmt); 762 return val; 763 } 764 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 765 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 766 columnMallocFailure(pStmt); 767 return val; 768 } 769 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 770 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 771 columnMallocFailure(pStmt); 772 return val; 773 } 774 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 775 Mem *pOut = columnMem(pStmt, i); 776 if( pOut->flags&MEM_Static ){ 777 pOut->flags &= ~MEM_Static; 778 pOut->flags |= MEM_Ephem; 779 } 780 columnMallocFailure(pStmt); 781 return (sqlite3_value *)pOut; 782 } 783 #ifndef SQLITE_OMIT_UTF16 784 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 785 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 786 columnMallocFailure(pStmt); 787 return val; 788 } 789 #endif /* SQLITE_OMIT_UTF16 */ 790 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 791 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 792 columnMallocFailure(pStmt); 793 return iType; 794 } 795 796 /* The following function is experimental and subject to change or 797 ** removal */ 798 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 799 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 800 **} 801 */ 802 803 /* 804 ** Convert the N-th element of pStmt->pColName[] into a string using 805 ** xFunc() then return that string. If N is out of range, return 0. 806 ** 807 ** There are up to 5 names for each column. useType determines which 808 ** name is returned. Here are the names: 809 ** 810 ** 0 The column name as it should be displayed for output 811 ** 1 The datatype name for the column 812 ** 2 The name of the database that the column derives from 813 ** 3 The name of the table that the column derives from 814 ** 4 The name of the table column that the result column derives from 815 ** 816 ** If the result is not a simple column reference (if it is an expression 817 ** or a constant) then useTypes 2, 3, and 4 return NULL. 818 */ 819 static const void *columnName( 820 sqlite3_stmt *pStmt, 821 int N, 822 const void *(*xFunc)(Mem*), 823 int useType 824 ){ 825 const void *ret = 0; 826 Vdbe *p = (Vdbe *)pStmt; 827 int n; 828 sqlite3 *db = p->db; 829 830 assert( db!=0 ); 831 n = sqlite3_column_count(pStmt); 832 if( N<n && N>=0 ){ 833 N += useType*n; 834 sqlite3_mutex_enter(db->mutex); 835 assert( db->mallocFailed==0 ); 836 ret = xFunc(&p->aColName[N]); 837 /* A malloc may have failed inside of the xFunc() call. If this 838 ** is the case, clear the mallocFailed flag and return NULL. 839 */ 840 if( db->mallocFailed ){ 841 db->mallocFailed = 0; 842 ret = 0; 843 } 844 sqlite3_mutex_leave(db->mutex); 845 } 846 return ret; 847 } 848 849 /* 850 ** Return the name of the Nth column of the result set returned by SQL 851 ** statement pStmt. 852 */ 853 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 854 return columnName( 855 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 856 } 857 #ifndef SQLITE_OMIT_UTF16 858 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 859 return columnName( 860 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 861 } 862 #endif 863 864 /* 865 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 866 ** not define OMIT_DECLTYPE. 867 */ 868 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 869 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 870 and SQLITE_ENABLE_COLUMN_METADATA" 871 #endif 872 873 #ifndef SQLITE_OMIT_DECLTYPE 874 /* 875 ** Return the column declaration type (if applicable) of the 'i'th column 876 ** of the result set of SQL statement pStmt. 877 */ 878 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 879 return columnName( 880 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 881 } 882 #ifndef SQLITE_OMIT_UTF16 883 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 884 return columnName( 885 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 886 } 887 #endif /* SQLITE_OMIT_UTF16 */ 888 #endif /* SQLITE_OMIT_DECLTYPE */ 889 890 #ifdef SQLITE_ENABLE_COLUMN_METADATA 891 /* 892 ** Return the name of the database from which a result column derives. 