1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 75 sqlite3_mutex_enter(db->mutex); 76 rc = sqlite3VdbeFinalize(v); 77 rc = sqlite3ApiExit(db, rc); 78 sqlite3LeaveMutexAndCloseZombie(db); 79 } 80 return rc; 81 } 82 83 /* 84 ** Terminate the current execution of an SQL statement and reset it 85 ** back to its starting state so that it can be reused. A success code from 86 ** the prior execution is returned. 87 ** 88 ** This routine sets the error code and string returned by 89 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 90 */ 91 int sqlite3_reset(sqlite3_stmt *pStmt){ 92 int rc; 93 if( pStmt==0 ){ 94 rc = SQLITE_OK; 95 }else{ 96 Vdbe *v = (Vdbe*)pStmt; 97 sqlite3_mutex_enter(v->db->mutex); 98 rc = sqlite3VdbeReset(v); 99 sqlite3VdbeRewind(v); 100 assert( (rc & (v->db->errMask))==rc ); 101 rc = sqlite3ApiExit(v->db, rc); 102 sqlite3_mutex_leave(v->db->mutex); 103 } 104 return rc; 105 } 106 107 /* 108 ** Set all the parameters in the compiled SQL statement to NULL. 109 */ 110 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 111 int i; 112 int rc = SQLITE_OK; 113 Vdbe *p = (Vdbe*)pStmt; 114 #if SQLITE_THREADSAFE 115 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 116 #endif 117 sqlite3_mutex_enter(mutex); 118 for(i=0; i<p->nVar; i++){ 119 sqlite3VdbeMemRelease(&p->aVar[i]); 120 p->aVar[i].flags = MEM_Null; 121 } 122 if( p->isPrepareV2 && p->expmask ){ 123 p->expired = 1; 124 } 125 sqlite3_mutex_leave(mutex); 126 return rc; 127 } 128 129 130 /**************************** sqlite3_value_ ******************************* 131 ** The following routines extract information from a Mem or sqlite3_value 132 ** structure. 133 */ 134 const void *sqlite3_value_blob(sqlite3_value *pVal){ 135 Mem *p = (Mem*)pVal; 136 if( p->flags & (MEM_Blob|MEM_Str) ){ 137 sqlite3VdbeMemExpandBlob(p); 138 p->flags &= ~MEM_Str; 139 p->flags |= MEM_Blob; 140 return p->n ? p->z : 0; 141 }else{ 142 return sqlite3_value_text(pVal); 143 } 144 } 145 int sqlite3_value_bytes(sqlite3_value *pVal){ 146 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 147 } 148 int sqlite3_value_bytes16(sqlite3_value *pVal){ 149 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 150 } 151 double sqlite3_value_double(sqlite3_value *pVal){ 152 return sqlite3VdbeRealValue((Mem*)pVal); 153 } 154 int sqlite3_value_int(sqlite3_value *pVal){ 155 return (int)sqlite3VdbeIntValue((Mem*)pVal); 156 } 157 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 158 return sqlite3VdbeIntValue((Mem*)pVal); 159 } 160 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 161 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 162 } 163 #ifndef SQLITE_OMIT_UTF16 164 const void *sqlite3_value_text16(sqlite3_value* pVal){ 165 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 166 } 167 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 168 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 169 } 170 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 171 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 172 } 173 #endif /* SQLITE_OMIT_UTF16 */ 174 int sqlite3_value_type(sqlite3_value* pVal){ 175 return pVal->type; 176 } 177 178 /**************************** sqlite3_result_ ******************************* 179 ** The following routines are used by user-defined functions to specify 180 ** the function result. 181 ** 182 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 183 ** result as a string or blob but if the string or blob is too large, it 184 ** then sets the error code to SQLITE_TOOBIG 185 */ 186 static void setResultStrOrError( 187 sqlite3_context *pCtx, /* Function context */ 188 const char *z, /* String pointer */ 189 int n, /* Bytes in string, or negative */ 190 u8 enc, /* Encoding of z. 0 for BLOBs */ 191 void (*xDel)(void*) /* Destructor function */ 192 ){ 193 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 194 sqlite3_result_error_toobig(pCtx); 195 } 196 } 197 void sqlite3_result_blob( 198 sqlite3_context *pCtx, 199 const void *z, 200 int n, 201 void (*xDel)(void *) 202 ){ 203 assert( n>=0 ); 204 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 205 setResultStrOrError(pCtx, z, n, 0, xDel); 206 } 207 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 208 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 209 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 210 } 211 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 212 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 213 pCtx->isError = SQLITE_ERROR; 214 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 215 } 216 #ifndef SQLITE_OMIT_UTF16 217 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 pCtx->isError = SQLITE_ERROR; 220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 221 } 222 #endif 223 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 225 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 226 } 227 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 