893 ** NULL is returned if the result column is an expression or constant or 894 ** anything else which is not an unabiguous reference to a database column. 895 */ 896 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 897 return columnName( 898 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 899 } 900 #ifndef SQLITE_OMIT_UTF16 901 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 902 return columnName( 903 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 904 } 905 #endif /* SQLITE_OMIT_UTF16 */ 906 907 /* 908 ** Return the name of the table from which a result column derives. 909 ** NULL is returned if the result column is an expression or constant or 910 ** anything else which is not an unabiguous reference to a database column. 911 */ 912 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 913 return columnName( 914 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 915 } 916 #ifndef SQLITE_OMIT_UTF16 917 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 918 return columnName( 919 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 920 } 921 #endif /* SQLITE_OMIT_UTF16 */ 922 923 /* 924 ** Return the name of the table column from which a result column derives. 925 ** NULL is returned if the result column is an expression or constant or 926 ** anything else which is not an unabiguous reference to a database column. 927 */ 928 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 929 return columnName( 930 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 931 } 932 #ifndef SQLITE_OMIT_UTF16 933 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 934 return columnName( 935 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 936 } 937 #endif /* SQLITE_OMIT_UTF16 */ 938 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 939 940 941 /******************************* sqlite3_bind_ *************************** 942 ** 943 ** Routines used to attach values to wildcards in a compiled SQL statement. 944 */ 945 /* 946 ** Unbind the value bound to variable i in virtual machine p. This is the 947 ** the same as binding a NULL value to the column. If the "i" parameter is 948 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 949 ** 950 ** A successful evaluation of this routine acquires the mutex on p. 951 ** the mutex is released if any kind of error occurs. 952 ** 953 ** The error code stored in database p->db is overwritten with the return 954 ** value in any case. 955 */ 956 static int vdbeUnbind(Vdbe *p, int i){ 957 Mem *pVar; 958 if( vdbeSafetyNotNull(p) ){ 959 return SQLITE_MISUSE_BKPT; 960 } 961 sqlite3_mutex_enter(p->db->mutex); 962 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 963 sqlite3Error(p->db, SQLITE_MISUSE, 0); 964 sqlite3_mutex_leave(p->db->mutex); 965 sqlite3_log(SQLITE_MISUSE, 966 "bind on a busy prepared statement: [%s]", p->zSql); 967 return SQLITE_MISUSE_BKPT; 968 } 969 if( i<1 || i>p->nVar ){ 970 sqlite3Error(p->db, SQLITE_RANGE, 0); 971 sqlite3_mutex_leave(p->db->mutex); 972 return SQLITE_RANGE; 973 } 974 i--; 975 pVar = &p->aVar[i]; 976 sqlite3VdbeMemRelease(pVar); 977 pVar->flags = MEM_Null; 978 sqlite3Error(p->db, SQLITE_OK, 0); 979 980 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 981 ** binding a new value to this variable invalidates the current query plan. 982 */ 983 if( p->isPrepareV2 && 984 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 985 ){ 986 p->expired = 1; 987 } 988 return SQLITE_OK; 989 } 990 991 /* 992 ** Bind a text or BLOB value. 993 */ 994 static int bindText( 995 sqlite3_stmt *pStmt, /* The statement to bind against */ 996 int i, /* Index of the parameter to bind */ 997 const void *zData, /* Pointer to the data to be bound */ 998 int nData, /* Number of bytes of data to be bound */ 999 void (*xDel)(void*), /* Destructor for the data */ 1000 u8 encoding /* Encoding for the data */ 1001 ){ 1002 Vdbe *p = (Vdbe *)pStmt; 1003 Mem *pVar; 1004 int rc; 1005 1006 rc = vdbeUnbind(p, i); 1007 if( rc==SQLITE_OK ){ 1008 if( zData!=0 ){ 1009 pVar = &p->aVar[i-1]; 1010 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1011 if( rc==SQLITE_OK && encoding!=0 ){ 1012 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1013 } 1014 sqlite3Error(p->db, rc, 0); 1015 rc = sqlite3ApiExit(p->db, rc); 1016 } 1017 sqlite3_mutex_leave(p->db->mutex); 1018 } 1019 return rc; 1020 } 1021 1022 1023 /* 1024 ** Bind a blob value to an SQL statement variable. 1025 */ 1026 int sqlite3_bind_blob( 1027 sqlite3_stmt *pStmt, 1028 int i, 1029 const void *zData, 1030 int nData, 1031 void (*xDel)(void*) 1032 ){ 1033 return bindText(pStmt, i, zData, nData, xDel, 0); 1034 } 1035 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1036 int rc; 1037 Vdbe *p = (Vdbe *)pStmt; 1038 rc = vdbeUnbind(p, i); 1039 if( rc==SQLITE_OK ){ 1040 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1041 sqlite3_mutex_leave(p->db->mutex); 1042 } 1043 return rc; 1044 } 1045 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1046 return sqlite3_bind_int64(p, i, (i64)iValue); 1047 } 1048 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1049 int rc; 1050 Vdbe *p = (Vdbe *)pStmt; 1051 rc = vdbeUnbind(p, i); 1052 if( rc==SQLITE_OK ){ 1053 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1054 sqlite3_mutex_leave(p->db->mutex); 1055 } 1056 return rc; 1057 } 1058 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1059 int rc; 1060 Vdbe *p = (Vdbe*)pStmt; 1061 rc = vdbeUnbind(p, i); 1062 if( rc==SQLITE_OK ){ 1063 sqlite3_mutex_leave(p->db->mutex); 1064 } 1065 return rc; 1066 } 1067 int sqlite3_bind_text( 1068 sqlite3_stmt *pStmt, 1069 int i, 1070 const char *zData, 1071 int nData, 1072 void (*xDel)(void*) 1073 ){ 1074 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1075 } 1076 #ifndef SQLITE_OMIT_UTF16 1077 int sqlite3_bind_text16( 1078 sqlite3_stmt *pStmt, 1079 int i, 1080 const void *zData, 1081 int nData, 1082 void (*xDel)(void*) 1083 ){ 1084 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1085 } 1086 #endif /* SQLITE_OMIT_UTF16 */ 1087 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1088 int rc; 1089 switch( pValue->type ){ 1090 case SQLITE_INTEGER: { 1091 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1092 break; 1093 } 1094 case SQLITE_FLOAT: { 1095 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1096 break; 1097 } 1098 case SQLITE_BLOB: { 1099 if( pValue->flags & MEM_Zero ){ 1100 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1101 }else{ 1102 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1103 } 1104 break; 1105 } 1106 case SQLITE_TEXT: { 1107 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1108 pValue->enc); 1109 break; 1110 } 1111 default: { 1112 rc = sqlite3_bind_null(pStmt, i); 1113 break; 1114 } 1115 } 1116 return rc; 1117 } 1118 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1119 int rc; 1120 Vdbe *p = (Vdbe *)pStmt; 1121 rc = vdbeUnbind(p, i); 1122 if( rc==SQLITE_OK ){ 1123 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1124 sqlite3_mutex_leave(p->db->mutex); 1125 } 1126 return rc; 1127 } 1128 1129 /* 1130 ** Return the number of wildcards that can be potentially bound to. 1131 ** This routine is added to support DBD::SQLite. 1132 */ 1133 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1134 Vdbe *p = (Vdbe*)pStmt; 1135 return p ? p->nVar : 0; 1136 } 1137 1138 /* 1139 ** Create a mapping from variable numbers to variable names 1140 ** in the Vdbe.azVar[] array, if such a mapping does not already 1141 ** exist. 1142 */ 1143 static void createVarMap(Vdbe *p){ 1144 if( !p->okVar ){ 1145 int j; 1146 Op *pOp; 1147 sqlite3_mutex_enter(p->db->mutex); 1148 /* The race condition here is harmless. If two threads call this 1149 ** routine on the same Vdbe at the same time, they both might end 1150 ** up initializing the Vdbe.azVar[] array. That is a little extra 1151 ** work but it results in the same answer. 