228 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 229 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 230 } 231 void sqlite3_result_null(sqlite3_context *pCtx){ 232 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 233 sqlite3VdbeMemSetNull(&pCtx->s); 234 } 235 void sqlite3_result_text( 236 sqlite3_context *pCtx, 237 const char *z, 238 int n, 239 void (*xDel)(void *) 240 ){ 241 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 242 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 243 } 244 #ifndef SQLITE_OMIT_UTF16 245 void sqlite3_result_text16( 246 sqlite3_context *pCtx, 247 const void *z, 248 int n, 249 void (*xDel)(void *) 250 ){ 251 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 252 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 253 } 254 void sqlite3_result_text16be( 255 sqlite3_context *pCtx, 256 const void *z, 257 int n, 258 void (*xDel)(void *) 259 ){ 260 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 261 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 262 } 263 void sqlite3_result_text16le( 264 sqlite3_context *pCtx, 265 const void *z, 266 int n, 267 void (*xDel)(void *) 268 ){ 269 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 270 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 271 } 272 #endif /* SQLITE_OMIT_UTF16 */ 273 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 274 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 275 sqlite3VdbeMemCopy(&pCtx->s, pValue); 276 } 277 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 278 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 279 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 280 } 281 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 282 pCtx->isError = errCode; 283 if( pCtx->s.flags & MEM_Null ){ 284 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 285 SQLITE_UTF8, SQLITE_STATIC); 286 } 287 } 288 289 /* Force an SQLITE_TOOBIG error. */ 290 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 291 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 292 pCtx->isError = SQLITE_TOOBIG; 293 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 294 SQLITE_UTF8, SQLITE_STATIC); 295 } 296 297 /* An SQLITE_NOMEM error. */ 298 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 299 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 300 sqlite3VdbeMemSetNull(&pCtx->s); 301 pCtx->isError = SQLITE_NOMEM; 302 pCtx->s.db->mallocFailed = 1; 303 } 304 305 /* 306 ** This function is called after a transaction has been committed. It 307 ** invokes callbacks registered with sqlite3_wal_hook() as required. 308 */ 309 static int doWalCallbacks(sqlite3 *db){ 310 int rc = SQLITE_OK; 311 #ifndef SQLITE_OMIT_WAL 312 int i; 313 for(i=0; i<db->nDb; i++){ 314 Btree *pBt = db->aDb[i].pBt; 315 if( pBt ){ 316 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 317 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 318 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 319 } 320 } 321 } 322 #endif 323 return rc; 324 } 325 326 /* 327 ** Execute the statement pStmt, either until a row of data is ready, the 328 ** statement is completely executed or an error occurs. 329 ** 330 ** This routine implements the bulk of the logic behind the sqlite_step() 331 ** API. The only thing omitted is the automatic recompile if a 332 ** schema change has occurred. That detail is handled by the 333 ** outer sqlite3_step() wrapper procedure. 334 */ 335 static int sqlite3Step(Vdbe *p){ 336 sqlite3 *db; 337 int rc; 338 339 assert(p); 340 if( p->magic!=VDBE_MAGIC_RUN ){ 341 /* We used to require that sqlite3_reset() be called before retrying 342 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 343 ** with version 3.7.0, we changed this so that sqlite3_reset() would 344 ** be called automatically instead of throwing the SQLITE_MISUSE error. 345 ** This "automatic-reset" change is not technically an incompatibility, 346 ** since any application that receives an SQLITE_MISUSE is broken by 347 ** definition. 348 ** 349 ** Nevertheless, some published applications that were originally written 350 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 351 ** returns, and those were broken by the automatic-reset change. As a 352 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 353 ** legacy behavior of returning SQLITE_MISUSE for cases where the 354 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 355 ** or SQLITE_BUSY error. 356 */ 357 #ifdef SQLITE_OMIT_AUTORESET 358 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 359 sqlite3_reset((sqlite3_stmt*)p); 360 }else{ 361 return SQLITE_MISUSE_BKPT; 362 } 363 #else 364 sqlite3_reset((sqlite3_stmt*)p); 365 #endif 366 } 367 368 /* Check that malloc() has not failed. If it has, return early. */ 369 db = p->db; 370 if( db->mallocFailed ){ 371 p->rc = SQLITE_NOMEM; 372 return SQLITE_NOMEM; 373 } 374 375 if( p->pc<=0 && p->expired ){ 376 p->rc = SQLITE_SCHEMA; 377 rc = SQLITE_ERROR; 378 goto end_of_step; 379 } 380 if( p->pc<0 ){ 381 /* If there are no other statements currently running, then 382 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 383 ** from interrupting a statement that has not yet started. 384 */ 385 if( db->nVdbeActive==0 ){ 386 db->u1.isInterrupted = 0; 387 } 388 389 assert( db->nVdbeWrite>0 || db->autoCommit==0 || db->nDeferredCons==0 ); 390 391 #ifndef SQLITE_OMIT_TRACE 392 if( db->xProfile && !db->init.busy ){ 393 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 394 } 395 #endif 396 397 db->nVdbeActive++; 398 if( p->readOnly==0 ) db->nVdbeWrite++; 399 if( p->bIsReader ) db->nVdbeRead++; 400 p->pc = 0; 401 } 402 #ifndef SQLITE_OMIT_EXPLAIN 403 if( p->explain ){ 404 rc = sqlite3VdbeList(p); 405 }else 406 #endif /* SQLITE_OMIT_EXPLAIN */ 407 { 408 db->nVdbeExec++; 409 rc = sqlite3VdbeExec(p); 410 db->nVdbeExec--; 411 } 412 413 #ifndef SQLITE_OMIT_TRACE 414 /* Invoke the profile callback if there is one 415 */ 416 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 417 sqlite3_int64 iNow; 418 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 419 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 420 } 421 #endif 422 423 if( rc==SQLITE_DONE ){ 424 assert( p->rc==SQLITE_OK ); 425 p->rc = doWalCallbacks(db); 426 if( p->rc!=SQLITE_OK ){ 427 rc = SQLITE_ERROR; 428 } 429 } 430 431 db->errCode = rc; 432 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 433 p->rc = SQLITE_NOMEM; 434 } 435 end_of_step: 436 /* At this point local variable rc holds the value that should be 437 ** returned if this statement was compiled using the legacy 438 ** sqlite3_prepare() interface. According to the docs, this can only 439 ** be one of the values in the first assert() below. Variable p->rc 440 ** contains the value that would be returned if sqlite3_finalize() 441 ** were called on statement p. 442 */ 443 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 444 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 445 ); 446 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 447 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 448 /* If this statement was prepared using sqlite3_prepare_v2(), and an 449 ** error has occurred, then return the error code in p->rc to the 450 ** caller. Set the error code in the database handle to the same value. 451 */ 452 rc = sqlite3VdbeTransferError(p); 453 } 454 return (rc&db->errMask); 455 } 456 457 /* 458 ** This is the top-level implementation of sqlite3_step(). Call 459 ** sqlite3Step() to do most of the work. If a schema error occurs, 460 ** call sqlite3Reprepare() and try again. 461 */ 462 int sqlite3_step(sqlite3_stmt *pStmt){ 463 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 464 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 465 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 466 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 467 sqlite3 *db; /* The database connection */ 468 469 if( vdbeSafetyNotNull(v) ){ 470 return SQLITE_MISUSE_BKPT; 471 } 472 db = v->db; 473 sqlite3_mutex_enter(db->mutex); 474 v->doingRerun = 0; 475 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 476 && cnt++ < SQLITE_MAX_SCHEMA_RETRY 477 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 478 sqlite3_reset(pStmt); 479 v->doingRerun = 1; 480 assert( v->expired==0 ); 481 } 482 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 483 /* This case occurs after failing to recompile an sql statement. 484 ** The error message from the SQL compiler has already been loaded 485 ** into the database handle. This block copies the error message 486 ** from the database handle into the statement and sets the statement 487 ** program counter to 0 to ensure that when the statement is 488 ** finalized or reset the parser error message is available via 489 ** sqlite3_errmsg() and sqlite3_errcode(). 490 */ 491 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 492 sqlite3DbFree(db, v->zErrMsg); 493 if( !db->mallocFailed ){ 494 v->zErrMsg = sqlite3DbStrDup(db, zErr); 495 v->rc = rc2; 496 } else { 497 v->zErrMsg = 0; 498 v->rc = rc = SQLITE_NOMEM; 499 } 500 } 501 rc = sqlite3ApiExit(db, rc); 502 sqlite3_mutex_leave(db->mutex); 503 return rc; 504 } 505 506 /* 507 ** Extract the user data from a sqlite3_context structure and return a 508 ** pointer to it. 509 */ 510 void *sqlite3_user_data(sqlite3_context *p){ 511 assert( p && p->pFunc ); 512 return p->pFunc->pUserData; 513 } 514 515 /* 516 ** Extract the user data from a sqlite3_context structure and return a 517 ** pointer to it. 518 ** 519 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 520 ** returns a copy of the pointer to the database connection (the 1st 521 ** parameter) of the sqlite3_create_function() and 522 ** sqlite3_create_function16() routines that originally registered the 523 ** application defined function. 