1152 */ 1153 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1154 if( pOp->opcode==OP_Variable ){ 1155 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1156 p->azVar[pOp->p1-1] = pOp->p4.z; 1157 } 1158 } 1159 p->okVar = 1; 1160 sqlite3_mutex_leave(p->db->mutex); 1161 } 1162 } 1163 1164 /* 1165 ** Return the name of a wildcard parameter. Return NULL if the index 1166 ** is out of range or if the wildcard is unnamed. 1167 ** 1168 ** The result is always UTF-8. 1169 */ 1170 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1171 Vdbe *p = (Vdbe*)pStmt; 1172 if( p==0 || i<1 || i>p->nVar ){ 1173 return 0; 1174 } 1175 createVarMap(p); 1176 return p->azVar[i-1]; 1177 } 1178 1179 /* 1180 ** Given a wildcard parameter name, return the index of the variable 1181 ** with that name. If there is no variable with the given name, 1182 ** return 0. 1183 */ 1184 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1185 int i; 1186 if( p==0 ){ 1187 return 0; 1188 } 1189 createVarMap(p); 1190 if( zName ){ 1191 for(i=0; i<p->nVar; i++){ 1192 const char *z = p->azVar[i]; 1193 if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){ 1194 return i+1; 1195 } 1196 } 1197 } 1198 return 0; 1199 } 1200 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1201 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1202 } 1203 1204 /* 1205 ** Transfer all bindings from the first statement over to the second. 1206 */ 1207 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1208 Vdbe *pFrom = (Vdbe*)pFromStmt; 1209 Vdbe *pTo = (Vdbe*)pToStmt; 1210 int i; 1211 assert( pTo->db==pFrom->db ); 1212 assert( pTo->nVar==pFrom->nVar ); 1213 sqlite3_mutex_enter(pTo->db->mutex); 1214 for(i=0; i<pFrom->nVar; i++){ 1215 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1216 } 1217 sqlite3_mutex_leave(pTo->db->mutex); 1218 return SQLITE_OK; 1219 } 1220 1221 #ifndef SQLITE_OMIT_DEPRECATED 1222 /* 1223 ** Deprecated external interface. Internal/core SQLite code 1224 ** should call sqlite3TransferBindings. 1225 ** 1226 ** Is is misuse to call this routine with statements from different 1227 ** database connections. But as this is a deprecated interface, we 1228 ** will not bother to check for that condition. 1229 ** 1230 ** If the two statements contain a different number of bindings, then 1231 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1232 ** SQLITE_OK is returned. 1233 */ 1234 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1235 Vdbe *pFrom = (Vdbe*)pFromStmt; 1236 Vdbe *pTo = (Vdbe*)pToStmt; 1237 if( pFrom->nVar!=pTo->nVar ){ 1238 return SQLITE_ERROR; 1239 } 1240 if( pTo->isPrepareV2 && pTo->expmask ){ 1241 pTo->expired = 1; 1242 } 1243 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1244 pFrom->expired = 1; 1245 } 1246 return sqlite3TransferBindings(pFromStmt, pToStmt); 1247 } 1248 #endif 1249 1250 /* 1251 ** Return the sqlite3* database handle to which the prepared statement given 1252 ** in the argument belongs. This is the same database handle that was 1253 ** the first argument to the sqlite3_prepare() that was used to create 1254 ** the statement in the first place. 1255 */ 1256 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1257 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1258 } 1259 1260 /* 1261 ** Return a pointer to the next prepared statement after pStmt associated 1262 ** with database connection pDb. If pStmt is NULL, return the first 1263 ** prepared statement for the database connection. Return NULL if there 1264 ** are no more. 1265 */ 1266 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1267 sqlite3_stmt *pNext; 1268 sqlite3_mutex_enter(pDb->mutex); 1269 if( pStmt==0 ){ 1270 pNext = (sqlite3_stmt*)pDb->pVdbe; 1271 }else{ 1272 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1273 } 1274 sqlite3_mutex_leave(pDb->mutex); 1275 return pNext; 1276 } 1277 1278 /* 1279 ** Return the value of a status counter for a prepared statement 1280 */ 1281 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1282 Vdbe *pVdbe = (Vdbe*)pStmt; 1283 int v = pVdbe->aCounter[op-1]; 1284 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1285 return v; 1286 } 1287