524 */ 525 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 526 assert( p && p->pFunc ); 527 return p->s.db; 528 } 529 530 /* 531 ** The following is the implementation of an SQL function that always 532 ** fails with an error message stating that the function is used in the 533 ** wrong context. The sqlite3_overload_function() API might construct 534 ** SQL function that use this routine so that the functions will exist 535 ** for name resolution but are actually overloaded by the xFindFunction 536 ** method of virtual tables. 537 */ 538 void sqlite3InvalidFunction( 539 sqlite3_context *context, /* The function calling context */ 540 int NotUsed, /* Number of arguments to the function */ 541 sqlite3_value **NotUsed2 /* Value of each argument */ 542 ){ 543 const char *zName = context->pFunc->zName; 544 char *zErr; 545 UNUSED_PARAMETER2(NotUsed, NotUsed2); 546 zErr = sqlite3_mprintf( 547 "unable to use function %s in the requested context", zName); 548 sqlite3_result_error(context, zErr, -1); 549 sqlite3_free(zErr); 550 } 551 552 /* 553 ** Allocate or return the aggregate context for a user function. A new 554 ** context is allocated on the first call. Subsequent calls return the 555 ** same context that was returned on prior calls. 556 */ 557 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 558 Mem *pMem; 559 assert( p && p->pFunc && p->pFunc->xStep ); 560 assert( sqlite3_mutex_held(p->s.db->mutex) ); 561 pMem = p->pMem; 562 testcase( nByte<0 ); 563 if( (pMem->flags & MEM_Agg)==0 ){ 564 if( nByte<=0 ){ 565 sqlite3VdbeMemReleaseExternal(pMem); 566 pMem->flags = MEM_Null; 567 pMem->z = 0; 568 }else{ 569 sqlite3VdbeMemGrow(pMem, nByte, 0); 570 pMem->flags = MEM_Agg; 571 pMem->u.pDef = p->pFunc; 572 if( pMem->z ){ 573 memset(pMem->z, 0, nByte); 574 } 575 } 576 } 577 return (void*)pMem->z; 578 } 579 580 /* 581 ** Return the auxilary data pointer, if any, for the iArg'th argument to 582 ** the user-function defined by pCtx. 583 */ 584 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 585 VdbeFunc *pVdbeFunc; 586 587 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 588 pVdbeFunc = pCtx->pVdbeFunc; 589 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 590 return 0; 591 } 592 return pVdbeFunc->apAux[iArg].pAux; 593 } 594 595 /* 596 ** Set the auxilary data pointer and delete function, for the iArg'th 597 ** argument to the user-function defined by pCtx. Any previous value is 598 ** deleted by calling the delete function specified when it was set. 599 */ 600 void sqlite3_set_auxdata( 601 sqlite3_context *pCtx, 602 int iArg, 603 void *pAux, 604 void (*xDelete)(void*) 605 ){ 606 struct AuxData *pAuxData; 607 VdbeFunc *pVdbeFunc; 608 if( iArg<0 ) goto failed; 609 610 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 611 pVdbeFunc = pCtx->pVdbeFunc; 612 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 613 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 614 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 615 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 616 if( !pVdbeFunc ){ 617 goto failed; 618 } 619 pCtx->pVdbeFunc = pVdbeFunc; 620 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 621 pVdbeFunc->nAux = iArg+1; 622 pVdbeFunc->pFunc = pCtx->pFunc; 623 } 624 625 pAuxData = &pVdbeFunc->apAux[iArg]; 626 if( pAuxData->pAux && pAuxData->xDelete ){ 627 pAuxData->xDelete(pAuxData->pAux); 628 } 629 pAuxData->pAux = pAux; 630 pAuxData->xDelete = xDelete; 631 return; 632 633 failed: 634 if( xDelete ){ 635 xDelete(pAux); 636 } 637 } 638 639 #ifndef SQLITE_OMIT_DEPRECATED 640 /* 641 ** Return the number of times the Step function of a aggregate has been 642 ** called. 643 ** 644 ** This function is deprecated. Do not use it for new code. It is 645 ** provide only to avoid breaking legacy code. New aggregate function 646 ** implementations should keep their own counts within their aggregate 647 ** context. 648 */ 649 int sqlite3_aggregate_count(sqlite3_context *p){ 650 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 651 return p->pMem->n; 652 } 653 #endif 654 655 /* 656 ** Return the number of columns in the result set for the statement pStmt. 657 */ 658 int sqlite3_column_count(sqlite3_stmt *pStmt){ 659 Vdbe *pVm = (Vdbe *)pStmt; 660 return pVm ? pVm->nResColumn : 0; 661 } 662 663 /* 664 ** Return the number of values available from the current row of the 665 ** currently executing statement pStmt. 666 */ 667 int sqlite3_data_count(sqlite3_stmt *pStmt){ 668 Vdbe *pVm = (Vdbe *)pStmt; 669 if( pVm==0 || pVm->pResultSet==0 ) return 0; 670 return pVm->nResColumn; 671 } 672 673 674 /* 675 ** Check to see if column iCol of the given statement is valid. If 676 ** it is, return a pointer to the Mem for the value of that column. 677 ** If iCol is not valid, return a pointer to a Mem which has a value 678 ** of NULL. 679 */ 680 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 681 Vdbe *pVm; 682 Mem *pOut; 683 684 pVm = (Vdbe *)pStmt; 685 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 686 sqlite3_mutex_enter(pVm->db->mutex); 687 pOut = &pVm->pResultSet[i]; 688 }else{ 689 /* If the value passed as the second argument is out of range, return 690 ** a pointer to the following static Mem object which contains the 691 ** value SQL NULL. Even though the Mem structure contains an element 692 ** of type i64, on certain architectures (x86) with certain compiler 693 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 694 ** instead of an 8-byte one. This all works fine, except that when 695 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 696 ** that a Mem structure is located on an 8-byte boundary. To prevent 697 ** these assert()s from failing, when building with SQLITE_DEBUG defined 698 ** using gcc, we force nullMem to be 8-byte aligned using the magical 699 ** __attribute__((aligned(8))) macro. */ 700 static const Mem nullMem 701 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 702 __attribute__((aligned(8))) 703 #endif 704 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, 705 #ifdef SQLITE_DEBUG 706 0, 0, /* pScopyFrom, pFiller */ 707 #endif 708 0, 0 }; 709 710 if( pVm && ALWAYS(pVm->db) ){ 711 sqlite3_mutex_enter(pVm->db->mutex); 712 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 713 } 714 pOut = (Mem*)&nullMem; 715 } 716 return pOut; 717 } 718 719 /* 720 ** This function is called after invoking an sqlite3_value_XXX function on a 721 ** column value (i.e. a value returned by evaluating an SQL expression in the 722 ** select list of a SELECT statement) that may cause a malloc() failure. If 723 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 724 ** code of statement pStmt set to SQLITE_NOMEM. 725 ** 726 ** Specifically, this is called from within: 727 ** 728 ** sqlite3_column_int() 729 ** sqlite3_column_int64() 730 ** sqlite3_column_text() 731 ** sqlite3_column_text16() 732 ** sqlite3_column_real() 733 ** sqlite3_column_bytes() 734 ** sqlite3_column_bytes16() 735 ** sqiite3_column_blob() 736 */ 737 static void columnMallocFailure(sqlite3_stmt *pStmt) 738 { 739 /* If malloc() failed during an encoding conversion within an 740 ** sqlite3_column_XXX API, then set the return code of the statement to 741 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 742 ** and _finalize() will return NOMEM. 743 */ 744 Vdbe *p = (Vdbe *)pStmt; 745 if( p ){ 746 p->rc = sqlite3ApiExit(p->db, p->rc); 747 sqlite3_mutex_leave(p->db->mutex); 748 } 749 } 750 751 /**************************** sqlite3_column_ ******************************* 752 ** The following routines are used to access elements of the current row 753 ** in the result set. 754 */ 755 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 756 const void *val; 757 val = sqlite3_value_blob( columnMem(pStmt,i) ); 758 /* Even though there is no encoding conversion, value_blob() might 759 ** need to call malloc() to expand the result of a zeroblob() 760 ** expression. 761 */ 762 columnMallocFailure(pStmt); 763 return val; 764 } 765 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 766 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 767 columnMallocFailure(pStmt); 768 return val; 769 } 770 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 771 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 772 columnMallocFailure(pStmt); 773 return val; 774 } 775 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 776 double val = sqlite3_value_double( columnMem(pStmt,i) ); 777 columnMallocFailure(pStmt); 778 return val; 779 } 780 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 781 int val = sqlite3_value_int( columnMem(pStmt,i) ); 782 columnMallocFailure(pStmt); 783 return val; 784 } 785 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 786 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 787 columnMallocFailure(pStmt); 788 return val; 789 } 790 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 791 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 792 columnMallocFailure(pStmt); 793 return val; 794 } 795 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 796 Mem *pOut = columnMem(pStmt, i); 797 if( pOut->flags&MEM_Static ){ 798 pOut->flags &= ~MEM_Static; 799 pOut->flags |= MEM_Ephem; 800 } 801 columnMallocFailure(pStmt); 802 return (sqlite3_value *)pOut; 803 } 804 #ifndef SQLITE_OMIT_UTF16 805 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 806 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 807 columnMallocFailure(pStmt); 808 return val; 809 } 810 #endif /* SQLITE_OMIT_UTF16 */ 811 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 812 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 813 columnMallocFailure(pStmt); 814 return iType; 815 } 816 817 /* 818 ** Convert the N-th element of pStmt->pColName[] into a string using 819 ** xFunc() then return that string. If N is out of range, return 0. 820 ** 821 ** There are up to 5 names for each column. useType determines which 822 ** name is returned. Here are the names: 823 ** 824 ** 0 The column name as it should be displayed for output 825 ** 1 The datatype name for the column 826 ** 2 The name of the database that the column derives from 827 ** 3 The name of the table that the column derives from 828 ** 4 The name of the table column that the result column derives from 829 ** 830 ** If the result is not a simple column reference (if it is an expression 831 ** or a constant) then useTypes 2, 3, and 4 return NULL. 832 */ 833 static const void *columnName( 834 sqlite3_stmt *pStmt, 835 int N, 836 const void *(*xFunc)(Mem*), 837 int useType 838 ){ 839 const void *ret = 0; 840 Vdbe *p = (Vdbe *)pStmt; 841 int n; 842 sqlite3 *db = p->db; 843 844 assert( db!=0 ); 845 n = sqlite3_column_count(pStmt); 846 if( N<n && N>=0 ){ 847 N += useType*n; 848 sqlite3_mutex_enter(db->mutex); 849 assert( db->mallocFailed==0 ); 850 ret = xFunc(&p->aColName[N]); 851 /* A malloc may have failed inside of the xFunc() call. If this 852 ** is the case, clear the mallocFailed flag and return NULL. 853 */ 854 if( db->mallocFailed ){ 855 db->mallocFailed = 0; 856 ret = 0; 857 } 858 sqlite3_mutex_leave(db->mutex); 859 } 860 return ret; 861 } 862 863 /* 864 ** Return the name of the Nth column of the result set returned by SQL 865 ** statement pStmt. 866 */ 867 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 868 return columnName( 869 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 870 } 871 #ifndef SQLITE_OMIT_UTF16 872 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 873 return columnName( 874 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 875 } 876 #endif 877 878 /* 879 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 880 ** not define OMIT_DECLTYPE. 881 */ 882 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 883 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 884 and SQLITE_ENABLE_COLUMN_METADATA" 885 #endif 886 887 #ifndef SQLITE_OMIT_DECLTYPE 888 /* 889 ** Return the column declaration type (if applicable) of the 'i'th column 890 ** of the result set of SQL statement pStmt. 891 */ 892 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 893 return columnName( 894 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 895 } 896 #ifndef SQLITE_OMIT_UTF16 897 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 898 return columnName( 899 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 900 } 901 #endif /* SQLITE_OMIT_UTF16 */ 902 #endif /* SQLITE_OMIT_DECLTYPE */ 903 904 #ifdef SQLITE_ENABLE_COLUMN_METADATA 905 /* 906 ** Return the name of the database from which a result column derives. 907 ** NULL is returned if the result column is an expression or constant or 908 ** anything else which is not an unabiguous reference to a database column. 909 */ 910 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 911 return columnName( 912 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 913 } 914 #ifndef SQLITE_OMIT_UTF16 915 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 916 return columnName( 917 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 918 } 919 #endif /* SQLITE_OMIT_UTF16 */ 920 921 /* 922 ** Return the name of the table from which a result column derives. 923 ** NULL is returned if the result column is an expression or constant or 924 ** anything else which is not an unabiguous reference to a database column. 925 */ 926 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 927 return columnName( 928 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 929 } 930 #ifndef SQLITE_OMIT_UTF16 931 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 932 return columnName( 933 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 934 } 935 #endif /* SQLITE_OMIT_UTF16 */ 936 937 /* 938 ** Return the name of the table column from which a result column derives. 939 ** NULL is returned if the result column is an expression or constant or 940 ** anything else which is not an unabiguous reference to a database column. 941 */ 942 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 943 return columnName( 944 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 945 } 946 #ifndef SQLITE_OMIT_UTF16 947 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 948 return columnName( 949 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 950 } 951 #endif /* SQLITE_OMIT_UTF16 */ 952 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 953 954 955 /******************************* sqlite3_bind_ *************************** 956 ** 957 ** Routines used to attach values to wildcards in a compiled SQL statement. 958 */ 959 /* 960 ** Unbind the value bound to variable i in virtual machine p. This is the 961 ** the same as binding a NULL value to the column. If the "i" parameter is 962 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 963 ** 964 ** A successful evaluation of this routine acquires the mutex on p. 965 ** the mutex is released if any kind of error occurs. 966 ** 967 ** The error code stored in database p->db is overwritten with the return 968 ** value in any case. 969 */ 970 static int vdbeUnbind(Vdbe *p, int i){ 971 Mem *pVar; 972 if( vdbeSafetyNotNull(p) ){ 973 return SQLITE_MISUSE_BKPT; 974 } 975 sqlite3_mutex_enter(p->db->mutex); 976 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 977 sqlite3Error(p->db, SQLITE_MISUSE, 0); 978 sqlite3_mutex_leave(p->db->mutex); 979 sqlite3_log(SQLITE_MISUSE, 980 "bind on a busy prepared statement: [%s]", p->zSql); 981 return SQLITE_MISUSE_BKPT; 982 } 983 if( i<1 || i>p->nVar ){ 984 sqlite3Error(p->db, SQLITE_RANGE, 0); 985 sqlite3_mutex_leave(p->db->mutex); 986 return SQLITE_RANGE; 987 } 988 i--; 989 pVar = &p->aVar[i]; 990 sqlite3VdbeMemRelease(pVar); 991 pVar->flags = MEM_Null; 992 sqlite3Error(p->db, SQLITE_OK, 0); 993 994 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 995 ** binding a new value to this variable invalidates the current query plan. 996 ** 997 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 998 ** parameter in the WHERE clause might influence the choice of query plan 999 ** for a statement, then the statement will be automatically recompiled, 1000 ** as if there had been a schema change, on the first sqlite3_step() call 1001 ** following any change to the bindings of that parameter. 1002 */ 1003 if( p->isPrepareV2 && 1004 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1005 ){ 1006 p->expired = 1; 1007 } 1008 return SQLITE_OK; 1009 } 1010 1011 /* 1012 ** Bind a text or BLOB value. 1013 */ 1014 static int bindText( 1015 sqlite3_stmt *pStmt, /* The statement to bind against */ 1016 int i, /* Index of the parameter to bind */ 1017 const void *zData, /* Pointer to the data to be bound */ 1018 int nData, /* Number of bytes of data to be bound */ 1019 void (*xDel)(void*), /* Destructor for the data */ 1020 u8 encoding /* Encoding for the data */ 1021 ){ 1022 Vdbe *p = (Vdbe *)pStmt; 1023 Mem *pVar; 1024 int rc; 1025 1026 rc = vdbeUnbind(p, i); 1027 if( rc==SQLITE_OK ){ 1028 if( zData!=0 ){ 1029 pVar = &p->aVar[i-1]; 1030 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1031 if( rc==SQLITE_OK && encoding!=0 ){ 1032 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1033 } 1034 sqlite3Error(p->db, rc, 0); 1035 rc = sqlite3ApiExit(p->db, rc); 1036 } 1037 sqlite3_mutex_leave(p->db->mutex); 1038 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1039 xDel((void*)zData); 1040 } 1041 return rc; 1042 } 1043 1044 1045 /* 1046 ** Bind a blob value to an SQL statement variable. 1047 */ 1048 int sqlite3_bind_blob( 1049 sqlite3_stmt *pStmt, 1050 int i, 1051 const void *zData, 1052 int nData, 1053 void (*xDel)(void*) 1054 ){ 1055 return bindText(pStmt, i, zData, nData, xDel, 0); 1056 } 1057 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1058 int rc; 1059 Vdbe *p = (Vdbe *)pStmt; 1060 rc = vdbeUnbind(p, i); 1061 if( rc==SQLITE_OK ){ 1062 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1063 sqlite3_mutex_leave(p->db->mutex); 1064 } 1065 return rc; 1066 } 1067 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1068 return sqlite3_bind_int64(p, i, (i64)iValue); 1069 } 1070 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1071 int rc; 1072 Vdbe *p = (Vdbe *)pStmt; 1073 rc = vdbeUnbind(p, i); 1074 if( rc==SQLITE_OK ){ 1075 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1076 sqlite3_mutex_leave(p->db->mutex); 1077 } 1078 return rc; 1079 } 1080 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1081 int rc; 1082 Vdbe *p = (Vdbe*)pStmt; 1083 rc = vdbeUnbind(p, i); 1084 if( rc==SQLITE_OK ){ 1085 sqlite3_mutex_leave(p->db->mutex); 1086 } 1087 return rc; 1088 } 1089 int sqlite3_bind_text( 1090 sqlite3_stmt *pStmt, 1091 int i, 1092 const char *zData, 1093 int nData, 1094 void (*xDel)(void*) 1095 ){ 1096 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1097 } 1098 #ifndef SQLITE_OMIT_UTF16 1099 int sqlite3_bind_text16( 1100 sqlite3_stmt *pStmt, 1101 int i, 1102 const void *zData, 1103 int nData, 1104 void (*xDel)(void*) 1105 ){ 1106 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1107 } 1108 #endif /* SQLITE_OMIT_UTF16 */ 1109 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1110 int rc; 1111 switch( pValue->type ){ 1112 case SQLITE_INTEGER: { 1113 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1114 break; 1115 } 1116 case SQLITE_FLOAT: { 1117 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1118 break; 1119 } 1120 case SQLITE_BLOB: { 1121 if( pValue->flags & MEM_Zero ){ 1122 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1123 }else{ 1124 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1125 } 1126 break; 1127 } 1128 case SQLITE_TEXT: { 1129 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1130 pValue->enc); 1131 break; 1132 } 1133 default: { 1134 rc = sqlite3_bind_null(pStmt, i); 1135 break; 1136 } 1137 } 1138 return rc; 1139 } 1140 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1141 int rc; 1142 Vdbe *p = (Vdbe *)pStmt; 1143 rc = vdbeUnbind(p, i); 1144 if( rc==SQLITE_OK ){ 1145 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1146 sqlite3_mutex_leave(p->db->mutex); 1147 } 1148 return rc; 1149 } 1150 1151 /* 1152 ** Return the number of wildcards that can be potentially bound to. 1153 ** This routine is added to support DBD::SQLite. 1154 */ 1155 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1156 Vdbe *p = (Vdbe*)pStmt; 1157 return p ? p->nVar : 0; 1158 } 1159 1160 /* 1161 ** Return the name of a wildcard parameter. Return NULL if the index 1162 ** is out of range or if the wildcard is unnamed. 1163 ** 1164 ** The result is always UTF-8. 1165 */ 1166 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1167 Vdbe *p = (Vdbe*)pStmt; 1168 if( p==0 || i<1 || i>p->nzVar ){ 1169 return 0; 1170 } 1171 return p->azVar[i-1]; 1172 } 1173 1174 /* 1175 ** Given a wildcard parameter name, return the index of the variable 1176 ** with that name. If there is no variable with the given name, 1177 ** return 0. 1178 */ 1179 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1180 int i; 1181 if( p==0 ){ 1182 return 0; 1183 } 1184 if( zName ){ 1185 for(i=0; i<p->nzVar; i++){ 1186 const char *z = p->azVar[i]; 1187 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1188 return i+1; 1189 } 1190 } 1191 } 1192 return 0; 1193 } 1194 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1195 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1196 } 1197 1198 /* 1199 ** Transfer all bindings from the first statement over to the second. 1200 */ 1201 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1202 Vdbe *pFrom = (Vdbe*)pFromStmt; 1203 Vdbe *pTo = (Vdbe*)pToStmt; 1204 int i; 1205 assert( pTo->db==pFrom->db ); 1206 assert( pTo->nVar==pFrom->nVar ); 1207 sqlite3_mutex_enter(pTo->db->mutex); 1208 for(i=0; i<pFrom->nVar; i++){ 1209 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1210 } 1211 sqlite3_mutex_leave(pTo->db->mutex); 1212 return SQLITE_OK; 1213 } 1214 1215 #ifndef SQLITE_OMIT_DEPRECATED 1216 /* 1217 ** Deprecated external interface. Internal/core SQLite code 1218 ** should call sqlite3TransferBindings. 1219 ** 1220 ** Is is misuse to call this routine with statements from different 1221 ** database connections. But as this is a deprecated interface, we 1222 ** will not bother to check for that condition. 1223 ** 1224 ** If the two statements contain a different number of bindings, then 1225 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1226 ** SQLITE_OK is returned. 1227 */ 1228 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1229 Vdbe *pFrom = (Vdbe*)pFromStmt; 1230 Vdbe *pTo = (Vdbe*)pToStmt; 1231 if( pFrom->nVar!=pTo->nVar ){ 1232 return SQLITE_ERROR; 1233 } 1234 if( pTo->isPrepareV2 && pTo->expmask ){ 1235 pTo->expired = 1; 1236 } 1237 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1238 pFrom->expired = 1; 1239 } 1240 return sqlite3TransferBindings(pFromStmt, pToStmt); 1241 } 1242 #endif 1243 1244 /* 1245 ** Return the sqlite3* database handle to which the prepared statement given 1246 ** in the argument belongs. This is the same database handle that was 1247 ** the first argument to the sqlite3_prepare() that was used to create 1248 ** the statement in the first place. 1249 */ 1250 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1251 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1252 } 1253 1254 /* 1255 ** Return true if the prepared statement is guaranteed to not modify the 1256 ** database. 1257 */ 1258 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1259 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1260 } 1261 1262 /* 1263 ** Return true if the prepared statement is in need of being reset. 1264 */ 1265 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ 1266 Vdbe *v = (Vdbe*)pStmt; 1267 return v!=0 && v->pc>0 && v->magic==VDBE_MAGIC_RUN; 1268 } 1269 1270 /* 1271 ** Return a pointer to the next prepared statement after pStmt associated 1272 ** with database connection pDb. If pStmt is NULL, return the first 1273 ** prepared statement for the database connection. Return NULL if there 1274 ** are no more. 1275 */ 1276 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1277 sqlite3_stmt *pNext; 1278 sqlite3_mutex_enter(pDb->mutex); 1279 if( pStmt==0 ){ 1280 pNext = (sqlite3_stmt*)pDb->pVdbe; 1281 }else{ 1282 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1283 } 1284 sqlite3_mutex_leave(pDb->mutex); 1285 return pNext; 1286 } 1287 1288 /* 1289 ** Return the value of a status counter for a prepared statement 1290 */ 1291 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1292 Vdbe *pVdbe = (Vdbe*)pStmt; 1293 int v = pVdbe->aCounter[op-1]; 1294 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1295 return v; 1296 } 1297